
Notes on Computability Theory

Stefan Vatev

January 16, 2023

Contents

1 Primitive recursive functions 3
1.1 Definition and examples . 3
1.2 Predicates . 9
1.3 Bounded minimisation . 11
1.4 Coding of finite objects . 15

1.4.1 Coding of finite sets 15
1.4.2 Coding of finite sequences 18

1.5 Additional schemes . 21
1.5.1 Simultaneous recursion 21
1.5.2 Course-of-values recursion 22
1.5.3 Tail recursion . 24

1.6 A function, which is not primitive recursive 26

2 Unlimited Register Machines 32
2.1 Description of the machine . 32
2.2 Concatenation of programs . 35
2.3 Cycles in programs . 36
2.4 Superposition . 38
2.5 Primitive Recursion . 40
2.6 Minimisation . 41
2.7 A function which is not URM-computable 42

3 Partial recursive functions 45
3.1 Enumeration of URM programs 46
3.2 The universal function . 47
3.3 The Parameters Theorem . 51
3.4 Applications . 55
3.5 The fixed point theorem . 61
3.6 Problems . 68

1

4 Decidable and semidecidable sets 74
4.1 Decidable sets . 74
4.2 Semidecidable sets . 78
4.3 Decidable index sets . 82
4.4 Semidecidable index sets . 87

4.4.1 Problems . 90
4.4.2 Theorem of McNaughton-Myhill-Rice-Shapiro 92

4.5 Problems . 95

5 Effective Reducibilities 99
5.1 The structure of many-one degrees 102
5.2 The Myhill Isomorphism Theorem 103
5.3 Productive and creative sets 105
5.4 Immune and simple sets . 110
5.5 Problems . 114

2

Chapter 1

Primitive recursive functions

1.1 Definition and examples

- The main reference for this

chapter is [7] and [2].

The following are called basic functions over the natural numbers:

S(n) = n+ 1 // the successor function

O(n) = 0 // the zero function

Ink(x1, . . . , xk, . . . , xn) = xk, // the projective functions,

// for all n and k ≤ n

- Here all functions are total,

but we can define
superposition for partial
functions too.

Let g : Nn → N, f1 : Nk → N, . . . , fn : Nk → N are functions. Define the
function h : Nk → N as

h(x̄) = z ⇔ (∃y1 · · · ∃yn)[f1(x̄) = y1 & . . .& fn(x̄) = yn & g(y1, . . . , yn) = z].

We say that h is the superposition of g with f1, . . . , fn. We denote

h
def
= g(f1, . . . , fn).

If we work only with total functions, it is safe to write that

h(x̄) = g(f1(x̄), . . . , fn(x̄)).

If we allow partial functions, we must be more careful, because we may
have that fi(x̄) is undefined, for some i. It follows that in this case h(x̄) is
also undefined.

- We say that h is obtained from f and g by primitive recursion if the
definition of h follows the scheme:∣∣∣∣ h(x, 0) = f(x)

h(x, n+ 1) = g(x, n, h(x, n))

3

- We say that one function is primitive recursive if it can be produced from
the basic functions by applying a finite number of times the operations of
superposition and primitive recursion.

Primitive recursion was first

introduced explicitly by
Thoralf Skolem in 1923.
Rózsa Petér [7] introduced
the term “primitive
recursive”.

Having a formal definition will be useful when we want to prove a property
which holds for all primitive recursive functions.

Definition 1.1 (Primitive recursion). The primitive recursive functions
are formed by the rules:

1) The basic functions are primitive recursive;

2) If g : Nn → N and f1 : Nk → N, . . . , fn : Nk → N are primitive
recursive, then the function g(f1, . . . , fn) : Nk → N is also primitive
recursive.

3) If f : Nn → N and g : Nn+2 → N are primitive recursive, then
h : Nn+1 → N, obtained from f and g by the primitive recursion
scheme, is also primitive recursive.

4) All primitive recursive functions are produced by the rules 1) - 3).

Theorem 1.1. All primitive recursive functions are total.

Hint. Straightforward induction on the definition of the primitive recursive
functions.

Examples of primitive recursive functions

Here we list a number of useful primitive recursive functions.

1) We will show that if f is primitive recursive, then h with the property
h(x, y) = f(y, x) is also primitive recursive. It is easy to generalise it to

n-ary functions.

Consider the function

h(x, y)
def
= f(I22, I

2
1)(x, y).

- By definition, I21 and I22 are primitive recursive.

- By assumption, f is primitive recursive.

- h is obtained from I21, I
2
2 and f by superposition, i.e. h = f(I22, I

2
1).

- It follows that the function h is primitive recursive.

4

2) From here on, we will use +

instead of plus.

Let plus(x, y) = x+ y. We can define the function plus in the following
way:∣∣∣∣∣ plus(x, 0) def

= x = I11(x)

plus(x, y + 1)
def
= plus(x, y) + 1 = S(plus(x, y)) = g(x, y, plus(x, y)),

where g(x, y, z)
def
= S(I33)(x, y, z) = S(z). It follows that plus is primitive

recursive.

3) Of course, later, we will use ∗
instead of mult.

Let mult(x, y) = x · y. We can define mult in the following way:∣∣∣∣∣ mult(x, 0) def
= 0 = O(x)

mult(x, y + 1)
def
= mult(x, y) + x = g(x, y, mult(x, y)),

where the function g is defined as

g(x, y, z)
def
= plus(I33, I

3
1)(x, y, z).

Clearly g satisfies the property that g(x, y, z) = z + y.

- By definition, I31 and I33 are primitive recursive.

- We have already seen that plus is primitive recursive.

- F is obtained from I31, I
3
3 and plus by superposition.

- It follows that g is primitive recursive.

- Since mult is obtained from O and g by the primitive recursive scheme,
it follows that mult is primitive recursive.

4) ✍ Do it!Given a unary function f , we let f ⋆(x, n)
def
= f (n)(x), where we use∣∣∣∣∣ f (0)(x)

def
= x

f (n+1)(x)
def
= f(f (n)(x)).

Show that if f is primitive recursive, then f ⋆ is primitive recursive.

Now we may let plus(x, y) = S⋆(x, y).

5) This is called bounded

product. Notice that∏
i<0 i = 1.

Let h(x, y) =
∏

i<y f(x, i). We will show that if f is primitive recursive,
then h is primitive recursive. We can define h in the following way:∣∣∣∣ h(x, 0) = 1 = S(O(x)) = g0(x)

h(x, n+ 1) = h(x, n) · f(x, n) = g(x, n, h(x, n)),

where the function g is defined as

g(x, y, z)
def
= mult(z, f(I31(x, y, z), I

3
2(x, y, z))).

5

- g0 is obtained from O and S by superposition and hence g0 is primitive
recursive.

- It is easy to see that g is primitive recursive, because it is a superposition
of primitive recursive functions.

- Finally, h is obtained from g0 and g by following a primitive recursive
scheme. It follows that h is primitive recursive.

6) This is called bounded

summation. Notice that∑
i<0 i = 0.

Similarly, we can show that if f is primitive recursive, then

h(x, y) =
∑
i<y

f(x, i)

is primitive recursive.

7) We will show that the following function is primitive recursive: This function is very useful.

Remember it!

sign(x) =

{
0, if x = 0

1, if x > 0.

Consider the following primitive recursive scheme:∣∣∣∣ f(x, 0) = O(x)
f(x, y + 1) = S(O(x)) = h(x, y, f(z, y)),

where h(x, y, z)
def
= S(O(I31(x, y, z)).

- h is primitive recursive as a superposition of primitive recursive func-
tions.

- f is obtained from O and H following the primitive recursive scheme.
Thus, f is primitive recursive.

- Then sign(x) = f(x, x) = f(I11, I
1
1)(x) is a superposition of primitive

recursive functions and hence sign is primitive recursive.

8) ✍ Do it!Similarly, we can show that the function

sign(x) =

{
1, if x = 0

0, if x > 0

is primitive recursive.

6

9) Show that if f , g, and p are primitive recursive, then h is primitive recur-
sive, where:

h(x) =

{
f(x), if p(x) = 0,

g(x), if p(x) ̸= 0.

Notice that this definition of

h works only for total
functions.

Since we have that sign is primitive recursive, we can give the following
definition of h:

h(x)
def
= sign(p(x)) · f(x) + sign(p(x)) · g(x).

10) Our next step is to show that the predecessor function

pred(x) =

{
0, if x = 0

x− 1, if x ≥ 1

is primitive recursive. Consider the following function:∣∣∣∣ pred′(x, 0) = O(x)
pred′(x, n+ 1) = I32(x, n, pred

′(x, n)),

- The first argument of pred′

is not used. It is there just to
fit in the definition into the
primitive recursive scheme.

pred′ is obtained from O and I32 following the primitive recursive scheme
and thus it is primitive recursive. It is easy to see that pred(x) =
minus′(x, x). Thus, the function pred is primitive recursive.

11) Some people call .− modified

minus, or monus.

We will show that the following function is primitive recursive:

x .− y =

{
0, if x < y

x− y, if x ≥ y
.

In particular, x .− 1 = pred(x). This function turns out to be very useful,
so we will do this carefully. We will show that x .− y can be obtained by
the primitive recursion scheme by using the following property:

x .− (y + 1) = (x .− y) .− 1.

Now it is east to see that x .− y is primitive recursive, because it has the
following definition:∣∣∣∣∣ minus(x, 0) def

= x

minus(x, n+ 1)
def
= pred(minus(x, n)).

7

Alternatively, we can show that minus is primitive recursive by using 4)
and observing that

minus(x, y) = pred⋆(x, y),

i.e. x .− y = (· · · (x .− 1) .− 1) · · · .− 1︸ ︷︷ ︸
y times

.

12) Now it is easy to see that the functions min(x, y) and max(x, y) are prim-
itive recursive. ✍ Give primitive recursive

definitions of min(x, y, z) and
max(x, y, z).

One way to do it is the following:

min(x, y) = x .− (x .− y)
max(x, y) = x+ (y .− x).

13) The function |x− y| is primitive recursive, because we can define it in the
following way:

|x− y| = (x .− y) + (y .− x),

or like that:
|x− y| = max(x, y)−min(x, y).

Problem 1. Let f(x̄, y) be a primitive recursive function. Show that the
following functions are primitive recursive:

1) h(x̄, y1, y2) =

{∑y2
z=y1

f(x̄, z), if y1 ≤ y2

0, if y1 > y2.

2) h(x̄, y1, y2) =

{∏y2
z=y1

f(x̄, z), if y1 ≤ y2

1, if y1 > y2.

Problem 2. Let f(x̄, y) and g(x̄, y) be primitive recursive functions. Show
that the following functions are primitive recursive:

1) h(x̄, y) =
∑

z<g(x̄,y) f(x̄, z);

2) h(x̄, y) =
∏

z<g(x̄,y) f(x̄, z);

8

1.2 Predicates

- A predicate is a total function p : Nn → {0, 1}, where we interpret 0 as
false and 1 as true.

- To simplify matters, since we only work with natural numbers, let us in-

troduce the constants True
def
= 1 and False

def
= 0.

- For an n-ary relation R on N, its characteristic function is the function
χR, where

χR(x̄) =

{
True, if x̄ ∈ R
False, if x̄ ̸∈ R.

- We say that the relation R is primitive recursive if its characteristic
function χR is primitive recursive.

1) Let us introduce the constant functions true(x)
def
= True and false(x)

def
=

False for all x.

2) Let us first show that the following relation is primitive recursive:

χ<(x, y) =

{
True, if x < y

False, if x ≥ y.

This is easy, because

χ<(x, y) = sign(y .− x).

3) Similarly, χ=(x, y) can be defined as

χ=(x, y) = sign(|x− y|).

4) Let P and Q are primitive recursive n-ary relations. Then P ∧ Q is a
primitive recursive relation because

χP∧Q(x̄) = χP (x̄) ∗ χQ(x̄).

Similarly,
χP∨Q(x̄) = sign(χP (x̄) + χQ(x̄)),

and
χ¬P (x̄) = 1 .− χP (x̄).

9

5) Of course, here it is essential

that we defined True = 1 and
False = 0.

If R is a primitive recursive (n+ 1)-ary relation, then

Q(x̄, y)
def
= (∃z < y)R(x̄, z)

is a primitive recursive relation, because

χQ(x̄, y) = sign(
∑
z<y

χR(x̄, z)).

6) Similarly, if R is a primitive recursive (n+ 1)-ary relation, then

Q(x̄, y)
def
= (∀z < y)[R(x̄, z)]

is a primitive recursive relation, because

χQ(x̄, y) =
∏
z<y

χR(x̄, z).

10

1.3 Bounded minimisation

Let f be a (k+1)-ary total function. We say that the function g is obtained
from f by bounded minimisation if

g(x̄, y) =

{
min{z | z < y & f(x̄, z) = 0}, if (∃z < y)[f(x̄, z) = 0]

y, otherwise.

We usually denote this in the following way:

g(x̄, y) = (µz < y)[f(x̄, z) = 0].

Theorem 1.2. If f is primitive recursive function and g is obtained
from f by bounded minimisation, then g is also primitive recursive.
In other words, the class of primitive recursive functions is closed under
bounded minimisation.

Hint. We can define g in the following way:

g(x, y)
def
=

y∑
v=1

sign(
v
.−1∏

z=0

f(x, z)).

Problem 3. Show that if f(x̄, y) is primitive recursive, then the following
function is primitive recursive:

h(x̄, y) =

{
max{z | z < y & f(x̄, z) = 0}, if (∃z < y)[f(x̄, z) = 0]

y, otherwise.

Hint. We can define h in the following way:

h(x̄, y) = y .−
y∑
i=1

sign(

y
.−1∏

z=y
.−i
f(x̄, z)).

We continue with examples of primitive recursive functions.

11

1) The function qt(x, y) that gives the quotient of the division of y by x

is primitive recursive. More formally, for x > 0, qt(x, y)
def
= q, where

y = q∗x+r for some r such that 0 ≤ r < x. Of course, we let qt(0, y)
def
= 0.

Then
qt(x, y) = sign(x) ∗ (µz < y)[(z + 1) ∗ x > y].

2) The function rem(x, y) that gives the remainder of the division of y by

x is primitive recursive. More formally, rem(x, y)
def
= r, where r is the

least natural number for which there exists a natural number q such that
y = q ∗ x+ r. Since we know that qt(x, y) is primitive recursive, then

rem(x, y) = y .− qt(x, y) ∗ x.

3) The following function

Div(x, y) =

{
1, if x | y
0, otherwise

is primitive recursive since it can be defined as

Div(x, y)
def
= sign(rem(x, y)).

4) Now consider the function

D(x) =

{
the number of divisors of x, if x > 0

0, if x = 0.

Notice that D(0) = 0 =
∑0

y=1It is easy to see that we can the function D in the following way:

D(x)
def
=

x∑
y=1

Div(y, x).

5) Let us consider the predicate

Pr(x) =

{
1, if x is a prime number

0, otherwise ;

There are many ways to characterize the prime numbers.

12

- One way to characterize the prime numbers is by saying that the number
of divisors is exactly 2. Thus,

Pr(x)
def
= sign(|D(x)− 2|).

- Another way is by using the fact that n is prime iff n ≥ 2 and there are
no two numbers less that n whose product is n, i.e. n does not divide
(n− 1)!2. Thus,

Pr(x)
def
= sign((2 .− x) + sign(rem(n, (n− 1)!2))).

- Another way to do the same thing is by defining

Pr(x)
def
= sign(

n
.−1∏

a=2

n
.−1∏

b=2

|a · b− x|).

6) Consider the function p(n) = n-th prime number, where p(0) = 2. Our
idea is to show that the function p(n) can be expressed by bounded min-
imisation. To do this, we need to find an upper bound for p(n) which
depends on n.

- It is easy to see that
n∑
i=0

2i = 2n+1 − 1.

- We will prove by induction on n that p(n) ≤ 22
n
.

By the induction hypothesis,

n∏
i=0

p(i) ≤
n∏
i=0

22
i

= 2
∑n

i=0 2
i

< 22
n+1

.

Then
∏n

i=0 p(i) + 1 ≤ 22
n+1

.

- We have two cases for the number
∏n

i=0 p(i) + 1. It is either prime, in

which case it is clear that p(n+ 1) ≤ 22
n+1

, or
∏n

i=0 p(i) + 1 = p(k) · u,
for some number u and k ≥ n+ 1. Then clearly,

p(n+ 1) ≤ p(k) ≤ p(k) · u =
n∏
i=0

p(i) + 1 ≤ 22
n+1

.

- Now we are ready to give the primitive recursive definition of p(x).∣∣∣∣ p(0) = 2
p(x+ 1) = µzz≤22x [χ>(z, p(x)) · Pr(z) = 1].

13

7) For example,

(12)0 = 2

(12)1 = 1

(12)2 = 0.

Consider the function

(x)y = the least n such that p(y)n+1 ̸ | x.

It is easy to see that it is primitive recursive:

(x)y = the least number z such that p(y)z+1 ̸ | x
= µzz<x[exp(p(y), z + 1) ̸ | x]

= µzz<x[Div(exp(p(y), z + 1), x) = 0].

Problem 4. Prove that the following functions are primitive recursive:

1) sq(x) = ⌊
√
x⌋;

2) lg(x) = ⌊log2(x)⌋, where lg(0) = 0;

3) lcd(x, y) = the least common denominator of x and y;

4) gcd(x, y) = the greatest common divisor of x and y;

5) τ(x) = the count of prime numbers ≤ x;

6) θ(x) = the first prime number ≥ x;

7) φ(x) = the count of all numbers ≤ x and co-prime with x, if x > 0;

8) len(p, x) = the length of x, when x is represented in base p, p > 1;

9) ones(x) = the count of ones in the binary representation of x;

Hint.

1) Use the following representation

⌊
√
x+ 1⌋ =

{
⌊
√
x⌋, if x+ 1 ̸= (⌊

√
x⌋+ 1)2

⌊
√
x⌋+ 1, if x+ 1 = (⌊

√
x⌋+ 1)2,

or bounded minimization

⌊
√
x⌋ = the least z < x such that x < (z + 1)2

= (µz < x)[sign((z + 1)2 .− x) = 0].

9) You can use the following recursive definition:∣∣∣∣∣∣
ones(0) = 0
ones(2x) = ones(x)
ones(2x+ 1) = 1 + ones(2x).

14

1.4 Coding of finite objects

1.4.1 Coding of finite sets

We know that every natural number x can be represented in binary number
system, that is, there exists numbers 0 ≤ k1 < k2 < · · · < kn such that: E.g. 11 = 23 + 21 + 20 and

its binary representation is
1011. Notice that the code of
the empty set is 0, i.e. the
empty sum.

x = 2k1 + 2k2 + · · ·+ 2kn .

It follows that we can assign a code to every finite set of natural numbers. We also have that every

natural number is a code of a
finite set

If
we have the set D = {k1 < k2 < · · · < kn}, then the code of D is the number
v = 2k1 + 2k2 + · · ·+ 2kn . In this case, we denote the finite set as Dv.

1) The predicate mem saying whether x ∈ Dv is primitive recursive:

mem(x, v) =

{
True, if x ∈ Dv

False, if x ̸∈ Dv.

Consider the finite set Dv = {k0 < · · · < kn} with code v, i.e.

v = 2k0 + 2k1 + · · ·+ 2kn .

For a number x, we can represent v as

v = 2x · qt(2x, v) + rem(2x, v).

If ki ≤ x < ki+1, we have: ∑
0≤j<i 2

kj < 2x

v = 2x ·
∑
i≤j≤n

2kj−x +
∑
0≤j<i

2kj .

We have two cases to consider.

- Let x ∈ Dv. It means that x = ki, for some i, and hence

qt(2x, v) =
∑
i≤j≤n

2kj−ki = 20 +
∑
i<j≤n

2kj−ki ,

which is an odd number, i.e.

rem(2, qt(2x, v)) = 1.

- Let x ̸∈ Dv. Then we have three sub-cases:

15

– if x < k0, then

v = 2x
∑

0≤i≤n

2ki−x.

– if ki < x < ki+1, for some i, then

v = 2x
∑
i<j≤n

2kj−x +
∑
0≤j≤i

2kj .

– if kn < x, then

v = 2x · 0 +
∑

0≤i≤n

2ki .

In all three sub-cases, we have rem(2, qt(2x, v)) = 0.

We conclude the mem(x, v) is a primitive recursive function because it can
be defined as

mem(x, v)
def
= rem(2, qt(2x, v)).

2) The function card finding the cardinality of the set Dv is primitive recur-
sive:

card(v) = |Dv|.
To see why, consider the following definition:

card(v)
def
=

∑
x<v

mem(x, v).

3) The function el finding the i-th element in the set Dv is primitive recur-
sive:

el(v, i) =

{
ki, if Dv = {k0 < · · · < ki < · · · < kn}
v, otherwise

.

Consider the following definition:

el(v, i)
def
= (µz < v)[

∑
y≤z

mem(y, v) = i+ 1].

4) The function cap finding the code of the intersection of the sets Du and
Dv is primitive recursive:

cap(u, v) = w ⇔ Du ∩Dv = Dw.

Consider the following definition:

cap(u, v)
def
=

∑
x<u

mem(x, u) ∗ mem(x, v) ∗ 2x.

16

5) The function diff finding the code of the difference of the sets Du and
Dv is primitive recursive:

diff(u, v) = w ⇔ Du \Dv = Dw.

Consider the following definition:

diff(u, v) =
∑
x<u

mem(x, u) ∗ sign(mem(x, v)) ∗ 2x.

6) The function cup finding the code of the union of the sets Du and Dv is
primitive recursive:

cup(u, v) = w ⇔ Du ∪Dv = Dw.

Consider the following definition:

cup(u, v)
def
= diff(u, v) + v.

7) ✍ Homework!The predicate subs saying whether Du is a subset of Dv is primitive
recursive:

subs(u, v) =

{
1, if Du ⊆ Dv

0, otherwise.

8) ✍ Homework!The function power finding the code of the powerset of the set Du is
primitive recursive:

power(u) = v,

where Dv = {x | Dx ⊆ Du}.

17

1.4.2 Coding of finite sequences

We say that the functions π, λ, ρ form a coding triple if they satisfy the
properties:

π(λ(z), ρ(z)) = z, λ(π(x, y)) = x, ρ(π(x, y)) = y.

It is easy to see that if ⟨π, λ, ρ⟩ is a coding triple, then π : N2 → N is
bijective.

Proposition 1.1. Important property for

bounded minimization

There exists a primitive recursive coding triple ⟨π, λ, ρ⟩
with the property λ(z) ≤ z and ρ(x) ≤ z.

Proof. There are many such triples. Here we use the Cantor coding:

π(x, y)
def
=

x+y∑
i=1

i+ y =
(x+ y + 1)(x+ y)

2
+ y.

We need the primitive recursive function

ω(z)
def
= (µs ≤ z)[

s+1∑
i=1

i < z].

It is easy to see that we have the property:

ω(π(x, y)) = x+ y.

Then we define the decoding functions in the following way:

λ(z)
def
= ω(z)− ρ(z)

ρ(z)
def
= z −

∑
i≤w(z)

i.

Change the notation Jn
k .Given a coding triple ⟨π, λ, ρ⟩, we show that we can build, for every k ≥ 1,

a coding (k + 1)-tuple of functions ⟨πk, Jk1 , . . . , Jkk ⟩. We do this inductively
by starting from k = 1 and define a coding (k + 1)-tuple using the functions
from the coding k-tuple. Notice that the definition of

πk+1 is not how it is done is
Lisp-like programming
languages with the atomic
operations of cons, car and
cdr.

- π1(x)
def
= x and J1

1 (x)
def
= x.

- πk+1(x1, . . . , xk+1)
def
= π(πk(x1, . . . , xk), xk+1).

Jk+1
i (z)

def
= Jki (λ(z)), for i = 1, . . . , k, and Jk+1

k+1 (z)
def
= ρ(z).

18

Proposition 1.2. Let us have fixed a primitive recursive coding triple ⟨π, λ, ρ⟩.
Then for every k ≥ 1, the functions πk and Jki are primitive recursive.

Let us denote N+ =
⋃
k>0Nk. Now we define τ : N+ → N in the following

way:

τ(x0, . . . , xn)
def
= π(n, πn+1(x0, . . . , xn)).

Problem 5. Prove the following:

1) τ is bijective;

2)
len(z) = λ(z) + 1

the function len finding the length of the tuple with code z primitive
recursive: len(z) = k iff z is the code of a k-tuple.

3) the function mem finding the i-th member of the tuple with code z is
primitive recursive:

mem(z, i) =

{
ai, if z is the code of ⟨a0, . . . , ai, . . . , ak⟩
z, otherwise.

Hint. Let us consider the following function: Recall that:

f0(x) = x

fk+1(x) = f(fk(x))
G(k, i, z) =


λk(z), if i = 0,

ρ(λk−i(z)), if 1 ≤ i ≤ k,

z, otherwise

It is easy to check that since λ and ρ are primitive recursive, G is primitive
recursive and have the property that G(k, i, z) = Jki (z). Thus,

mem(z, i)
def
= G(λ(z), i, ρ(z)).

Problem 6. ✍ Homework!Let us consider the function pairing function:

π(x, y)
def
= 2x(2y + 1)− 1.

- Show that π is primitive recursive and bijective.

- Show that there exist primitive recursive function λ and ρ such that ⟨π, λ, ρ⟩
is a coding triple with the property λ(z) ≤ z and ρ(z) ≤ z.

19

Problem 7. ✍ Homework!Let us consider the function τ : N+ → N defined as:

τ(a0, . . . , ak)
def
= 2a0+0 + 2a0+a1+1 + · · ·+ 2a0+a1+···+ak+k − 1.

Show that the function τ is bijective and prove that the following functions
are primitive recursive:

1) len(v) = the length of ā, where v = τ(ā).

2) mem(v, i) =

{
ai, if v = τ(a1, . . . , ai, . . . , ak)

v, if len(v) < i.

3) pref(u, v) =

{
True, u = τ(a0, . . . , ak−1) & v = τ(a0, . . . , ak−1, . . . , am−1)

False, otherwise

In the next problem we use the coding functions defined in the previous
two problems.

Problem 8. ✍ Homework!The set T of natural numbers is called a tree if

(∀u, v ∈ N)[(v ∈ T & pref(u, v) = True) =⇒ v ∈ T].

Show that the function

tree(v) =

{
True, if Dv is a tree

False, if Dv is not a tree

is primitive recursive.

20

1.5 Additional schemes

1.5.1 Simultaneous recursion

[7] p. 61We say that f and g are obtained by simultaneous recursion from f0, g0,
F and G, if ∣∣∣∣∣∣∣∣

f(x, 0) = f0(x)
g(x, 0) = g0(x)
f(x, n+ 1) = F (x, n, f(x, n), g(x, n))
g(x, n+ 1) = G(x, n, f(x, n), g(x, n)).

We will show that the class of primitive recursive functions is closed under
the scheme for simultaneous recursion. It can be generalised for any

finite number of functions

Theorem 1.3. If f0, g0, F and G are primitive recursive, then so are f and
g.

Proof. Let us fix the coding triple ⟨π, λ, ρ⟩. We will show that the following
function is primitive recursive:

h(x, n) = π(f(x, n), g(x, n)).

It will follow that f and g are primitive recursive, because

f(x, n) = λ(h(x, n))

g(x, n) = ρ(h(x, n)).

We have the following property:

h(x, n+ 1) = π(F (x, n, f(x, n), g(x, n)), G(x, n, f(x, n), g(x, n)))

= π(F (x, n, λ(h(x, n)), ρ(h(x, n))), G(x, n, λ(h(x, n)), ρ(h(x, n)))).

Since we have the primitive recursive function

H(x, n, y) = π(F (x, n, λ(y), ρ(y)), G(x, n, λ(y), ρ(y))),

we see that h is primitive recursive, because its definition follows the scheme:∣∣∣∣∣ h(x, 0) def
= π(f0(x), g0(x))

h(x, n+ 1)
def
= H(x, n, h(x, n)).

21

1.5.2 Course-of-values recursion

[5, p. 89]. It starts with

0, 1, 1, 2, 3, 5, 8, 13, 21, . . .

Let us consider two examples of computable functions. The first gives us the
famous Fibonacci sequence.

fib(n) =


0, n = 0

1, n = 1

fib(n− 2) + fib(n− 1), n ≥ 2

The second one defines the function xy.

pow(x, y) =


1 y = 0

x ∗ pow(x, y − 1), y > 0 & y is odd

pow(x, y/2)2, y > 0 & y is even.

Their definitions follow a pattern similar to the primitive recursive scheme,
but to compute the next value of the function, they need to know more than
just the last computed value.

Problem 9. Prove that the function fib is primitive recursive.

Proof. Let us fix the coding triple ⟨π, λ, ρ⟩. We have the primitive recur-
sive function f :∣∣∣∣ f(0) = π(0, 1)

f(n+ 1) = π(ρ(f(n)), λ(f(n)) + ρ(f(n))).

Then fib(n) = λ(f(n))

Problem 10. Prove that the function pow(x, y) is primitive recursive.

Lemma 1.1. Let f be primitive recursive. Then the function

Hf (x, y) = τ(f(x, 0), f(x, 1), . . . , f(x, y))).

is primitive recursive. We call Hf the history of f .

Proof. Following the definition of τ in , we have the property:

Hf (x, y + 1) = π(y + 1, π(ρ(Hf (x, y)), f(x, y + 1))).

22

Let us denote

F (x, y, z) = π(y + 1, π(ρ(z), f(x, y + 1)),

which is clearly primitive recursive. Then we see that Hf is produced from
π and F by the primitive recursive scheme:∣∣∣∣ Hf (x, 0) = π(0, f(x, 0))

Hf (x, y + 1) = F (x, y,Hf (x, y)).

Recall how we proved that the function fib is primitive recursive. Using
our fixed primitive recursive coding triple ⟨π, λ, ρ⟩, we will elaborate on that
idea and prove a general result.

We say that the function f is obtained by course-by-values recursion,
if it follows the scheme:∣∣∣∣ F (x, 0) = f(x)

F (x, y + 1) = g(x, y,HF (x, y))

Theorem 1.4. In other words, the class of

primitive recursive functions
is closed under
course-by-values recursion.

Let f and g are primitive recursive and F is obtained from
f and g by course-by-values recursion. Then F is primitive recursive as well.

Proof. It is enough to prove that HF is primitive recursive. We have:

HF (x, y + 1) = τ(F (x, 0), . . . , F (x, y + 1))

= π(y + 1, π(ρ(HF (x, y)), F (x, y + 1)))

= π(y + 1, π(ρ(HF (x, y)), g(x, y,HF (x, y)))

Thus, HF is primitive recursive, because it follows the primitive recursive
scheme:∣∣∣∣ HF (x, 0) = π(0, f(x, 0))

HF (x, y + 1) = π(y + 1, π(ρ(HF (x, y)), g(x, y,HF (x, y))).

Now, it follows that F is primitive recursive, because:

F (x, y) =

{
f(x), if y = 0

g(x, y .− 1, HF (x, y
.− 1)), if y > 0.

We give a second proof of the fact that fib is primitive recursive.

23

Problem 11. The function fib is primitive recursive, where

fib(n) =


0, n = 0

1, n = 1

fib(n− 2) + fib(n− 1), n ≥ 2.

Proof. We use mem from Problem 5.Consider the primitive recursive function∣∣∣∣∣ g(0, z) def
= 1

g(n+ 1, z)
def
= mem(z, n .− 1) + mem(z, n).

Then we have: ∣∣∣∣∣ fib(0) def
= 0

fib(n+ 1)
def
= g(n,Hfib(n)).

By Lemma 1.1, fib is primitive recursive.
✍ Do it!Similarly, we can apply Lemma 1.1 to prove that function pow is primitive

recursive. Now we will state a generalisation of this result.

Problem 12. Let f , r and s are primitive recursive. Prove that

h(x, y) =

{
f(x, y, h(x, r(y))), if r(y) < y

s(x, y), otherwise

is primitive recursive.

1.5.3 Tail recursion

Compare with 4).

Problem 13. Let f : N2 → N be a primitive recursive function. Show that
the function ∣∣∣∣ f ⋆(0, r) = r

f ⋆(n+ 1, r) = f ⋆(n, f(n, r))

is primitive recursive.

Hint. Let us start with an example:

f ⋆(4, r) = f(0, f(1, f(2, f(3, r)))).

Consider the function f̂ with the following primitive recursive definition: ✍ Explain why this

definition follows the
primitive recursive sheme

∣∣∣∣∣ f̂(0, k, r) def
= r

f̂(ℓ+ 1, k, r)
def
= f(k .− (ℓ+ 1), f̂(ℓ, k, r)).

24

Show the following:

f̂(2, 2, r) = f(0, f(1, r));

f̂(2, 3, r) = f(1, f(2, r));

f̂(3, 2, r) = f(0, f(0, f(1, r))).

Finally, the function f ⋆ is primitive recursive because

f ⋆(ℓ, r) = f̂(ℓ, ℓ, r).

Problem 14. Let the function f be defined in the following way:∣∣∣∣∣ f(0, x) def
= g(x)

f(n+ 1, x)
def
= f(n, p(n, x)).

Show that if g and p are primitive recursive, then f is primitive recursive.

Proof. To get an idea about how to proceed with the proof, let us start
by calculating f(n, x) for the first few values of n:

f(0, x) = g(x)

f(1, x) = g(p(0, x))

f(2, x) = g(p(0, p(1, x)))

f(3, x) = g(p(0, p(1, p(2, x))))

...

It follows that
f(n, x) = g(p⋆(n, x))

and hence it is primitive recursive.

Example 1. We know that we can define the factorial function x! in the
following way: ∣∣∣∣ fact(0, r) = r

fact(n+ 1, r) = fact(n, (n+ 1) ∗ r).

Clearly, x! = fact(x, 1). It follows from Problem 14 that the function fact

is primitive recursive.

25

1.6 A function, which is not primitive recur-

sive

This section is based on [7, p.

105].

The main idea here is to build a recursive function which grows faster than
any primitive recursive function. Let us start a sequence of primitive recur-
sive functions in the following way:

ψ0(n, a) = a+ n

ψ1(n, a) = a · n
ψ2(n, a) = an

ψ3(n, a) = aa
...
a

...

How do we continue this sequence? We will try to find a pattern in
the primitive recursive definition of the functions above. Let us recall the
primitive recursive definition of ψ1:∣∣∣∣ ψ1(0, a) = 0

ψ1(n+ 1, a) = ψ0(ψ1(n, a), a),

and that of ψ2: ∣∣∣∣ ψ2(0, a) = 1
ψ2(n+ 1, a) = ψ1(ψ2(n, a), a)

We want to define ψ3(n, a) so that we follow the pattern that ψ3(n+1, a) =
ψ2(ψ1(n, a), a). It turns out that ψ3(n, a) will be the n-th iteration of the
raising to a power of a. For instance,

ψ3(3, a) = aa
aa

.

We can define ψ3 by using the primitive recursive scheme:∣∣∣∣ ψ3(0, a) = ψ2(1, a) // = a
ψ3(n+ 1, a) = ψ2(ψ3(n, a), a) // = aψ3(n,a)

In general, for m ≥ 2, we want ψm+1(n, a) to be the n-th iteration of ψm,
i.e. ∣∣∣∣ ψm+1(0, a) = ψm(1, a)

ψm+1(n+ 1, a) = ψm(ψm+1(n, a), a).

In this way, we build an infinite sequence P = {ψn | n ∈ N} of primi-
tive recursive functions in which each function in the sequence grows much

26

faster than the previous function. We can define a ternary function Ψ which
enumerates the sequence P . This is roughly what

Wilhelm Ackermann did in
1928. The simpliefied version
was given by Rozsa Péter
and Robinson.

Ψ(0, n, a) = n+ a

Ψ(1, 0, a) = 0

Ψ(2, 0, a) = 1

Ψ(m+ 1, 0, a) = Ψ(m, 1, a), if m ≥ 2

Ψ(m+ 1, n+ 1, a) = Ψ(m,Ψ(m+ 1, n, a), a), if m ≥ 1.

For our purposes, we do not need to work with this complicated function
Ψ. What is important for us is the primitive recursive scheme, because
it shows how we obtain new functions in the sequence from the old ones.
Omitting the third argument, we obtain:∣∣∣∣ ψ(m+ 1, 0) = ψ(m, 1)

ψ(m+ 1, n+ 1) = ψ(m,ψ(m+ 1, n)).

It remains to define the function ψ when the first argument is 0. In the
following proof, we will need the property that ψ(m,n) > n, so we define
ψ(0, n) = n+ 1.

Theorem 1.5. Let us consider the function ψ given by double recursion:∣∣∣∣∣∣
ψ(0, n) = n+ 1
ψ(m+ 1, 0) = ψ(m, 1)
ψ(m+ 1, n+ 1) = ψ(m,ψ(m+ 1, n))

The function ψ is not primitive recursive.

We divide the proof into several steps.

Proposition 1.3. The function ψ is total.

Hint. Easy induction on the lexicographical order.

Proposition 1.4. (∀m,n ∈ N)[ψ(m,n) ≥ n+ 1].

Proof. For m = 0 it follows from the definition. As induction hypothesis,
suppose (∀n)[ψ(m,n) ≥ n + 1]. For m + 1, we do an induction on n. For
n = 0,

ψ(m+ 1, 0) = ψ(m, 1) ≥ 1 = 0 + 1.

For n > 0,

ψ(m+ 1, n) = ψ(m,ψ(m+ 1, n− 1)) // by def.

≥ ψ(m+ 1, n− 1) + 1 // by I.H. for m

≥ n+ 1. // by I.H. for n

27

Proposition 1.5. The function ψ increases monotonically on the second
argument, i.e.

(∀m,n ∈ N)[ψ(m,n) < ψ(m,n+ 1)].

Proof. Induction on m. For m = 0, it follows from the definition of ψ.
For the induction step,

ψ(m+ 1, n+ 1) = ψ(m,ψ(m+ 1, n)) // by def.

≥ ψ(m+ 1, n) + 1 // by Proposition 1.4

> ψ(m+ 1, n).

Proposition 1.6. (∀m,n ∈ N)[ψ(m+ 1, n) ≥ ψ(m,n+ 1)].

Proof. Induction on n. For n = 0, we have ψ(m + 1, 0) = ψ(m, 1). For
the induction step,

ψ(m+ 1, n+ 1) = ψ(m,ψ(m+ 1, n)) // by def.

≥ ψ(m,ψ(m,n+ 1)) // by I.H. and Proposition 1.5

≥ ψ(m,n+ 2). // by Proposition 1.4 and Proposition 1.5

Proposition 1.7. The function ψ increases monotonically on the first argu-
ment, i.e.

(∀m ∈ N)(∀n ∈ N)[ψ(m,n) < ψ(m+ 1, n)].

Proof. For any m and n, we have the following:

ψ(m+ 1, n) ≥ ψ(m,n+ 1) // by Proposition 1.6

> ψ(m,n). // by Proposition 1.5

Proposition 1.8. For every primitive recursive function g, there exists k
such that

(∀x1, . . . , xn ∈ N)[g(x1, . . . , xn) < ψ(k,max{x1, . . . , xn})].

Proof. We proceed by induction on the definition of primitive recursive
functions.

- It is easy when g is some of O(x), S(x), Ini (x̄).

28

- Let g(x̄) = h(f1(x̄), . . . , fm(x̄)). By I.H. we have ki is such that fi(x̄) <
ψ(ki, x) and ℓ is such that h(x̄, y, z) < ψ(ℓ,max{x̄, y, z}). Let

k = max{k1, . . . , km, ℓ}.

By monotonicity, that is Proposition 1.7, fi(x̄) < ψ(k, x). Clearly,

max{f1(x̄), . . . , fm(x̄)} < ψ(k, x).

Then we have the following:

g(x̄) = h(f1(x̄), . . . , fm(x̄)) // by def. of g

< ψ(k,max{f1(x̄), . . . , fm(x̄)}) // by the choice of k

< ψ(k, ψ(k, x)) // by Proposition 1.5

< ψ(k, ψ(k + 1, x)) // by Proposition 1.5 and Proposition 1.7

= ψ(k + 1, x+ 1) // by def. of ψ

≤ ψ(k + 2, x) // by Proposition 1.6.

- Let g be defined by primitive recursion:∣∣∣∣ g(x̄, 0) = f(x̄),
g(x̄, n+ 1) = h(x̄, n, g(x̄, n)).

By I.H., we have a number ℓ such that f(x̄) < ψ(ℓ, x) and and r such that
h(x̄, i, z) < ψ(r,max{x̄, i, z}). Let k = max{ℓ, r}. We shall find a number
m such that Clearly m will be ≥ k

(∀x̄)(∀i)[g(x̄, i) < ψ(m,max{x̄, i})].

Our first step is to prove by induction on i that

(∀i)(∀x̄)[g(x̄, i) < ψ(k + 1,max{x̄}+ i)]. (1.1)

For i = 0, it is clear, since max{x̄}+0 = x = max{x̄, 0}. For the induction
step,

g(x̄, i+ 1) = h(x̄, i, g(x̄, i)) // by def. of g

< ψ(k,max{x̄, i, g(x̄, i)}) // by the choice of k

< ψ(k,max{x̄, i, ψ(k + 1,max{x̄}+ i)}) // by I.H.

= ψ(k, ψ(k + 1,max{x̄}+ i))

= ψ(k + 1,max{x̄}+ i+ 1) // by def. of ψ.

29

Now we are ready to finish the proof. By an easy induction:

ψ(1, n) = n+ 2

ψ(2, n) = 2n+ 3

We claim that

(∀i)(∀x̄)[g(x̄, i) < ψ(k + 3,max{x̄, i})].

This is easy:

g(x, i) < ψ(k + 1,max{x̄}+ i) // by 1.1

< ψ(k + 1, 2max{x̄, i}+ 3) // by monotonicity

= ψ(k + 1, ψ(2,max{x̄, i})) // by def.

< ψ(k + 1, ψ(k + 2,max{x̄, i})) // by monotonicity

= ψ(k + 2,max{x̄, i}+ 1) // by def.

≤ ψ(k + 3,max{x̄, i}) // by Proposition 1.6.

Problem 15. Let us consider the function φ given by double recursion:∣∣∣∣∣∣
φ(0, n) = n
φ(m+ 1, 0) = φ(m, 1)
φ(m+ 1, n+ 1) = φ(m,φ(m+ 1, n))

Show that the function φ has the following form:

φ(x, y) =

{
y, if x = 0

1, otherwise.

Iteration

Definition 1.2. Recall that

∣∣∣∣∣ f (0)(x) def
= x

f (n+1)(x)
def
= f(f (n)(x)).

Given a function f , the function f ⋆ is defined by iteration

from f if f ⋆(x, n) = f (n)(x).

Proposition 1.9 (Robinson, Bernays). The class of primitive recursive func-
tions is the smallest class of functions

- containing the initial functions, together with coding and decoding func-
tions for pairs;

- closed under composition;

- closed under iteration.

Hint. See [5, p. 72] or [6, p. 295].

30

Theorem 1.6. Let us consider the following sequence of functions∣∣∣∣ ψ0(x) = x+ 1

ψn+1(x) = ψ
(x)
n (x).

Then:

1) ψn is primitive recursive, for each n;

2) for every primitive recursive function f , there is an index n such that
f(x) ≤ ψn(

∑
x) for almost every x.

3) the diagonal function d(x) = ψx(x) dominates every primitive recursive
function, and thus is not primitive recursive.

Hint. See [6, p. 298].

31

Chapter 2

Unlimited Register Machines

2.1 Description of the machine

- The main sources here are [2]

and [1]. The unlimited
register machines (URM)
were introduced by
Shepherdson and Sturgis [9].

We have an infinite array of registers, which we denote by

r[1], r[2], . . . , r[n], . . .

- We also have four types of instructions for URM:

– Zero(n), n ∈ N, n ≥ 1, with meaning r[n] := 0;

– Succ(n), n ∈ N, n ≥ 1, with meaning r[n] := r[n]+ 1;

– Set(m,n), n,m ∈ N, n,m ≥ 1, with meaning r[n] := r[m];

– Jump(m,n, q), n,m, q ∈ N, n,m ≥ 1, with meaning that if r[n] = r[m],
then we go to the q-th command, otherwise we go to the next command;

- A program for the language of URM is a finite sequence P of instructions.
Usually we shall denote a program as

P = ⟨IP0, . . . , IPn−1⟩.

Let len(P) be the number of instructions in the program P.

- Not every program is in

standard form, but every
program can be converted to
one in standard form
preserving the computational
semantics.

It is possible for a program P to contain an instruction of the form Jump(k, ℓ, q),
where q ≥ len(P). We say that a program P is in standard form if every
instruction IPj of the form Jump(k, ℓ, q) is such that q ≤ len(P).

- Notice that it is not allowed to have programming constructions of the form
r[r[m]]. It means that by just looking at the program P, we know the
indices of all registers used when running the program P. The rank of P

32

is the maximum of all register indices which are used in any computation
of P. We shall denote the rank of P by rank(P). Notice that the rank is
always finite.

- A state is every infinite sequence of natural numbers

σ = (ℓ, a1, a2, . . .)

such that (∃i0)(∀i > i0)[σ[i] = 0]. Since we know that all but finitely
many elements of σ are non-zero, we will usually denote the state σ by
(ℓ, a), where a = a1, a2, . . . , ai0 .

The interpretation of a state σ will be that σ[0] = ℓ shows the index of
the instruction to be executed next, and σ[i] = r[i], for i ≥ 1, represents
the contents of the registers.

- Let us denote the set of all states by State.

- We define the semantics of every instruction I as the function

[[I]] : State→ State,

which returns the result of applying the instruction I on the state σ. Sup-
pose that σ = (ℓ, a1, a2, . . .). Then:

[[I]](σ) =



(ℓ+ 1, a1, . . . , an−1,0, an+1, . . .), if I = Zero(n)

(ℓ+ 1, a1, . . . ,an + 1, an+1, . . .), if I = Succ(n)

(ℓ+ 1, a1, . . . , an−1,am, an+1, . . .), if I = Set(m,n)

(ℓ+ 1, a1, a2, . . .), if I = Jump(m,n, q) & am ̸= an

(q, a1, a2, . . .), if I = Jump(m,n, q) & am = an

- The final step is to define what we mean by the semantics of the whole
program P. We will explain what is the result of executing the program
P for the fixed number of s steps over some state σ. We will denote this
function by

[[P]]s : State→ State.

For zero steps, we haven’t done anything yet, so we set

[[P]]0(σ)
def
= σ.

33

Suppose we have defined [[P]]s(σ) = σ′ and ℓ = σ′[0]. We will define
[[P]]s+1(σ). If ℓ points to a valid

instruction, then we execute
it. Otherwise, we do nothing.

[[P]]s+1(σ)
def
=

{
[[IPℓ]](σ

′), if ℓ < len(P)

σ′, if ℓ ≥ len(P).

For a fixed n, consider n-tuples a and b. By definition, for every step

t ≥ s, we have [[P]]t(σ0) = σ.

A state of the form σ = (i, b)
is called final for P on input data a, if for the initial state σ0 = (0, a),
there exists a step s for which [[P]]s(σ0) = σ and σ = (ℓ, b1, b2 . . .), where
ℓ ≥ len(P). In this case we write

[[P]](n)(a) ↓= b1.

Let f : Nn → N be a (partial) function and P a program. We say that f
is URM-computable by P if for every n-tuple x, we have

[[P]](n)(x) ≃ f(x̄).

This means that [[P]](n)(x̄) ↓= y if and only if f(x̄) ↓= y.

Lemma 2.1. For every program P, there exists a program S in standard
form, which is equivalent to P, i.e.

(∀a, b)[[[P]](n)(a) ≃ b ⇔ [[S]](n)(a) ≃ b].

Proof. Let P = ⟨IP0, . . . , IPn−1⟩. We define the program S = ⟨IS0, . . . , ISn−1⟩
such that for every ℓ < n, we have the following:

ISℓ =


IPℓ , if IPℓ is arithmetical

IPℓ , if IPℓ = Jump(i, j, q) & q ≤ len(P)

Jump(i, j, len(P)), if IPℓ = Jump(i, j, q) & q > len(P)

It is clear that S is in standard form.

34

2.2 Concatenation of programs

We define the function

shift(I, s) =

{
I, if I is an arithmetical insturction

Jump(i, j, q + s), if I = Jump(i, j, q).

Let P = ⟨IP0, . . . , IPm−1⟩ and Q = ⟨IQ0 , . . . , I
Q
n−1⟩ are programs in the lan-

guage of URM. Concatenation of P and Q is called the program

R = ⟨IR0 , . . . , IRm+n−1⟩,

where the instructions of R are listed as follows:

IR0 = IP0 // a copy of P

...

IRm−1 = IPm−1

IRm = shift(IQ0 , len(P)) // a copy of Q

... // in which all instruction indices are shifted

IRm+n−1 = shift(IQn−1, len(P)).

Usually we denote the concatenation of P and Q by P; Q.
Let Zero[a, b] denote the program with the following instructions:

Zero(a)

Zero(a+ 1)

...

Zero(b).

Problem 16. For any two standard programs P and Q, where p = rank(P).
Show that

[[{P; Zero[2, p]}; Q]] = [[Q]](1) ◦ [[P]](1).

35

2.3 Cycles in programs

Let P = ⟨IP0 , . . . , IPn−1⟩ be a program in URM. We define the program Q =

⟨IQ0 , . . . , I
Q
n+1⟩, where:

I
Q
0 = Jump(i, j, n+ 2)

I
Q
1 = shift(IP0, 1)

...

IQn = shift(IPn−1, 1)

I
Q
n+1 = Jump(m,m, 0).

We denote the program Q by “while r[i] != r[j] do P”.

Proposition 2.1. For any standard program P and any state σ, we have the
following:

a) if σ[i] ̸= σ[j], then

[[while r[i] != r[j] do P]](σ) ≃ [[P;{while r[i] != r[j] do P}]](σ).

b) if σ[i] = σ[j], then

[[while r[i] != r[j] do P]](σ) = σ[1].

Example 2. The function x+y is URM-computable. To see that, we define
the program P as follows:

IP0 = Jump(1, 3, 4) // loop until r[2] = r[3]; then we are done

Succ(1)

Succ(3)

Jump(1, 1, 0) // go to IP0

It is easy to see that for any two natural numbers x and y,

[[P]](2)(x, y) ≃ x+ y.

This can be denoted by

[[while r[1] ̸= r[3] do { Succ(3);Succ(2) }]](2)(x, y) ≃ x+ y.

36

Notice that if we consider the function of three arguments modelled by
the program P, then we would obtain the following:

[[P]](3)(x, y, z) ≃

{
x+ y − z, if y ≥ z

↑, if y < z.

Again, it is not hard to see that if we consider the function of one argu-
ment modelled by the program P, then we would obtain [[P]](1)(x) = x for all
x ∈ N.

Let P = ⟨IP0 , . . . , IPn−1⟩ be a program. We define Q = ⟨IQ0 , . . . , I
Q
n+1⟩,

where:

IQ0 = Jump(1, 1, n+ 1) // go to the last instruction

IQ1 = shift(IP0 , 1)

...

IQn = shift(IPn−1, 1)

IQn+1 = Jump(i, j, 1) // iterate until r[i] ̸= r[j].

We denote the program Q by “while r[i] == r[j] do P”.

Proposition 2.2. For any standard program P and any state σ, we have
the following:

a) if σ[i] = σ[j], then

[[while r[i] == r[j] do P]](σ) ≃ [[P;{while r[i] != r[j] do P}]](σ).

b) if σ[i] ̸= σ[j], then

[[while r[i] == r[j] do P]](σ) ≃ σ[1].

37

2.4 Superposition

Let P = ⟨IP0, . . . , IPm−1⟩ be a program. It is useful to define a program Q,
which executes P over the values of registers r[ℓ1], . . . , r[ℓn] and stores the
result of the computation in r[ℓ]. We usually denote this new program Q by

P[ℓ1, . . . , ℓn 7→ ℓ].

Let p = rank(P). We list its commands:

IQ0 = Set(ℓ1, 1) // r[1] := r[ℓ1]

...

IQn−1 = Set(ℓn, n) // r[n] := r[ℓn]

IQn = Zero(n+ 1) // hygiene

IQn+1 = Zero(n+ 2)

...

IQp−1 = Zero(p)

IQp = shift(IP0 , p)

... // copy of P

IQp+m−1 = shift(IPm−1, p)

IQp+m = Set(1, ℓ) // r[ℓ] := r[1]

Let g : Nn → N, f1 : Nk → N, . . . , fn : Nk → N are (partial) functions.
Define the function h : Nk → N as

h(x) ≃ z ⇔ (∃y1, . . . , yn)[f1(x) ≃ y1 & . . .& fn(x) ≃ yn & g(y1, . . . , yn) ≃ z].

We say that h is the superposition of g and f1, . . . , fn. We denote

h = g(f1, . . . , fn).

Lemma 2.2. If g, f1, . . . , fk are URM-computable, then h = g(f1, . . . , fk) is
URM-computable.

38

Proof. Of course, all of G,

F1, . . . , Fk are in standard
form.

Let G be the program for the computable function g and let Fi be
the programs for fi, i = 1, . . . , k. We need a place to store some temporary
values. For this purpose, we will fix m to be a register index which is beyond
any register ever touched by any of the programs G and F1, . . . , Fk. We let

m = max{k, n, rank(G), rank(F1), . . . , rank(Fk)}.

The procedure is the following:

- We store the values of x1, . . . , xn into the registers r[m+ 1], . . . , r[m+ n]
and consider these registers as read-only.

- For i = 1, . . . , k, we execute the program Fi over the values stored in
r[m+ 1], . . . , r[m+ n]. and store the result in r[m+ n+ i].

- Finally, we execute the program G over the values stored in

r[m+ n+ 1], . . . , r[m+ n+ k],

and store the final result in r[1].

Then the program Q for computing the function h is the following:

Set(1,m+ 1) // store the original values

Set(2,m+ 2)

...

Set(n,m+ n)

F1[m+ 1, . . . ,m+ n→ m+ n+ 1]; // r[m+ n+ 1] := y1 = f1(x1, . . . , xn)

...

Fk[m+ 1, . . . ,m+ n→ m+ n+ k]; // r[m+ n+ k] := yk = fk(x1, . . . , xn)

G[m+ n+ 1, . . . ,m+ n+ k → 1] // r[1] := g(y1, . . . , yk).

39

2.5 Primitive Recursion

Definition 2.1. Let f be n-ary (partial) function and g be (n + 2)-ary
(partial) function. We say that the (n+1)-ary (partial) function h is obtained
from f and g by primitive recursion, if h is defined by the following scheme:∣∣∣∣ h(x, 0) ≃ f(x)

h(x, y + 1) ≃ g(x, y, h(x, y)).

Lemma 2.3. Let f : Nn → N and g : Nn+2 → N be URM-computable. Then
h : Nn+1 → N, obtained from f and g by recursion, is URM-computable.

Hint. The initial state is σ0 = (0, x̄). Let

m = max{n+ 2, rank(F), rank(G)}.

We can informally describe the procedure as follows:

- We store the values of x1, . . . , xn into the registers r[m+ 1], . . . , r[m+ n]
and consider these registers as read-only.

- We store the value of y into the register r[m+ n+ 3].

- We store the counter k in r[m+ n+ 1], and by the choice of m, its initial
value is 0.

- We store in r[m+ n+ 2] consecutive values h(x, k), for k ≤ y.

- When r[m+ n+ 2] = r[m+ n+ 3], i.e. k = y, we store the value of
r[m+ n+ 2] in r[1] and exit.

We list the sequence of commands:

0 : Set(1,m+ 1); // r[m+ 1] := x1
...

n− 1 : Set(n,m+ n); // r[m+ n] := xn

n : Set(n+ 1,m+ n+ 3); // r[m+ n+ 3] := y

F [1, 2, . . . , n 7→ m+ n+ 2]; // r[m+ n+ 2] := f(x)

q : Jump(m+ n+ 1,m+ n+ 3, p); // if k = y then exit

G[m+ 1, . . . ,m+ n+ 2 7→ m+ n+ 2]; // r[m+ n+ 2] := g(x, k, h(x, k))

Succ(m+ n+ 1); // k := k + 1

Jump(1, 1, q); // go to Iq

p : Set(m+ n+ 2, 1) // r[1] := h(x, y).

40

2.6 Minimisation

Definition 2.2. Let f : Nn+1 → N be a (partial) function. We define the
(partial) function g : Nn → N, denoted

g(x)
def
= µy[f(x, y) ≃ 0],

in the following way:

- g(x) ≃ y, the least y for which (∀z ≤ y)[f(x, y) ↓] and f(x, y) = 0;

- g(x) ↑, if there is no such y.

Lemma 2.4. If the function f(x, y) is URM-computable, then the function

g(x) = µy[f(x, y) ≃ 0]

is also URM-computable.

Proof. Let m = max{n + 1, rank(F)}, where F is the standard program
for f .

We can describe the procedure for computing the value of g(x) as follows:

- We store x1, . . . , xn into the registers r[m+ 1], . . . , r[m+ n] and consider
these registers as read-only.

- We store the value of the counter y in r[m+ n+ 1]. Initially y is zero, so
y = r[m+ n+ 1], by the choice of m.

- We store in r[1] consecutive values f(x, y), for y = 0, 1, . . .

- When we first observe that r[1] = r[m+ n+ 2], that is, for the current
value of y we have f(x, y) = 0, we store the value of y in r[1] and exit.

We list the sequence of instructions:

0 : Set(1,m+ 1); // r[m+ 1] := r[1]

...

n− 1 : Set(n,m+ n); // r[m+ n] := r[n]

F [m+ 1, . . . ,m+ n+ 1→ 1]; // r[1] := f(x, y)

Jump(1,m+ n+ 2, p); // if f(x, y) = 0 then jump to exit

Succ(m+ n+ 1); // y := y + 1

Jump(1, 1, n); // execute f(x, y + 1)

p : Set(m+ n+ 1, 1) // r[1] := y

41

2.7 A function which is not URM-computable

- Here we follow [1, p. 83].The busy beaver functions is defined as

B(n)
def
= max{[[P]](1)(0) | P is an URM program with at most n instructions}.

- It is easy to see that B(1) = 1 and B(2) = 2;

- Check that B(10) ≥ 39;

Lemma 2.5. For any natural number n, there are only finitely many
functions computed by a URM program with at most n instructions.

Hint. We use the facts:

- A program with at most n instructions uses at most 2n registers.

- If a URM program P uses 2n different registers, then P is equivalent to a
program P⋆, which uses only registers r[1], . . . , r[2n].

- We can safely assume that we only consider standard programs P, i.e. the
jump instructions in P have the form Jump(i, j, q), where q ≤ len(P), and
1 ≤ i, j ≤ len(P).

- Such P⋆ chooses its instructions from a finite set with size 4n(n2 +2n+1),
since we have:

Zero(i) : 2n instructions

Succ(i) : 2n instructions

Set(i, j) : 2n ∗ 2n instructions

Jump(i, j, k) : 2n ∗ 2n ∗ (n+ 1) instructions.

- Thus, the number of functions computed by URM programs with ≤ n
instructions is bounded by (4n(n2 + 2n+ 1))

n
, because every such program

is a word of length ≤ n over an alphabet of size 4n(n2 + 2n+ 1).

Since the number of function computable by URM programs with ≤ n
instructions is finite, it follows that the busy beaver function B is total.
Let us denote by Pn the program with ≤ n instructions such that [[Pn]]

(1)(0) =
B(n).

42

Lemma 2.6. B is strictly increasing function, i.e. for every natural number
n,

B(n) < B(n+ 1).

Hint. Clearly B(n+ 1) ≥ [[Pn; Succ(1)]]
(1)(0).

Lemma 2.7. For all n ≥ 1, B(n+ 5) ≥ 2n.

Hint. Here the number of

instructions is important so
we must explicitly list the
instructions of Qn.

For a fixed number n, consider the program Qn:

0 : Succ(1)

...

n− 1 : Succ(1) // r[1] = n

n : Set(2, 1) // r[2] := r[1]

n+ 1 : Jump(2, 3, n+ 5) // exit if r[2] = r[3]

Succ(1)

Succ(3)

n+ 4 : Jump(1, 1, n+ 1) // goto In1

Clearly, [[Qn]]
(1)(0) = 2n and Qn has n + 5 instructions. Thus, B(n + 5) ≥

2n.

Proposition 2.3. Every URM-computable function is dominated by a strictly
increasing URM-computable function.

Hint. Consider a URM-computable function f . Define the function g such
that ∣∣∣∣∣ g(0) def

= f(0) + 1

g(n+ 1)
def
= max{g(n), f(n+ 1)}+ 1.

It is easy to see that g is URM-computable.

Lemma 2.8. The busy beaver function B dominates every URM-
computable function.

Hint. It is enough to consider only strictly increasing URM-computable
functions g. We will show that B dominates any such g, i.e.

(∃k0)(∀n ≥ k0)[g(n) < B(n)].

43

Let G be a URM program for g and let k0 = len(G). Fix p = rank(Pn). Let
G+ be the same as G with the exception that we let G+ work on register r[1]
and all other register indices used in G are shifted by p positions to the right.
For instance, if IGj = Set(1,m) and m > 1, then IG

+

j = Set(1,m + p). The
concatenation Pn;G

+ of these two programs has at most n+ k0 instructions.
It follows that B(n+ k0) ≥ g(B(n)).

B(n+ k0 + 6) > B(n+ k0 + 5) // B is strictly increasing

≥ g(B(n+ 5)) // as we just saw

≥ g(2n) // B(n+ 5) ≥ 2n

> g(n+ k0 + 6) // for n > k0 + 6

This means that (∀m > 2(k0 + 6))[B(m) > g(m)].

Theorem 2.1 (Tibor Radó, 1962). The busy beaver function B is not
URM-computable.

44

Chapter 3

Partial recursive functions

One person’s data is another

person’s program. Guy L.
Steele,Jr.

Definition 3.1 (Kleene). The partial recursive functions are:

1) the primitive recursive functions;

2) if f is (n+1)-ary partial recursive, then the n-ary function g, defined
as

g(x)
def≃ µz[f(x, z) ≃ 0],

is also partial recursive;

3) all partial recursive functions are obtained by rules 1) and 2).

We have already seen that the URM-computable functions are closed under
superposition, the primitive recursive scheme and minimisation. It follows
that all partial recursive functions are URM-computable as well.

Now we will see that we also have the converse direction.

45

3.1 Enumeration of URM programs

π and π3 are defined in

Section 1.4.2.

Given an instruction I, the code of I, denoted ⌜I⌝, is the number:

⌜I⌝
def
=


4 ∗ (n− 1), if I = Zero(n)

4 ∗ (n− 1) + 1, if I = Succ(n)

4 ∗ π(m− 1, n− 1) + 2, if I = Set(m,n)

4 ∗ π3(m− 1, n− 1, q) + 3, if I = Jump(m,n, q)

✍ Verify it!Different instructions have different codes and every natural number is a
code of some instruction. Given a program P = ⟨IP0, . . . , IPm−1⟩, the code of
P, denoted ⌜P⌝, is the number

⌜P⌝
def
= τ(⌜IP0⌝, . . . , ⌜I

P
m−1⌝),

where τ is some primitive recursive coding of finite sequences of numbers. It
is easy to see that different programs have different codes and every natural
number is the code of some program.

We enumerate all k-ary URM-computable functions

φ
(k)
0 , φ

(k)
1 , . . . , φ(k)

a , . . . ,

where φ
(k)
a is the (partial) k-ary function, computable by the URM pro-

gram with code a.

46

3.2 The universal function

Definition 3.2. Let us denote by Fn the class of all partial functions on
n arguments. We say that U(a, x) is universal for the class K ⊆ Fn if

a) U is computable,

b) for each f ∈ K, there exists a ∈ N such that f(x) ≃ U(a, x) for all
x ∈ Nn, and

c) for each a ∈ N, there is a function f ∈ K such that U(a, x) ≃ f(x)
for all x ∈ Nn.

Example 3. A total function p(x) is called polynomial if there exists numbers
a0, . . . , an such that for all x, p(x) = a0x

n+ a1x
n−1 + · · ·+ an. Let us denote

by P the class of all polynomial functions. We will show that there exists
a universal function U for the class P . To see that, first notice that every
polynomial function p(x) is uniquely determined by the sequence a0, . . . , an
of its coefficients. It follows that p(x) is uniquely determined by the number
a = τ(a0, . . . , an). Denote this polynomial function as pa(x). Now it is not

hard to see that U(a, x)
def
= pa(x) is universal for the class P .

Example 4. The class of all total computable unary functions is not univer-
sal.

In this section we will see that the class Cn of all computable functions on
n arguments possess a universal function, which we will denote by Φn(a, x).

We need −1 to cover the
zero.

For every state σ = (ℓ, a1, a2, . . . , ar, 0, 0, . . .), the code of σ, denoted ⌜σ⌝,
is the number

⌜σ⌝
def
= pℓ0 · p

a1
1 · pa22 · · · − 1.

It is easy to see that every state has a different code and every natural
number is a code of some state. We will use the following primitive recursive
functions

head(u, n)
def
= p

(u+1)0+1
0 ·

n
.−1∏

i=1

p
(u+1)i
i

tail(u, n)
def
=

∞∏
i=n+1

p
(u+1)i
i =

u+1∏
i=n+1

p
(u+1)i
i .

47

Proposition 3.1. There exists a primitive recursive function apply such
that for every instruction I and every state σ, [[I]] is defined in Chapter 2.

apply(⌜I⌝, ⌜σ⌝) = ⌜[[I]](σ)⌝.

Proof. It is not difficult to see that the following function is primitive
recursive.

apply(c, u)
def
=



head(u, n) · p0
n · tail(u, n), if c = ⌜Zero(n)⌝

head(u, n) · p(u+1)n+1
n · tail(u, n), if c = ⌜Succ(n)⌝

head(u, n) · p(u+1)m
n · tail(u, n), if c = ⌜Set(m,n)⌝

head(u, 0) · tail(u, 0), if c = ⌜Jump(m,n, q)⌝

& (u)n ̸= (u)m

pq
0 · tail(u, 0), if c = ⌜Jump(m,n, q)⌝

& (u)n = (u)m

Recall that [[P]]s(σ) produces the program state after s steps of the exe-
cution of P over the initial state σ.

Proposition 3.2. For every number n, there exists a primitive recursive
function exec such that for any state σ and number of steps s, it has the
property

exec(⌜P⌝, ⌜σ⌝, s) = ⌜[[P]]s(σ)⌝.

Proof. Define the primitive recursive function step

step(a, u)
def
=

{
apply(mem(a, (u+ 1)0), u), if (u+ 1)0 < len(a)

u, otherwise.

Let P be the program such that a = ⌜P⌝ and σ be the state for which
u = ⌜σ⌝. Then if the current state of P is σ, mem(a, (u + 1)0) gives the code
of the next instruction to be executed.∣∣∣∣∣ exec(a, u, 0) def

= u

exec(a, u, s+ 1)
def
= step(a, exec(a, u, s)).

The function exec is defined by a primitive recursive scheme involving
primitive recursive functions, so exec itself is primitive recursive.

48

Theorem 3.1 (Universal function). For every number n, there exists
an (n + 1)-ary URM-computable function Φn such that for every URM
program with index a and every n-tuple x̄,

Φn(a, x̄) ≃ φ(n)
a (x̄).

Proof. Define the URM-computable function time, which give the least
number of stages for which the program with code a halts successfully on
input the state σ, represented by its code u, i.e. u = ⌜σ⌝,

time(a, u)
def≃ µs[(exec(a, u, s) + 1)0 ≥ len(a)].

For any n ≥ 1 and n-tuple x, let us consider the function with the following
property:

initn(x) = ⌜(0, x1, x2, . . . , xn, 0, 0, . . .)︸ ︷︷ ︸
initial state

⌝.

We can define initn : Nn → N as follows:

initn(x)
def
=

n∏
i=1

pxii − 1.

Recall that the result of a successful computation is stored in the first register.
Therefore, the definition of Φn is the following:

Φn(a, x̄)
def≃ (exec(a, initn(x), time(a, initn(x))) + 1)1.

Theorem 3.2 (Normal form, Kleene (1938)). For every number n, there
exists an (n + 2)-ary primitive recursive predicate Tn such that for
every program index a and n-tuple x̄, we have the following:

i) φ
(n)
a (x̄) ↓ ⇔ (∃z)[Tn(a, x̄, z) = True];

ii) φ
(n)
a (x̄) ≃ ρ(µz[Tn(a, x̄, z) = True]).

49

Proof. We define the primitive recursive predicate res:

res(a, u, s, y)
def
=

{
True, (exec(a, u, s) + 1)0 ≥ len(a) & y = (exec(a, u, s) + 1)1

False, otherwise

Now we define the following predicate Tn is called the Kleene

predicate. We are going to
use it later.

Tn(a, x̄, z)
def
= res(a, initn(x̄), λ(z), ρ(z))

Part i) follows from the following equivalences:

φ(n)
a (x̄) ↓ ⇔ (∃y)(∃s)[res(a, initn(x̄), s, y) = True]

⇔ (∃z)[Tn(a, x̄, z) = True].

For part ii), we have the following:

φ(n)
a (x) ≃ y ⇔ Φn(a, x) ≃ y

⇔ res(a, initn(x), time(a, initn(x)), y) ≃ True

⇔ Tn(a, x, π(time(a, initn(x)), y)) ≃ True

⇔ ρ(µz[Tn(a, x, z) = True]) ≃ y.

Corollary 3.1. Every URM-computable function is partial recursive.

Proof. Let us consider φa, the function computable by the URM program
with code a. By ii) of Theorem 3.2, φa can be obtained by applying min-
imisation to a primitive recursive function. Thus, φa is a partial recursive
function.

Theorem 3.3. The class of partial recursive functions coincide with the
class of URM computable functions.

50

3.3 The Parameters Theorem

In the literature, it is usually

called the Sm
n -theorem.

The Parameters Theorem is one of the most important theorems in this
course.

Lemma 3.1 (Smn theorem for n,m = 1). There exists a primitive re-
cursive function S1

1 , such that for every index a, and all input values x
and y,

φ(2)
a (x, y) ≃ φ

(1)

S1
1(a,x)

(y).

Before proceeding to the proof of the lemma, we need to do some technical
preliminary work.

Proposition 3.3. The following function is primitive recursive:

shift(c, s) =

{
c, if c is arithmetical instruction

⌜Jump(m,n, q + s)⌝, if c = ⌜Jump(m,n, q)⌝.

Proof. Define the primitive recursive function

step(c, s)
def
= 4 · π3(J3

1 (qt(4, c)), J
3
2 (qt(4, c)), J

3
3 (qt(4, c)) + s) + 3.

Then it is trivial to check that:

shift(c, s)
def
=

{
c, if rem(4, c) ̸= 3

step(c, s), if rem(4, c) = 3.

Proposition 3.4. Let a and b be the codes of the standard programs Pa and
Pb. Let Q = Pa;Pb. Then the following function is primitive recursive:

instr(a, b, i)
def
=

{
⌜IQi ⌝, if i < len(a) + len(b)

42, otherwise.

Proof. The following function is clearly primitive recursive:

instr(a, b, i) =


mem(a, i), if i < len(a)

shift(mem(b, i− len(a)), len(a))), if len(a) ≤ i < len(a) + len(b)

42, otherwise

51

Proposition 3.5. Let a and b be the codes of the programs in standard
form Pa and Pb, respectively. There exists a primitive recursive function
concat such that concat(a, b) is the code of the program in standard form
Q = Pa; Pb. In other words,

concat(a, b) = τ(⌜IQ0 ⌝, . . . , ⌜I
Q
len(a)+len(b)−1⌝).

Proof. Recall Lemma 1.1.We know that since instr is primitive recursive, the history of instr
is also primitive recursive. By the definition of Q as the concatenation of Pa
and Pb, if q is the code of Q, then len(q) = len(a) + len(b). Then we can
compute the code q of Q in the following way:

q = ⌜Q⌝

= τ(⌜IQ0 ⌝, . . . , ⌜I
Q
len(q)−1⌝)

= τ(instr(a, b, 0), instr(a, b, 1), . . . , instr(a, b, len(a) + len(b)− 1))

= Hinstr(a, b, len(a) + len(b)− 1).

This shows that we can take

concat(a, b) = Hinstr(a, b, len(a) + len(b)− 1).

By Lemma 1.1, since Hinstr is primitive recursive, so is concat.
The program Rx is in

standard form.

For a given number x, consider the program Rx = ⟨I1, . . . , Ix+2⟩, which
moves the value of the first register to the second and sets the value of r[1]
to the number x. Here is the instruction list of the program Rx:

1 : Set(1, 2) // r[2] := r[1]

2 : Zero(1) // r[1] := 0

3 : Succ(1) // r[1]++

...

x+ 2 : Succ(1) // r[1] == x

Proposition 3.6. There exists a primitive recursive function regcpy such
that regcpy(x) = ⌜Rx⌝.

Proof. Firstly, we have the primitive recursive function inc, where∣∣∣∣∣ inc(0) def
= π(⌜Set(1, 2)⌝, ⌜Zero(1)⌝)

inc(x+ 1)
def
= π(inc(x), ⌜Succ(1)⌝)

Then we define
regcpy(x)

def
= π(x+ 1, inc(x)).

52

We have that regcpy(x) = τ(⌜I1⌝, . . . , ⌜Ix+2⌝), i.e. regcpy(x) is a code
for the program Rx. Then for any program P , we have

[[Rx; P]](y) ≃ [[P]](x, y).

Now we have all ingredients to finish the proof of the Parameters Theorem
for the case n,m = 1. For all numbers a and x, we define

S1
1(a, x)

def
= concat(regcpy(x), a).

It is easy to verify that for any URM program P and natural number x,

S1
1(⌜P⌝, x) = ⌜Rx; P⌝.

Since concat and regcpy are primitive recursive, and primitive recursion
is preserved under superposition, S1

1 is also primitive recursive.

Remark. The S1
1(a, x) function is strictly monotonically increasing on the

second argument x. Later we will use this fact in a few problems.

Now we are ready to define the primitive recursive function Smn for all
numbers m and n.

Theorem 3.4 (The Parameters Theorem or The Smn theorem). Prove
that there exists a primitive recursive function Smn such that for every
index a and every m-tuple x̄ and n-tuple ȳ,

φ(m+n)
a (x̄, ȳ) ≃ φ

(n)
Sm
n (a,x̄)(ȳ).

Proof. We divide the proof in two steps.

(1) ✍ Homework!Prove the theorem for every n, i.e. for every index a, every input value
x and n-tuple ȳ,

φ(1+n)
a (x, ȳ) ≃ φ

(n)

S1
n(a,x)

(ȳ).

We build S1
n is a way very similar to the way we built S1

1 .

53

(2) Now we proceed by induction on m.

- For m = 1, we already have S1
n, for every n.

- For m = k+ 1, we show the existence of Sk+1
n , for every n. Let x, x̄ be

any (1 + k)-tuple and ȳ be any n-tuple. Then we have the following:

φ(1+k+n)
a (x, x̄, ȳ) ≃ φ

(k+n)

S1
k+n(a,x)

(x̄, ȳ) // by (1)

≃ φ
(n)

Sk
n(S

1
k+n(a,x),x̄)

(ȳ) // by I.H. for (2)

Therefore, we define

Sk+1
n (a, x, x̄)

def
= Skn(S

1
k+n(a, x), x̄).

54

3.4 Applications

Before moving on, let us explain again when we write φ
(n)
h(x)(ȳ), where h is

some computable function, we mean that on input x and ȳ, first we compute
the value a = h(x) and then we compute φ

(n)
a on input ȳ. More formally,

φ
(n)
h(x)(ȳ)

def≃ Φn(h(x), ȳ).

Let us introduce the notation Wa
def
= dom(φ

(1)
a).

Problem 17. Show that there exists a total computable function h such
that for all natural numbers a,

Wh(a) = {a}.

Hint. Consider the computable function

f(x, y)
def≃

{
True, x = y

↑, otherwise.

Since f is computable, then there exists an index e such that f = φ
(2)
e . Then

let h(x) = S1
1(e, x). Now we have the following chain of equivalences:

x ∈ Wh(a) ⇔ φh(a)(x) ↓
⇔ φe(a, x) ↓
⇔ f(a, x) ↓
⇔ x = a.

We conclude that Wh(a) = {a}.

Problem 18. Show that there exist primitive recursive functions f and
g such that:

- Wf(a,b) = Wa ∪Wb;

- Wg(a,b) = Wa ∩Wb;

55

Proof. First, consider the following computable function:

F (a, b, x)
def≃ (µz)[T1(a, x, λ(z)) = True ∨ T1(a, x, ρ(z)) = True].

By the Parameters Theorem, there exists a primitive recursive function f
such that for all x,

φ
(1)
f(a,b)(x) ≃ F (a, b, x).

Not it is easy to see that Wf(a,b) = Wa ∪Wb.
Second, consider the following computable function:

G(a, b, x)
def≃ (µz)[T1(a, x, λ(z)) = True ∧ T1(a, x, ρ(z)) = True].

By the Parameters Theorem, there exists a primitive recursive function g
such that for all x,

φ
(1)
g(a,b)(x) ≃ G(a, b, x).

Not it is easy to see that Wg(a,b) = Wa ∩Wb.

Problem 19. Show that there does not exist a computable function h
such that for all indices a,

Wh(a) = N \Wa.

Proof. Assume that such a computable function h exists. Then there
exists a computable function f such that

f(x) ≃ φ
(1)
h(x)(x).

Since f is computable, then f = φ
(1)
e for some index e. Then we have the

following chains of implications:

f(e) ↓ =⇒ φe(e) ↓ =⇒ e ∈ We =⇒ e ̸∈ Wh(e) =⇒ f(e) ↑
f(e) ↑ =⇒ φe(e) ↑ =⇒ e ̸∈ We =⇒ e ∈ Wh(e) =⇒ f(e) ↓ .

In both cases, we reach a contradiction.

Problem 20. Show that there exists a primitive recursive function h such
that for all indices a,

Wh(a) = N \ {0, 1, . . . , a}.

56

Theorem 3.5 (Recursion Theorem (Kleene)). [3, p. 78]Let h be any (n+ 1)-ary
computable function. There exists an index e such that for any n-tuple
x̄,

h(e, x̄) ≃ φ(n)
e (x̄).

Proof. Later we will give another

proof of this result.

Consider the computable function

g(z, x̄)
def≃ h(S1

n(z, z), x̄).

Since g is computable, there exists an index a such that g = φ
(n+1)
a . Then

by the Parameters Theorem,

g(a, x̄) ≃ φ(n+1)
a (a, x̄) ≃ φ

(n)

S1
n(a,a)

(x̄).

We let e = S1
n(a, a). Combining everything we know so far, we get:

h(e, x̄) ≃ h(S1
n(a, a), x̄) // e = S1

n(a, a)

≃ g(a, x̄) // by def. of g

≃ φ(n+1)
a (a, x̄) // g = φa

≃ φ
(n)

S1
n(a,a)

(x̄) // by the Parameters Theorem

≃ φ(n)
e (x̄) // since e = S1

n(a, a).

Corollary 3.2. There exists an index e such that

(∀x)[e ≃ φe(x)].

Proof. Consider the computable function h(z, x)
def
= z. There exists an

index e such that for all x, h(e, x) ≃ φe(x). Therefore,

(∀x)[e ≃ h(e, x) ≃ φe(x)].

We know that the Ackermann function is not primitive recursive, but
we don’t know yet that it is partial recursive, or equivalently, computable.

57

One way to see that the Ackermann function ψ is computable is by writing
a program in the language of URM which computes ψ. Here we present
another proof based on the results of this chapter.

Problem 21. The Ackermann function ψ is computable.

Proof. First let us consider the function Ψ, where

Ψ(a, x, y) ≃


y + 1, if x = 0

Φ2(a, x
.− 1, 1), if x > 0 & y = 0

Φ2(a, x
.− 1,Φ2(a, x, y

.− 1)), if x > 0 & y > 0.

By the Recursion Theorem, there exists a program index e such that for
every x, y,

Ψ(e, x, y) ≃ φ(2)
e (x, y).

Thus, when we fix the index e, we obtain the following:

φ(2)
e (x, y) ≃


y + 1, if x = 0

Φ2(e, x
.− 1, 1), if x > 0 & y = 0

Φ2(e, x
.− 1,Φ2(e, x, y

.− 1)), if x > 0 & y > 0.

≃


y + 1, if x = 0

φ
(2)
e (x .− 1, 1), if x > 0 & y = 0

φ
(2)
e (x .− 1, φ

(2)
e (x, y .− 1)), if x > 0 & y > 0.

Now it is straightforward to observe that φ
(2)
e = ψ.

Proposition 3.7. The problem “φe is total” is undecidable. More for-
mally, there is no total computable function g such that

g(e) =

{
True, if φe is total

False, if φe is not total.

Proof. Notice that in this proof we

only use the existence of
universal function.

Assume that such total computable function g exists. Diagonalize
over all total computable functions. To do that, consider the total com-
putable function h defined in the following way:

h(e)
def
=

{
φ
(1)
e (e) + 1, if g(e) = True

42, if g(e) = False.

58

Now, fix an index a such that φ
(1)
a = h. Clearly, φ

(1)
a is a total function, and

hence g(a) = True. It follows that h(e) = φ
(1)
e (e)+1, but φ

(1)
e (e) ̸= φ

(1)
e (e)+1.

We reach a contradiction.
Proof. Assume that f is computable. Consider the computable function
g, where ∣∣∣∣∣ g(0) def

= (µy)[f(y) = True]

g(x+ 1)
def
= (µy)[f(y) = True & y > g(x)].

It is clear that g enumerates all indices of total computable functions. Con-
sider the total computable function h, where

h(x) = φ
(1)
g(x)(x) + 1.

Since h is total computable and g enumerates all total computable functions,
there exists an index e such that h = φ

(1)
g(e). Then

φ
(1)
g(e)(e) = h(e) = φ

(1)
g(e)(e) + 1.

We reach a contradiction.
Proof. This proof presents a more

powerful proof method. We
will use it later.

Assume that f is total computable. Consider the computable
function

g(x, y)
def≃

{
42, if f(x) = False

↑, if f(x) = True.

By the Recursion Theorem, there exists an index e such that for all y,

φ(1)
e (y) ≃ g(e, y).

Then we have the following chains of implications:

φ(1)
e is total =⇒ f(e) = True =⇒ φ(1)

e is not total

φ(1)
e is not total =⇒ f(e) = False =⇒ φ(1)

e is total.

We reach a contradiction.
Fix an arbitrary computable (n + 1)-ary function f and consider the

equiation
f(u, x̄) ≃ Φn+1(u, x̄).

The Recursion Theorem says that this equation has a solution in the sense
that there exists an index e such that

f(e, x̄) ≃ φ(n)
e (x̄).

It is natural to ask whether it is possible to generalize the Recursion Theorem
to solve multiple equations at the same time.

59

Theorem 3.6 (Smullyan). [4, p. 111, Problem 17], [8, p.

190]. We will give a second
proof later.

Let f and g be arbitrary (n+2)-ary computable
functions. There exist indices e1 and e2 such that:∣∣∣∣∣ f(e1, e2, x̄) ≃ φ

(n)
e1 (x̄)

g(e1, e2, x̄) ≃ φ
(n)
e2 (x̄).

Proof. We shall used the primitive recursive coding triple ⟨π, λ, ρ⟩ from
Section 1.4.2. By an easy application of the Parameters Theorem, there exist
total computable functions ℓ and r such that∣∣∣∣∣ λ(Φn(a, x̄)) ≃ φ

(n)
ℓ(a)(x̄)

ρ(Φn(a, x̄)) ≃ φ
(n)
r(a)(x̄)

Consider the computable function Θ, where

Θ(z, x̄)
def≃ π(f(ℓ(z), r(z), x̄), g(ℓ(z), r(z), x̄)).

By the Recursion Theorem, we know that there exists an index e such that

Θ(e, x̄) ≃ φ(n)
e (x̄).

Then for this special index e,

f(ℓ(e), r(e), x̄) ≃ λ(Θ(e, x̄)) // by def. of Θ

≃ λ(φ(n)
e (x̄)) // since Θ(e, x̄) ≃ φ(n)

e (x̄)

≃ λ(Φn(e, x̄)) // Universal function

≃ φ
(n)
ℓ(e)(x̄) // by def. of λ

In a similar way we prove that

g(ℓ(e), r(e), x̄) ≃ φ
(n)
r(e)(x̄).

We conclude that we can take e1 = ℓ(e) and e2 = r(e).

60

3.5 The fixed point theorem

Recall the notation that φ
(n)
h(x)(ȳ)

def≃ Φn(h(x), ȳ).

Proposition 3.8. For any computable function h and any n, there exists a
total computable function η such that

φ
(n)
h(x) = φ

(n)
η(x).

Proof. We have the following chain of equalities:

φ
(n)
h(x)(ȳ) ≃ Φn(h(x), ȳ)

def≃ g(x, ȳ) // g is computable

≃ φ
(n)
η(x)(ȳ). // by the Parameters Theorem

This result may seem surprising at first, because it implies that there
exists a total computable function ε such that for all x,

φ
(n)

∅(1)(x) = φ
(n)
ε(x).

Theorem 3.7 (Fixed point theorem). Also known as the second

recursion theorem of Kleene.

Let h be a total computable func-
tion. There exists an index a such that:

φ(n)
a = φ

(n)
h(a).

Proof. Consider the computable function ϕ, where

ϕ(e, x̄)
def≃ Φn(h(e), x̄).

Since ϕ is computable, by the Recursion Theorem, there exists an index a
such that for all n-tuples x̄,

ϕ(a, x̄) ≃ φ(n)
a (x̄).

This is a short proof using

the Recursion Theorem. We
will later adapt this proof to
get a uniform version of this
theorem

Then, combining all of this, we get the following chain of equalities:

φ(n)
a (x̄) ≃ ϕ(a, x̄) ≃ Φn(h(a), x̄) ≃ φ

(n)
h(a)(x̄).

61

Recall that the first proof of the Fixed Point Theorem relied on the Recur-
sion Theorem. Now we give another proof of the Recursion Theoremwhich
is based on the Fixed Point Theorem.

Corollary 3.3. For every computable F (y, x̄), there exists an index e
such that for every n-tuple x̄,

F (e, x̄) ≃ φ(n)
e (x̄).

Proof.

F (y, x̄) ≃ φa(y, x̄) // since F is computable

≃ φS1
n(a,y)

(x̄) // by the Parameters Theorem

≃ φf(y)(x̄). // f(y)
def
= S1

n(a, y)

Then, by the Fixed Point Theorem, there exists an index e such that for
every n-tuple x̄,

F (e, x̄) ≃ φ
(n)
f(e)(x̄) ≃ φ(n)

e (x̄).

The fixed point theorem says that every unary total computable function
f possess a fixed point. It turns out that f has infinitely many fixed points.

Proposition 3.9. Show that for every total computable f and any n,
there exist infinitely many e, such that

φ(n)
e = φ

(n)
f(e).

Hint. We will show that for every k, there is e > k such that φe =
φf(e). Fix k. Choose e0 such that φe0 ̸∈ {φ0, φ1, . . . , φk}. Define the total
computable function

gk(x) =

{
e0, x ≤ k

f(x), x > k.

There is a number e such that φ
(n)
e = φ

(n)
gk(e)

. By the choice of gk, e > k, and

hence φ
(n)
e = φ

(n)
gk(e)

= φ
(n)
f(e).

62

Problem 22. Show that there is an index e such that

φ(1)
e = φ

(1)
e+1.

Recall that we introduced the

notation We
def
= dom(φ

(1)
e).

Problem 23. Show that there is an index e such that

We = {e}.

Hint. We already know that there exists a total computable function h
such that

Wh(a) = {a}.

Apply the Fixed Point Theorem to h.

Problem 24. Show that there is an index e such that

We = {0, 1, . . . , e}.

Since this is one of our most important results, we will give yet another
proof of the Fixed Point Theorem.

Problem 25. Let us consider the matrix M consisting of unary computable
functions:

M0 : φφ0(0) φφ0(1) . . . φφ0(n) . . .
M1 : φφ1(0) φφ1(1) . . . φφ1(n) . . .
...

. . .

Mn : φφn(0) φφn(1) . . . φφn(n) . . .
...

...
...

...
. . .

Prove the following:

1) the diagonal D = {φφi(i) | i ∈ N} coincides with some row Mn in the
matrix, where φn is total;

2) if f is total computable, the sequence Df = {φf(φi(i))}i∈N is also a row in
the matrix, say Mn, where φn is total;

3) 3) is Fixed Point Theorem.for every total computable f , there exists an index e such that φf(e) = φe.

63

Proof. For 1), consider a computable function Θ such that for every i and
x, Recall that Φ1 is the

universal function, see
Theorem 3.1.

Θ(i, x) ≃ Φ1(Φ1(i, i), x) ≃ φφi(i)(x).

We have an index e for Θ, i.e. Θ = φ
(1)
e . By Parameters Theorem, for every

i and x,
Θ(i, x) ≃ φS1

1(e,i)
(x).

For the fixed e, let n be an index such that φn(i) = S1
1(e, i). We combine

everything:

φφi(i)(x) ≃ Φ1(Φ1(i, i), x) // Universal function

≃ Θ(i, x) // by def.

≃ φe(i, x) // Θ is computable

≃ φS1
1(e,i)

(x) // by the Parameters Theorem

≃ φφn(i)(x).

We conclude that D coincides with Mn.
Now we proceed with 2). Its proof is similar to that of 1). Here consider

the computable function Ψ such that for every i and x,

Ψ(i, x) ≃ Φ1(f(Φ1(i, i)), x) ≃ φf(φi(i))(x).

φf(φi(i))(x) ≃ Φ1(f(Φ1(i, i)), x) // Universal function

≃ Ψ(i, x) // by def.

≃ φe(i, x) // Ψ is computable

≃ φS1
1(e,i)

(x) // by Parameters Theorem

≃ φφk(i)(x) // for fixed e, S1
1(e, x) ≃ φk(x) .

We conclude that Df coincides with Mk.
We turn our attention to 3). By 2), for the given total computable f , Df

coincides with Mk, for some k such that φk is total.

φf(φi(i)) = φφk(i).

Let us consider the number e = φk(k), which exists, because φk is total.
Then we have the following:

φf(e) = φf(φk(k))

= φφk(k)

= φe.

64

The benefit of the second proof of the Fixed Point Theorem is that it can
be easily generalised to get a version with parameters. Moreorver, we can
obtain a uniform version of the Fixed Point Theorem. By uniformity here
we mean that we can find a fixed point by computable means.

Theorem 3.8 (Uniform version). There exists a total computable func-
tion η such that the following implication holds:

(∀a)[φa is total =⇒ φη(a) = φφa(η(a))].

Proof. Consider the sequence

Da = {φφa(φi(i))}i∈N.

We will show that there exists a total computable h such that for any a,

Da =Mh(a).

This follows easily by a slight modification of the proof of Fixed Point The-
orem.

φφa(φi(i))(x) ≃ Φ1(Φ1(a, (Φ1(i, i))), x) // universal function

≃ φ(3)
e (a, i, x) // for some index e

≃ φ
(1)

S2
1(e,a,i)

(x) // by the Parameters Theorem

≃ φ
(1)
H(a,i)(x) // let H(a, i)

def
= S2

1(e, a, i)

≃ φφh(a)(i)(x) // by the Parameters Theorem.

Since H is total, for η(a)
def
= φh(a)(h(a)) we will obtain

φφa(η(a)) = φη(a).

Theorem 3.9 (version with parameters). If f is total computable, then
there exists a total computable function η such that

(∀y)[φ(n)
η(y) = φ

(n)
f(η(y),y)].

Moreover, η can be taken to be one-to-one.

65

Proof. [10, p. 37]

[2, p. 210]

Here, for a computable function f , for any y, consider the sequence

Df,y = {φf(φi(i),y)}i∈N.

We will show that there is a total computable function η such that

Df,y =Mh(y).

Then we let η(y) = φh(y)(h(y)) to obtain

φf(η(y),y) = φη(y).

Now, for any i, y, and x,

φf(φi(i),y)(x) ≃ Φ1(f(φi(i), y), x)

≃ Φ1(φe(y, i), x) // for some index e

≃ Φ1(φS1
1(e,y)

(i), x)

≃ Φ1(φh(y)(i), x) // let h(y) = S1
1(e, y)

≃ φφh(y)(i)(x).

It follows that Df,y =Mh(y).

Corollary 3.4 (Smullyan). We have another proof - see

Theorem 3.6

Let f and g be (n+2)-ary computable functions.
There exist indices e1 and e2 such that:∣∣∣∣∣ f(e1, e2, x̄) ≃ φ

(n)
e1 (x̄)

g(e1, e2, x̄) ≃ φ
(n)
e2 (x̄).

Proof. By the Parameters Theorem, there exists a primitive recursive
function S such that

f(z, y, x̄) ≃ φ
(n)
S(z,y)(x̄).

By the Parametrized fixed point theorem, there exits a computable function
η such that for every y,

φ
(n)
η(y)(x̄) ≃ φ

(n)
S(η(y),y)(x̄) ≃ f(η(y), y, x̄).

Now consider the computable function

ϕ(y, x̄) ≃ g(η(y), y, x̄).

By the Recursion Theorem, there exists an index e such that

φ(n)
e (x̄) ≃ ϕ(e, x̄) ≃ g(η(e), e, x̄).

In the end, let e2 = e and e1 = η(e).

66

Problem 26. For two total computable functions f and g, prove that there
exist indices a and b such that:∣∣∣∣∣ φ

(n)
f(a,b) = φ

(n)
a

φ
(n)
g(a,b) = φ

(n)
b .

Proof. By the Fixed point with parameters theorem, there exists a com-
putable η such that for every y,

φf(η(y),y) = φη(y).

Let h(y) = g(η(y), y). By Fixed Point Theorem, there exists an index e such
that

φe = φh(e) = φg(η(e),e).

Let b = e and a = η(e).

Problem 27. Prove that for any arity n, there exists a total computable
function h such that for every natural number x

φ
(n)
h(x) = φ

(n)
φh(x)(x)

Proof. Let us consider the computable function

ϕ(z, y, x̄) ≃ Φn(Φ1(z, y), x̄) ≃ φ
(n)
φz(y)

(x̄).

By the Parameters Theorem, there is a total computable S such that We do not need the fact that

S is primitive recursive.

ϕ(z, y, x̄) ≃ φ
(n)
S(z,y)(x̄).

By the Fixed point with parameters theorem, there is a total computable η
such that

φη(y) = φS(η(y),y).

In the end, for every y and x̄,

φ
(n)
η(y)(x̄) ≃ φ

(n)
S(η(y),y)(x̄)

≃ ϕ(η(y), y, x̄)

≃ φ
(n)
φη(y)(y)

(x̄).

67

3.6 Problems

Problem 28. Show that there exists a partial recursive function f , which
cannot be extended to a total recursive function g.

Hint. Consider the partial recursive function

f(x) ≃ Φ1(x, x) + 1.

Let K be a class of n-ary functions. We say that the (n+1)-ary function
U is universal for K if we have the following:

1) For any f ∈ K, there is at least one number e such that U(e, x̄) ≃ f(x̄)
for any x̄.

2) For any number e, the function λx̄.U(e, x̄) ∈ K.

Problem 29. Prove that the class of n-ary total computable functions does
not possess a computable universal function.

Hint. Assume that U is one such computable universal function. Consider
the total computable function

f(x1, . . . , xn)
def
= U(x1, x1, . . . , xn) + 1.

It follows that there is some index e such that f(x̄) = U(e, x̄). But then

f(e, x2, . . . , xn) = U(e, e, x2, . . . , xn) + 1

= U(e, e, x2, . . . , xn).

We reach a contradiction.

Problem 30. Show that the following predicate

f(x)
def≃

{
True, if φx(x) ↓
↑, if φx(x) ↑

is computable.

68

Proof. We can define the predicate f in the following way:

f(x)
def≃ true(µz[T1(x, x, z) = True]).

Problem 31. This is an important

problem!

Show that there is no computable predicate g such that

g(x) =

{
True, if φx(x) ↓
False, if φx(x) ↑

Hint. Assume that g is total computable. Then the following function is
also computable:

h(x)
def≃

{
True, if g(x) = False

↑, if g(x) = True.

There is an index e such that φ
(1)
e = h. Now we have the following chains of

implications:

φe(e) ↓ =⇒ g(e) = True =⇒ h(e) ↑ =⇒ φe(e) ↑
φe(e) ↑ =⇒ g(e) = False =⇒ h(e) ↓ =⇒ φe(e) ↓ .

In both cases, we reach a contradiction.
Actually, in the proof of Problem 31 we solved the following problem.

Problem 32. Show that the following predicate

g(x)
def≃

{
True, if φx(x) ↑
↑, if φx(x) ↓

is not computable.

Proof. Assume that g is computable. Then let us fix an index e such that
φ
(1)
e = g. Following the chains of implications:

g(e) ≃ True =⇒ φe(e) ↑ =⇒ g(e) ↑,
g(e) ↑ =⇒ φe(e) ↓ =⇒ g(e) ↓,

we reach a contradiction.

69

Problem 33. Show that there is no computable predicate g such that

g(x, y) =

{
True, if φx(y) ↓
False, if φx(y) ↑ .

Hint. If g(x, y) is total computable, then the function ĝ(x) = g(x, x) is
also total computable. But this is a contradiction by Problem 31.

Problem 34. Recall that f is injective if

for all
x ̸= y =⇒ f(x) ̸= f(y).

Show that if f is computable unary injective function, then
f−1 is also computable.

Hint. Since f is computable, there is an index e such that

f(x) ≃ ρ(µz[T1(e, x, z) = True]).

Since f is injective, we can define f−1 in the following way:

f−1(y)
def≃ ρ(µz[T1(e, λ(z), π(ρ(z), y)) = True]).

Problem 35. Show that there is a computable function g such that there is
no total computable predicate f for which we have

g(x) = µy[f(x, y) = True].

Hint. Consider the computable function g, where

g(x)
def≃

{
x, if φx(x) ↓
↑, if φx(x) ↑ .

Assume that such total computable predicate f exists. Then it is easy to see
that

- If φx(x) ↓, then f(x, x) = True and f(x, y) = False for all y < x.

- If φx(x) ↑, then f(x, y) = False for all y.

It follows that the function h(x)
def
= f(x, x) is also a total computable predi-

cate. But then we can write the definition of h in the following form:

h(x) =

{
True, if φx(x) ↓
False, if φx(x) ↑ .

We reach a contradiction with Problem 31.

70

Problem 36. Show that the partial computable function

g(x) ≃ µy.[T1(x, x, y) = True]

cannot be extended to total computable.

Hint. Clearly, g is partial. Assume that g ⊂ f , where f is total com-
putable. Fix an index e such that

φ(1)
e (x)

def
= f(x) + 1.

Since f is total, φe(e) ↓ and hence, by the Normal Form Theorem, there is
some number y such that T1(e, e, y) = True. By the definition of g, g(e) ↓
and let g(e) ≃ y, for some number y. But then, since g ⊂ f , we have that
f(e) ≃ y and

y = φe(e) = f(e) + 1 = y + 1.

We reach a contradiction.

71

Problem 37. Show that there is a primitive recursive function S such that

a) φS(a,b)(x) ≃ φa(x) + φb(x);

b) φS(a,b)(x) ≃ φa(φb(x));

Problem 38. Let Wa = dom(φ
(1)
a) and Ea = rng(φ

(1)
a). Prove that there

exist primitive recursive functions such that:

a) Wα(a,b) = Wa ∪ {0, 1, . . . , b};

b) Wγ(a,b) = Ea ∩ Eb;

c) Wδ′(a,b) = Wa ∪ Eb;

d) Wδ′′(a,b) = Wa ∩ Eb;

e) Eρ(a) = Wa;

f) Eρ′(a) = Wa \ {a};

g) Wκ(a) = Ea and Eκ(a) ⊆ Wa;

h) Eψ(a,b) = {x | x ∈ Ea & x ≥ b};

i) Wθ(a,b) = {x | φa(x) ↓ & φa(x) ∈ Wb};

j) Wξ(x) = {ξ(x) + x};

k) Eξ′(x) = {ξ′(x) + x};

Hint.

a) Let us consider the following computable function:

f(a, b, x) ≃

{
42, if x ≤ b

φa(x), if x > b.

By the Parameters Theorem, there is a primitive recursive α such that
for every a, b, and x, f(a, b, x) ≃ φα(a,b)(x). Thus, Wα(a,b) = Wa ∪
{0, 1, . . . , b}.

b) Consider the following partial computable function:

f(a, b, x) ≃

{
42, if (∃z1)(∃z2)[φa(z1) ≃ x & φb(z2) ≃ x]

↑, otherwise.

72

j) Consider the following partial computable function:

f(a, x, y) ≃

{
42, if y ≃ φa(x) + x

↑, otherwise.

There exists a primitive recursive function S such that for every a and
x,

WS(a,x) = {φa(x) + x}.

By the Recursion Theorem, there exists an index e such that S(e, x) =
φe(x) for every x. Let ξ = φe. Then

Wξ(x) = WS(e,x) = {φe(x) + x} = {ξ(x) + x}.

k) Consider the following partial computable function:

f(a, x, y) ≃

{
φa(x) + x, if x = y

↑, otherwise.

Problem 39. There are infinitely many indices e such that:

(1) φ
(1)
e = φ

(1)
e+1;

(2) φ
(1)
e = φ

(1)
e ◦ φ(1)

e ;

(3) φ
(1)
e = φ

(1)
e+1 ◦ φ

(1)
e+2.

Problem 40. ✍ homework!Show that there exists a primitive recursive function g such
that

(∀a)(∀e)[φ−1
e (Wa) = Wg(e,a)].

73

Chapter 4

Decidable and semidecidable
sets

4.1 Decidable sets

Also called computable

sets. Of course, every set has
a characteristic function.
The problem is that it is
usually not computable.

We say that A ⊆ N is a decidable set if its characteristic function χA is
computable, where

χA(x)
def
=

{
True, if x ∈ A
False, if x ̸∈ A.

Proposition 4.1. In other words, the decidable

sets are closed under the
operations intersection,
union, and complement.

If the sets A and B are decidable, then so are the sets

A ∩B, A ∪B, A \B.

Proof. Easy.

Proposition 4.2. Let A be a decidable set. Then the sets B, C are also
decidable, where:

- B
def
= {⟨x, y⟩ | (∃z < y)[⟨x, z⟩ ∈ A]},

- C
def
= {⟨x, y⟩ | (∀z < y)[⟨x, z⟩ ∈ A]}.

Proof.

It is useful to study an important example of a undecidable set.

74

Proposition 4.3. The set K
def
= {e ∈ N | φe(e) ↓} is not decidable.

Proof. K is called the Kleene set or

the diagonal halting set.
This set plays an important
role in this course.

Assume that the setK is decidable. It follows that its characteristic
function

χK(x) =

{
True, if φx(x) ↓
False, if φx(x) ↑

is computable. Now we apply Problem 31 to reach a contradiction.
By Proposition 4.1, the complement of the Kleene set, denoted K is not

decidable. It is a cannonical example, so we will state it explicitly.

Example 5. The complement of the Kleene set, denoted K, where

K
def
= {e ∈ N | φe(e) ↑},

is not decidable.

Problem 41. [4, p. 127]Prove that a total function f is computable iff graph(f) is a
decidable set.

Proof.

Problem 42. Show that there exists a decidable set A such that

- D
def
= {x | (∃z)[⟨x, z⟩ ∈ A]} is not decidable, or

- E
def
= {x | (∀z)[⟨x, z⟩ ∈ A]} is not decidable.

Proof. Recall that Normal Form

Theorem says that T1 is the
Kleene predicate and that
T1(a, x, z) = 0 iff z = ⟨s, y⟩
and φa(x) ↓= y for s number
of steps.

Consider the following decidable set:

A
def
= {⟨x, z⟩ | T1(x, x, z) = True}.

Clearly, A is also decidable. Then we can show the following:

- K = {x | (∃z)[⟨x, z⟩ ∈ A]};

75

- K = {x | (∀z)[⟨x, z⟩ ∈ A]}.

Problem 43. [4, p. 128]Let f be a total computable function such that f(x) ≥ x.
Prove that rng(f) is a decidable set.

Proof. Since (∀x ∈ N)[f(x) ≥ x], to check whether y ∈ rng(f), we need
to compute only the values f(x) for x ≤ y. Thus,

y ∈ A ⇔ (∃x ≤ y)[f(x) = y]

⇔
∑
x≤y

sign(|f(x)− y|) = 1.

Problem 44. [4, p. 129].Prove that an infinite set A is decidable if and only if A =
rng(f), where f is a computable total strictly increasing function.

Hint. (→) This direction is easy. Consider the function∣∣∣∣∣ f(0) def
= µz[χA(z) = True]

f(n+ 1)
def
= µz[f(n) < z & χA(z) = True].

(←) Let A = rng(f). Since f is strictly increasing, (∀z ∈ N)[f(z) ≥ z].
Then apply Problem 43.

Problems

Problem 45. Let f be total computable increasing function (possibly not
strictly). Show that rng(f) is a decidable set.

Hint. If rng(f) is finite, then it is clear. If rng(f) is infinite, then for
every y, there is x such that f(x) ≥ y.

Problem 46. [4, p. 129]Let f and g be total computable functions and let g be bijec-
tive. Moreover, we require (∀x ∈ N)[f(x) ≥ g(x)], i.e. f majorizes g. Show
that rng(f) is a decidable set.

Hint. Since g is bijective and computable, then g−1 is total and com-
putable. Given y, we look for z such that

{0, 1, . . . , y} ⊆ rng(g ↾ {0, 1, . . . , z}).

76

It follows that if f(x) = y, then x < z. We have to be able to find this z
effectively from y. We will define a total computable h such that

{0, 1, . . . , y} ⊆ rng(g ↾ {0, 1, . . . , h(y) + 1}).

Then f(x) = y =⇒ x ≤ h(y). We define h using the following primitive
recursive scheme: ∣∣∣∣∣ h(0) def

= g−1(0)

h(y + 1)
def
= max{h(y), g−1(y + 1)}.

Clearly, h(y) = max{g−1(0), . . . , g−1(y)}. Since

y ∈ rng(f) ⇔ (∃x)[⟨x, y⟩ ∈ graph(f)]

⇔ (∃x)[⟨x, y⟩ ∈ graph(f) & f(x) = y ≥ g(x)]

⇔ (∃x ≤ h(y))[⟨x, y⟩ ∈ graph(f)],

if follows that rng(f) is decidable since graph(f) is decidable by Problem 41.

Problem 47. [4, p. 129]Let f , g be total computable functions and let g be bijective.
Moreover, we require (∀x ∈ N)[f(x) ≥ x]. Show that the set

A
def
= {g(y) | y ∈ rng(f)}

is decidable.

Hint. Show the following equivalences

x ∈ A ⇔ (∃y)[⟨y, x⟩ ∈ graph(g) & (∃z ≤ y)[⟨z, y⟩ ∈ graph(f)]]

x ̸∈ A ⇔ (∃y)[⟨y, x⟩ ∈ graph(g) & (∀z ≤ y)[⟨z, y⟩ ̸∈ graph(f)]].

77

4.2 Semidecidable sets

We say that A ⊆ N is a semidecidable set if its semicharacteristic function
χ̂A is computable, where

χ̂A(x)
def≃

{
True, if x ∈ A
↑, if x ̸∈ A.

Proposition 4.4. The set A is a semidecidable set if and only if A =
dom(φ

(1)
a), for some index a.

Proof. If A is semidecidable, then χ̂A is computable, i.e. there exists
an index a, χ̂A = φa. In this case, dom(φa) = A. Conversely, let A =
dom(φa), for some index a. Then the semicharacteristic function of A is
χ̂A = true ◦ φa.

We enumerate all semidecidable sets in an infinite sequence,

W0,W1, . . . ,We, . . . ,

where We
def
= dom(φ

(1)
e).

Proposition 4.5. The set A is semidecidable set if and only if there exists
a primitive recursive predicate α such that

x ∈ A ⇔ (∃y)[α(x, y) = True].

Proof. (→) Suppose A is semidecidable. Then A = dom(φa), for some
index a. By Normal Form Theorem, there is a primitive recursive function
T1 such that

φa(x) ↓ ⇔ (∃z)[T1(a, x, z) = True].

We let α(x, y)
def
= T1(a, x, y).

(←) Suppose α is primitive recursive such that

x ∈ A ⇔ (∃y)[α(x, y) = True].

Let us define φ(x) ≃ (µy)[α(x, y) = True]. It is clear that φ is computable
and A = dom(φ).

Proposition 4.6. Let f be a (partial) function. Then f is computable iff
graph(f) is semidecidable.

78

Proof. (→) Suppose f is computable. Then f = φa, for some a. By
Normal Form Theorem, the function T1 is primitive recursive and

f(x) ≃ y ⇔ (∃z)[T1(a, x, z) = True ∧ y = ρ(z)].

(←) Suppose graph(f) is semidecidable. There exists a primitive recur-
sive predicate γ such that

⟨x, y⟩ ∈ graph(f) ⇔ f(x) ≃ y ⇔ (∃z)[γ(x, y, z) = True].

Thus,
f(x) ≃ λ(µt[γ(x, λ(t), ρ(t)) = True]).

Proposition 4.7. In other words, there is a

total computable function g
which enumerates the
elements of A in some
arbitrary order, possibly with
repetitions.

Let A be a non-empty semidecidable set. Then there
exists a primitive recursive function g such that A = rng(g).

Proof. By Proposition 4.5, there is a primitive recursive predicate α such
that

x ∈ A ⇔ (∃y ∈ N)[α(x, y) = True].

Fix a ∈ A. Define the primitive recursive function g:

g(n)
def
=

{
a, if α(λ(n), ρ(n)) = False

λ(n), if α(λ(n), ρ(n)) = True.

It is easy to see that A = rng(g).

Theorem 4.1 (Post). The set A is decidable if and only if A and its
complement A = N \ A are semidecidable sets.

Proof. Let both A and A be semidecidable. By Proposition 4.5, there
exist primitive recursive predicates α and α such that

x ∈ A ⇔ ∃y[α(x, y) = True]

x ∈ A ⇔ ∃y[α(x, y) = True].

The function

h(x)
def
= µy[α(x, y) = True ∨ α(x, y) = True]

79

is total and computable. Thus,

χA(x) = sign(α(x, h(x))).

The other direction is obvious.
Notice that Problem 30 tells us that the semicharacteristic function χ̂K is

computable and hence K is semidecidable. On the other hand, Problem 32
tells us that K is not semidecidable.

Example 6. The Kleene set K
def
= {x | φx(x) ↓} is semidecidable, but

not decidable. Its complement K is not semidecidable.

Proposition 4.8. In other words, the

semidecidable sets are closed
under the operations of
intersection and union, but
not under the operation
complement.

If A and B are semidecidable sets, then A∩B and A∪B
are also semidecidable, but A \B may not be semidecidable.

Proposition 4.9. Let A be a semidecidable set. Then the sets B, C and D
are also semidecidable sets:

- B
def
= {⟨x, y⟩ | (∃z < y)[⟨x, z⟩ ∈ A]},

- C
def
= {⟨x, y⟩ | (∀z < y)[⟨x, z⟩ ∈ A]},

- D
def
= {x | (∃y)[(x, y) ∈ A]}.

It is possible that the set E is not semidecidable, where:

E
def
= {⟨x⟩ | (∀y)[⟨x, y⟩ ∈ A]}.

Hint. By Proposition 4.5, let α be a primitive recursive predicate such
that

(x, y) ∈ A ⇔ (∃u)[α(x, y, u) = True].

Prove that the following hold:

- ⟨x, y⟩ ∈ B ⇔ (∃u)[
∑

z<y α(x, z, u) ≥ 1].

- ⟨x, y⟩ ∈ C ⇔ (∃u)[
∏

z<y α(x, z, (u)z) = True].

- x ∈ D ⇔ (∃t)[α(x, λ(t), ρ(t)) = True].

80

Proposition 4.10. The set A is semidecidable if and only if there exists a
decidable set B such that the following holds:

x ∈ A ⇔ (∃y)[⟨x, y⟩ ∈ B].

Proof. (→) Suppose A is semidecidable. By Proposition 4.5, there exists
a primitive recursive α such that

x ∈ A ⇔ (∃y)[α(x, y) = True].

Choose the decidable set B such that χB = α.
(←) Let B be decidable. Then clearly B is also semidecidable and hence

A is semidecidable from Proposition 4.9.

Problems

Problem 48. Show that the following structure

E = ({We}e∈N,∪,∩,N, ∅)

is a distributive lattice.

Problem 49. We will use this fact later. [4,

p. 135, Problem 21]

Let A be an infinite semidecidable set. Prove that there exists
an injective total computable function h such that A = rng(h).

Hint. We use Proposition 4.7.Let g be primitive recursive such that A = rng(g). Prove that the
following function h has all needed properties:∣∣∣∣∣ h(0) def

= g(0)

h(n+ 1)
def
= g(µz[

∏
i≤n |h(i)− g(z)| ≠ 0]).

Problem 50. [4, p. 136, Problem 22]Prove that every infinite semidecidable set contains an infinite
decidable subset.

Hint. Let A = rng(h), where h is total computable. We define a strictly
increasing total computable f such that rng(f) ⊂ A. Then we apply Problem 44Fix some element
a0 ∈ A. It is easy to see that the function f has the necessary properties,
where: ∣∣∣∣∣ f(0) def

= a0

f(n+ 1)
def
= h(µz[(f(n) + 1) .− h(z) = 0]).

81

4.3 Decidable index sets

Let C be a class of unary computable functions. The index set for C is the
set

IC
def
= {e | φ(1)

e ∈ C }.

For example, the set Empty
def
= {e | φ(1)

e = ∅(1)} is an index set, where

C = {∅(1)}. On the other hand, the set K = {e | φ(1)
e (e) ↓} is not an index

set. Here we will study the problem how to determine whether a given index
set is computable or not.

Problem 51. Later we will see that this

problem is a direct corollary
of Rice Theorem.

Show that the set Empty is not decidable.

Proof. Firstly, let us fix an index e0 such that e0 ∈ Empty and let e1 be
an index such that e1 ̸∈ Empty. Assume Empty is decidable and consider the
total computable function f , where

f(x)
def≃

{
e1, if x ∈ Empty

e0, if x ̸∈ Empty.

This is a form of

diagonalization.

By the Fixed Point Theorem, there exists an index a such that

φ(1)
a = φ

(1)
f(a).

Then we have the following chains of implications:

a ∈ Empty =⇒ φ(1)
a = ∅(1) =⇒ φ

(1)
f(a) = ∅

(1) =⇒ φ(1)
e1

= ∅(1) =⇒ e1 ∈ Empty.

a ̸∈ Empty =⇒ φ(1)
a ̸= ∅(1) =⇒ φ

(1)
f(a) ̸= ∅

(1) =⇒ φ(1)
e0
̸= ∅(1) =⇒ e0 ̸∈ Empty.

In both cases, we reach a contradiction.
Proof. This proof gives us more

information. We can even
assume that Empty is
semidecidable. We will reach
a contradiction in the same
way. It follows that Empty is
not semidecidable.

Assume that Empty is decidable and consider the following com-
putable function

f(x, y)
def≃

{
5, if x ∈ Empty

↑, if x ̸∈ Empty.

By the Recursion Theorem, there exists an index e such that

φ(1)
e (y) ≃ f(e, y).

82

Then we have the following chains of implications:

e ∈ Empty =⇒ φ(1)
e is total =⇒ e ̸∈ Empty

e ̸∈ Empty =⇒ φ(1)
e = ∅(1) =⇒ e ∈ Empty.

We reach a contradiction.
Proof. This proof presents the most

general idea: effectively
reducing one set to another.

We shall effectively reduce K to Empty, the complement of Empty.
Define the function

f(x, y) ≃

{
42, if x ∈ K
↑, if x ̸∈ K.

Clearly, f is computable. By the Parameters Theorem, there exists a primi-
tive recursive h such that f(x, y) ≃ φ

(1)
h(x)(y). Then

x ∈ K =⇒ φh(x) ̸= ∅(1) =⇒ h(x) ∈ Empty.

x ̸∈ K =⇒ φh(x) = ∅(1) =⇒ h(x) ̸∈ Empty.

It follows that
K = {x | h(x) ∈ Empty}.

If we assumed that Empty is decidable, then Empty would be decidable and
hence K would be decidable. A contradiction.

Problem 52. Show that the set

Quine
def
= {a | (∀x)[φ(1)

a (x) ≃ a]}

✍ Explain why Quine is not

an index set! Later, we will
show that Quine is not even
semidecidable.

is not decidable.

Proof. Assume that Quine is decidable. Consider the computable function

f(x, y)
def≃

{
↑, if x ∈ Quine

x, if x ̸∈ Quine.

By the Recursion Theorem, there exists an index e such that

φ(1)
e (y) ≃ f(e, y).

e ∈ Quine =⇒ (∀y)[f(e, y) ↑] =⇒ φe = ∅(1) =⇒ e ̸∈ Quine

e ̸∈ Quine =⇒ (∀y)[f(e, y) ≃ e] =⇒ (∀y)[φe(y) ≃ e] =⇒ e ∈ Quine.

We reach a contradiction.

83

Problem 53. ✍ Explain why this is not an

index set!

Show that the set

A
def
= { a | Wa = {a} }

is not decidable.

Hint. Assume that A is decidable and consider the computable function

f(x, y) ≃

{
5, if x ̸∈ A & x = y

↑, otherwise.

Proceed as above.

Problem 54. Show that the set

B
def
= { a | Wa = N \ {a} }

is not decidable.

Theorem 4.2 (Rice 1953). Let C be a class of unary computable func-
tions. The index set IC is decidable if and only if C = ∅ or when C is
the class of all computable functions.

Proof. It is clear that if C is trivial, then IC is decidable. We will prove
the direction (=⇒) by using contraposition, i.e. we will prove that if C
is not trivial, then IC is not decidable. Assume that there are computable
functions ψ0 and ψ1 such that ψ0 ̸∈ C and ψ1 ∈ C . Consider the computable
function

f(x, y)
def≃

{
ψ0(y), if x ∈ IC
ψ1(y), if x ̸∈ IC .

By the Recursion Theorem, there exists an index e such that

φ(1)
e (y) ≃ f(e, y).

Now we obtain the following chains of implications:

e ∈ IC =⇒ φe = ψ0 =⇒ e ̸∈ IC
e ̸∈ IC =⇒ φe = ψ1 =⇒ e ∈ IC .

We reach a contradiction.

84

Proof. It is clear that if C = ∅ or when C contains all computable func-
tions, then IC is computable. Now assume IC is a computable set and fix
φa ∈ C and φb ̸∈ C . Define the total computable function f in the following
way:

f(x) =

{
b, if x ∈ IC
a, if x ̸∈ IC

We have that
f(x) ∈ IC ⇔ f(x) = a ⇔ x ̸∈ IC .

By the Fixed Point Theorem, there exists an index e, such that φ
(1)
e ≃ φ

(1)
f(e).

Thus,
φ(1)
e ∈ C ⇔ φ(1)

e ̸∈ C ,

which is a contradiction.
Proof. It is clear that if C = ∅ or when C contains all computable func-
tions, then IC is decidable. We shall define a total computable function h
such that

x ∈ K ⇔ h(x) ∈ IC .

Suppose that ∅(1) ̸∈ C .
Since K is semidecidable, then the following function is partial com-

putable

f(x, y)
def≃

{
ψ(y), if x ∈ K
↑, otherwise.

By the Parameters Theorem, there exists a primitive recursive, and conse-
quently total computable, function h such that

f(x, y) ≃ φ
(1)
h(x)(y),

for all natural numbers x and y. Then

x ∈ K =⇒ φ
(1)
h(x) = ψ =⇒ h(x) ∈ IC

x ̸∈ K =⇒ φ
(1)
h(x) = ∅

(1) =⇒ h(x) ̸∈ IC .

If ∅(1) ∈ C , then we can consider the complement C of C and show that
there is a total computable function h such that

x ∈ K ⇔ h(x) ∈ IC .

Then IC is not decidable and since IC = N \ IC , if follows that IC is not a
deciable set.

85

Example 7. As a direct corollary of the Rice Theorem, the following index
sets are not decidable:

a) Empty = {a | φ(1)
a = ∅(1)};

b) Fin = {a | Dom(φ
(1)
a) is finite};

c) Inf = {a | Dom(φ
(1)
a) is infinite};

d) Tot = {a | φ(1)
a is total};

e) Const = {a | φ(1)
a is a constant function};

f) Eqa = {x | φ
(1)
x = φ

(1)
a };

g) Eq = {⟨x, y⟩ | φ(1)
x = φ

(1)
y }.

86

4.4 Semidecidable index sets

Problem 55. Show that the index set for the class {∅(1)}, denoted

Empty
def
= {a | φ(1)

a = ∅(1)},

is not semidecidable.

Proof. Recall Example 6 which says

that K is not semidecidable.

Here we essentially repeat the third proof of the fact that Empty is
not decidable. There we proved that

K = {x | h(x) ∈ Empty}.

But this is equivalent to the following:

K = {x | h(x) ∈ Empty}.

If we assumed that Empty is semidecidable, then K would be semidecidable,
which is evidently not true.

We already know that the set Tot - the index set of total computable
functions is not decidable. Now we will prove that Tot is not even semide-
cidable. The proof is important because we will use the same proof idea
again in a while.

Problem 56. Show that the index set for the class of total unary com-
putable functions, denoted

Tot
def
= {a | φ(1)

a is total},

is not semidecidable.

Proof. We will show that there is a total computable function h such that

x ∈ K ⇔ h(x) ∈ Tot.

Since the set K is semidecidable, consider the primitive recursive predicate
κ such that we have

x ∈ K ⇔ (∃y)[κ(x, y) = True].

87

Define the computable function g in the following way:

g(x, y)
def≃

{
42, if (∀z ≤ y)[κ(x, z) = False],

↑, if (∃z ≤ y)[κ(x, z) = True].

By the Parameters Theorem, we can find a primitive recursive function h
such that for every x and y, g(x, y) ≃ φ

(1)
h(x)(y). Then

x ∈ K =⇒ (∃y)[κ(x, y0) = True] =⇒ dom(φ
(1)
h(x)) is finite =⇒ h(x) ̸∈ Tot

x ̸∈ K =⇒ (∀y)[κ(x, y0) = False] =⇒ φ
(1)
h(x) is total =⇒ h(x) ∈ Tot.

Theorem 4.3 (Rice-Shapiro). Let C be a class of unary computable
functions, for which IC is a semidecidable set. Then for every com-
putable function f , we have

f ∈ C ⇔ (∃θ ⊆ f)[θ ∈ C & θ is finite].

Proof. We always use θ to denote

finite functions.

(⇒). Let f ∈ C , but assume (∀θ ⊆ f)[θ ̸∈ C]. Since the set K
is semidecidable, consider the primitive recursive predicate κ such that we
have

x ∈ K ⇔ (∃y)[κ(x, y) = True].

Define the computable function g in the following way:

g(x, y)
def≃

{
f(y), if (∀z ≤ y)[κ(x, z) = False],

↑, if (∃z ≤ y)[κ(x, z) = True].

Let a be an index for g. By the Parameters Theorem, we can find a primitive
recursive function h such that for every x and y,

g(x, y) ≃ φ
(1)

S1
1(a,x)

(y) ≃ φ
(1)
h(x)(y).

Our goal is to show that (∀x)[x ∈ K ⇔ h(x) ∈ IC]. It will follow that K
is semidecidable, which is evidently not true.

By the definition of g, for every x, φ
(1)
h(x) ⊆ f . Now we have two cases to

consider.

88

- If x ∈ K, then κ(x, y0) = True, for some least y0. Then (∀y ≥ y0)[g(x, y) ↑
]. Thus, φ

(1)
h(x) is a finite function ⊆ f . Since we assumed that (∀θ ⊆ f)[θ ̸∈

C], we have h(x) ̸∈ IC .

- If x ̸∈ K, then (∀y)[κ(x, y) = False] and φ
(1)
h(x) = f . Thus, h(x) ∈ IC .

Thus, we conclude

x ∈ K ⇔ x ̸∈ K ⇔ h(x) ∈ IC .

Since IC is semidecidable and h is computable, it follows that K is semide-
cidable We reach a contradiction. Thus, our assumption is incorrect.

(⇐). Let f ̸∈ C be a computable function, but assume that there exists
θ ⊆ f such that θ ∈ C . This time we define the function g in the following
way:

g(x, y)
def≃

{
f(y), if θ(y) ↓ ∨ x ∈ K
↑, otherwise

Since f and θ are computable, and K is semidecidable, the function g is
also computable. Again by the Parameters Theorem, we take a primitive
recursive function h such that for every x and y, g(x, y) ≃ φ

(1)
h(x)(y). We have

the following for every x:

x ∈ K =⇒ φ
(1)
h(x) = f =⇒ h(x) ̸∈ IC

x ̸∈ K =⇒ φ
(1)
h(x) = θ =⇒ h(x) ∈ IC .

In the end, K = {x | h(x) ∈ IC }. Since IC is semidecidable and h is
computable, K is semidecidable, which is a contradiction.

Corollary 4.1 (Rice’s theorem). This corollary shows that the

Rice-Shapiro Theorem is
more powerful than the Rice
Theorem.

Let C be a class of computable unary
functions. The index set IC is decidable iff the class C is either empty or
contains all computable unary functions.

Proof. (→) Let IC be decidable, but assume that C is a nontrivial class.
We have that both IC and IC̄ are semidecidable sets. We consider two cases:

(i) ∅(1) ∈ C . By the previous corollary, every computable function is in
C . Thus, C is a trivial class.

(ii) ∅(1) ̸∈ C . Then ∅(1) ∈ C̄ and this time we have that C̄ is a trivial class,
but then so is C .

(←) This direction is immediate.

89

Corollary 4.2. Let C be a class of computable unary functions and IC is
semidecidable. If f ∈ C , then every computable g which extends f belongs
to C .

Example 8. As a direct corollary of the Rice-Shapiro Theorem, the following
index sets are not semidecidable:

a) Empty = {a | φ(1)
a = ∅(1)};

b) Fin = {a | Dom(φ
(1)
a) is finite};

c) Inf = {a | Dom(φ
(1)
a) is infinite};

d) Tot = {a | φ(1)
a is total};

e) Const = {a | φ(1)
a is a constant function};

f) Eqa = {x | φ
(1)
x = φ

(1)
a };

g) Eq = {⟨x, y⟩ | φ(1)
x = φ

(1)
y }.

4.4.1 Problems

Problem 57. Let ψ is an arbitrary computable unary function. Show that
the index set I{ψ} is not semidecidable.

Problem 58. Show that the index set

Prim = {e | φe is a primitive recursive funciton}

is not semidecidable.

Problem 59. Now it is clear to us that this

is not an index set, so we
cannot apply the
Rice-Shapiro Theorem.

Show that the set

Quine
def
= {a | (∀x)[φ(1)

a (x) ≃ a]}

is not semidecdiable.

Proof. Compare with Problem 52.Assume that the set Quine is semidecidable. We know that there
exists a primitive recursive predicate κ such that

x ∈ K ⇔ (∃u)[κ(x, u) = True].

90

Consider the computable function

f(x, y, z)
def≃

{
S1
1(x, y), if (∀u < z)[κ(y, u) = False]

↑, otherwise

By the Recursion Theorem, there exists an index e such that for all y and z,

φ(2)
e (y, z) ≃ f(e, y, z).

Now we apply the Parameters Theorem and obtain h(y) = S1
1(e, y) such that

for all y and z,
f(e, y, z) ≃ φ

(1)
h(y)(z)

Then we can conclude that

x ∈ K =⇒ (∀z)[φ(1)
h(y)(z) ≃ h(y)] =⇒ h(y) ∈ Quine

x ̸∈ K =⇒ φ
(1)
h(y) is finite =⇒ h(y) ̸∈ Quine.

It follows that we have the equivalence:

x ∈ K ⇔ h(x) ∈ Quine,

which means that K is semidecidable. We reach a contradiction.

Problem 60. The set A is not an index set!

✍ Explain why.

Show that the set

A
def
= { a | Wa = {a} }

is not semidecidable.

Hint. Compare with Problem 53.Use the computable function

f(x, y, z)
def≃

{
5, if x ∈ K ∨ z = S1

1(x, y)

↑, otherwise

to show that there exists a total computable function h such that

x ∈ K ⇔ h(x) ∈ A.

Hint. Assume that A is semidecidable. Use the computable function

f(x, y) ≃

{
5, if x ∈ A ∨ x = y

↑, otherwise

to reach a contradiction.

91

Problem 61. Show that the following sets are not semidecidable. These are not index sets, so

we cannot apply the
Rice-Shapiro Theorem.a) {a ∈ N | Wa ̸= {a}};

b) {a ∈ N | Wa = N \ {a}};

c) {a ∈ N | |Wa| = a};

d) {a ∈ N | |Wa| ≠ a};

e) {a ∈ N | Wa = {0, 1, . . . , a}};

4.4.2 Theorem of McNaughton-Myhill-Rice-Shapiro

Notice that the condition f ∈ C ⇔ (∃θ ⊆ f)[θ ∈ C] is a necessary, but
not sufficient condition for the index set IC to be semidecidable. There exist
classes C such that f ∈ C ⇔ (∃θ ⊆ f)[θ ∈ C], but IC is not semidecidable.

Proposition 4.11. There exists a class C of computable functions such that
IC is not semidecidable, but

f ∈ C ⇔ (∃θ ⊆ f)[θ is finite and θ ∈ C].

Hint. Let us consider the complement of the Kleene set

K = {k0 < k1 < · · · < kn < · · · }.

Define θn as the finite function such that graph(θn) = {⟨0, kn⟩}. Define the
class of computable functions

C = {φ | (∃n)[θn ⊆ φ]}.

Then
x ∈ K ⇔ (∃e)[e ∈ IC & φe(0) ≃ x].

We conclude that IC is not semidecidable.
For a finite function θ, define the code of θ as

⌜θ⌝
def
=

∏
i∈dom(θ)

p
θ(i)+1
i

.− 1.

Proposition 4.12. The set A = {⟨x, e⟩ | x = ⌜θ⌝ & θ ⊆ φe} is semidecid-
able.

92

Hint. Here we use the Kleene predicate T1 from the Normal form theorem.
If x = ⌜θ⌝, then θ ⊆ φe iff

(∃s)(∀i < x)[(x+ 1)i = 0 ∨ T1(e, i, π(s, (x+ 1)i
.− 1)) = True].

Theorem 4.4 (McNaughton-Myhill-Rice-Shapiro). Let C be a class of
computable unary functions. Then IC is semidecidable iff there exists
a semidecidable set E of codes of finite functions such that for every
function f ,

f ∈ C ⇔ (∃θ ⊆ f)[⌜θ⌝ ∈ E].

Proof. [4, p. 160]. Everywhere we

use the letter θ to denote
finite functions

(→) Suppose IC is semidecidable. We have to show that there is
an effective way to find, given the code ⌜θ⌝, a computable index e such that
θ = φe. More precisely, we will find a primitive recursive function σ such
that

θ = φ
(1)
σ(⌜θ⌝).

Consider the computable function g, where

g(x, y)
def≃

{
z, if (x+ 1)y = z + 1

↑, if (x+ 1)y = 0.

Clearly, we have the equivalence

g(x, y) ≃ z ⇔ (∃θ)[⌜θ⌝ = x & θ(y) = z].

We have to show that we can

effectively go from the
number ⌜θ⌝ to the number a
such that φa = θ

By the Parameters Theorem, there exists a primitive recursive function
σ such that for every x and y,

g(x, y) ≃ φ
(1)
σ(x)(y).

It follows that σ translates a code of a finite function into the URM program
index for the same finite function. In other words,

φ
(1)
σ(⌜θ⌝) = θ.

The empty function ∅(1) is

obviously a finite function

Now we consider the set

E
def
= {x | σ(x) ∈ IC }.

Since IC is semidecidable and σ is computable, the set E is a semidecidable
set. To finish the proof of this direction, we have to consider the following
two cases.

93

- Let f ∈ C . Then by the Rice-Shapiro Theorem, there is some finite θ ⊆ f
such that θ ∈ C . Since φ

(1)
σ(⌜θ⌝) = θ, it follows that σ(⌜θ⌝) ∈ IC and hence

⌜θ⌝ ∈ E.

- Now let θ ⊆ f and ⌜θ⌝ ∈ E. Then σ(⌜θ⌝) ∈ IC and hence θ ∈ C . Again
by the Rice-Shapiro Theorem, the function f ∈ C .

(←) Let E be a semidecidable set of codes of finite functions such that

f ∈ C ⇔ (∃θ ⊆ f)[⌜θ⌝ ∈ E].

We can represent the index set IC in the following way:

IC = {a | (∃θ)[⌜θ⌝ ∈ E & θ ⊆ φ(1)
a]}.

Why is IC semidecidable?It is easy to see that IC is semidecidable.

94

4.5 Problems

Consider an arbitrary decidable set A. There exists an index a such that
A = Wa and an index b such that A = Wb. It is a natural question to ask
whether we can effectively obtain the index b from the index a, or vice versa.
The next problem tells us that we generally cannot do this.

Problem 62. There is no computable function f such that if Wa is
decidable, then f(a) ↓ and Wf(a) = W a.

Hint. Let h be total computable such that

Wh(x) =

{
N, if x ∈ K
∅, if x ̸∈ K.

Then the complement of the Kleene set

K = {x | Wf(h(x)) ̸= ∅}

is semidecidable. We reach a contradiction.

Problem 63. ✍ Homework!There is no computable function f such that ifWa is decidable,
then f(a) ↓ and f(a) is an index of the characteristic function forWa, in other

words, φ
(1)
f(a) = χWa .

Problem 64. Here Dv denotes the finite

set with code v.

There is no computable function f such that if φa = χA and
A is finite, then f(a) ↓ and A = Df(a).

Hint. Let K = {x | (∃y)κ(x, y) = True}. Consider the total computable
function

g(x, y)
def
=

{
True, if κ(x, y) = True & (∀z < y)[κ(x, z) = False]

False, otherwise.

By the Parameters Theorem, there is a total computable function h such
that φ

(1)
h(x)(s) = g(x, s). Then

x ∈ K ⇔ Df(h(x)) = ∅ ⇔ f(h(x)) = 0.

It follows that K is semidecidable, which is a contradiction.

95

Problem 65. ✍ Homework!There is no computable function ℓ such that if φ
(1)
a = χA and

A is finite, then ℓ(a) = |A|.

Problem 66. There is no computable function h such that if Wa is finite,
then h(a) ↓ and Dh(a) = Wa.

Problem 67. Show that there exist primitive recursive functions α and β
such that

Wα(a,b) = φ−1
a (Wb) and Wβ(a,b) = φa(Wb).

The next problem shows that we have to be careful when we take infinite
unions and intersections.

Problem 68. Let A be semidecidable and B be decidable. Show that

1) C =
⋃
e∈AWe is always semidecidable;

2) [4, p. 147, problem 33]
⋃
v∈BDv may not be decidable, only semidecidable;

3) it is possible that neither
⋂
e∈BWe nor its complement are semidecidable;

4) even if B is such that (∀e ∈ B)[We is decidable], we may still have that
neither

⋂
e∈BWe nor its complement are semidecidable;

Proof.

1) This is easy. Firstly, let A = Wa, for some index a.

x ∈ C ⇔ (∃e ∈ A)[x ∈ We] // by def. of C

⇔ (∃e ∈ A)(∃s)[T1(e, x, s) = True] // by Normal Form Theorem

⇔ (∃e, s, t)[T1(a, e, s) ∗ T1(e, x, s) = True]

2) We will show that there exists a decidable set B such that
⋃
v∈BDv is

semidecidable, but not decidable.

Since K is a semidecidable set, let κ a be primitive recursive predicate
such that

K = {x | (∃y)[κ(x, y) = True]}.

Define finite approximations of the set K in the following way:

Ks
def
= {x | x < s & (∃t < s)[κ(x, t) = True]}.

Our first goal is to show that we can effective find the code for the finite
set K, i.e. there is a total computable h such that Ks = Dh(s).

96

Let g(x, s)
def
= sign(Σt<sκ(x, t)), which is obviously primitive recursive.

Clearly,
Ks = {x | x < s & g(x, s) = True}.

Define the primitive recursive function

f(x, s) =

{
2x, if x ∈ Ks

0, if x ̸∈ Ks

=

{
2x, if x < s & g(x, s) = True

0 otherwise

Then define the primitive recursive function

h(s) =
∑
x<s

f(x, s).

It is easy to see that Ks = Dh(s). Since h is non-decreasing and takes
arbitrarily large values, the set B = rng(h) will be computable because

x ∈ B =⇒ (∃s)[h(s) = x]

x ̸∈ B =⇒ (∃s)[h(s) > x & (∀t < s)[h(t) ̸= x]].

In the end,

K =
⋃
s

Ks =
⋃
s

Dh(s) =
⋃
v∈B

Dv.

3) By the Rice-Shapiro Theorem, we know that the sets Inf and Fin are
not semidecidable. We will show that there exists a computable set B
such that

⋂
e∈BWe = Inf. Our construction of B will be based on the

following observation:

Inf = {e | (∀x)(∃y > x)[φe(y) ↓]}.

Why is the set I

semidecidable?

Consider the semidecidable set

I = {⟨x, e⟩ | (∃y > x)[φe(y) ↓]}.

Let I = Wa. By the Parameters Theorem, let h be a primitive recursive
function such that

φ(1)
a (⟨x, e⟩) ≃ φ

(1)
h(x)(e),

and we know that h is strictly increasing. Then B = rng(h) is com-
putable. We obtain the equalities⋂

e∈B

We =
⋂
x∈N

Wh(x) = {e | (∀x)(∃y > x)[φe(y) ↓]} = Inf.

97

4) Why are the sets In
decidable ?

For every n, consider the decidable set

In = {x | x < n & |Wx| ≥ n} ∪ {n, n+ 1, n+ 2, . . . }.

Our proof is based on the observation that⋂
n

In = Inf,

which is not a semidecidable set. Consider the semidecidable set Why is the set I

semidecidable ?

I = {⟨n, x⟩ | x ≥ n ∨ |Wx| ≥ n}.

Fix an index e such that We = I. Then by the Parameters Theorem,
there exists a primitive recursive h such that for every n and x,

φ(2)
e (n, x) ≃ φ

(1)
h(n)(x).

Then we have that for every n, Wh(n) = In. Again, we can choose h
so that it is strictly increasing. Let us consider the decidable set B =
rng(h). This does not mean that

h(n) is an index of the
characteristic function of the
computable set In. It is an
index of the
semi-characteristic function

Clearly, (∀x ∈ B)[Wx is decidable]. We finish with the following
observation: ⋂

x

Wx =
⋂
n

Wh(n) =
⋂
n

In = Inf.

98

Chapter 5

Effective Reducibilities

We already saw that many natural questions, such as whether a given pro-
gram halts on every input, are undecidable and even not semidecidable. The
most general way to prove this is by reducing a known undecidable (or non-
semidecidable) question to the given question.

See the introduction of [1,

Chapter 6].

- Note that we may not have

h(A) = B. We have
h−1(B) = A.

We say that the set A is many-one reducible to the set B, and write
A ≤m B, if there is a total computable function h such that

(∀x)[x ∈ A ⇔ h(x) ∈ B].

- We write A ≡m B if A ≤m B and B ≤m A.

- We say that a set A is m-complete if

– A is semidecidable, and

– for any semidecidable set W , we have W ≤m A.

- Here as well h−1(B) = A.We say that the set A is one-one reducible to the set B, and write
A ≤1 B, if there is a total computable one-to-one (injective) function h
such that

(∀x)[x ∈ A ⇔ h(x) ∈ B].

- We write A ≡1 B if A ≤1 B and B ≤1 A.

- In this case, h(A) = B and

h−1(B) = A.

We write A ≡ B if there is a total computable function h, which is also a
permutation of N, and

(∀x)[x ∈ A ⇔ h(x) ∈ B].

99

Example 9. In the proof of 4.3 we showed that

K ≤m Empty.

Proposition 5.1. Let f be a total computable function. The following are
equivalent:

1) (∀x)[x ∈ A ⇔ f(x) ∈ B];

2) A = f−1(B);

3) f(A) ⊆ B and f(A) ⊆ B.

[2, p. 159]

Proposition 5.2. Prove the following:

a) A ≤m B ⇔ A ≤m B;

b) if A is decidable set and B ≤m A, then B is decidable;

c) if A is semidecidable and B ≤m A, then B is semidecidable;

d) if A is decidable and B ̸= ∅,N, then A ≤m B;

Proposition 5.3. Prove the following:

a) A ≤m N ⇔ A = N;

b) A ≤m ∅ ⇔ A = ∅;

c) N ≤m A ⇔ A ̸= ∅;

d) ∅ ≤m A ⇔ A ̸= N;

Problem 69. Prove the following:

- If A is a semidecidable set, then A ≤m A iff A is decidable and A ̸= ∅,N.

- If A is semidecidable, but not decidable, then A ̸≡m A.

- For

A \B = {a0, . . . , an}
B \A = {b0, . . . , bk},

h(x)
def
=


a0, if x ∈ B \A
b0, if x ∈ A \B
x, otherwise

If the sets A \B and B \ A are non-empty and finite, then A ≡m B.

- If A ≤m B via the function h and rng(h) = N, then B ≤m A.

- For any set A, A⊕ A ≡m A⊕ A.

- There exists a non-semidecidable set A such that A ≡m A. (Hint: consider
K ⊕K).

100

Problem 70. Suppose A and B are semidecidable sets such that A∪B = N
and A ∩B ̸= ∅. Show that A ≤m A ∩B.

Hint. Let A =
⋃
sAs and B =

⋃
sBs. Fix a0 ∈ A ∩ B. Given x, the

function h simultaneously checks if x ∈ As or Bs, for s = 0, 1, 2, . . . If
x ∈ As, h(x) = a0. Otherwise, if x ∈ Bs, h(x) = x. We know that we will
have one these two cases.

Theorem 5.1. The set K is m-complete. Moreover, K is 1-complete.

Hint. Clearly, K is a semidecidable set. Consider another semidecidable
set A. We will show that A ≤m K. Let

f(x, y) ≃

{
42, if x ∈ A
↑, if x ̸∈ A.

We can take h to be
one-to-one.

By the Parameters Theorem, let h be total computable such that for every
x and y,

φ
(1)
h(x)(y) ≃ f(x, y).

Show that A ≤m K via the function h.
We can apply the same proof to obtain the following corollary.

Corollary 5.1. The set Empty is 1-complete.

Corollary 5.2. If A is m-complete, B is semidecidable and A ≤m B, then
B is m-complete.

Corollary 5.3. For a set A, the following are equivalent:

(1) A is m-complete;

(2) A ≡m K;

(3) A is semidecidable and K ≤m A.

101

5.1 The structure of many-one degrees

- ≡m is an equivalence relation;

- degm(A)
def
= {B | A ≡m B};

- o
def
= degm(∅);

- n
def
= degm(N);

- 0m
def
= {A | A is decidable and A ̸= ∅,N};

- 0′
m

def
= degm(K);

Proposition 5.4. Each pair of m-degrees has a least upper bound.

Hint. Let a = degm(A) and b = degm(B). Let

C = A⊕B = {2x | x ∈ A} ∪ {2x+ 1 | x ∈ B}.

Show that c = degm(C) is the least upper bound, i.e.

- a,b ≤m c;

- if a, b ≤m d, then c ≤m d.

- If we ignore o and n, there is a minimal semidecidable degree, i.e. 0m;

- There is a maximal semidecidable degree, i.e. 0′
m;

- The semidecidable m-degrees form an initial segment of the m-degrees.

Post’s problem for m-degrees: Are there semidecidable sets which
are neither decidable nor m-complete?

We will see that the simple

sets are such.

102

5.2 The Myhill Isomorphism Theorem

Theorem 5.2 (Myhill Isomorphism Theorem 1955). For any two sets of
natural numbers A and B,

A ≡ B ⇔ A ≡1 B.

[5, p. 325].Proof. The direction (⇒) is immediate. For (⇐), let A ≤1 B by f and
B ≤1 A by g. We will build a computable permutation h such that h(A) = B.
At each step of the construction, we will build a finite injective hs such that

h =
⋃
s

hs & (∀s)[hs ⊆ hs+1].

Let h0 = ∅. Suppose we have built hs. We will show how we build hs+1.

- Let s+ 1 = 2x+ 1.

– If hs(x) ↓, then we do nothing.

– If hs(x) ↑, then we build a chain:

x
f→ y0

h−1
s→ x1

f→ y1
h−1
s→ x2

f→ · · · h
−1
s→ xn

f→ yn,

until we reach a number yn ̸∈ rng(hs). Notice that all xi ∈ dom(hs).

– Is it possible to build an infinite chain in this way? Since hs is finite,
this would mean that we have a cycle. If we assume that yi = yj ,

for i < j, then
f(xi) = yi = f(xj) and hence
xi = xj , because f is
injective.

Suppose we have a cycle. This
means that there exist pairs (xi, xj) such that xi = xj and i < j. Note
that xi ̸= x, because x ̸∈ dom(hs), but xi ∈ dom(hs). Among all such
pairs (xi, xj), consider the pair with the least index i. Let x0 = x. Then

h−1
s (f(xi−1)) = xi = xj = h−1

s (f(xj−1)).

Since h−1
s and f are injective, their composition is also injective, and

hence xi−1 = xj−1. A contradiction with the choice of the pair (xi, xj).

– So, the chain is finite and we have a number yn ̸∈ rng(hs). Define
hs+1 such that graph(hs+1) = graph(hs) ∪ {⟨x, yn⟩}. Moreover, for this

103

number x, we have the following chain of equivalences:

x ∈ A ⇔ f(x) = y ∈ B // since A ≤1 B

⇔ h−1
s (y) = x1 ∈ A // we follow the chain

⇔ f(x1) = y1 ∈ B
...

⇔ f(xn) = yn ∈ B
⇔ hs+1(x) = yn ∈ B // by def. of hs+1.

We conclude that hs+1 is injective and

(∀x ∈ dom(hs+1))[x ∈ A ⇔ hs+1(x) ∈ B].

- This case is symmetrical.Let s+ 1 = 2y + 2.

– If h−1
s (y) ↓, then we do nothing.

– If h−1
s (y) ↑, then we build a chain:

y
g→ x

hs→ y1
g→ x1

hs→ y2 · · ·
g→ xn,

until we reach a number xn ̸∈ dom(hs). Notice that all xi ∈ rng(hs).

– We define graph(hs+1) = graph(hs) ∪ {⟨xn, y⟩}.

Why is the produced

function h computable ?

Problem 71. Let K0 = {⟨e, x⟩ | φe(x) ↓}. Show that K0 ≡ K.

Proof. First, we will show that K0 ≤1 K. Consider the computable
function

f(u, x)
def≃

{
5, if Φ1(λ(u), ρ(u)) ↓
↑, otherwise.

By the Parameters Theorem, there exists an one-to-one total computable
function h such that φh(u)(x) ≃ f(u, x).

⟨e, x⟩ ∈ K0 =⇒ φe(x) ↓ =⇒ φh(⟨e,x⟩) is total =⇒ h(⟨e, x⟩) ∈ K
⟨e, x⟩ ̸∈ K0 =⇒ φe(x) ↑ =⇒ φh(⟨e,x⟩) = ∅(1) =⇒ h(⟨e, x⟩) ̸∈ K.

We conclude that K0 ≤1 K.
Second, consider the one-to-one function h(x) = ⟨x, x⟩. Clearly, x ∈

K ⇔ h(x) ∈ K0. Hence, K ≤1 K0.

104

5.3 Productive and creative sets

Consider a set A that is not c.e. This means that for every index e such
that We ⊂ A, there is a witness x of the fact that A is not equal to We, i.e.
x ∈ A \We. There is an interesting class of non-c.e. sets for which we can
find such witnesses in an effective way. As a simple example, consider the
set K. For every Wx ⊂ K, x ∈ K \Wx, i.e. the identity function f(x) = x
gives us the witness to the fact that K is not Wx.

- As already noted, K is

productive with productive
function f(x) = x.

A set A is called productive if

(∃e)(∀x)[Wx ⊂ A =⇒ φe(x) ↓ & φe(x) ∈ A \Wx].

The computable function φe with the above property will be called a pro-
ductive function for the set A. Cutland [2] considers only

total productive functions.

Clearly, if a set A is productive, then it
is not c.e.

- A set C is creative if C is semidecidable and its complement C is a pro-
ductive set.

Informally, a creative set C is “effectively non-decidable”. Since C is
semidecidable, to be computable means C to be semidecidable. Then for
every possible candidate Wx ⊆ C, we have an algorithm (the productive
function π) for finding a witness to the fact that C is not semidecidable, i.e.
π(x) ∈ C \Wx. Our goal here is to show that there are semidecidable sets
which are not creative.

Proposition 5.5. If P is productive and P ≤m B, then B is productive.

[2, p. 134]Proof. Let f be total computable such that x ∈ P ⇔ f(x) ∈ B,
i.e. f−1(B) = P , and let π be a productive function for P . By Problem 40,
there exists a primitive recursive g such that f−1(Wx) = Wg(x), for every x.
Consider Wx ⊂ B.

Wg(x) = f−1(Wx) ⊂ f−1(B) = P.

Since Wg(x) ⊂ P and π is a productive function for P , we have

π(g(x)) ∈ P \Wg(x) → π(g(x)) ∈ f−1(B)\f−1(Wx) → f(π(g(x))) ∈ B\Wx.

We conclude that f ◦ π ◦ g is a productive function for B.

105

Theorem 5.3 (Post 1944). Every productive set contains an infinite
semidecidable set.

Proof. [8, p. 90], [5, p. 258], [2, p.

137].

Let P be a productive set and π be a productive function for P .
Clearly, P ̸= ∅. Fix an index z0 such that Wz0 = ∅. Then π(z0) ∈ P \ ∅ = P .

Our goal is to build a total computable one-to-one function g such that
rng(g) ⊂ P . Here is an idea how to do that:∣∣∣∣ g(0) = π(z0)

g(n+ 1) = π(zn+1), where Wzn+1 = {g(0), . . . , g(n)} ⊂ P.

We have to show that we can define g following a primitive recursive scheme.
✍ give a full proof!More formally, we show that:

- there exists a primitive recursive f such that Wf(x,y) = Wx ∪Wy;

- there exists a primitive recursive h such that Wh(x) = {x};

- there exists a computable function κ such that κ(n) = zn. We define the
function κ following the scheme:∣∣∣∣ κ(0) = z0

κ(n+ 1) = f(κ(n), h(π(κ(n)))).

In the end, we let g = π ◦ κ.

Corollary 5.4. The set K contains an infinite semidecidable set.

Lemma 5.1. If P is productive, then P has a total productive function.

Proof. Let π be a productive function for the set P . Consider the com-
putable function with the following definition:

f(x, y)
def≃

{
φx(y), if π(x) ↓
↑, otherwise.

106

By the Parameters Theorem, there is a primitive recursive g such that

Wg(x) =

{
Wx, if π(x) ↓
∅, otherwise.

Then, for any number x, at least one of the computations π(x) or π(g(x))
converges. Let π̂(x) be the return value of that computation which converges
first.

The function π̂ is productive for P because if Wx ⊆ P , then π(x) ↓ and
henceWg(x) = Wx. It follows that both π(x) ∈ P \Wx and π(g(x)) ∈ P \Wx.
Then π̂(x) ∈ P \Wx.

Lemma 5.2. Every productive set P has a total one-to-one productive
function.

Proof. Let π be a total productive function for P . Define the primitive
recursive function h such that Wh(x) = Wx ∪ {π(x)}. Clearly, we have

Wx ⊂ P → Wx ⊂ Wh(x) ⊂ P → Wh(x) ⊂ Wh(h(x)) ⊂ P → · · ·

We define the one-to-one computable function π̂. Let π̂(0)
def
= π(0). To define

π̂(x+ 1), we start computing the sequence: Recall h0 = id,

hn+1 = h ◦ hn

π(h0(x+ 1)), π(h1(x+ 1)), π(h2(x+ 1)), . . . (5.1)

We can do that since π and h are total. We do this until: ✍ give details!

a) we find a number i0 such that π(hi0(x+ 1)) ̸∈ {π̂(0), π̂(1), . . . , π̂(x)}. In
this case, we set

π̂(x+ 1)
def
= π(hi0(x+ 1)).

b) we find a repetition in the sequence (5.1). In this case, Wx+1 ̸⊂ P and
hence it does not matter what the value of π̂(x+ 1) is. We let

π̂(x+ 1) = min{y ∈ N | y ̸∈ {π̂(0), π̂(1), . . . , π̂(x)}}.

107

Proposition 5.6. If P is productive, then K ≤m P . Even more, we can
make sure that K ≤1 P .

Proof. Let π be a total productive function for P . We already know how
to build a primitive recursive function f(x, y) such that ✍ Show how we find f !

Wf(x,y) =

{
{π(x)}, if y ∈ K
∅, if y ̸∈ K.

By the Fixed point theorem with parameters, there exists a total computable
function η such that

Wη(y) = Wf(η(y),y) =

{
{π(η(y))}, if y ∈ K
∅, if y ̸∈ K.

Since we have the following chains of implications,

y ∈ K → Wη(y) = {π(η(y))} → Wη(y) ̸⊂ P → π(η(y)) ̸∈ P,
y ̸∈ K → Wη(y) = ∅ → Wη(y) ⊂ P → π(η(y)) ∈ P,

we conclude that K ≤m P by the total computable function π ◦ η.
Since we can choose a one-to-one total productive function for P and we

can take a one-to-one Smn function, we can show that K ≤1 P .

Corollary 5.5. If C is creative, then K ≤1 C.

We generalise everything we did until now in the following statement.

Theorem 5.4 (Myhill). The following are equivalent:

(1) C is creative;

(2) C is m-complete;

(3) C is 1-complete;

(4) C ≡ K.

108

Proof.

(1)→ (2) Let C be semidecidable and C̄ be productive. By Proposition 5.6,
K ≤m C. Then K ≤m C and hence C is m-complete, since K is m-complete.
The same argument can be applied to prove (1)→ (3).

(2)→ (1) Let C be m-complete. Thus, K ≤m C and K ≤m C. Since K is
productive, by Proposition 5.5, it follows that C is productive and hence C
is creative. The same argument can be applied to prove (3)→ (1).

(3)↔ (4) Since K is 1-complete, then C ≤1 K. The last corollary gives us
K ≤1 C. Then we apply Theorem 5.2.

109

5.4 Immune and simple sets

Here we will see that there exist m-degrees strictily between 0m and 0′
m.

- We know that there is a set A ∈ 0′
m such that A contains an infinite

semidecidable set.

- Clearly, there is a set A ∈ 0m such that A contains an infinite semidecidable
set.

- It is natural to consider semidecidable sets whose complements does not
contain infinite semidecidable sets.

- An infinite set I is called immune if it does not contain an infinite semide-
cidable set.

- A set S is called simple if

– S is semidecidable;

– S is infinite and immune.

Theorem 5.5 (Post 1944). Simple sets exist.

Proof. Here we follow [8, p. 106].

See also [5, p. 259]

Consider the semidecidable set

C
def
= {⟨x, y⟩ | y ∈ Wx & y > 2x}.

By Problem 49, let h be a total one-to-one computable function such that

C = rng(h).

Define the partial order ≤h, where

⟨x, y⟩ ≤h ⟨x′, y′⟩ ⇔ (∃m)(∃n)[h(n) = ⟨x, y⟩ & h(m) = ⟨x′, y′⟩ & n ≤ m].

Consider the semidecidable set

C ′ def
= {⟨x, y⟩ ∈ C | (∀z)[⟨x, z⟩ ∈ C → ⟨x, y⟩ ≤h ⟨x, z⟩]}.

It is easy to see that there is a computable function ψ such that graph(ψ) =
C ′. Let S = rng(ψ). We claim that S is a simple set.

110

- It is clear that S is a semidecidable set;

- We will show that N \ S is infinite. For every number x, there is at most
one number y such that ⟨x, y⟩ ∈ C ′, and if such y exists, then y > 2x. In
other words,

rng(ψ) ∩ {0, 1, . . . , 2x} ⊆ rng(ψ ↾ {z | z < x}).

Thus,
|{S ∩ {0, . . . , 2x}| ≤ |rng(ψ ↾ {z | z < x})| ≤ x.

It follows that S is infinite.

- Let W = Wb be an infinite semidecidable set. There are infinitely many
numbers y such that ⟨b, y⟩ ∈ C, i.e. y ∈ Wb and y > 2b. Let y0 be the least
such y relative to ≤h. Then, by construction, y0 ∈ S ∩Wb. We conclude
that Wb ̸⊆ S.

Corollary 5.6. There exists a semidecidable set which is not creative.

Proof. Let S be a simple set. Assume S is creative. Then S will be
productive. But by Theorem 5.3 there is an infinite semidecidable setW ⊆ S.
We reach a contradiction.

Random numbers

- Let K(x)
def
= µe[φe(0) ≃ x]. Here we follow [5, p. 261]

- K(x) is called the Kolmogorov complexity of x.

- A number x is random if x ≤ K(x), i.e. the number x cannot be com-
pressed. Clearly, the number 0 is random, according to this definition.

Proposition 5.7. There are infinitely many random numbers.

111

Hint. Let k0
def
= K(0). Consider the finite set

A0
def
= {y | (∃e ≤ k0)[φe(0) ≃ y]}.

Clearly, max(A0) ≤ k0 and every number not in A0 will have complexity at
least k0+1. Let x0 be the least number not in A0. Then x0 ≤ k0+1 ≤ K(x0).
We obtain a new random number x0 > 0.

Now consider the set

A1
def
= {y | (∃e ≤ k1)[φe(0) ≃ y]}.

Again, max(A1) ≤ k1 and every number not in A1 will have complexity
greater that k1. Let x1 be the least number not in A1. Then x1 ≤ k1 + 1 ≤
K(x1). We obtain a new random number x1 > x0 > 0.

Following this procedure, we can obtain an infinite sequence of random
numbers.

Proposition 5.8 (Kolmogorov). There is no infinite semidecidable set
of random numbers.

Hint. Suppose W is an infinite semidecidable set. We know that there
exists a total computable f such thatW = rng(f). Consider the computable
function

g(e, z)
def
= f(µn[f(n) > e]).

In other words, we obtain the first enumerated by f element of W which is
greater that e. Consider the total computable h such that φh(e)(z) ≃ g(e, z).
There is an index e such that φe = φh(e). Then φe(0) ≃ x > e, for some
element x ∈ W . It follows that K(x) ≤ e < x and hence x is a nonrandom
number belonging to W .

Theorem 5.6. The set of nonrandom numbers is simple.

Hint. Consider the set S
def
= {x | K(x) < x}, the set of nonrandom

numbers.

- Clearly, S is a semidecidable set.

112

- S is the set of random numbers and it is infinite by Proposition 5.7.

- Any B ⊆ S is a set of random numbers. We know that there is no semide-
cidable set of random numbers by Proposition 5.8.

113

5.5 Problems

Problem 72. Let A = {a | Wa = {a}}. Show the following:

a) K ≤m A;

b) K ≤m A.

Conclude that K ⊕K ≤m A.

Proof.

a) Consider the computable function

f(x, y, z)
def≃

{
5, if y ∈ K & z = S1

1(x, y)

↑, otherwise.

By the Recursion Theorem, there exists an index e such that φe(y, z) ≃
f(e, y, z). Consider the total computable function h(y)

def
= S1

1(e, y) such
that

φh(y)(z) ≃ φe(y, z).

By following the chains of implications:

y ∈ K =⇒ dom(φh(y)) = {h(y)} =⇒ h(y) ∈ A
y ̸∈ K =⇒ dom(φh(y)) = ∅ =⇒ h(y) ̸∈ A,

we conclude that K ≤m A.

b) Consider the computable function

f(x, y, z)
def≃

{
5, if x ∈ K ∨ z = S1

1(x, y)

↑, otherwise.

Problem 73. Suppose that f is a total injective computable function such
that rng(f) is not decidable. Show that the set

A = {x | (∃y)[y > x & f(y) < f(x)]}

is simple.

114

Problem 74. Actually, here we can replace

≡m by ≡1.

Let K0
def
= {⟨e, x⟩ | φe(x) ↓}. Show that

K ≡m K0 ≡m Empty.

Problem 75. Here also we can replace ≡m

by ≡1.

Show that

Inf ≡m Tot ≡m Const.

Problem 76. Show the following:

a) K ≤m Tot;

b) K ≤m Tot;

c) Tot ̸≤m K;

d) Tot ̸≤m K;

e) Tot is productive.

Hint.

a) We repeat an old argument

here.

As usual, for the semidecidable set K, let κ be a primitive recursive
function such that

K = {x | (∃s)[κ(x, s) = True]}.

Consider the computable function

f(x, y)
def≃

{
42, if (∀s < y)[κ(x, s) = False]

↑, if (∃s < y)[κ(x, s) = True].

There is a primitive recursive g such that φg(x)(y) ≃ f(x, y). Then

x ∈ K =⇒ (∃s)[κ(x, s) = True] =⇒ φg(x) is finite =⇒ g(x) ̸∈ Tot;

x ̸∈ K =⇒ (∀s)[κ(x, s) = False] =⇒ φg(x) is total =⇒ g(x) ∈ Tot.

We conclude that K ≤m Tot.

b) Consider the computable function

f(x, y)
def≃

{
42, if x ∈ K
↑, otherwise.

115

There is a primitive recursive g such that φg(x)(y) ≃ f(x, y). Then

x ∈ K =⇒ φg(x) is total =⇒ g(x) ∈ Tot;

x ̸∈ K =⇒ φg(x) = ∅(1) =⇒ g(x) ̸∈ Tot.

We conclude that K ≤m Tot.

c) Assume Tot ≤m K. Then Tot ≤m K. It follows that Tot is semidecid-
able, but by the Rice-Shapiro Theorem, Tot is not semidecidable. We
conclude that Tot ̸≤m K.

d) Again, if we assume that Tot ≤m K, then Tot is semidecidable. By
the Rice-Shapiro Theorem, Tot is not semidecidable. We conclude that
Tot ̸≤m K.

e) We know that K is productive. Since Tot ≤m K, by Proposition 5.5, Tot
is also productive.

Problem 77. Let Indx
def
= {y | φx = φy}.

a) Show that K ≤m Indx for each index x. Hence, Indx is productive
for each index x.

b) Show that the reduction K ≤m Indx is not uniform in x. This means
that there is no total computable function f(x, y) such that

(∀y)[y ∈ K ⇔ f(x, y) ∈ Indx].

[10, p. 43]Hint. As usual, for the semidecidable set K, let κ be a primitive recursive
function such that

K = {x | (∃s)[κ(x, s) = True]}.

a) We have two cases to consider.

- Suppose dom(φx) is infinite. Consider the function

f(y, s)
def≃

{
φx(s), if (∀t ≤ s)[κ(y, t) = False]

↑, if (∃t ≤ s)[κ(y, t) = True].

116

Consider the total computable h such that φh(y)(s) ≃ f(y, s).

y ∈ K =⇒ φh(y) = φx =⇒ h(y) ∈ Indx

y ̸∈ K =⇒ φh(y) is finite =⇒ h(y) ̸∈ Indx.

We conclude that K ≤m Indx.

- Suppose dom(φx) is finite. Consider the function

f(y, s)
def≃

{
φx(s), if (∀t ≤ s)[κ(y, t) = False]

42, if (∃t ≤ s)[κ(y, t) = True].

Consider the total computable h such that φh(y)(s) ≃ f(y, s).

y ∈ K =⇒ φh(y) = φx =⇒ h(y) ∈ Indx

y ̸∈ K =⇒ φh(y) is infinite =⇒ h(y) ̸∈ Indx.

We conclude that K ≤m Indx.

b) Assume that f is computable and

(∀y)[y ∈ K ⇔ f(x, y) ∈ Indx].

Fix some element y0 ∈ K. Then the function h(x)
def
= f(x, y0) is such that

for all x, h(x) ̸∈ Indx, i.e. φx ̸= φh(x). But by the Fixed Point Theorem,
there is an index e such that φe = φh(e). It follows that h(e) ∈ Inde. A
contradiction.

Problem 78. Show that the following sets are m-equivalent to K, where:

a) {x | Wx = ∅};

b) {x | φx(5) ↑};

c) {x | x ̸∈ rng(φx)};

d) {x | φx(2x) ↓ =⇒ φx(2x) is a prime number}.
Problem 79. Show that K and K are m-reducible to the following sets:

a) {x | Wx = {x}};

b) {x | n ̸∈ Wx}, for a fixed number n;

c) {x | n ̸∈ Ex}, for a fixed number n.

d) Fin;

e) Inf;

117

Bibliography

[1] S. Barry Cooper. Computability Theory. Chapman and Hall/CRC, 2003.

[2] Nigel Cutland. Computability. An Introduction to Recursive Function
Theory. Cambridge University Press, 1980.

[3] Angel Ditchev and Ivan Soskov. Theory of Programs (in Bulgarian).
Sofia University, 1996.

[4] Stela Nikolova and Alexandra Soskova. Theory of Programs in Problems
(in Bulgarian). third. Softex, 2003.

[5] P. G. Odifreddi. Classical Recursion Theory. Vol. 125. Studies in logic
and the foundations of mathematics. Elsevier, 1989.

[6] P. G. Odifreddi. Classical Recursion Theory. Vol. 143. Studies in logic
and the foundations of mathematics. Elsevier, 1999.

[7] Rózsa Petér. Recursive Functions. third. Academic Press, 1967.

[8] Hartley Rogers Jr. Theory of Recursive Functions and Effective Com-
putability. The MIT Press, 1987.

[9] John C. Shepherdson and Howard E. Sturgis. “Computability of Re-
cursive Functions”. In: Journal of ACM 10.2 (1963), pp. 217 –255.

[10] Robert Soare. Recursively Enumerable Sets and Degrees. Perspectives
of Mathematical Logic, Omega Series. Springer-Verlag, 1987.

118

Index

Tn, 49
Φn, 49
Empty, 82, 87
Tot, 87

Ackermann, 26, 58

bounded mininisation, 11
bounded product, 5, 8
bounded summation, 6, 8
busy beaver, 42

characteristic function, 9
coding triple, 18
computable set, 74
computably enumerable set, 78

decidable set, 74

factorial, 25
Fibonacci, 22, 24
finite set, 15
Fixed Point Theorem, 61

halting set, 75
history, 22

index set, 82
iteration, 5, 30

Kleene, 45, 49, 57, 61, 75
Kolmogorov, 112

modified minus, 7
Myhill, 103, 108

normal form theorem, 49

pair, 18
partial recursive, 45
Post, 79, 106, 110
predicate, 9
prime number, 12
primitive recursion, 40
primitive recursive function, 4
primitive recursive scheme, 3

quotient, 12

random number, 111
recursion

course-by-values, 23
course-of-values, 22
primitive, 4
simultaneous, 21
tail, 24

remainder, 12
Rice, 84, 88, 89

Second Recursion Theorem, 61
semidecidable set, 78
set

creative, 105
immune, 110
productive, 105

Shapiro, 88
Shepherdson, 32
Smullyan, 60, 66
Sturgis, 32
superposition, 3, 38

theorem
Rice-Shapiro, 88

119

universal function, 49

URM, 32
concatenation, 35
cycles, 36
instruction, 32
minimisation, 41
program, 32
rank, 32
registers, 32
standard form, 32
state, 33
superposition, 38

URM-computable function, 34

120

	Primitive recursive functions
	Definition and examples
	Predicates
	Bounded minimisation
	Coding of finite objects
	Coding of finite sets
	Coding of finite sequences

	Additional schemes
	Simultaneous recursion
	Course-of-values recursion
	Tail recursion

	A function, which is not primitive recursive

	Unlimited Register Machines
	Description of the machine
	Concatenation of programs
	Cycles in programs
	Superposition
	Primitive Recursion
	Minimisation
	A function which is not URM-computable

	Partial recursive functions
	Enumeration of URM programs
	The universal function
	The Parameters Theorem
	Applications
	The fixed point theorem
	Problems

	Decidable and semidecidable sets
	Decidable sets
	Semidecidable sets
	Decidable index sets
	Semidecidable index sets
	Problems
	Theorem of McNaughton-Myhill-Rice-Shapiro

	Problems

	Effective Reducibilities
	The structure of many-one degrees
	The Myhill Isomorphism Theorem
	Productive and creative sets
	Immune and simple sets
	Problems

