Научни интереси
- Диференциална Геометрия
- Компютърни програми за символно смятане
Преподавателска дейност
Зимен семестър учебна 2006-2007 година
- Лекции: Линеина Алгебра и Аналитична геометрия, I курс, Спец. Химия
- Семинари: Аналитична Геометрия, I курс, Спец. Математика и информатика 2,3 група
Списък с публикации
- V. Videv, J. Tzankov, “Stanilov manifolds and theircharcterization in dimension four”, Mathematematics and education inmathematics, (2001), pp159-161.
- G. Stanilov, D. Yordanova, R. Hoefer, J. Tzankov, “Is theMorley’s theorem true in the hyperbolic geometry?”, Mathematematics andeducation in mathematics, (2001), 181-185.
- Y. Tsankov, V. Videv. “Holomorphic and AntiholomrphicOsserman Manifolds”, 5th International Conference on Geometry andApplications, Augost 24-29, 2001, Varna, Bulgaria.
- V. Videv, J. Tzankov. “A Riemannian pointwise stanilovmanifolds of type (m, k) ”, 4th International Conference on Geometryand Applications, Augost 27- September 1, 1999, Varna, Bulgaria.
- J. Tzankov, V. Videv, “Characterization of afour-dimensional globally Oserman manifolds using trace and Determinantof Jacobi operator”, Plovdiv University “Paissii Hilendarski”,Bulgaria, Scientific works, vol. 33, (2001), pp153-161.
- Y. Tsankov, “Cubic Section by moving plane”. The FifthInternational Conference on Technology in Mathematics Teaching,Klagenfurt, 2001.
- Y. Tsankov, M. Stoeva, “Four-dimensional point-wisehypersurface of constant type”, Mathematematics and education inmathematics, (2002), pp118-122.
- V. Videv, Y. Tsankov, M. Stoeva, “Characterization of afour-dimensional Einstein-Riemannian manifolds by degenerated Jacobioperator and basises of Singer-Thorpe”, Mathematematics and educationin mathematics, (2002), pp123-128.
- G.Stanilov, P. Boychev, J.Cankov, “Mittels Computer zurmathematischen Entdeckungen”, Beitraege zum Mathematikunterricht 2001,Vortraege auf der 35 Tagung fuer Didaktik der Mathematik vom 05.03. bis09.03.2001 in Ludwigsburg.
- Y. Tsankov. ”An example of rotational hypersurface in R^{n+1}with induced IP metric from R^{n+1}.” Annuaire de l'universite de sofia"St. Kliment Ohridski" Faculte de Mathematiques et Informatique.(2003).