# Russi Georgiev Yordanov

Assistant professor

PhD

Email:

yordanov@fmi.uni-sofia.bg

Phone:

+359 2 8161-546

Room:

FzF-25

Assistant professor

PhD

Email:

yordanov@fmi.uni-sofia.bg

Phone:

+359 2 8161-546

Room:

FzF-25

- R. Yordanov. About some spectral properties of the Schr\"odinger equation with energy-dependent potentials generating fully integrable Hamiltonian systems (in Russian), Ann. Univ. Sofia "Kliment Ohridski", Fac. Math. Mec., Livre 2 (Mec.) 78 (1984) 229-252.
- T. Boiadjiev, R. Yordanov. Microcomputer visualization of the solution of the two-bodies problem and the chase problem in classical mechanics (in Bulgarian), Ann. Univ. Sofia "Kliment Ohridski", Fac. Math. Mec., Livre 2 (Mec.) 78 (1984) 253-266.
- J. Mishev, R. Yordanov. Microcomputer program for visualization of the motion of a rigid body with a fixed point (in Bulgarian), Ann. Univ. Sofia "Kliment Ohridski", Fac. Math. Mec., Livre 2 (Mec.) 79 (1985) 209-224.
- S. P. Radev, R. G. Yordanov. Nonlinear instability of a capillary jet surrounded by a coaxial immiscible layer (P5-86-748) (in Russian), preprint JINR, Dubna 1986.
- R. G. Yordanov. Asymptotics for \lambda\to\infty of the Jost solutions of Schr\"odinger equation with a polynomial dependence of the potential on the spectral parameter \lambda (in Russian), Conference on Differential Equations and Applications, Varna (1986) 186-189.
- R. G. Yordanov. On the spectral theory of \Lambda-operators generated by Schr\"odinger equations with energy-dependent potentials, DAN Bolg. 40, (11), 1987.
- R. G. Yordanov. Quasi-Lagrangian character of some soliton equations, DAN Bolg. 41, (3), 1988.
- R. G. Yordanov. About the inverse scattering problem for a quadratic bundle of Schr\"odinger operators, DAN Bolg. 42, (4), 1989.
- E. Kh. Khristov, R. G. Yordanov. On the linearized nonlinear evolution equations associated with Zakharov-Shabat system, DAN Bolg. 43, (12), 1990.
- E. Kh. Khristov, R. G. Yordanov. On Cauchy problem for the linearized version of the generalized nonlinear Schr\"odinger equation, Ann. Univ. Sofia "Kliment Ohridski", Fac. Math. Mec., Livre 2 (Mec.) 80 (1986) 191-204.
- R. G. Yordanov. Cauchy problem for the linearized version of the generalized polynomial KdV equation, J. Math. Phys. 33 (6) 1992.
- R. G. Yordanov. Why do soliton equations come in hierarchies? J. Math. Phys. 34 (9) 1993.
- J. R. Heflin, D. Marciu, S. Wang, C. Figura, R. Yordanov. Wavelength Dependence of Optical Limiting in C_60, C_60 Charge-Transfer Complexes, and Phthalocyanines, Conference on Lasers and Electro-Optics, Baltimore (1995).
- J. R. Heflin, S. Wang, D. Marciu, C. Figura, R. Yordanov. Optical limiting in C_60, C_60 Charge-Transfer Complexes, and Higher Fullerenes from 532 to 750 nm, SPIE Proceedings "Fullerenes and Photonics", v. 2530 (1995) 176-187.
- J. R. Heflin, S. Wang, D. Marciu, R. Yordanov, C. Figura. Dispersion of optical limiting in C_60, C_60 Charge-Transfer Complexes, and Higher Fullerenes, Proceedings of the International Symposium on the Science and Technology of Atomically Engineered Materials, (1995) OR-65.
- J. R. Heflin, C. Figura, D. Marciu, S. Wang, R. Yordanov. Near-Infrared Optical Limiting of C_60 Derivatives and Higher Fullerenes, Conference on Lasers and Electro-Optics, (1996).
- J. R. Heflin, D. Marciu, S. Wang, C. Figura, R. Yordanov. Long-Wavelength Optical Limiting of C_60, C_60 Charge-Transfer Complexes, C_60 Derivatives, and Higher Fullerenes, Proceedings of the International Symposium on the Science and Technology of Atomically Engineered Materials, (1996) 501.
- J. R. Heflin, D. Marciu, C. Figura, S. Wang, R. Yordanov. Optical Limiting Over an Extended Spectral Region by Derivatization of C_60, SPIE, v. 3146 (1997) 142.
- R. G. Yordanov. Dubrovin-Type Equations for Completely Integrable Systems Associated with a Polynomial Pencil, Serdika Math. J. 24 (1998) 225-256.

*Note: Parts of refs. 1, 10 and 12 above have also been included in a book written by my ex-advisor E. Khristov et al, "Spectral Methods in Soliton Equations", Pitman Monographs and Surveys in Pure and Applied Mathematics, # 73 (see Secs. 3.10, 3.11 and 3.A there).*