Parvan Evtimov Parvanov

Parvan Evtimov Parvanov

Associate professor
PhD
Email: 
pparvan@fmi.uni-sofia.bg
Phone: 
+359 2 8161 557
Room: 
FMI-515

Publications

  1. P. E. Parvanov and B. D. Popov, The Limit Case Of Bernstein's Operator With Jackobi-weights.  Mathematica Balcanica(new series), Vol. 8, (1994), Fasc.2-3, 165-177
  2. P. E. Parvanov, Characterization of Best Multivariate Algebraic Approximation From Below And From Above In Terms Of K-functionals. Mathematica Balcanica(new series), Vol.11, (1997), Fasc.1-2, 37-50
  3. P. E. Parvanov, Characterization Of Best Algebraic Approximation From Below And From Above In The Multivariate Case. East Journal Of Approximation, Vol.5, Number 2 (1999),125-149
  4. P. E. Parvanov, An Estimation Of Best Monotone Spline Approximation With Averaged Moduli Of Smoothness. Mathematica Balcanica(new series), Vol.13, (1999), Fasc.3-4, 421-424
  5. I. A. Parvanova and P. E. Parvanov, Exact Constants In Estimation Of The Error Of The Quadrature Formulae Of Simpson With Averaged Moduli Of Smoothness. Mathematica Balcanica(new series), Vol.15, (2001), Fasc.3-4, 303-316.
  6. Kamen G. Ivanov and Parvan E. Parvanov, Weighted Approximation By The Goodman-Sharma Operators. East Journal Of Approximation, Vol.15, Number 4 (2009),473-486
  7. Parvan E. Parvanov, Weighted Approximation By A Class Of Bernstein-type Operators Mathematica Balcanica(new series), Vol.25, (2011), Fasc.1-2, 31-38
  8. Borislav R. Draganov and Parvan E. Parvanov, On Estimating The Rate Of Best Trigonometric Approximation By Modulus Of Smoothnes.  Acta Mathematica Hungarica (2011) Vol.131, Number 4, 360-379 
  9. Kamen G. Ivanov and Parvan E. Parvanov, Weighted Approximation By Baskakov-type Operators. Acta Mathematica Hungarica (2011) Vol.133, Numbers 1-2, 33-57
  10. Kamen G. Ivanov and Parvan E. Parvanov, Weighted Approximation By Meyer-König And Zeller-Type Operators. Proceedings Volume ofCTF-2010, Sozopol, Bulgaria ( dedicated to the memory of Borislav Bojanov).
  11. Gadjev, I. and  Parvanov, P. E., Weighted Approximation of Functions in