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1. INTRODUCTION

This paper contains an extended version of the invited talk given by the au-
thors at the Mathematical Conference dedicated to Professor Ivan Prodanov on
the occasion of the 60th anniversary of his birth and the 10th anniversary of his
death. The conference took place on May 16, 1995 at the Faculty of Mathematics
and Informatics of the Sofia University “St. Kliment Ohridski”. It was planned
the talks of the participants in this conference to be published in a special volume
of the Annuaire de l’Universite de Sofia “St. Kliment Ohridski, Faculte de Mathe-
matiques et Informatique, Livre 1 - Mathematiques, but this has never happened.
That is why we have decided to publish our work separately. Since our files were
lost and we had to write them once more, the paper appears only now.

In the academic year 1979/80 Professor Ivan Prodanov organized a seminar
on spectra at the Faculty of Mathematics of Sofia University. The participants in
this seminar, besides Iv. Prodanov, were G. Dimov, G. Gargov, Sv. Savchev, L.
Stoyanov, V. Tchoukanov, T. Tinchev, D. Vakarelov. The talks of Iv. Prodanov on
this seminar were on his own investigations in the theory of abstract spectra and the
uniqueness of Pontryagin–van Kampen duality. In the reviewing talks of the other
participants, Stone Duality Theorems for Boolean algebras and for distributive
lattices ([41], [42]), H. A. Priestley’s papers [27]-[30], M. Hochster papers [18] and
[19], the topological proof of Goedel Completeness Theorem given by Rasiowa and
Sikorski in [37] and many other interesting topics were discussed.

Iv. Prodanov raised a number of interesting open problems at his seminar
on spectra. Two of them were solved by some of the participants of the seminar
and these solutions caused, on their part, the appearance of other new papers.
One of these problems was whether the category LR of locally compact topological
R-modules, where R is a locally compact commutative ring, admits precisely one
(up to natural equivalence) functorial duality. (Using the classical Pontryagin-
van Kampen duality, one easily obtains a functorial duality in LR, called again
Pontryagin duality. Hence, there is always a functorial duality in LR.) L. Stoyanov
[43] showed that if R is a compact commutative ring, then the Pontryagin duality
is the unique functorial duality in LR. Later on, Gregorio [15] and Gregorio and
Orsatti [16] generalized that result of Stoyanov. The second problem was whether a
uniqueness theorem, like that for Pontryagin-van Kampen duality, can be proved in
the cases of Stone dualities for Boolean algebras and for distributive lattices. The
answers were given by G. Dimov in [8] and [9], where it was proved that the Stone
duality for Boolean algebras is unique and that there are only two (up to natural
equivalence) duality functors in the case of distributive lattices. Some very general
results about representable dualities and the group of dualities were obtained later
on by G. Dimov and W. Tholen in [11], [12]. It could be said that D. Vakarelov’s
paper [46] was also inspired by Prodanov’s seminar on spectra. This was certainly
so for the diploma thesis [39] of Sv. Savchev, written under the supervision of
Professor Iv. Prodanov, and for the paper [40].
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Iv. Prodanov presented his results on the uniqueness of Pontryagin-van Kam-
pen duality in the manuscripts [32] and [33]. The more than fifty-pages-long paper
[33] contains also an impressive list of open problems and conjectures. The pub-
lication of these manuscripts was postponed because Prodanov discovered that
analogous results were obtained earlier by D. Roeder [38]. Prodanov’s approach,
however, was different and even more general than that of D. Roeder. Only his un-
timely death withheld him from preparing these manuscripts for publication. The
task of doing that was carried out by D. Dikranjan and A. Orsatti. In their paper
[7], all results from [32] and [33] were included and some of Prodanov’s conjectures
were answered. In such a way the manuscripts [32] and [33] became known to the
mathematical community and stimulated the appearance of other papers (see [6],
[14]).

The results of Iv. Prodanov on abstract spectra and separative algebras were
announced in [31], but their proofs were never written by him in the form of a
manuscript, preprint or paper. The very incomplete notes which we have from the
Prodanov talks on the seminar on spectra seem to be the only trace of a small
part of these proofs. Since, in our opinion, the results, announced in [31], are
interesting and important, we decided to supply them with proofs. This is done
in the present paper, where we follow, in general, the exposition of [31], but some
of the announced there assertions are slightly generalized, some new statements
are added and some new applications are obtained. The main of the added results
is Theorem 2.39, which was formulated and proved by us as a generalization of
Prodanov’s assertions Corollary 2.40 and Corollary 2.41.

Section 1 of the paper is an introduction. Section 2, divided into four sub-
sections, is devoted to the abstract spectra. In Subsection 2.1 the category S of
abstract spectra and their morphisms is introduced and studied. Subsection 2.2
contains two general examples of abstract spectra (see 2.20 and 2.24). The classi-
cal spectra of rings endowed with Zariski topology appear as special cases of the
first of these examples (see 2.21), while the classical spectra of distributive lattices
with their Stone topology appear as special cases of both examples (see 2.22 and
2.25). In Subsection 2.3 the main theorem of Section 2 is proved (see 2.36). This
theorem asserts that the category S of abstract spectra and their morphisms is iso-
morphic to the category CohSp of coherent spaces and coherent maps and, hence,
by the Stone Duality Theorem for distributive lattices, the category S is dual to
the category DLat of distributive lattices and lattice homomorphisms. It is well-
known that the category OStone of ordered Stone spaces and order-preserving
continuous maps is also dual to the category DLat (see [27], [28] or [20]), and that
it is isomorphic to the category CohSp (see, for example, [20]). Therefore, the
category OStone is isomorphic to the category S. (The last fact could be also
proved directly, but we do not do this.) So, each one of the categories CohSp,
OStone and S is dual to the category DLat. In our opinion, the category S is
the most natural and symmetrical one amongst all three of them. Subsection 2.4
contains two applications (see Corollary 2.40 and Corollary 2.41) of the already
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obtained results. The one from Corollary 2.40 is important for Section 3. These
applications appear as special cases of a general theorem (see Theorem 2.39), which
we formulate and prove here as a generalization of Prodanov’s results Corollary 2.40
and Corollary 2.41. Theorem 2.39 was used later on by us in our paper [10].

At a first glance the advent of spectra in so general situations as in 2.20 is unex-
pected, since psychologically they usually are connected with separation. Actually,
in general one does not know whether there are non-trivial prime ideals, but it
turns out that if the operations × and + from 2.20 satisfy a few not very restrictive
natural conditions, then the prime ideals become as many as in the commutative
rings or in distributive lattices, for example. In this way one comes to the notion
of a separative algebra considered in Section 3.

Section 3 is divided into several subsections. In Subsection 3.1 the definition of
a preseparative algebra as an algebra with two multivalued binary operations × and
+ satisfying some natural axioms as commutativity and associativity is given, and
some calculus with these operations is developed. Subsection 3.2 is devoted to the
theory of filters and ideals in preseparative algebras. The main notion of a separative
algebra is given in Subsection 3.3. Here a far of being complete list of examples is
given: the commutative rings, the distributive lattices and also the convex spaces (=
separative algebras in which the two operations coincide) are separative algebras.
The main theorem for separative algebras - the Separation theorem, is proved
in Subsection 3.4. In Subsection 3.5 some natural new operations in separative
algebras are studied and in Subsection 3.6 a general representation theorem for
separative algebras is given. Roughly speaking, every separative algebra X =
(X,×,+) can be embedded into a distributive lattice L in such a way that the
operations in X are obtained easily from the operations in L. That is new even
for the plane: there exists a distributive lattice L ⊇ R2 such that for each segment
ab ⊂ R2 one has

ab = {x ∈ R2 : x ≤ a ∨ b} = {x ∈ R2 : x ≥ a ∧ b}.

The notion of separative algebra comes from an analysis of the separation
theorems connected with the convexity. The abstract study of convexity was started
by Prenovitz [25] and different versions of the notion of convex space appeared in
[34], [35], [44], [3], [4], [26]. All they are compared in [45]. The convexity was
examined from other aspects in [1], [5], [17], [22] and [24], a few applications are
considered in [47] and [2] contains a critique.

Y. Tagamlitzki [44] obtained a general Separation theorem for convex spaces.
It was improved (again for convex spaces) and applied to analytical separation
problems in [34] and [35] (cf. [1] and [4]). It seems however that the natural
region for that theorem are not the convex spaces but the separative algebras: the
presence of two operations makes the instrument more flexible, without additional
complications (see Subsection 3.4). This permits to obtain as special cases the
separation by prime ideals of an ideal and a multiplicative set in a commutative
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ring, or of an ideal and a filter in a distributive lattice, and also the separation of
two convex sets by a convex set with convex complement.

The paper ends with Subsection 3.8 devoted to a generalization of the Separa-
tion theorem for separative algebras supplied with a topology. Thus, even restricted
to convex spaces, one can find, as in [35], a few classical separation and representa-
tion theorems, but the presence of two operations enlarges the possibilities for new
applications.

Let us fix the notation. If C denotes a category, we write X ∈ |C| if X is an
object of C, and f ∈ C(X,Y ) if f is a C-morphism with domain X and codomain
Y . All lattices will be with top (=unit) and bottom (=zero) elements, denoted
respectively by 1 and 0. We don’t require the elements 0 and 1 to be distinct.
As usual, the lattice homomorphisms are assumed to preserve the distinguished
elements 0 and 1. DLat will stand for the category of distributive lattices and
lattice homomorphisms. If X is a set then we write Exp(X) for the set of all
subsets of X and denote by |X| the cardinality of X. If (X,T) is a topological
space and A is a subset of X then cl(X,T)A or, simply, clXA stands for the closure
of A in the space (X,T). We denote by D the two-point discrete topological space
and by Set the category of all sets and functions between them. As usual, we say
that a preordered set (X,≤) (i.e. ≤ is a reflexive and transitive binary relation on
X) is a directed set (resp. an ordered set) if for any x, y ∈ X there exists a z ∈ X
such that x ≤ z and y ≤ z (resp. if the relation ≤ is also antisymmetric).

Our main references are: [20] – for category theory and Stone dualities, [13] –
for general topology, and [23] – for algebra.

2. SPECTRA

2.1. THE CATEGORY OF ABSTRACT SPECTRA

Notation 2.1. Let (S,T+,T−) be a non-empty bitopological space. Then we
put L+ = {U ∈ T+ : S \ U ∈ T−} and L− = {U ∈ T− : S \ U ∈ T+}.

Proposition 2.2. Let (S,T+,T−) be a non-empty bitopological space. Then
the families L+ and L− (see 2.1 for the notation) are closed under finite unions
and finite intersections.

Proof. It is obvious. �

Definition 2.3. A non-empty bitopological space (S,T+,T−) is called an ab-
stract spectrum, if it has the following properties:

(SP1) L+ is a base for T+ and L− is a base for T−;
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(SP2) if F ⊆ S and S \ F ∈ T+ (resp. S \ F ∈ T−), then F is a compact
subset of the topological space (S,T−) (resp. (S,T+));

(SP3) at least one of the topological spaces (S,T+) and (S,T−) is a T0-space.

Proposition 2.4. If (S,T+,T−) is an abstract spectrum, then (S,T+) and
(S,T−) are compact T0-spaces.

Proof. By (SP3), one of the spaces (S,T+) and (S,T−) is T0-space. Let, for
example, (S,T+) be a T0-space. Then we shall prove that (S,T

−) is also a T0-space.

Let x, y ∈ S and x -= y. Then there exists U ∈ T+ such that |U ∩ {x, y}| = 1.
Let, for example, x ∈ U . Then, using (SP1), we can find a V ∈ L+ such that
x ∈ V ⊆ U . Putting W = S \ V , we obtain that W ∈ T−, y ∈ W and x -∈ W .
Therefore, (S,T−) is a T0-space.

Since S is a closed subset of (S,T+), the condition (SP2) implies that S is a
compact subset of (S,T−).

Analogously, we obtain that (S,T+) is a compact space. �

Proposition 2.5. Let (S,T+,T−) be an abstract spectrum. Then L+ = {U ∈
T+ : U is a compact subset of (S,T+)} and L− = {U ∈ T− : U is a compact subset
of (S,T−)} (see 2.1 for the notation).

Proof. Let us prove first that L+ = {U ∈ T+ : U is a compact subset of
(S,T+)}.

If V ∈ L+ then S \ V ∈ T−. Hence V is a closed subset of (S,T−). This
implies, by (SP2), that V is a compact subset of (S,T+). Conversely, if U ∈ T+

and U is a compact subset of (S,T+) then for every x ∈ U there exists a Ux ∈ L+

such that x ∈ Ux ⊆ U . Choose a finite subcover {Uxi : i = 1, . . . , n} of the cover
{Ux : x ∈ U} of the compact set U . Then U =

⋃
{Uxi : i = 1, . . . , n} and hence, by

2.2, U ∈ L+.

The proof of the equation L− = {U ∈ T− : U is a compact subset of (S,T−)}
is analogous. �

Proposition 2.6. Let (S,T+,T−) be an abstract spectrum. Then L+ = {S\U :
U ∈ L−} and L− = {S \ U : U ∈ L+} (see 2.1 for the notation).

Proof. Let us prove that L− = {S \ U : U ∈ L+}.

Take V ∈ L− and put U = S \ V . Then U ∈ T+ and S \ U ∈ L− ⊆ T−.
Hence, U ∈ L+ and V = S \ U . Conversely, if U ∈ L+ then V = S \ U ∈ T− and
S \ V ∈ L+ ⊆ T+. Therefore, S \ U ∈ L−.

The proof of the equation L+ = {S \ U : U ∈ L−} is analogous. �

Corollary 2.7. Let (S,T+,T−1 ) and (S,T+,T−2 ) be abstract spectra. Then the
topologies T−1 and T

−

2 coincide.
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Proof. It follows directly from 2.5, 2.6 and (SP1) (see 2.3). �

Definition 2.8. Let (S1,T
+
1 ,T

−

1 ) and (S2,T
+
2 ,T

−

2 ) be abstract spectra. Then a
function f ∈ Set(S1, S2) is called an S-morphism if f : (S1,T

+
1 ) −→ (S2,T

+
2 ) and

f : (S1,T
−

1 ) −→ (S2,T
−

2 ) are continuous maps. The class of all abstract spectra
together with the class of all S-morphisms and the natural composition between
them form, obviously, a category which will be denoted by S and will be called the
category of abstract spectra.

Definition 2.9. An abstract spectrum (S,T+,T−) is called a Stone spectrum
if the topologies T+ and T− coincide.

Proposition 2.10. Let (S,T) be a topological space. Then the bitopological
space (S,T,T) is a Stone spectrum if and only if (S,T) is a Stone space.

Proof. (⇒) Let (S,T,T) be a Stone spectrum. Then, by 2.4, (S,T) is a compact
T0-space. According to (SP1) (see 2.3), the family L

+ = {U ∈ T : S \ U ∈ T} is a
base for T. Consequently (S,T) is a zero-dimensional space. We shall show that it is
also a T2-space. Indeed, let x, y ∈ S and x -= y. Then there exists a U ∈ T such that
|U ∩ {x, y}| = 1. Let, for example, x ∈ U . Since L+ is a base for T, we can find a
V ∈ L+ such that x ∈ V ⊆ U . Then x ∈ V ∈ T and y ∈ S\V ∈ T. Therefore, (S,T)
is a T2-space. So, we proved that (S,T) is a compact zero-dimensional T2-space,
i.e. a Stone space.

(⇐) Let (S,T) be a Stone space. Put L = {U ∈ T : S \U ∈ T} and T+ = T−=
T. Then L+ = L = L− (see 2.1 for the notation). We shall prove that (S,T+,T−)
is an abstract spectrum. Then it will be automatically a Stone spectrum. Since L is
a base for (S,T), the axiom (SP1) (see 2.3) is fulfilled. The axioms (SP2) and (SP3)
are also fulfilled, since (S,T) is a compact T2-space. Consequently (S,T

+,T−) is
an abstract spectrum. �

Proposition 2.11. An abstract spectrum (S,T+,T−) is a Stone spectrum if
and only if (S,T+) and (S,T−) are T1-spaces.

Proof. (⇒) Since (S,T+,T−) is a Stone spectrum, we have that T+ = T−.
Then 2.10 implies that (S,T+) and (S,T−) are even T2-spaces.

(⇐) Let (S,T+) and (S,T−) are T1-spaces. We shall prove that T
+ = T−.

Let U ∈ T−. Then S \U is closed in (S,T−) and hence, by 2.4, it is a compact
subset of (S,T−). Let x ∈ U . Since (S,T+) is a T1-space, for every y ∈ S \ U
there exists a Vy ∈ L+ such that x ∈ Vy ⊆ S \ {y}. Hence y ∈ S \ Vy ⊆ S \ {x}
and S \ Vy ∈ T−. Let {S \ Vyi : i = 1, . . . , n} be a finite subcover of the cover
{S \Vy : y ∈ S \U} of S \U and let Vx =

⋂
{Vyi : i = 1, . . . , n}. Then x ∈ Vx ∈ T+

and Vx ⊆ U . We obtain that U =
⋃
{Vx : x ∈ U} ∈ T+. Hence T− ⊆ T+.

Analogously, using the fact that (S,T−) is a T1-space, we prove that T
+ ⊆ T−.

Therefore T+ = T−, i.e. (S,T−,T+) is a Stone spectrum. �
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Remark 2.12. Let (S,T+,T−) be an abstract spectrum. Then, arguing as in
2.4, we obtain that (S,T+) and (S,T−) are T1-spaces if and only if at least one of
them is a T1-space.

Proposition 2.13. Let (S,T+,T−) be an abstract spectrum and let us put
T = sup{T+,T−}. Then (S,T) is a Stone space and hence (see 2.10) (S,T,T) is a
Stone spectrum.

Proof. The topology T has as a subbase the family P = T+ ∪ T−. Hence the
family B = {U+ ∩ U− : U+ ∈ T+, U− ∈ T−} is a base for T. Then, obviously,
the family B0 = {U

+ ∩ U− : U+ ∈ L+, U− ∈ L−} is also a base for T. For every
U ∈ L+ we have that U ∈ T+ ⊆ T and S \U ∈ T− ⊆ T. Consequently the elements
of L+ are clopen subsets of (S,T). Obviously, the same is true for the elements of
L−. Hence the elements of B0 are clopen in (S,T), which implies that (S,T) is a
zero-dimensional space. This fact, together with (SP3) (see 2.3), shows that (S,T)
is a Hausdorff space.

Applying Alexander subbase theorem to the subbase P of (S,T), we shall prove
that (S,T) is a compact space. Indeed, let S =

⋃
{Uα ∈ T+ : α ∈ A} ∪

⋃
{Vβ ∈

T− : β ∈ B} and F = S \
⋃
{Uα : α ∈ A}. Then F ⊆

⋃
{Vβ : β ∈ B} and F

is closed in (S,T+). Consequently, by (SP2) (see 2.3), F is a compact subset of
(S,T−). This implies that there exist β1, . . . , βn ∈ B such that F ⊆

⋃
{Vβi : i =

1, . . . , n}. Then G = S \
⋃
{Vβi : i = 1, . . . , n} ⊆

⋃
{Uα : α ∈ A}. Since G is

a closed subset of (S,T−), it is a compact subset of (S,T+) (by (SP2)). Hence,
there exist α1, . . . , αm ∈ A such that G ⊆

⋃
{Uαj : j = 1, . . . ,m}. Therefore,

S =
⋃
{Uαj : j = 1, . . . ,m} ∪

⋃
{Vβi : i = 1, . . . , n}. This shows that (S,T) is

compact. Hence, (S,T) is a Stone space. �

Remark 2.14. Let (S,T+,T−) be an abstract spectrum and id : S −→ S,
x −→ x, be the identity function. Then, obviously, id ∈ S((S,T,T), (S,T+,T−))
(see 2.13 for the notation).

Proposition 2.15. Let (S,T+,T−) be a bitopological space such that L+ is
a base for T+ and L− is a base for T− (see 2.1 for the notation). Let T =
sup{T+,T−}, (S,T) be a compact T2-space, S1 ⊆ S, T+1 = {U ∩ S1 : U ∈ T+}
and T

−

1 = {U ∩ S1 : U ∈ T−}. Then the bitopological space (S1,T
+
1 ,T

−

1 ) is an
abstract spectrum iff S1 is a closed subset of the topological space (S,T).

Proof. (⇒) Let T1 = sup{T+1 ,T
−

1 }. Then, by 2.13, (S1,T1) is a Stone space.
Hence it is a compact Hausdorff space. Since, obviously, T1 = T|S1, we obtain that
S1 is a compact subspace of the Hausdorff space (S,T). Consequently S1 is a closed
subset of (S,T).

(⇐) We shall show that (S1,T
+
1 ,T

−

1 ) is an abstract spectrum. Let L+
1 =

{U ∩ S1 : U ∈ L+}, L−1 = {U ∩ S1 : U ∈ L−}, L+
S1
= {U ∈ T

+
1 : S1 \ U ∈ T

−

1 } and

L
−

S1
= {U ∈ T

−

1 : S1 \ U ∈ T
+
1 }. Then, obviously, L

+
1 ⊆ L

+
S1
and L−1 ⊆ L

−

S1
. Since

L
+
1 (resp. L−1 ) is a base for (S1,T

+
1 ) (resp. (S1,T

−

1 )), we obtain that L
+
S1
(resp.
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L
−

S1
) is a base for (S1,T

+
1 ) (resp. (S1,T

−

1 )). Hence the condition (SP1) (see 2.3) is
fulfilled.

In the part (⇒) of this proof, we noted that the topology T1 = sup{T
+
1 ,T

−

1 } on
S1 coincides with the topology T|S1. Hence, (S1,T1) is a compact Hausdorff space
(since (S,T) is such and S1 is a closed subset of (S,T)). Let now F be a closed
subset of (S1,T

+
1 ) (resp. (S1,T

−

1 )). Then F is a closed subset of (S1,T1). Therefore
F is a compact subset of (S1,T1). Since the identity maps id : (S1,T1) −→ (S1,T

+
1 )

and id : (S1,T1) −→ (S1,T
−

1 ) are continuous, we obtain that F is a compact subset
of (S1,T

−

1 ) (resp. (S1,T
+
1 )). Hence, the condition (SP2) (see 2.3) is fulfilled.

For showing that the condition (SP3) (see 2.3) is fulfilled, it is enough to prove
that (S1,T

+
1 ) is a T0-space. Let x, y ∈ S1 and x -= y. Since (S1,T1) is a T2-space,

there exist U ∈ L
+
1 and V ∈ L

−

1 such that x ∈ U ∩ V ⊆ S1 \ {y}. If y -∈ U then
the element U of T+1 separates x and y. If y ∈ U then y -∈ V . Hence y ∈ S1 \ V
and x -∈ S1 \ V . Since S1 \ V ∈ T

+
1 , we obtain that x and y are separated by an

element of T+1 . Consequently, (S1,T
+
1 ) is a T0-space. �

Corollary 2.16. Let (S,T+,T−) be an abstract spectrum, T = sup{T+,T−},
S1 ⊆ S, T+1 = {U ∩ S1 : U ∈ T+} and T

−

1 = {U ∩ S1 : U ∈ T−}. Then the
bitopological space (S1,T

+
1 ,T

−

1 ) is an abstract spectrum iff S1 is a closed subset of
the topological space (S,T).

Proof. It follows immediately from 2.15, 2.3 and 2.13. �

2.2. EXAMPLES OF ABSTRACT SPECTRA

Lemma 2.17. Let X be a set and Exp(X) be the family of all subsets of X.
Let us put, for every x ∈ X, Ũ+

x = {A ⊆ X : x -∈ A} and Ũ−x = {A ⊆ X : x ∈ A}.
Let P̃+ = {Ũ+

x : x ∈ X}, P̃− = {Ũ−x : x ∈ X}, T̃+ (resp. T̃−) be the topology
on Exp(X) having P̃+ (resp. P̃−) as a subbase and T̃ = sup{T̃+, T̃−}. Let us
identify the set Exp(X) with the set DX (where D is the two-point set {0, 1}) by
means of the map e : Exp(X) −→DX , A ⊆ X −→ χA, where χA : X −→D is the
characteristic function of A, i.e. χA(x) = 1 if x ∈ A and χA(x) = 0 if x -∈ A. Then
the topology T̃ on Exp(X) coincides with the Tychonoff topology on DX (where the
set D is endowed with the discrete topology).

Proof. Let P̃ = P̃+ ∪ P̃−. Then P̃ is a subbase for the topology T̃ on Exp(X).
For every x ∈ X we have, identifying Exp(X) and DX by means of the map e,
that Ũ+

x = {f ∈D
X : f(x) = 0} and Ũ−x = {f ∈D

X : f(x) = 1}. Now it becomes
clear that the family P̃ is also a subbase for the Tychonoff topology on DX when
D is endowed with the discrete topology. Therefore the topology T̃ on Exp(X)
coincides with the Tychonoff topology on DX . �
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Proposition 2.18. Let X be a set and S be family of subsets of X (i.e.
S ⊆ Exp(X)). Let us put, for every x ∈ X, U+

x = {p ∈ S : x -∈ p} and U−x = {p ∈
S : x ∈ p}. Let P+ = {U+

x : x ∈ X}, P
− = {U−x : x ∈ X}, T+ (resp. T−) be the

topology on S having P+ (resp. P−) as a subbase and T = sup{T+,T−}.

Then the following conditions are equivalent:

(a) (S,T+,T−) is an abstract spectrum;

(b) (S,T) is a compact T2-space;

(c) S is a closed subset of the Cantor cube DX (where D is the discrete two-
point space and S is identified with a subset of DX as in 2.17).

Proof. (a)⇒ (b). This follows from 2.13.

(b)⇒ (a). Let x ∈ X. Then S \U+
x = U

−

x and S \U
−

x = U
+
x . Hence P

+ ⊆ L+

and P− ⊆ L− (see 2.1 for the notation). Consequently, using 2.2, we obtain that
L+ (resp. L−) is a base for (S,T+) (resp. (S,T−)). This shows that putting S1 = S
in 2.15, we get that (S,T+,T−) is an abstract spectrum.

(b)⇒ (c). It is clear from the corresponding definitions that, using the notation
of 2.17, we have Ũ+

x ∩ S = U+
x and Ũ−x ∩ S = U−x for every x ∈ X. Hence, by

2.17, the topology T on S coincides with the subspace topology on S induced by
the Tychonoff topology on DX . Then the condition (b) and the fact that DX is a
Hausdorff space imply that S is a closed subset of the Cantor cube DX .

(c)⇒ (b). In the preceding paragraph we have already noted that the topology
T on S coincides with the subspace topology on S induced by the Tychonoff topol-
ogy on DX . Therefore the condition (c) implies that (S,T) is a compact Hausdorff
space (since DX is such). �

Definition 2.19. Let X be a set endowed with two arbitrary multivalued binary
operations ⊕ and ⊗. Let us call a subset p of X a prime ideal in (X,⊕,⊗) if the
following two conditions are fulfilled:

i) if x, y ∈ p then x⊕ y ⊆ p;

ii) if (x⊗ y) ∩ p -= ∅ then x ∈ p or y ∈ p.

Let us fix two different points 0 and 1 of X. We shall say that a prime ideal
p ⊆ X is proper (or, more precisely, proper with respect to the points 0 and 1), if
0 ∈ p and 1 -∈ p.

A subset q of X is called a prime (proper) flter in (X,⊕,⊗) if the set X \ q is
a prime (proper) ideal.

Theorem 2.20. Let X be a set endowed with two arbitrary multivalued binary
operations ⊕ and ⊗ and two fixed different points ξo and ξ1. Denote by S(X) (resp.
S(X)pr) the set of all (resp. all proper) prime ideals in (X,⊕,⊗) and define the
topologies T+ and T− on S(X) (resp. T+pr and T−pr on S(X)pr) exactly as in 2.18.
Then the bitopological spaces (S(X),T+,T−) and (S(X)pr,T

+
pr,T

−

pr) are abstract
spectra.
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Proof.We first prove that the bitopological space (S(X),T+,T−) is an abstract
spectrum. For doing this it is enough to show that S(X) is a closed subset of the
Cantor cube DX (see 2.18).

Let {pσ ∈ S(X) : σ ∈ Σ} be a net in the Cantor cube D
X converging to a

point p ∈ DX . We have to prove that p ∈ S(X), i.e. that p is a prime ideal in
(X,⊕,⊗). Let fσ = e(pσ) and f = e(p) (see 2.17 for the notation). Then the net
{fσ, σ ∈ Σ} in D

X converges to f , i.e., for every x ∈ X, the net {fσ(x), σ ∈ Σ} in
the discrete space D converges to f(x).

Let a, b ∈ p. Then f(a) = f(b) = 1. Therefore there exists a σ0 ∈ Σ such that
fσ(a) = 1 = fσ(b) for every σ > σ0. This means that for every σ > σ0 we have that
a ∈ pσ and b ∈ pσ. Since pσ is a prime ideal, we obtain that a ⊕ b ⊆ pσ for every
σ > σ0. Then, for every x ∈ a ⊕ b and for every σ > σ0, we have that fσ(x) = 1.
This implies that f(x) = 1 for every x ∈ a⊕ b. Hence, if x ∈ a⊕ b then x ∈ p, i.e.
a⊕ b ⊆ p.

Let a, b ∈ X and (a ⊗ b) ∩ p -= ∅. Then there exists a x ∈ (a ⊗ b) ∩ p. Hence
f(x) = 1. This implies that there exists a σ0 ∈ Σ such that fσ(x) = 1 for every
σ > σ0. Consequently x ∈ pσ for every σ > σ0. Then (a ⊗ b) ∩ pσ -= ∅ for every
σ > σ0. Hence, for every σ > σ0, we have that a ∈ pσ or b ∈ pσ, i.e. fσ(a) = 1
or fσ(b) = 1. Suppose that a -∈ p and b -∈ p. Then f(a) = 0 = f(b). Therefore,
there exists a σ1 ∈ Σ such that fσ(a) = fσ(b) = 0 for every σ > σ1. Since for
every σ > sup{σ0, σ1} we have that fσ(a) = 1 or fσ(b) = 1, we get a contradiction.
Hence we obtain that a ∈ p or b ∈ p. So, we proved that p is a prime ideal in
(X,⊕,⊗). This shows that S(X) is a closed subset of the Cantor cube DX . Hence,
the bitopological space (S(X),T+,T−) is an abstract spectrum.

If the prime ideals pσ in the above proof were proper, then, obviously, p would
be also proper. This shows that the set S(X)pr is also a closed subset of the Cantor
cube DX . So, the bitopological space (S(X)pr,T

+
pr,T

−

pr) is an abstract spectrum.�

Example 2.21. Let (A,+, .) be a commutative ring with unit (0 -= 1), x⊕y be
the ideal in the ring (A,+, .) generated by {x, y}, and x⊗y = x.y, for every x, y ∈ A.
Then, applying the construction from 2.20 to the set A with the operations ⊕ and
⊗ and with fixed points 0 and 1, we get the topological space (S(A)pr,T

+
pr). We

assert that it coincides with the classical spectrum of the ring (A,+, .).

Proof. Recall that: a) a subgroup I of the additive group (A,+) is called an
ideal in the commutative ring (A,+, .) with unit if A.I = I; b) an ideal p -= A in
the ring A is said to be a prime ideal if (x, y ∈ A, x.y ∈ p) ⇒ (x ∈ p or y ∈ p);
c) the set of all prime ideals in the commutative ring A is denoted by spec(A);
d) the family Z = {UI = {p ∈ spec(A) : I -⊆ p} : I is an ideal in A} is a topology
on the set spec(A), called Zariski topology; e) the topological space (spec(A),Z) is
the classical spectrum of the commutative ring (A,+, .) with unit.

We shall denote by I(M) the ideal in A generated by a subset M of A.

We first prove that the sets spec(A) and S(A)pr coincide.
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Let p ∈ S(A)pr. Then 1 -∈ p and hence p -= A. If a, b ∈ p then a ⊕ b ⊆ p, i.e.
I({a, b}) ⊆ p. Hence, a − b ∈ p. This shows that p is an additive subgroup of A.
Let x ∈ A and a ∈ p. Since a ⊕ a = I({a}) ⊆ p, we get that x.a ∈ p. If x, y ∈ A
and x.y ∈ p, then (x ⊗ y) ∩ p -= ∅ and, hence, x ∈ p or y ∈ p. Consequently, we
proved that p ∈ spec(A).

Conversely, let p ∈ spec(A) and a, b ∈ p. Then, obviously, I({a, b}) ⊆ p and,
hence, a⊕ b ⊆ p. If (a⊗ b) ∩ p -= ∅ then a.b ∈ p. This implies that a ∈ p or b ∈ p.
Since 1 -∈ p, we get that p ∈ S(A)pr. Therefore, S(A)pr = spec(A).

Now we prove that T+pr = Z.
Let a ∈ A. Then, obviously, U+

a = {p ∈ S(A)pr : a -∈ p} = {p ∈ spec(A) :
I({a}) -⊆ p} ∈ Z. Hence, T+pr ⊆ Z. Conversely, let U ∈ Z. Then there exists an
ideal I in A such that U = UI . Let p ∈ U . Then there exists an a = a(p) ∈ I \ p.
Hence p ∈ U+

a . We shall prove that U
+
a ⊆ U . Indeed, if q ∈ U+

a then a -∈ q
and, consequently, I -⊆ q. This shows that q ∈ UI = U . So, we obtained that
p ∈ U+

a ⊆ U . Therefore, Z ⊆ T+pr. �

Example 2.22. Let (L,∨,∧) be a distributive lattice with 0 and 1 and let
us put x ⊕ y = {z ∈ L : z ≤ x ∨ y} and x ⊗ y = {z ∈ L : z ≥ x ∧ y}, for
every x, y ∈ L. Then, applying the construction from 2.20 to the set L with the
operations ⊕ and ⊗ and with fixed points 0 and 1, we get the topological space
(S(L)pr,T

+
pr). We assert that it coincides with the classical spectrum spec(L) of

the distributive lattice (L,∨,∧).

Proof. Recall that: a) a sub-join-semi-lattice I of the lattice L is said to be an
ideal in L if (a ∈ I, b ∈ L and b ≤ a)⇒ (b ∈ I); b) an ideal p in L is called a prime
ideal if 1 -∈ p and (a∧ b ∈ p)⇒ (a ∈ p or b ∈ p); c) the set of all prime ideals in L is
denoted by spec(L); d) the family O = {UI = {p ∈ spec(L) : I -⊆ p} : I is an ideal
in L} is a topology on the set spec(L), called Stone topology; e) the topological
space (spec(L),O) is the classical spectrum of the lattice (L,∨,∧, 0, 1).

We first prove that the sets spec(L) and S(L)pr coincide.
Let p ∈ S(L)pr. Then 0 ∈ p and 1 -∈ p. If a, b ∈ p then a ⊕ b ⊆ p and, hence,

a ∨ b ∈ p. Let c ∈ L, a ∈ p and c ≤ a. Since a ∈ p, we have that a ⊕ a ⊆ p and,
consequently, c ∈ p. If c, d ∈ L and c ∧ d ∈ p then (c⊗ d) ∩ p -= ∅. Therefore c ∈ p
or d ∈ p. So, p ∈ spec(L).

Let p ∈ spec(L) and a, b ∈ p. Then a ∨ b ∈ p and, for all c ∈ L such that
c ≤ a ∨ b, we have that c ∈ p. Hence a ⊕ b ⊆ p. Let x, y ∈ p and (x ⊗ y) ∩ p -= ∅.
Then there exists a z ∈ p such that z ≥ x ∧ y. Hence x ∧ y ∈ p. This implies that
x ∈ p or y ∈ p. Since 1 -∈ p, we obtain that p ∈ S(L)pr. So, S(L)pr = spec(L).

Now we prove that T+pr = O.
Let a ∈ L and I(a) = {x ∈ L : x ≤ a}. Then I(a) is an ideal in L. Obviously,

U+
a = {p ∈ S(L)pr : a -∈ p} = {p ∈ spec(L) : I(a) -⊆ p} ∈ O. Hence T+pr ⊆ O.
Conversely, let U ∈ O. Then there exists an ideal I in L such that U = UI . Let
p ∈ U . Then there exists an a = a(p) ∈ I \ p. Hence p ∈ U+

a and we need to prove
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only that U+
a ⊆ U . Let q ∈ U

+
a . Then a -∈ q. Consequently I -⊆ q, which means

that q ∈ UI = U . So, p ∈ U
+
a ⊆ U . We obtained that O ⊆ T+pr. �

Definition 2.23. Let X be a set endowed with two arbitrary single-valued
binary operations + and ×. Let us call a subset p of X an l-prime ideal in (X,+,×)
if the following two conditions are fulfilled:

i) x+ y ∈ p iff x ∈ p and y ∈ p;

ii) x× y ∈ p iff x ∈ p or y ∈ p.

Let us fix two different points 0 and 1 of X. We shall say that an l-prime ideal
p ⊆ X is proper (or, more precisely, proper with respect to the points 0 and 1), if
0 ∈ p and 1 -∈ p.

Theorem 2.24. Let X be a set endowed with two arbitrary single-valued binary
operations + and × and two fixed different points ξo ∈ X and ξ1 ∈ X. Denote by
S′(X) (resp. S′(X)pr) the set of all (proper) l-prime ideals in (X,+,×) and define
the topologies T+ and T− on S′(X) (resp. T+pr and T−pr on S′(X)pr) exactly as
in 2.18. Then the bitopological spaces (S′(X),T+,T−) and (S′(X)pr,T

+
pr,T

−

pr) are
abstract spectra.

Proof.We first prove that the bitopological space (S′(X),T+,T−) is an abstract
spectrum. For doing this it is enough to show that S′(X) is a closed subset of the
Cantor cube DX (see 2.18).

Let {pσ ∈ S
′(X) : σ ∈ Σ} be a net in the Cantor cube DX converging to a

point p ∈ DX . We have to prove that p ∈ S′(X), i.e. that p is an l-prime ideal in
(X,+,×).

Exactly as in the proof of 2.20, we show that a, b ∈ p implies that a + b ∈ p
and that if a× b ∈ p then a ∈ p or b ∈ p.

Let fσ = e(pσ) and f = e(p) (see 2.17 for the notation). Then the net {fσ, σ ∈
Σ} in DX converges to f , i.e., for every x ∈ X, the net {fσ(x), σ ∈ Σ} in the
discrete space D converges to f(x).

Let a, b ∈ X and a + b ∈ p. Then f(a + b) = 1. Hence there exists a σ0 ∈ Σ
such that fσ(a + b) = 1 for every σ ≥ σ0. Consequently, for every σ ≥ σ0, we
have that a + b ∈ pσ. Then, for every σ ≥ σ0, we get that a ∈ pσ and b ∈ pσ, i.e.
fσ(a) = 1 and fσ(b) = 1. This implies that f(a) = 1 and f(b) = 1, i.e. a ∈ p and
b ∈ p.

Let a, b ∈ X be such that a ∈ p or b ∈ p. Suppose that a × b -∈ p. Then
f(a× b) = 0. Hence there exists a σ0 ∈ Σ such that fσ(a× b) = 0 for every σ ≥ σ0.
This means that for every σ ≥ σ0, we have that a × b -∈ pσ. Consequently, a -∈ pσ
and b -∈ pσ for every σ ≥ σ0. We obtain that fσ(a) = 0 and fσ(b) = 0 for every
σ ≥ σ0. This implies that f(a) = 0 and f(b) = 0, i.e. a -∈ p and b -∈ p, which is
a contradiction. Therefore, a × b ∈ p. Hence, p is an l-prime ideal in (X,+,×).
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This shows that S′(X) is a closed subset of the Cantor cube DX . Hence, the
bitopological space (S′(X),T+,T−) is an abstract spectrum.

If the prime ideals pσ in the above proof were proper, then, obviously, p would
be also proper. This shows that the set S′(X)pr is also a closed subset of the Cantor
cube DX. So, the bitopological space (S′(X)pr,T

+
pr,T

−

pr) is an abstract spectrum.�

Example 2.25. Let (L,∨,∧) be a distributive lattice with 0 and 1 and let
us put x + y = x ∨ y and x × y = x ∧ y, for every x, y ∈ L. Then, applying
the construction from 2.24 to the set L with the operations + and × and with
fixed points 0 and 1, we get the topological space (S′(L)pr,T

+
pr). We assert that it

coincides with the classical spectrum spec(L) of the distributive lattice (L,∨,∧).

Proof. We first prove that the sets spec(L) and S′(L)pr coincide.
Let p ∈ S′(L)pr. Then 0 ∈ p and 1 -∈ p. If a, b ∈ p then a + b ∈ p and, hence,

a ∨ b ∈ p. Let c ∈ L, a ∈ p and c ≤ a. Then c ∨ a = a, i.e. c+ a ∈ p. Thus c ∈ p.
If c, d ∈ L and c ∧ d ∈ p then c× d ∈ p. Therefore c ∈ p or d ∈ p. So, p ∈ spec(L).

Let p ∈ spec(L). If a, b ∈ p then a ∨ b ∈ p, i.e. a + b ∈ p. Further, if x, y ∈ L
and x+ y ∈ p, then x∨ y ∈ p and x ≤ x∨ y, y ≤ x∨ y. Hence x ∈ p and y ∈ p. So,
x+ y ∈ p iff x ∈ p and y ∈ p. Now, let a ∈ p or b ∈ p. Then a∧ b ≤ a and a∧ b ≤ b.
Therefore a ∧ b ∈ p, i.e. a× b ∈ p. Finally, if x, y ∈ L and x× y ∈ p then x ∧ y ∈ p
and, hence, x ∈ p or y ∈ p. So, x× y ∈ p iff x ∈ p or y ∈ p. Since 0 ∈ p and 1 -∈ p,
we obtain that p ∈ S′(L)pr. Therefore, we proved that S

′(L)pr = spec(L).

The proof of the equality T+pr = O is analogous to the proof of the corresponding
statement about S(L)pr, given in the proof of 2.22. �

2.3. THE MAIN THEOREM

The main theorem of Section 2, Theorem 2.36 below, will be proved here. For
doing this we need some preliminary definitions and results.

Definition 2.26. Let (S,T+,T−) be an abstract spectrum. For every two
points a, b ∈ S we put a ≤ b iff cl(S,T−){a} ⊆ cl(S,T−){b} (i.e., a ≤ b iff a is a
specialization of b in the topological space (S,T−)).

Remark 2.27. (a) The relation ≤ defined in 2.26 is a partial order on S since
(S,T−) is a T0-space (see 2.4) and, as it is well known, the specialization is a partial
order on every T0-space.

(b) It is obvious that a ≤ b iff a ∈ cl(S,T−){b} iff b ∈ cl(S,T+){a} iff cl(S,T+){b} ⊆
cl(S,T+){a}.

(c) It is easy to see that if a ∈ S then cl(S,T+){a} = {b ∈ S : b ≥ a} and
cl(S,T−){a} = {b ∈ S : b ≤ a}.

(d) If the elements of an abstract spectrum S are prime (or l-prime) ideals de-
fined as in Section 2.2 (i.e. S = S(X), where X is a set with two binary operations),
then a ≤ b iff a ⊆ b, for a, b ∈ S.
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Lemma 2.28. Let (S,T+,T−) be an abstract spectrum. If the net {aσ, σ ∈ Σ}
converges to a in (S,T−), the net {bσ, σ ∈ Σ} converges to b in (S,T+) and aσ ≤ bσ
for every σ ∈ Σ, then a ≤ b.

Proof. Let U ∈ L+ and b ∈ U . Then there exists a σ0 ∈ Σ such that bσ ∈ U for
every σ ≥ σ0. Suppose that a -∈ U . Then S \ U ∈ T− and a ∈ S \ U . Hence there
exists a σ1 ∈ Σ such that aσ ∈ S \ U for every σ ≥ σ1. Putting σ

′ = sup{σ0, σ1},
we obtain that bσ′ ∈ U and aσ′ -∈ U . Therefore bσ′ -∈ cl(S,T+){aσ′}, i.e. aσ′ -≤ bσ′ ,
a contradiction. Hence a ∈ U . This shows that b ∈ cl(S,T+){a}, i.e. a ≤ b. �

Lemma 2.29. Let (S,T+,T−) be an abstract spectrum. If A ⊆ S and (A,≤)
is a directed set (where ≤ is the restriction to A of the partial order defined in
2.26), then the set A has supremum in the ordered set (S,≤).

Proof. Since (A,≤) is a directed set and A ⊆ S, {a, a ∈ A} is a net in the
compact Hausdorff space (S,T) (where T = sup{T+,T−}) (see 2.13) and, hence, it
has a cluster point b ∈ S. We shall prove that b = sup{a : a ∈ A} in (S,≤). Indeed,
let U ∈ T+ and b ∈ U . Then U ∈ T and for every a ∈ A there exists an a′ ∈ A such
that a′ ≥ a and a′ ∈ U . Hence A ⊆ U . This shows that b ∈ cl(S,T+){a} for every
a ∈ A, i.e. b ≥ a for every a ∈ A. Let now b′ ∈ S and b′ ≥ a for every a ∈ A. The
point b is a limit in (S,T) (and, hence, in (S,T−)) of a net {aσ, σ ∈ Σ} that is finer
than the net {a, a ∈ A}. Put bσ = b

′ for every σ ∈ Σ. Then the net {bσ, σ ∈ Σ}
converges to b′ in (S,T+). Since aσ ≤ bσ for every σ ∈ Σ, we obtain, using 2.28,
that b ≤ b′. Hence, b = supA. �

Lemma 2.30. Let (S,T+,T−) be an abstract spectrum. If A ⊆ S and (A,≤′)
is a directed set, where ≤′ is the inverse to the restriction to A of the partial order
defined in 2.26 (i.e. a′ ≤′ a′′ iff a′ ≥ a′′, for a′, a′′ ∈ A), then the set A has infimum
in the ordered set (S,≤).

Proof. The proof is completely analogous to that of Lemma 2.29. �

Lemma 2.31. Let (S,T+,T−) be an abstract spectrum. Then for every s ∈ S
there exists an m ∈ S (resp. m′ ∈ S) such that s ≤ m (resp. m′ ≤ s) and m is
a maximal (resp. m′ is a minimal) element of the ordered set (S,≤) (where ≤ is
from 2.26).

Proof. It follows from the Zorn lemma and 2.29 (resp. 2.30). �

Notation 2.32. Let (S,T+,T−) be an abstract spectrum. We put Max(S) =
{m ∈ S : m is a maximal element of (S,≤)} and Min(S) = {m ∈ S : m is a
minimal element of (S,≤)} (where ≤ is from 2.26). We shall denote by T+M (resp.
T
−

M ) the induced by T
+ (resp. T−) topology on Max(S), and by T+m (resp. T−m)

the induced by T+ (resp. T−) topology on Min(S).
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Proposition 2.33. Let (S,T+,T−) be an abstract spectrum. Then:

(a) (Max(S),T+M ) and (Min(S),T−m) are compact T1-spaces;

(b) (Min(S),T+m) and (Max(S),T−M ) are T2-spaces;

(c) Min(S) is dense in (S,T+) and Max(S) is dense in (S,T−).

Proof. (a) We first prove that (Max(S),T+M ) is a compact T1-space. Since,
for every a ∈ S, cl(S,T+){a} = {b ∈ S : b ≥ a} (see 2.27(c)), we obtain that
(Max(S),T+M ) is a T1-space. Let {aσ, σ ∈ Σ} be a net in (Max(S),T

+
M ). Then

{aσ, σ ∈ Σ} is a net in the compact space (S,T+) (see 2.4) and, hence, it has
a cluster point a ∈ S in (S,T+). Now, we can find a net {aσ′ , σ

′ ∈ Σ′} in
(Max(S),T+M ) which is finer than the net {aσ, σ ∈ Σ} and converges to a in (S,T

+).
By 2.31, there exists an a′ ∈Max(S) such that a ≤ a′. Then a′ ∈ cl(S,T+){a} and,
hence, the net {aσ′ , σ

′ ∈ Σ′} converges to a′ in (Max(S),T+M ). This shows that
the net {aσ, σ ∈ Σ} has a cluster point in (Max(S),T

+
M ). Therefore, the space

(Max(S),T+M ) is compact.
The proof of the fact that (Min(S),T−m) is a compact T1-space is analogous.

(b) We first prove that (Min(S),T+m) is a Hausdorff space. Indeed, let a, b ∈
Min(S) and a -= b. Suppose that for any U, V ∈ L+ such that a ∈ U and b ∈ V ,
we have that U ∩ V -= ∅. Then the family F = {W ∈ L+ : a ∈ W or b ∈ W} has
the finite intersection property (see 2.2) and its elements are closed subsets of the
compact space (S,T−). Consequently there exists a c ∈

⋂
F. Since L+ is a base

for T+, we obtain that a ∈ cl(S,T+){c} and b ∈ cl(S,T+){c}. Hence c ≤ a and c ≤ b.
Having in mind that a, b ∈Min(S), we get that c = a and c = b, i.e. a = b, which
is a contradiction. Therefore, (Min(S),T+m) is a Hausdorff space.

Analogously, one proves that (Max(S),T−M ) is a Hausdorff space.

(c) We first prove that Min(S) is dense in (S,T+). Indeed, let x ∈ U ∈ T+.
By 2.31, there exists an a ∈Min(S) such that a ≤ x. Then x ∈ cl(S,T+){a}. Hence
a ∈ U ∩Min(S). Therefore, Min(S) is dense in (S,T+).

The proof of the fact that Max(S) is dense in (S,T−) is analogous. �

Let us recall the definitions of the coherent spaces and coherent maps:

Definition 2.34. (see, for example, [20]) Let (X,T) be a topological space.

(a) We shall denote by KO(X,T) (or, simply, by KO(X)) the family of all
compact open subsets of X.

(b) A closed subset F of X is called irreducible if the equality F = F1 ∪ F2,
where F1 and F2 are closed subsets of X, implies that F = F1 or F = F2.

(c) We say that the space (X,T) is sober if it is a T0-space and for every non-
void irreducible subset F of X there exists a x ∈ X such that F = clX{x}.
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(d) The space (X,T) is called coherent if it is a compact sober space and the
family KO(X,T) is a closed under finite intersections base for the topology
T.

(e) A continuous map f : (X ′,T′) −→ (X ′′,T′′) is called coherent if U ′′ ∈
KO(X ′′) implies that f−1(U ′′) ∈ KO(X ′).

Notation 2.35. We denote by CohSp the category of all coherent spaces
and all coherent maps between them.

Theorem 2.36. The categories S and CohSp are isomorphic.

Proof. We shall construct two covariant functors F : S −→ CohSp and G :
CohSp −→ S such that F ◦G = IdCohSp and G ◦ F = IdS .

For every (S,T+,T−) ∈ |S|, we put F (S,T+,T−) = (S,T+). We shall prove
that (S,T+) ∈ |CohSp|. Indeed, we have: a) the space (S,T+) is compact (by 2.4);
b) KO(S,T+) = L+ (by 2.5) and hence the family KO(S,T+) is a closed under
finite intersections base for the topology T+ (by 2.2 and (SP1) of 2.3). Therefore
we need only to show that (S,T+) is a sober space. We have that (S,T+) is a
T0-space (by 2.4). Let A be a non-empty irreducible subset of (S,T+). Then A
is a closed subset of (S,T), where T = sup{T+,T−}. Hence, by 2.16, (A,T+A ,T

−

A)
is an abstract spectrum (where T+A (resp. T

−

A) is the induced by T+ (resp. T−)
topology on the subset A of S). We shall prove that |Min(A)| = 1. Suppose that
x, y ∈ Min(A) and x -= y. Let T′ be the induced by T

+
A topology on Min(A).

Since (Min(A),T′) is a Hausdorff space (by 2.33(b)), there exists an U ∈ T′ such
that x ∈ U and y -∈ cl(Min(A),T′)U . Put B = cl(Min(A),T′)U and C = Min(A) \ U .
Then B and C are closed subsets of (Min(A),T′), Min(A) = B ∪C, B -=Min(A)
and C -= Min(A). Since Min(A) is dense in (A,T+A) (by 2.33(c)), we obtain that
A = B′ ∪ C ′, where B′ = cl(A,T+

A
)B and C ′ = cl(A,T+

A
)C. The sets B

′ and C ′

are closed in (S,T+) since they are closed in (A,T+A) and A is closed in (S,T+).
Moreover, B′ -= A and C ′ -= A, because B′ ∩Min(A) = B and C ′ ∩Min(A) = C.
Since A is irreducible, we get a contradiction. Therefore, |Min(A)| = 1. Let
Min(A) = {a}. Then 2.33(c) implies that A = cl(S,T+){a}. So, (S,T

+) is a sober
space. We proved that (S,T+) is a coherent space.

Let f ∈ S((S1,T
+
1 ,T

−

1 ), (S2,T
+
2 ,T

−

2 )). We denote by F (f) : S1 −→ S2 the
function defined by F (f)(x) = f(x) for every x ∈ S1. We shall show that F (f) :
(S1,T

+
1 ) −→ (S2,T

+
2 ) is a coherent map. Indeed, since f is a S-morphism, we have

that F (f) : (S1,T
+
1 ) −→ (S2,T

+
2 ) is a continuous map. Let K ⊆ S2, K ∈ T

+
2 and

K be a compact subspace of (S2,T
+
2 ). Then, by 2.5, K ∈ L

+
2 , i.e. S2 \K ∈ T

−

2 .
Hence f−1(K) ∈ T

+
1 and f

−1(S2 \K) ∈ T
−

1 . Since S1 \ f
−1(K) = f−1(S2 \K), we

obtain that f−1(K) ∈ L
+
1 . Consequently, by 2.5, f

−1(K) is a compact subspace of
(S1,T

+
1 ). So, we proved that F (f) ∈ CohSp(F (S1,T

+
1 ,T

−

1 ), F (S2,T
+
2 ,T

−

2 )). The
definition of F (f) implies immediately that F preserves the identity maps and that
F (f ◦ g) = F (f) ◦ F (g). Therefore, we constructed a functor F : S −→ CohSp.
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Let now (S,T+) ∈ |CohSp|, B+ = KO(S,T+) and B− = {S \ U : U ∈ B+}.
Since B+ is closed under finite intersections and finite unions, we obtain that B−

has the same properties. Obviously,
⋃
B− = S. Hence the family T− of all subsets

of S that are unions of subfamilies of B− is a topology on S and B− is a base for the
topological space (S,T−). We shall show that the bitopological space (S,T+,T−)
is an abstract spectrum and we will put G(S,T+) = (S,T+,T−).

It is easy to see that B+ ⊆ L+ and B− ⊆ L− (see 2.1 for the notation). Since,
by the definition of a coherent space, the family B+ is a base for the topological
space (S,T+) and since the family B− is a base for the space (X,T−), we obtain
that L+ (resp. L−) is a base for (S,T+) (resp. (S,T−)). Hence the condition
(SP1) of 2.3 is fulfilled. The condition (SP3) of 2.3 is also fulfilled since (S,T+) is
a T0-space. Let us put T = sup{T

+,T−}. We shall prove that the space (S,T) is
compact. This will imply immediately that the condition (SP2) of 2.3 is fulfilled.

Obviously, for proving that (S,T) is compact, it is enough to show that every
cover of S of the type Ω = Ω+ ∪ Ω−, where Ω+ (resp. Ω−) is a subfamily of
B+ \ {S} (resp. B− \ {S}), has a finite subcover. Let Ω∗ be the family of all finite
unions of the elements of Ω−. Then Ω∗ ⊆ B−,

⋃
Ω− =

⋃
Ω∗ and (Ω∗,⊆) is a

directed set (i.e. for every U, V ∈ Ω∗ there exists a W ∈ Ω∗ such that U ∪V ⊆W ).
Put H = S \

⋃
Ω+. Then H ⊆

⋃
Ω∗ and H is a closed and, hence, compact

subset of (S,T+). If we find a U0 ∈ Ω
∗ such that H ⊆ U0 then we will have that

S \ U0 ⊆ S \H =
⋃
Ω+. From U0 ∈ B− we will get that S \ U0 ∈ B+ and, hence,

S \U0 will be a compact subset of (S,T
+) covered by Ω+. Consequently there will

be a finite subfamily Ω+
f of Ω

+ covering S \ U0. Then Ω
+
f ∪ {U0} will cover S.

Therefore, we will find a finite subcover of Ω. So, it is enough to prove that there
exists an U0 ∈ Ω

∗ such that H ⊆ U0.
PutH+ = {V ∩H : V ∈ B+}. ThenH+ is a base for the subspaceH of (S,T+),

H+ is closed under finite unions and finite intersections, H+ is a distributive lattice
with respect to the operations ∪ and ∩ and, sinceH is closed in (S,T+), all elements
of H+ are compact subsets of (S,T+). Furthermore, for every U ∈ Ω∗ we put
U+ = S \ U . Then U+ ∈ B+ for every U ∈ Ω∗.

Suppose that for every U ∈ Ω∗ we have that H \ U -= ∅. Then H ∩ U+ -= ∅
for every U ∈ Ω∗. Since for every U, V ∈ Ω∗ there exists a W ∈ Ω∗ such that
W+ ⊆ U+∩V +, the family {H ∩U+ : U ∈ Ω∗} has the finite intersection property.
Hence it generates a filter ϕ in H+. Let Φ be an ultrafilter in H+ containing ϕ
and let L =

⋂
{cl(S,T+)W : W ∈ Φ}. Then L is a non-empty closed subset of

(S,T+) and L ⊆ H. Moreover, L ∩W0 -= ∅ for every W0 ∈ Φ. Indeed, let W0 ∈ Φ.
Then W0 ∈ H+ and, hence, W0 is a compact subset of (S,T

+). It is easy to see
that the family {clW0(W0 ∩ W ) : W ∈ Φ} has the finite intersection property.
Consequently ∅ -=

⋂
{clW0(W0∩W ) :W ∈ Φ} =W0∩

⋂
{clH(W0∩W ) :W ∈ Φ} ⊆

W0∩
⋂
{clHW :W ∈ Φ} =W0∩L. So, we proved that L∩W0 -= ∅ for everyW0 ∈ Φ.

We shall prove now that L is an irreducible subset of (S,T+). Indeed, suppose that
L = A∪B, where A and B are closed subsets of (S,T+) and A -= L, B -= L. Then
(H \ A) ∩ L -= ∅ and (H \ B) ∩ L -= ∅. Let x ∈ (H \ A) ∩ L. Then there exists a
W ′ ∈ H+ such that x ∈ W ′ ⊆ H \ A. Since x ∈ L, we obtain that W ′ ∩W -= ∅
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for every W ∈ Φ. Consequently W ′ ∈ Φ. Analogously, taking an y ∈ (H \ B) ∩ L,
we can find a W ′′ ∈ Φ such that y ∈ W ′′ ⊆ H \ B. Putting W0 = W

′ ∩W ′′, we
get that W0 ∈ Φ. Since W0 ⊆ (H \ A) ∩ (H \ B) = H \ (A ∪ B) = H \ L, we
conclude that W0 ∩ L = ∅ – a contradiction. Therefore, L is an irreducible subset
of (S,T+). This implies, because of the fact that (S,T+) is sober, that there exists
a point l ∈ L such that L = cl(S,T+){l}. We shall show that l ∈

⋂
{U+ : U ∈ Ω∗}.

Indeed, let U ∈ Ω∗. Then H ∩ U+ ∈ ϕ ⊆ Φ. Hence U+ ∩ L -= ∅. Let x ∈ U+ ∩ L.
Then x ∈ U+ ∈ T+ and x ∈ L = cl(S,T+){l}. Consequently l ∈ U

+. So, we proved
that l ∈

⋂
{U+ : U ∈ Ω∗}. On the other hand we have that l ∈ L ⊆ H ⊆

⋃
Ω∗ =⋃

{S \ U+ : U ∈ Ω∗} = S \
⋂
{U+ : U ∈ Ω∗}, i.e. l -∈

⋂
{U+ : U ∈ Ω∗} – a

contradiction. It shows that there exists a U0 ∈ Ω
∗ such that H ⊆ U0. Therefore,

we proved that the space (S,T) is compact and, hence, that the condition (SP2) of
2.3 is fulfilled. So, the bitopological space (S,T+,T−) is an abstract spectrum.

Let f ∈ CohSp((S1,T
+
1 ), (S2,T

+
2 )). We denote by G(f) : S1 −→ S2 the

function defined by G(f)(x) = f(x) for every x ∈ S1. We shall show that G(f) ∈
S((S1,T

+
1 ,T

−

1 ), (S2,T
+
2 ,T

−

2 )), where (Si,T
+
i ,T

−

i ) = G(Si,T
+
i ), i = 1, 2. Indeed,

we have that f : (S1,T
+
1 ) −→ (S2,T

+
2 ) is a continuous map and hence G(f) :

(S1,T
+
1 ) −→ (S2,T

+
2 ) is a continuous map. For proving that G(f) : (S1,T

−

1 ) −→
(S2,T

−

2 ) is a continuous map it is enough to show that U ∈ B
−

2 implies that
f−1(U) ∈ B

−

1 (because B−1 (resp. B
−

2 ) is a base for T
−

1 (resp. T
−

2 )) (here we
use the notation introduced above in the process of the definition of G on the
objects of the category CohSp). So, let U ∈ B

−

2 . Then S2 \ U ∈ KO(S2,T
+
2 ).

Since f is a coherent map, we obtain that V = f−1(S2 \ U) ∈ KO(S1,T
+
1 ) =

B
+
1 . Obviously, V = S1 \ f

−1(U). Consequently f−1(U) = S1 \ V ∈ B
−

1 . So,
G(f) ∈ S(G(S1,T

+
1 ), G(S2,T

+
2 )). The definition of G(f) implies immediately that

G preserves the identity maps andG(f◦g) = G(f)◦G(g). Therefore, we constructed
a functor G : CohSp −→ S.

From 2.7 and the constructions of the functors F and G we get that F ◦G =
IdCohSp and G ◦ F = IdS . So, the categories S and CohSp are isomorphic. �

Corollary 2.37. The categories DLat and S are dual.

Proof. Since the categoriesDLat and CohSp are dual (see, for example, [20]),
our statement follows immediately from 2.36. �

2.38. Let us recall the descriptions of the duality functors

F ′ : CohSp −→DLat and G′ :DLat −→ CohSp

(see, for example, [20]): if (X,T+) is a coherent space then

F ′(X,T+) = (KO(X,T+),∪,∩, ∅, X);

if f ∈ CohSp((X1,T
+
1 ), (X2,T

+
2 )) then F

′(f) : F ′(X2,T
+
2 ) −→ F ′(X1,T

+
1 ) is

defined by the formula
F ′(f)(U) = f−1(U)
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for every U ∈ KO(X2,T
+
2 ); if (L,∨,∧, 0, 1) ∈ |DLat| then

G′(L,∨,∧, 0, 1) = (spec(L),O),

where O is the Stone topology on spec(L) (see the proof of 2.22 for the notation);
if f ∈DLat((L1,∨1,∧1, 01, 11), (L2,∨2,∧2, 02, 12)) then

G′(f) : G′(L2,∨2,∧2, 02, 12) −→ G′(L1,∨1,∧1, 01, 11))

is defined by the formula
G′(f)(p) = f−1(p)

for every p ∈ spec(L2). The natural equivalence ψ : IdCohSp −→ G′ ◦F ′ is given

by the formula ψ(X,T+) = ψ(X,T+) for every (X,T
+) ∈ |CohSp|, where

ψ(X,T+) : (X,T
+) −→ (G′ ◦ F ′)(X,T+), x 8→ {U ∈ F ′(X,T+) : x -∈ U}.

In particular, ψ(X,T+) is a CohSp-isomorphism for every coherent space (X,T+).
The natural equivalence φ : IdDLat −→ F ′ ◦G′ is given by the formula φ(L) = φL
for every L ∈ |DLat|, where

φL : L −→ (F ′ ◦G′)(L), l 8→ {p ∈ G′(L) : l -∈ p}.

In particular, φL is a DLat-isomorphism for every distributive lattice L.

2.4. SOME APPLICATIONS

Let us start with recalling that if L is a distributive lattice with 0 and 1 then
its classical spectrum spec(L) can be interpreted as an abstract spectrum (see 2.22,
2.6 and 2.7).

We will first prove a general theorem.

Theorem 2.39. Let X be a set, S be a family of subsets of X (i.e. S ⊆
Exp(X)), T+ and T− be the topologies on S defined in 2.18, and let the bitopological
space (S,T+,T−) be an abstract spectrum. Then there exist a distributive lattice L
with 0 and 1, and a function ϕ : X −→ L such that:

(i) the set ϕ(X) generates L;

(ii) ϕ−1(q) ∈ S for every q ∈ spec(L) (see 2.22 for the notation);

(iii) Φ : spec(L) −→ S, q 8→ ϕ−1(q), is an S-isomorphism;

(iv) if L′ is a distributive lattice with 0 and 1, and θ : X −→ L′ is a function
such that:

(1) θ−1(q) ∈ S for every q ∈ spec(L′), and

(2) Θ : spec(L′) −→ S, q 8→ θ−1(q), is an S-morphism,

then there exists a unique lattice homomorphism l : L−→L′ with l◦ϕ=θ;
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(v) if ϕ1 : X −→ L1, where L1 is a distributive lattice with 0 and 1, is such
that:

(1′) (ϕ1)
−1(q) ∈ S for every q ∈ spec(L1), and

(2′) Φ1 : spec(L1) −→ S, q 8→ (ϕ1)
−1(q), is an S-isomorphism,

then there exists a unique lattice isomorphism l : L −→ L1 with l◦ϕ = ϕ1;

(vi) ϕ : X −→ L is an injection iff for any two different points x and y of X
there exists a p ∈ S containing exactly one of them.

Proof. We shall use the notation of 2.18, 2.20 and 2.22.
By (the proof of) 2.36, we have that (S,T+) ∈ |CohSp|. We put L = F ′(S,T+)

(see 2.38), i.e. L = {U ∈ T+ : U is compact} and, hence, by 2.5, L = L+. Then L is
a distributive lattice with 0 and 1. Define the function ϕ : X −→ L by the formula
ϕ(x) = U+

x for every x ∈ X (recall that U+
x = {p ∈ S : x -∈ p} and U

+
x ∈ L+ (see

2.18 and the part (b)⇒ (a) of its proof)). Hence ϕ(X) (= {U+
x : x ∈ X} = P+) is

a subbase for T+ (see 2.18). In what follows, the topological space (S,T+) will be
denoted, briefly, by S.

The proof of (i): Let L∗ be the set of all finite unions of the elements of the
set B+ of all finite intersections of the elements of P+ = ϕ(X). Then L∗ coincides
with the subset of L generated by ϕ(X) and B+ is a base for T+. If U ∈ L then
U is a compact open subset of S and, hence, it is a finite union of elements of B+.
Thus U ∈ L∗. Therefore, the set ϕ(X) generates L.

The proof of (ii) and (iii): By 2.38, we have that spec(L) = G′(L). Since the
map ψS : S −→ (G′ ◦F ′)(S), p −→ {U ∈ L : p -∈ U} is a CohSp-isomorphism (see
2.38), we get that spec(L) = ψS(S).

Let q ∈ spec(L). Then there exists a unique p ∈ S such that q = ψS(p). So,
we have that ϕ−1(q) = ϕ−1(ψS(p)) = {x ∈ X : ϕ(x) ∈ ψS(p)} = {x ∈ X : U+

x ∈
ψS(p)} = {x ∈ X : p -∈ U+

x } = {x ∈ X : x ∈ p} = p, i.e. ϕ−1(q) = ψ−1S (q) for every
q ∈ spec(L). Since the function ψ−1S is a CohSp-isomorphism, we conclude that
the function Φ : spec(L) −→ S, q −→ ϕ−1(q), is a CohSp-isomorphism. Now,
(the proof of) 2.36 implies, that Φ is an S-isomorphism.

The proof of (iv): Put τ = ψS ◦Θ. Then, by 2.36 and 2.38,

Θ : spec(L′) −→ (S,T+) and τ : spec(L′) −→ (G′ ◦ F ′)(S,T+)

are CohSp-morphisms. Since G′(L′) = spec(L′) and F ′(S,T+) = L, we obtain
that F ′(τ) = F ′(Θ) ◦ F ′(ψS) : (F

′ ◦ G′)(L) −→ (F ′ ◦ G′)(L′) (see 2.38). Put
l = φ−1L′ ◦ F

′(τ) ◦ φL (using the notation from 2.38). Then l : L −→ L′ is a lattice
homomorphism. We shall prove that F ′(Θ) ◦ F ′(ψS) ◦ φL ◦ ϕ = φL′ ◦ θ. This
will imply that φ−1L′ ◦ F

′(Θ) ◦ F ′(ψS) ◦ φL ◦ ϕ = θ and, hence, we wll have that
θ = φ−1L′ ◦(F

′(Θ)◦F ′(ψS))◦φL ◦ϕ = (φ
−1
L′ ◦F

′(τ)◦φL)◦ϕ = l◦ϕ, i.e. that θ = l◦ϕ.
Let x ∈ X. Then (φL′ ◦ θ)(x) = φL′(θ(x)) = {q′ ∈ spec(L′) : θ(x) -∈ q′}.

On the other hand, (φL ◦ ϕ)(x) = φL(ϕ(x)) = {q ∈ spec(L) : ϕ(x) -∈ q}. Put
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U = (F ′(ψS) ◦ φL ◦ ϕ)(x). Since ψ
−1
S = Φ (see the proof of (ii) and (iii) above),

we get (F ′(ψS))
−1 = F ′(ψ−1S ) = F ′(Φ). Hence (F ′(Φ))(U) = (F ′(ψS))

−1(U) =
(φL ◦ϕ)(x). Now, the definition of F

′(Φ) (see 2.38) implies (F ′(Φ))(U) = Φ−1(U).
Hence Φ−1(U) = (φL ◦ ϕ)(x). Since Φ is an isomorphism (see (iii)), we get U =
Φ((φL ◦ ϕ)(x)) = Φ({q ∈ spec(L) : ϕ(x) -∈ q}) = {Φ(q) : q ∈ spec(L), ϕ(x) -∈ q} =
{ϕ−1(q) : q ∈ spec(L), ϕ(x) -∈ q} = {ϕ−1(q) : q ∈ spec(L), x -∈ ϕ−1(q)} = {p ∈
S : x -∈ p} = U+

x , i.e U = U+
x . Therefore, (F

′(ψS) ◦ φL ◦ ϕ)(x) = U+
x . Then

(F ′(Θ) ◦ F ′(ψS) ◦ φL ◦ ϕ)(x) = (F ′(Θ))((F ′(ψS) ◦ φL ◦ ϕ)(x)) = (F ′(Θ))(U+
x ) =

Θ−1(U+
x ) = {q

′ ∈ spec(L′) : Θ(q′) ∈ U+
x } = {q

′ ∈ spec(L′) : θ−1(q′) ∈ U+
x } = {q

′ ∈
spec(L′) : x -∈ θ−1(q′)} = {q′ ∈ spec(L′) : θ(x) -∈ q′} = (φL′ ◦ θ)(x). So, we proved
that θ = l◦ϕ. This, combined with the fact that ϕ(X) generates L (see (i)), proves
the uniqueness of l.

The proof of (v): Let ϕ1 : X −→ L1 has the properties (1
′) and (2′). Then,

using (iv), we obtain a lattice homomorphism l : L −→ L1 such that l ◦ ϕ = ϕ1.
From the construction of l, given in (iv), we have that l = φ−1L1 ◦ F

′(ψS ◦ Φ1) ◦ φL.
Since Φ1 is an CohSp-isomorphism (by (2′) and 2.36), we get that l is a DLat-
isomorphism (because all other components of the composition defining l are also
DLat-isomorphisms (see 2.38)).

The proof of (vi): Let x, y ∈ X and x -= y. Then ϕ(x) = {p ∈ S : x -∈ p} and
ϕ(y) = {p ∈ S : y -∈ p}. Hence, ϕ(x) -= ϕ(y) if and only if there exists a p ∈ S
containing exactly one of the points x and y. �

Corollary 2.40. Let X be a set endowed with two arbitrary multivalued binary
operations ⊕ and ⊗ and with two fixed different points ξ0 ∈ X and ξ1 ∈ X. Then
there exist a distributive lattice (L,∨,∧) with 0 and 1, and a function ϕ : X −→ L
such that:

(i) the set ϕ(X) generates L;

(ii) ϕ−1(q) ∈ S(X)pr for every q ∈ spec(L) (resp. ϕ−1(q) ∈ S(X) for every
q ∈ spec(L)) (see 2.20 and 2.22 for the notation);

(iii) Φ : spec(L) −→ S(X)pr, q 8→ ϕ−1(q) (resp. Φ : spec(L) −→ S(X),
q −→ ϕ−1(q)) is an S-isomorphism;

(iv) if L′ is a distributive lattice with 0 and 1, and θ : X −→ L′ is a function
such that:

(1) θ−1(q) ∈ S(X)pr (resp. θ−1(q) ∈ S(X)) for every q ∈ spec(L′),
and

(2) Θ : spec(L′) −→ S(X)pr, q 8→ θ−1(q), (resp. Θ : spec(L′) −→
S(X), q 8→ θ−1(q),) is an S-morphism,

then there exists a unique lattice homomorphism l : L−→L′ with l◦ϕ=θ;
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(v) if ϕ1 : X −→ L1, where L1 is a distributive lattice with 0 and 1, is such
that:

(1′) (ϕ1)
−1(q) ∈ S(X)pr for every q ∈ spec(L1) (resp. (ϕ1)

−1(q) ∈
S(X) for every q ∈ spec(L1)), and

(2′) Φ1 : spec(L1) −→ S(X)pr, q 8→ (ϕ1)
−1(q) (resp. Φ1 : spec(L1) −→

S(X), q 8→ (ϕ1)
−1(q)) is an S-isomorphism,

then there exists a unique lattice isomorphism l : L −→ L1 with l◦ϕ = ϕ1;

(vi) a ⊕ b ⊆ {x ∈ X : ϕ(x) ≤ ϕ(a) ∨ ϕ(b)} and a ⊗ b ⊆ {x ∈ X : ϕ(x) ≥
ϕ(a) ∧ ϕ(b)} for any a, b ∈ X.

Proof. Denote by S the set S(X)pr (resp. S(X)) (see 2.20 for the notation)
and define the topologies T+pr (resp. T

+) and T−pr (resp. T
−) on S as in 2.18. Then,

by 2.20, the bitopological space (S,T+pr,T
−

pr) (resp. (S,T+,T−)) is an abstract
spectrum. Hence, applying Theorem 2.39, we obtain a distributive lattice

(L,∨,∧, 0, 1)

and a function ϕ : X −→ L satisfying conditions (i)-(v) of 2.39 and, hence, our
conditions (i)-(v) as well. Consequently, we need only to check that condition (vi) is
also satisfied. In what follows, the notation of the proof of 2.39 and the construction
of the function ϕ given there are used.

Let a, b ∈ X and x ∈ a ⊕ b. Then ϕ(a) ∨ ϕ(b) = ϕ(a) ∪ ϕ(b) = {p ∈ S :
a -∈ p or b -∈ p}. Hence S \ (ϕ(a) ∪ ϕ(b)) = {p ∈ S : a ∈ p and b ∈ p}. Let
p′ ∈ ϕ(x) = U+

x = {p ∈ S : x -∈ p} and suppose that p
′ -∈ ϕ(a) ∪ ϕ(b). Then a ∈ p′

and b ∈ p′. This implies that a ⊕ b ⊆ p′. Then x ∈ p′ and, hence, p′ -∈ ϕ(x) – a
contradiction. Therefore, p′ ∈ ϕ(a)∪ϕ(b). This shows that ϕ(x) ⊆ ϕ(a)∪ϕ(b), i.e.
ϕ(x) ≤ ϕ(a) ∨ ϕ(b), for every x ∈ a ⊕ b. Consequently, a ⊕ b ⊆ {x ∈ X : ϕ(x) ≤
ϕ(a) ∨ ϕ(b)} for any a, b ∈ X.

Let x ∈ a ⊗ b. We have that ϕ(a) ∧ ϕ(b) = ϕ(a) ∩ ϕ(b) = {p ∈ S : a -∈ p and
b -∈ p}. Let p′ ∈ ϕ(a)∩ϕ(b). Then a -∈ p′ and b -∈ p′. Suppose that p′ -∈ ϕ(x). Then
x ∈ p′ and, hence, (a⊗ b) ∩ p′ -= ∅. This implies that a ∈ p′ or b ∈ p′, i.e. we get a
contradiction. Therefore, p′ ∈ ϕ(x). So, ϕ(a)∩ϕ(b) ⊆ ϕ(x), i.e. ϕ(a)∧ϕ(b) ≤ ϕ(x)
for every x ∈ a⊗ b. �

Corollary 2.41. Let X be a set endowed with two arbitrary single-valued
binary operations + and × and with two fixed different points ξo ∈ X and ξ1 ∈ X.
Then there exist a distributive lattice (L,∨,∧) with 0 and 1, and a function ϕ :
X −→ L such that:

(i) the set ϕ(X) generates L;

(ii) ϕ−1(q) ∈ S′(X) for every q ∈ spec(L) (resp. ϕ−1(q) ∈ S′(X)pr for every
q ∈ spec(L)) (see 2.24, 2.22 and 2.20 for the notation);
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(iii) Φ : spec(L) −→ S′(X), q 8→ ϕ−1(q), (resp. Φ : spec(L) −→ S′(X)pr,
q 8→ ϕ−1(q),) is an S-isomorphism;

(iv) if L′ is a distributive lattice with 0 and 1, and θ : X −→ L′ is a function
such that:

(1) θ−1(q) ∈ S′(X) (resp. θ−1(q) ∈ S′(X)pr) for every q ∈ spec(L′),
and

(2) Θ : spec(L′) −→ S′(X), q 8→ θ−1(q) (resp. Θ : spec(L′) −→
S′(X)pr, q 8→ θ−1(q)) is an S-morphism,

then there exists a unique lattice homomorphism l : L−→L′ with l◦ϕ=θ;

(v) if ϕ1 : X −→ L1, where L1 is a distributive lattice with 0 and 1, is such
that:

(1′) (ϕ1)
−1(q) ∈ S′(X) for every q ∈ spec(L1) (resp. (ϕ1)

−1(q) ∈
S′(X)pr for every q ∈ spec(L1)), and

(2′) Φ1 : spec(L1) −→ S′(X), q 8→ (ϕ1)
−1(q) (resp. Φ1 : spec(L1) −→

S′(X)pr, q 8→ (ϕ1)
−1(q)) is an S-isomorphism,

then there exists a unique lattice isomorphism l : L −→ L1 with l◦ϕ = ϕ1;

(vi) ϕ(a+ b) = ϕ(a) ∨ ϕ(b) and ϕ(a× b) = ϕ(a) ∧ ϕ(b) for every a, b ∈ X.

Proof. Denote by S the set S′(X) (resp. S′(X)pr) (see 2.24 for the notation)
and introduce the topologies T+ (resp. T+pr) and T− (resp. T−pr) on S as in 2.18.
Then, by 2.24, the bitopological space (S,T+,T−) (resp. (S,T+pr,T

−

pr) ) is an ab-
stract spectrum. Hence, applying Theorem 2.39, we obtain a distributive lattice

(L,∨,∧, 0, 1)

and a function ϕ : X −→ L satisfying conditions (i)-(v) of 2.39 and, hence, our
conditions (i)-(v) as well. Consequently, we need only to check that condition (vi)
is also satisfied. This can be done easily (see the proof of 2.40). �

3. SEPARATIVE ALGEBRAS

The main aim of this section is to give a detailed exposition of the theory of
separative algebras, introduced and announced by Prodanov in [31]. This theory is
a straight generalization of the theory of convex spaces in the sense of Tagamlitzki
[44], which have been also a subject of Prodanov’s Ph.D. dissertation [36]. We will
follow very closely the style of Prodanov’s proofs from [35] and [36].
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3.1. PRESEPARATIVE ALGEBRAS

Let X -= ∅ be a set with two binary multivalued operations denoted by “ × ”
and “ + ”. This means that for any x, y ∈ X, x× y ⊆ X and x+ y ⊆ X. Later on,
instead of “ × ” and “ + ”, we shall use “.” and “ + ”, and following the common
mathematical practice, sometimes we shall omit the sign “.”.

We extend the operations “.” and “ + ” for arbitrary subsets A and B of X
putting

A.B =
⋃

a∈A,b∈B

a.b and A+B =
⋃

a∈A,b∈B

a+ b

The one element subset {x} ⊆ X will be denoted simply by x. Then for instance
x(yz) will mean {x}.(y.z).

Definition 3.1. The system X = (X, .,+) is called a preseparative algebra if
X -= ∅, “.” and “+” are binary multivalued operations in X satisfying the following
axioms: for arbitrary a, b, c, x ∈ X,

(i) ab = ba; (i ′) a+ b = b+ a;

(ii) a(bc) = (ab)c; (ii ′) a+ (b+ c) = (a+ b) + c;

(iii) from a ∈ b+ x, and c ∈ dx, it follows that (ad) ∩ (b+ c) -= ∅.

By means of the operations “.” and “+ ”, we introduce two new operations as
follows:

division: a/b = {x ∈ X : a ∈ b.x} and

difference: a− b = {x ∈ X : a ∈ b+ x}.

We extend the operations division and difference for arbitrary subsets putting

A/B =
⋃

a∈A,b∈B

a/b, A−B =
⋃

a∈A,b∈B

a− b.

Sometimes instead of A/B we will write A : B or A
B
.

The following lemma follows immediately from the relevant definitions.

Lemma 3.2. Let “•” be any of the operations “.”, “+”, “/” and “−”. Then
the following conditions are true:

(i) A • ∅ = ∅ •A = ∅;

(ii) If A ⊆ A′ and B ⊆ B′ then A •B ⊆ A′ •B′;

(iii) (
⋃
i∈I Ai) • (

⋃
j∈J Bj) =

⋃
i∈I,j∈J Ai •Bj and, in particular,

(iii ′) A • (B ∪ C) = (A •B) ∪ (A • C);

(iv) (
⋂
i∈I Ai) • (

⋂
j∈J Bj) ⊆

⋂
i∈I,j∈J Ai •Bj.
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Proposition 3.3. The following is true for arbitrary A,B,C ⊆ X:

(i) (A/B) ∩ C -= ∅ if and only if A ∩ (B.C) -= ∅;

(ii) (A−B) ∩ C -= ∅ if and only if A ∩ (B + C) -= ∅.

Proof. (i) (A/B) ∩ C -= ∅ ⇔ ∃x ∈ X: x ∈ (A/B) ∩ C ⇔ ∃x ∈ X: x ∈ A/B
and x ∈ C ⇔ ∃x, a, b ∈ X a ∈ A, b ∈ B x ∈ a/b and x ∈ C ⇔ ∃x, a, b ∈ X:
a ∈ A, b ∈ B, a ∈ b.x and x ∈ C ⇔ ∃a ∈ X: a ∈ A and a ∈ B.C ⇔ ∃a ∈ X:
a ∈ A ∩ (B.C)⇔ A ∩ (B.C) -= ∅.

The proof of (ii) is similar. �

Proposition 3.4. The following conditions are true for arbitrary subsets A,B
and C of X:

(i) AB = BA ; (i ′) A+B = B +A ;

(ii) A(BC) = (AB)C, (ii ′) A+ (B + C) = (A+B) + C.

Proof. As an example we shall verify (i). The proof of the remaining conditions
is similar.

x ∈ AB ⇔ ∃a ∈ A ∃b ∈ B: x ∈ ab ⇔ (by commutativity of “.”) ∃a ∈ A
∃b ∈ B: x ∈ ba⇔ x ∈ BA. �

Associativity enables us to write A1.A2. . . . An and A1+A2+ · · ·+An without
parentheses.

We denote An = A.A . . . A (n-times) and nA = A + A + · · · + A (n-times),
putting A1 = 1A = A.

Lemma 3.5. The following conditions are true:

(i) AiAj = Ai+j ;

(i ′) iA+ jA = (i+ j)A ;

(ii)
(A ∪B)2 = A2 ∪AB ∪B2 ;

(A ∪B ∪ C)2 = A2 ∪AB ∪AC ∪BC ∪ C2 ;

(ii ′)
2(A ∪B) = 2A ∪ (A+B) ∪ 2B ;

2(A ∪B ∪ C) = 2A ∪ (A+B) ∪ (A+ C) ∪ (B + C) ∪ 2C .

Proof. (i) and (i ′) follow immediately from the definition, and (ii) and (ii ′) fol-
low from Lemma 3.2(iii ′) and commutativity. �

Proposition 3.6. The following conditions are equivalent to the Axiom (iii)
from the definition of preseparative algebras (see Definition 3.1):

(i) a+ b
c
⊆ a+b

c
;
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(ii) a(b− c) ⊆ ab− c.

Proof. As an example we show the equivalence of the Axiom (iii) with (i).

((Axiom (iii))−→ (i)). Let x ∈ a + b
c
. Then there exists y ∈ X such that

x ∈ a + y, y ∈ b
c
and b ∈ c + y. By Axiom (iii), (xc) ∩ (a + b) -= ∅. Then, by

Proposition 3.3(i), we obtain that x ∩ a+b
c
-= ∅ and hence x ∈ a+b

c
. Since x is an

arbitrary element of X, this shows that a+ b
c
⊆ a+b

c
.

((i)−→ (Axiom (iii))). Let a ∈ b + x and c ∈ dx. Then x ∈ c
d
and c ∈ b + c

d
.

Then, by (i), c ∈ b+c
d
, so that c ∩ b+c

d
-= ∅. Applying Proposition 3.3(i), we obtain

that (cd) ∩ (b+ c) -= ∅, which shows that Axiom (iii) holds.

The equivalence of Axiom (iii) with (ii) can be proved similarly by using
Proposition 3.3(ii). �

Proposition 3.7. For arbitrary subsets A, B, C, D of X, the following con-
ditions are true:

(i) A+ B
C
⊆ A+B

C
;

(ii) A(B − C) ⊆ AB − C ;

(iii) (A/B)/C = A/(BC) ;

(iv) (A−B)− C = A− (B + C) ;

(v)
A

B
+
C

D
⊆
A+ C

B.D
;

(vi) (A−B)(C −D) ⊆ AC − (B +D).

Proof. (i) and (ii) are extensions of Proposition 3.6, (i) and (ii), for arbitrary
sets and follow directly from Proposition 3.6.

(iii) Let x be an arbitrary element of X. Then, applying Proposition 3.3(i), we
obtain that

x ∈ (A/B)/C ⇔ (A/B)/C ∩ x -= ∅(A/B) ∩ Cx -= ∅ ⇔ A ∩ (BCx) -= ∅

⇔ A ∩ (BC)x -= ∅ ⇔ (A/(BC)) ∩ x -= ∅ ⇔ x ∈ A/(BC).

Hence, (A/B)/C = A/(BC).

(iv) The proof can be done similarly by applying Proposition 3.3(ii).

(v)
A

B
+
C

D
⊆
A/B + C

D
⊆
(A+ C)/B

D
=
A+ C

B.D
. We have applied two times

(i) and then (iii).

(vi) The proof goes similarly by applying two times (ii) and then (iv). �
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3.2. FILTERS AND IDEALS IN PRESEPARATIVE ALGEBRAS

Definition 3.8. Let X = (X, .,+) be a preseparative algebra. A subset F ⊆ X
is called a filter in X if F.F ⊆ F . A subset I ⊆ X is called an ideal in X if I+I ⊆ I.
A subset F ⊆ X is called a prime filter in X if F is a filter and the complement
X \ F of F is an ideal in X. Dually, a subset I ⊆ X is called a prime ideal in X
if I is an ideal and X \ I is a filter in X.

Obviously the empty set ∅ and the whole set X are examples of a filter, ideal,
prime filter and prime ideal. They are in some sense trivial examples. Nontrivial
examples of filters and ideals will be given by the constructions µ(A) and α(A)
below. Constructions of prime filters and prime ideals will be given in Section 3.4
for separative algebras.

The following lemma follows immediately from the definitions of filter and
ideal.

Lemma 3.9. The intersection of any set of filters (ideals) is a filter (ideal).

Let A ⊆ X. We define µ(A) - the multiplicative closure of A, by putting µ(A)
to be the intersection of all filters containing A. By Lemma 3.9, µ(A) is the smallest
filter containing A. Analogously, the intersection of all ideals containing A, denoted
by α(A) and called the additive closure of A, is the smallest ideal containing A.

Lemma 3.10. The following claims are true:

(i) µ(A) =
⋃
∞

i=1A
i ;

(i ′) α(A) =
⋃
∞

i=1 iA ;

(ii) a) If F is a filter, then F = µ(F ) ;

b) If A ⊆ B, then µ(A) ⊆ µ(B) ;

c) A ⊆ µ(A) ;

d) µ(µ(A)) = µ(A),

e) µ(A ∪ B) = µ(A) ∪ µ(A)µ(B) ∪ µ(B); if F and G are filters, then
µ(F ∪G) = F ∪FG∪G; if F is a filter and a ∈ X, then µ(F ∪a) =
F ∪ F.µ(a) ∪ µ(a) .

(ii ′)

a) If I is an ideal, then I = α(I) ;

b) If A ⊆ B then α(A) ⊆ α(B) ;

c) A ⊆ α(A) ;

d) α(α(A)) = α(A) ;
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e) α(A ∪ B) = α(A) ∪ (α(A) + α(B)) ∪ α(B); if I and J are ideals,
then α(I ∪ J) = I ∪ (I + J) ∪ J ; if I is an ideal and a ∈ X, then
α(I ∪ a) = I ∪ I.α(a) ∪ α(a).

Proof. (i) To prove the equality (i) it suffices to show that
⋃
∞

i=1A
i is the

smallest filter containing A. By Lemma 3.2(iv), we have (
⋃
∞

i=1A
i).(
⋃
∞

i=1A
i) ⊆⋃

∞

i,j=1A
i.Aj =

⋃
∞

i,j=1A
i+j ⊆ (

⋃
∞

i=1A
i), so

⋃
∞

i=1A
i is a filter, which obviously

contains A. To prove that
⋃
∞

i=1A
i is the smallest filter containing A, let α be a

filter and A ⊆ α. Applying Lemma 3.2(ii), we can show by induction on i that
Ai ⊆ αi ⊆ α and consequently

⋃
∞

i=1A
i ⊆ α.

(i ′) can be shown similarly.

(ii) The proof of the conditions a), b), c) and d) follows directly from the
definition of µ. To prove condition e), we shall show that the set F ∪ FG ∪ G,
where F = µ(A) and G = µ(B), is the smallest filter containing A ∪B.

By Lemma 3.5(ii), we obtain

(F ∪ FG ∪G)2 = F 2 ∪ F 2G ∪ FG ∪ F 2G2 ∪ FG2 ∪G2 ⊆ F ∪ FG ∪G.

This shows that F ∪FG∪G is a filter containing F and G and hence A and B. To
show that F ∪ FG ∪ G is the smallest filter containing A and B, let γ be a filter
such that A ⊆ γ and B ⊆ γ, so we have F ⊆ γ and G ⊆ γ. Then F ∪ G ⊆ γ,
FG ⊆ γγ ⊆ γ and consequently F ∪ FG ∪G ⊆ γ.

The proof of (ii ′) can be obtained in a similar way. �

Proposition 3.11. Let F be a filter and I be an ideal. Then:

(i) F − I is a filter ;

(i ′) I
F

is an ideal ;

(ii) If I ∩ (F − I) -= ∅, then F ∩ I -= ∅ ;

(iii) If F ∩ I
F
-= ∅, then F ∩ I -= ∅ ;

(iv) If (F − I) ∩ I
F
-= ∅, then F ∩ I -= ∅.

Proof. We prove only (iv); the proofs of the other conditions are similar. Ap-
plying Proposition 3.3, we obtain:

(F − I) ∩ I
F
-= ∅ ←→ F ∩ (I + I

F
) -= ∅; since I + I

F
⊆ I+I

F
⊆ I
F
, we get that

F ∩ I
F
-= ∅. �

Lemma 3.12. If µ(A) ∩ α(B) -= ∅, then there exist finite subsets A′ ⊆ A and
B′ ⊆ B such that µ(A′) ∩ α(B′) -= ∅.

Ann. Sofia Univ., Fac. Math and Inf., 102, 2015, 31–70. 59



Proof. Let
µ(A) ∩ α(B) -= ∅. (3.1)

By Lemma 3.10(i),(i ′), we have that

µ(A) =
∞⋃

i=1

Ai and (3.2)

α(B) =

∞⋃

j=1

jB. (3.3)

From (3.1), (3.2) and (3.3), we obtain that for some x ∈ X, x ∈
⋃
∞

i=1A
i and

x ∈
⋃
∞

j=1 jB. Then for some i and j we have that

x ∈ Ai and (3.4)

x ∈ jB. (3.5)

It follows from (3.4) that there exist a set A′ = {a1, . . . , ai} ⊆ A such that
x ∈ {a1, . . . , ai}. From here we obtain that {a1 . . . ai} ⊆ µ(A

′) and consequently

x ∈ µ(A′) ⊆ (A). (3.6)

In an analogous way we obtain from (3.5) that there exists a finite subset
B′ = {b1, . . . , bj} ⊆ B such that

x ∈ α(B′) ⊆ α(B). (3.7)

Then from (3.1) and (3.6) and (3.7) we obtain

µ(A′) ∩ α(B′) -= ∅ (3.8)

Thus, for some finite subsets A′ ⊆ A and B′ ⊆ B, we have µ(A′) ∩ α(B′) -= ∅. �

3.3. SEPARATIVE ALGEBRAS

Let X = (X, .,+) be a preseparative algebra. For x, y ∈ X define

x ≤ y iff µ(x) ∩ α(y) -= ∅.

Definition 3.13. A preseparative algebra X = (X, .,+) is called a separative
algebra if the following axiom is satisfied:

(Sep 0) The relation ≤ is transitive.

A separative algebra X is called a convex space if the operations “.” and “ + ”
coincide. In this case the filters and the ideals are called convex sets and the prime
filters correspond to the notion of half-space.
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Convex spaces have been studied by several authors: Tagamlitzki [44], Pro-
danov [34] and [35], Bair [1], Bryant [3], Bryant and Webster [4].

We will now give several examples of separative algebras.

Example 3.14. Let L = (L,∨,∧, 0, 1) be a distributive lattice and for x, y ∈ X
define x × y = {z ∈ L : z ≥ x ∧ y} and x + y = {z ∈ L : z ≤ x ∨ y} (see Example
2.22). Then X is a separative algebra.

Example 3.15. Let X = (X, 1,+, .) be a commutative ring and for x, y ∈ X
define x × y = x.y and x + y = A(x, y) , where A(x, y) is the ring-ideal generated
by the set {x, y} (see Example 2.21). Then X is a separative algebra.

Example 3.16. Let X be a real linear space. For arbitrary a, b ∈ X, we set
a× b = a+ b = {ta+ (1− t)b : 0 ≤ t ≤ 1}. Then X is a convex space.

Apart from these starting examples, there is a number of other ones. It seems
that whenever we have a satisfactory theory of prime ideals, then there is also a
structure of separative algebra.

Example 3.17. Let X be an ordered linear topological space. Then X is a
separative algebra with respect to the operations

a× b = {x ∈ X : ∃y ∈ ab with x ≤ y},
a+ b = {x ∈ X : ∃y ∈ ab with x ≥ y},

where ab = {ta+ (1− t)b : 0 ≤ t ≤ 1}.

Example 3.18. Let X = (X, .) be a commutative semigroup. Then X is a
convex space.

The following lemma for filters and ideals is very important.

Lemma 3.19. Let X be a separative algebra. Then for any A,B ⊆ X and
x ∈ X, we have that if µ(A) ∩ α(B ∪ x) -= ∅ and µ(x ∪ A) ∩ α(B) -= ∅, then
µ(A) ∩ α(B) -= ∅.

Proof. Suppose that the lemma does not hold and proceed to obtain a contra-
diction. Then for some A,B ⊆ X and x ∈ X we have that

µ(A) ∩ α(B ∪ x) -= ∅, (3.9)

µ(x ∪A) ∩ α(B) -= ∅, and (3.10)

µ(A) ∩ α(B) = ∅. (3.11)

By Lemma 3.10((ii)e),((ii ′)e), we obtain:

µ(x ∪A) = µ(A) ∪ µ(A)µ(x) ∪ µ(x) and (3.12)
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α(B ∪ x) = α(B) ∪ (α(B) + α(x)) ∪ α(x). (3.13)

From (3.9), (3.11) and (3.13), we obtain that
either (a) µ(A) ∩ (α(B) + α(x)) -= ∅,
or (b) µ(A) ∩ α(x) -= ∅.
From (3.10), (3.11) and (3.12), we obtain that
either (a ′) (µ(A)µ(x)) ∩ α(B) -= ∅,
or (b ′) µ(x) ∩ α(B) -= ∅.
So, we have to consider and to obtain a contradiction in each of the following

combinations of cases: (a, a ′), (a, b ′), (b, a ′) and (b, b ′). As an example we shall
treat of only the case (a, a ′) - the remaining cases can be treated in a similar way.
For the sake of brevity, we put F = µ(A), I = α(B); note that F is a filter and I
is an ideal. Now (a) and (a ′) become:

(a) F ∩ (I + α(x)) -= ∅ and
(a ′) I ∩ (F.µ(x)) -= ∅.
Applying Proposition 3.3 to (a) and (a ′), we obtain

µ(x) ∩
I

F
-= ∅ and (3.14)

α(x) ∩ (F − I) -= ∅. (3.15)

By (3.14), we conclude that there exists y ∈ X such that

y ∈ µ(x) and (3.16)

y ∈
I

F
. (3.17)

By (3.15), we obtain that for some z ∈ X we have

z ∈ α(x) and (3.18)

z ∈ F − I. (3.19)

Conditions (3.16) and (3.18) are equivalent respectively to

y ∩ µ(x) -= ∅ and (3.20)

z ∩ α(x) -= ∅. (3.21)

Since y ⊆ α(y), using (3.20), we get

µ(x) ∩ α(y) -= ∅ (3.22)

and, consequently, x ≤ y.
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Since z ⊆ µ(z), using (3.21), we get

µ(z) ∩ α(x) -= ∅ (3.23)

and, consequently, z ≤ x.
Now, by the axiom (Sep0), we obtain that z ≤ y and, consequently,

µ(z) ∩ α(y) -= ∅. (3.24)

By Proposition 3.11(i), F − I is a filter and since, by (3.19), z ∈ F − I, we get
that

µ(z) ⊆ F − I. (3.25)

By Proposition 3.11(i ′), I
F
is an ideal and since, by (3.17), y ∈ I

F
, we get that

α(y) ⊆
I

F
. (3.26)

From (3.25) and (3.26), we get that

µ(z) ∩ α(y) ⊆ (F − I) ∩
I

F
. (3.27)

By (3.24) and (3.27), we obtain that

(F − I) ∩
I

F
-= ∅. (3.28)

Applying Proposition 3.11(iv), we obtain that F ∩ I -= ∅, i.e. µ(A)∩α(B) -= ∅,
which contradicts (3.11). This completes the proof of the lemma. �

Corollary 3.20. If F is a filter, I is an ideal and F ∩ I = ∅, then, for any
x ∈ X, either µ(F ∪ x) ∩ I = ∅ or F ∩ α(I ∪ x) = ∅.

3.4. SEPARATION THEOREM

Definition 3.21. Let X = (X, .,+) be a preseparative algebra. The following
statement is called the Separation principle for X:

(Sep) If F0 is a filter, I0 is an ideal and F0 ∩ I0 = ∅ then there exist a prime
filter F and a prime ideal I such that F0 ⊆ F , I0 ⊆ I and F ∩ I = ∅.

The main aim of this section is the following:

Theorem 3.22. (Separation theorem for separative algebras) Let X = (X, .,+)
be a separative algebra. Then X satisfies the Separation principle (Sep).
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Proof. Let F0 be a filter in X, I0 be an ideal in X and F0 ∩ I0 = ∅.
Let M = {F : F is a filter in X,F0 ⊆ F and F ∩ I0 = ∅}. It is easy to see that

M with the set-inclusion ⊆ is an inductive set and hence, by the Zorn lemma, M
has a maximal element, say F .

Let N = {I : I is an ideal, I0 ⊆ I and F ∩ I = ∅}. The set N supplied with
the set-inclusion is also an inductive set and hence, by the Zorn lemma, it has a
maximal element, say I. We shall show that F is a prime filter and I is a prime
ideal.

Since F is a filter, I is an ideal and F ∩ I = ∅, it is enough to show that
F ∪ I = X. Let x ∈ X. We shall show that either x ∈ F or x ∈ I. Since F ∩ I = ∅,
Corollary 3.20 implies that either µ(F ∪ x) ∩ I = ∅ or F ∩ α(I ∪ x) = ∅.

Case 1: µ(F∪x)∩I = ∅. Since I0 ⊆ I, we obtain that µ(F∪x)∩I0 = ∅. We also
have that F0 ⊆ F ⊆ µ(F ∪ x). From here we obtain that the filter µ(F ∪ x) ∈ M .
By the maximality of F in M , we obtain that µ(F ∪ x) = F , and hence x ∈ F .

Case 2: F ∩α(I∪x) = ∅. Since I0 ⊆ I ⊆ α(I∪x), we obtain that α(I∪x) ∈ N .
Then, by the maximality of I in N , we obtain that α(I ∪ x) = I, and hence x ∈ I.

So we have found a prime filter F ⊇ F0 and a prime ideal I ⊇ I0 such that
F ∩ I = ∅, which proves the theorem. �

Let us note that Theorem 3.22 generalizes a few well known statements: the
Stone separation theorem for filters and ideals in distributive lattices [42] and in
Boolean algebras [41], as well as the separation theorem for convex sets in convex
spaces from [44].

Theorem 3.23. Let X = (X, .,+) be a preseparative algebra. Then the fol-
lowing conditions are equivalent:

(i) X is a separative algebra ;

(ii) X satisfies the Separation principle (Sep).

Proof. The implication (i)−→(ii) is just Theorem 3.22. For the converse
implication (ii)−→(i), we have to show that (Sep) implies (Sep0) (see Definition
3.13 for (Sep0)). So, let a, b, c ∈ X,

a ≤ b ( i.e., µ(a) ∩ α(b) -= ∅) and (3.29)

b ≤ c ( i.e., µ(b) ∩ α(c) -= ∅) (3.30)

and suppose that

a  c ( i.e., µ(a) ∩ α(c) = ∅). (3.31)

Then (3.31) and (Sep) imply that there exist a prime filter F and and a prime ideal
I such that
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F ∩ I = ∅ (i.e. X \ F = I), (3.32)

µ(a) ⊆ F and (3.33)

α(c) ⊆ I. (3.34)

From (3.29) and (3.33) we obtain

F ∩ α(b) -= ∅. (3.35)

From (3.30) and (3.34) we obtain

µ(b) ∩ I -= ∅. (3.36)

For the element b we have, by (3.32), that either b ∈ F or b ∈ I.

Case 1: b ∈ F . Then µ(b) ⊆ F and, by (3.36), we obtain that F ∩ I -= ∅ - a
contradiction with (3.32).

Case 2: b ∈ I. Then α(b) ⊆ I and, by (3.35), we obtain that F ∩ I -= ∅ - again
a contradiction with (3.32).

This completes the proof of the theorem. �

We shall conclude this section by showing that the Separation theorem is
equivalent to the following statement, which is a generalization of the well known
Wallman’s lemma:

Theorem 3.24. Let X = (X, .,+) be a preseparative algebra. Then the fol-
lowing conditions are equivalent:

(i) X is a separative algebra ;

(ii) (Wallman’s lemma) Let M be a filter in X and let, for any prime filter
F ⊇M , an element xF ∈ F be chosen. Then there exists a finite number
of prime filters Fi ⊇M , i = 1, . . . , n, such thatM∩α({xF1 , . . . , xFn}) -=∅.

Proof. (i)−→(ii). Let X be a separative algebra and M be a filter in X. Denote
by N the set of all elements xF , chosen as in the condition of the Wallman’s
lemma. Then M ∩ α(N) -= ∅. To prove this suppose the contrary. Then there
exists a prime filter F ⊇M such that F ∩α(N) = ∅. But this is impossible because
xF ∈ N ⊆ α(N). So, M ∩ α(N) -= ∅. Now, by Lemma 3.12, there exists a finite
subset {xF1 , . . . , xFn} ⊆ N such that M ∩ α({xF1 , . . . , xFn}) -= ∅.

(ii)−→(i). Suppose the Wallman’s lemma. We shall prove the Separation
principle (Sep). Suppose, for the sake of contradiction, that (Sep) does not hold.
Then, for some filter F0 and some ideal I0 such that F0 ∩ I0 = ∅, we have that
any prime filter F extending F0 has a non-empty intersection with I0, i.e, there
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exists xF ∈ F ∩ I0. Then, by the Wallman lemma, there exists a finite set
{xF1 , . . . , xFn} such that F0 ∩ α({xF1 , . . . , xFn}) -= ∅. But {xF1 , . . . , xFn} ⊆ I0,
so that α({xF1 , . . . , xFn}) ⊆ I0, which implies F0 ∩ I0 -= ∅, a contradiction. �

3.5. STANDARDIZATION OF THE OPERATIONS

Here we shall consider two couples of natural operations in a given separative
algebra.

Let X = (X,⊗,⊕) be a separative algebra and, for any a, b ∈ X, define the
following two new multivalued operations, called convex operations:

a.b = µ({a, b}) and a+ b = α({a, b})

Theorem 3.25. If X is a separative algebra then it remains separative algebra
with respect to its convex operations.

Proof. The easy proof follows from the observation that the filters and ideals
with respect to convex operations remain the same. �

Let X = (X,⊗,⊕) be a separative algebra.For any A ⊆ X, let µρ(A) be the
intersection of all prime filters containing A, and αρ(A) be the intersections of all
prime ideals containing A. A subset A of X will be called a radical filter (resp., a
radical ideal) if µρ(A) = A (resp., αρ(A) = A).

It follows from the Separation theorem that if A is an ideal (resp. filter), then

αρ(A) = {x ∈ X : µ(x) ∩A -= ∅}, (resp., µρ(A) = {x ∈ X : α(x) ∩A -= ∅}).

The following two new operations in X are called radical operations:

a.b = µρ({a, b}) and a+ b = αρ({a, b}),

where a, b ∈ X.

Theorem 3.26. If X = (X,⊗,⊕) is a separative algebra, then it is a separative
algebra with respect to its radical operations as well.

The proof follows from the observation that the filters and ideals with respect
to the radical operations are the radical filters and radical ideals with respect to
the initial operations, but the order ≤ do not change. To show this, note that
µρ(a) = µρ(µ(a)) and αρ(b) = αρ(α(b)). Then, by the above observation, we have
that

µρ(a) = µρ(µ(a)) = {x ∈ X : α(x) ∩ µ(a) -= ∅} = {x ∈ X : a ≤ x} and

αρ(b) = αρ(α(b)) = {x ∈ X : µ(x) ∩ α(b) -= ∅} = {x ∈ X : x ≤ b}.

Then µρ(a) ∩ αρ(b) -= ∅ iff ∃x: a ≤ x and x ≤ b iff a ≤ b. �
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3.6. CANONICAL REPRESENTATION

Let X be a separative algebra. Then X has a canonical representation ϕ :
X → L into a distributive lattice with the properties from Corollary 2.40. Now ϕ
has some additional properties.

First of all, the inequality a ≤ b takes place if and only if ϕ(a) ⊆ ϕ(b). There-
fore ϕ(a) = ϕ(b) if and only if the radical ideals containing a contain b. If we do
not distinguish such points (which is natural, if we are interested only in radical
ideals and filters), ϕ becomes an embedding.

Now the operations from Corollary 2.40(v) look in the following manner:

a.b = {x ∈ X : ϕ(x) ≤ ϕ(a) ∨ ϕ(b)} and a+ b = {x ∈ X : ϕ(x) ≥ ϕ(a) ∧ ϕ(b)},

where a.b and a+b are the radical operations. In particular, if the initial operations
coincide with radical ones, as it is in Example 3.16, we can get the separative
structure of X from suitable embedding of X into a distributive lattice.

Now, let X be a ring with the separative structure from Example 3.15, and
let ϕ : X −→ L be the canonical representation. Then L can be identified with
the distributive lattice of all finitely generated radical ideals of X (the whole X
is included), and, for arbitrary a ∈ X, the image ϕ(a) is the radical ideal in X
generated by a.

3.7. TOPOLOGICAL VERSION OF THE SEPARATION THEOREM

Definition 3.27. We shall say that a preseparative algebra X = (X, .,+) is
topological, if X is endowed with a topology such that the mappings a.x and a+ x
are lower semi-continuous, i.e., for every a ∈ X, the multi-valued maps

ϕa : X −→ X, x 8→ a+ x, and ψa : X −→ X, x 8→ a.x,

are lower semi-continuous. Recall that a multi-valued map f : X −→ Y between
two topological spaces X and Y is said to be lower semi-continuous if, for every
open subset U of Y , the set f−1(U) is open in X (here, as usual,

f−1(U) = {x ∈ X : f(x) ∩ U -= ∅});

equivalently, f is lower semi-continuous if, for every x0 ∈ X and every open subset
U of Y with U ∩ f(x0) -= ∅, there exists a neighborhood V of x0 in X such that
U ∩ f(x) -= ∅, for every x ∈ V . For a+ x, for example, this means that if a, b ∈ X
and U is an open set with (a+ b) ∩ U -= ∅, then there exists a neighborhood V of b
such that (a+ x) ∩ U -= ∅, for each x ∈ V .

A topological preseparative algebra will be called a separative space if, for each
open filter U in X, the conditions α(a) ∩ U -= ∅ and b ∈ µ(a) imply α(b) ∩ U -= ∅.

A separative space X = (X, .,+) is called a topological convex space if the
operations “.” and “ + ” in X coincide (see [34], [35]).
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Clearly, every separative algebra X endowed with the discrete topology is a
separative space, but there are also analytical examples. Now we shall only note
that if X is a topological preseparative algebra such that the topology of X has a
basis from open filters, then X is a separative space.

The next statement, which we include here without proof, is a topological
version of the Separation theorem.

Theorem 3.28. Let X be a separative space, I0 be an ideal in X and F0 be
an open filter in X such that F0 ∩ I0 = ∅. Then there exist a closed prime ideal I
and an open prime filter F in X such that F0 ⊆ F , I0 ⊆ I and F ∩ I = ∅.

For a proof of Theorem 3.28 for topological convex spaces see [44]. We shall
notice only one application of the theorem which uses the separative (not convex)
structure: Example 3.17 and Theorem 3.28 give the classical separation theorem
in ordered linear spaces, and, in particular, the general representation theorem of
Kadison [21].
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