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1. INTRODUCTION

The famous prime twins conjecture states that there exist infinitely many
primes p such that p + 2 is a prime too. This hypothesis is still not proved but
there are established many approximations to this result.

Throughout, Pr will stand for an integer with no more than r prime factors,
counted with their multiplicities. In 1973 Chen [2] showed that there are infinitely
many primes p with p+ 2 = P2.

Here are some examples of problems, concerning primes p with p+ 2 = Pr for
some r ≥ 2.

In 1937, Vinogradov [16] proved that every sufficiently large odd n can be
represented as a sum

p1 + p2 + p3 = n (1.1)
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of primes p1, p2, p3. In 2000 Peneva [10] and Tolev [14] looked for representations
(1.1) with primes pi, subject to pi + 2 = Pri for some ri ≥ 2. It was established in
[14] that if n is sufficiently large and n ≡ 3 (mod 6), then (1.1) has a solution in
primes p1, p2, p3 with

p1 + 2 = P2, p2 + 2 = P5, p3 + 2 = P7.

In 1947 Vinogradov [17] established that if 0 < θ < 1/5, then there are infinitely
many primes p satisfying the inequality

||αp+ β|| < p−θ. (1.2)

In 2007 Todorova and Tolev [13] proved that if α ∈ R\Q , β ∈ R and 0 < θ ≤ 1/100,
then there are infinitely many primes p with p + 2 = P4, satisfying the inequality
(1.2). Latter Matomäki [8] proved a Bombieri-Vinogradov type result for linear
exponential sums over primes and showed that this actually holds with p+ 2 = P2

and θ = 1/1000.

The present paper is devoted to another popular problem for primes pi, which
is studied under the additional restrictions pi+2 = Pri for some ri ≥ 2. According
to R. C. Vaughan’s [18], there are infinitely many ordered triples of primes p1, p2, p3
with

|λ1p1 + λ2p2 + λ3p3 + η| < (max pj)
−ξ+δ

for ξ = 1/10, δ > 0 and some constants λj , j = 1, 2, 3, η, subject to the following
restrictions:

λi ∈ R, λi &= 0, i = 1, 2, 3 ; (1.3)

λ1, λ2, λ3 not all of the same sign; (1.4)

λ1/λ2 ∈ R \Q ; (1.5)

η ∈ R . (1.6)

Latter the upper bound for ξ was improved and the strongest published result is
due to K. Matomäki with ξ = 2/9.

Here we prove the following result:

Theorem 1. Let B be an arbitrary large and fixed. Then under the condi-
tions (1.3), (1.4), (1.5), (1.6) there are infinitely many ordered triples of primes
p1, p2, p3 with

|λ1p1 + λ2p2 + λ3p3 + η| < [log(max pj)]
−B (1.7)

and
p1 + 2 = P ′8, p2 + 2 = P ′′8 , p3 + 2 = P ′′′8 .
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2. NOTATIONS

By p and q we always denote primes. By ϕ(n), µ(n), Λ(n) we denote Euler’s
function, Möbius’ function and Mangoldt’s function, respectively. We denote by
τ(n) the number of the natural divisors of n. The notations (m1, m2) and [m1, m2]
stand for the greatest common divisor and the least common multiple of m1, m2,
respectively. Instead of m ≡ n (mod k) we write for simplicity m ≡ n(k). As
usual, [y] denotes the integer part of y, e(y) = e2πiy,

θ(x, q, a) =
∑

p≤x
p≡a (q)

log p ;

E(x, q, a) = θ(x, q, a)−
x

ϕ(q)
; (2.1)

For positive A and B we write A ≍ B instead of A≪ B ≪ A.

Let q0 be an arbitrary positive integer and X be such that

q20 =
X

(logX)A
, A ≥ 5 ; (2.2)

ε =
1

(logX)B+1
, B > 1 is arbitrary large; (2.3)

H =
1000 logX

ε
; (2.4)

∆ =
(logX)A+1

X
; (2.5)

D =
X1/3

(logX)A
; (2.6)

z = Xα , 0 < α < 1/4 ; (2.7)

P (z) =
∏

2<p≤z

p ;

Sk(α) =
∑

λ0X<p≤X

p+2≡0 (k)

e(αp) log p, 0 < λ0 < 1 . (2.8)

The restrictions on A, λ0 and the value of α will be specified latter.

3. OUTLINE OF THE PROOF

We notice that if (p + 2, P (z)) = 1, then p + 2 = P[1/α]. Our aim is to prove
that for a specific (as large as possible) value of α there exists a sequence X1, X2, . . .
→∞ and primes pi ∈ (λ0Xj , Xj ], i = 1, 2, 3 with |λ1p1+λ2p2+λ3p3+η| < ε and
pi + 2 = P[1/α], i = 1, 2, 3 . In such a way, we get an infinite sequence of triples of
primes p1, p2, p3 with the desired properties.
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Our method goes back to Vaughan [18], but we also use the Davenport -
Heilbronn adaptation of the circle method (see [19, ch. 11]) combined with a
vector sieve similar to that one from [15].

We choose a function υ such that

υ(x) = 1 for |x| ≤ ε/2;

0 < υ(x) < 1 for ε/2 < |x| < ε; (3.1)

υ(x) = 0 for |x| ≥ ε ,

and υ(x) has derivatives of sufficiently large order.

So if

∑

λ0X<p1,p2,p3≤X

(pi+2,P (z))=1,i=1,2,3

υ(λ1p1 + λ2p2 + λ3p3 + η) log p1 log p2 log p3 > 0, (3.2)

then the number of the solutions of (1.7) in primes pi ∈ (λ0X, X], pi + 2 = P[1/α],
i = 1, 2, 3, is positive.

Let λ±(d) be the lower and upper bounds Rosser’s weights of level D, hence

|λ±(d)| ≤ 1, λ±(d) = 0 if d ≥ D or µ(d) = 0 . (3.3)

For further properties of Rosser’s weights we refer to [5], [6].

Let Λi =
∑

d|(pi+2,P (z))

µ(d) be the characteristic function of primes pi, such that

(pi + 2, P (z)) = 1 for i = 1, 2, 3. Then from (3.2) we obtain the condition

∑

λ0X<p1,p2,p3≤X

υ(λ1p1 + λ2p2 + λ3p3 + η)Λ1Λ2Λ3 log p1 log p2 log p3 > 0 . (3.4)

To set up a vector sieve, we use the lower and the upper bounds

Λ±i =
∑

d|(pi+2,P (z))

λ±(d) , i = 1, 2, 3 .

From the linear sieve we know that Λ−i ≤ Λi ≤ Λ+
i (see [1, Lemma 10]). Moreover,

we have the simple inequality

Λ1Λ2Λ3 ≥ Λ−1 Λ
+
2 Λ

+
3 + Λ+

1 Λ
−
2 Λ

+
3 + Λ+

1 Λ
+
2 Λ

−
3 − 2Λ+

1 Λ
+
2 Λ

+
3 , (3.5)

analogous to the one in [1, Lemma 13]. Using (3.4) we get

∑

λ0X<p1,p2,p3≤X

υ(λ1p1 + λ2p2 + λ3p3 + η)

×
(

Λ−1 Λ
+
2 Λ

+
3 + Λ+

1 Λ
−
2 Λ

+
3 + Λ+

1 Λ
+
2 Λ

−
3 − 2Λ+

1 Λ
+
2 Λ

+
3

)

log p1 log p2 log p3 > 0 . (3.6)
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Let Υ(x) =

∞
∫

−∞

υ(t)e(−tx)dt be the Fourier transform of the function υ defined

in (3.1). Then

|Υ(x)| ≤ min

(

3ε

2
,

1

π|x|
,

1

π|x|

(

k

2π|x|ε/4

)k)

, (3.7)

for all k ∈ N - see [11].

We substitute the function υ(λ1p1 + λ2p2 + λ3p3 + η) in (3.6) with its Fourier
transform:

∑

λ0X<p1,p2,p3≤X

log p1 log p2 log p3

×

∞
∫

−∞

Υ(t)e
(

(λ1p1 + λ2p2 + λ3p3 + η)t
)

Λ1Λ2Λ3dt > 0 . (3.8)

Our next argument is based on the following consequence of (3.8).

Lemma 1. If the following integral is positive,

Γ(X) =

∞
∫

−∞

Υ(t)
∑

λ0X<p1,p2,p3≤X

e
(

(λ1p1 + λ2p2 + λ3p3 + η)t
)

log p1 log p2 log p3

× (Λ−1 Λ
+
2 Λ

+
3 + Λ+

1 Λ
−
2 Λ

+
3 + Λ+

1 Λ
+
2 Λ

−
3 − 2Λ+

1 Λ
+
2 Λ

+
3 ) dt

= Γ1(X) + Γ2(X) + Γ3(X)− 2Γ4(X) > 0 ,

(3.9)

then the number of the solutions of (1.7) in primes pi ∈ (λ0X, X], pi + 2 = P[1/α],
i = 1, 2, 3, is positive. Here

Γ1(X) =

∞
∫

−∞

Υ(t)
∑

λ0X<p1,p2,p3≤X

log p1 log p2 log p3

× e
(

(λ1p1 + λ2p2 + λ3p3 + η)t
)

Λ−1 Λ
+
2 Λ

+
3 dt ;

Γ2(X) =

∞
∫

−∞

Υ(t)
∑

λ0X<p1,p2,p3≤X

log p1 log p2 log p3

× e
(

(λ1p1 + λ2p2 + λ3p3 + η)t
)

Λ+
1 Λ

−
2 Λ

+
3 dt ;

Γ3(X) =

∞
∫

−∞

Υ(t)
∑

λ0X<p1,p2,p3≤X

log p1 log p2 log p3

× e
(

(λ1p1 + λ2p2 + λ3p3 + η)t
)

Λ+
1 Λ

+
2 Λ

−
3 dt ;
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Γ4(X) =

∞
∫

−∞

Υ(t)
∑

λ0X<p1,p2,p3≤X

log p1 log p2 log p3

× e
(

(λ1p1 + λ2p2 + λ3p3 + η)t
)

Λ+
1 Λ

+
2 Λ

+
3 dt .

We shall estimate Γ1(X), the remaining integrals Γ2(X), Γ3(X), Γ4(X) can be
treated in a similar way. Changing the order of summation we obtain

Γ1(X) =

∞
∫

−∞

Υ(t)e(ηt)L−(λ1t, X)L+(λ2t, X)L+(λ3t, X)dt , (3.10)

where
L±(t, X) =

∑

d|P (z)

λ±(d)
∑

λ0X<p≤X

p+2≡0(d)

e(p t) log p . (3.11)

Let us split Γ1(X) into three integrals,

Γ1(X) = Γ
(1)
1 (X) + Γ

(2)
1 (X) + Γ

(3)
1 (X) , (3.12)

where

Γ
(1)
1 (X) =

∫

|t|≤∆

Υ(t)e(ηt)L−(λ1t, X)L+(λ2t, X)L+(λ3t, X)dt, (3.13)

Γ
(2)
1 (X) =

∫

∆<|t|<H

Υ(t)e(ηt)L−(λ1t, X)L+(λ2t, X)L+(λ3t, X)dt, (3.14)

Γ
(3)
1 (X) =

∫

|t|≥H

Υ(t)e(ηt)L−(λ1t, X)L+(λ2t, X)L+(λ3t, X)dt . (3.15)

Here the functions ∆ = ∆(X) and H = H(X) are defined in (2.5) and (2.4).

We estimate Γ
(3)
1 (X),Γ

(1)
1 (X),Γ

(2)
1 (X), respectively, in the sections 4, 5, 6. In

section 7 we complete the proof of the theorem.

4. UPPER BOUND FOR Γ
(3)
1 (X).

Lemma 2. For the integral Γ
(3)
1 (X), defined by (3.15), we have

Γ
(3)
1 (X)≪ 1.
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Proof. From (2.8) and (3.11) it follows that

|L±(t, X)| ≤
∑

d|P (z)

|λ±(d)|.|Sd(t)| .

For |Sd(t)| we use the trivial estimate

|Sd(t)| ≤
∑

n≤X
n+2≡0 (d)

logX ≤ logX

(

X

d
+ 1

)

≪
X logX

d
+ logX .

Combining with (3.3) we obtain

L±(t, X)≪
∑

d≤D

logX

(

X

d
+ 1

)

≪ X(logX)2 (4.1)

Bearing in mind that|Υ(t)| ≤
1

πt

(

k

2πtε/4

)k

(see (3.7)), from (4.1) and (3.15) one

concludes that

Γ
(3)
1 (X)≪ X3(logX)6

∞
∫

H

1

t

(

k

2πtε/4

)k

dt =
X3(logX)6

k

(

2k

πεH

)k

. (4.2)

The choice k = [logX] provides logX − 1 < k ≤ logX and by (2.4) it follows

(

2k

πεH

)k

≪

(

logX

ε 1000 logXε

)logX

≪
1

X log 1000
. (4.3)

Finally, (4.2) and (4.3) imply

Γ
(3)
1 (X)≪ 1. (4.4)

5. ASYMPTOTIC FORMULA FOR Γ
(1)
1 (X).

We will derive the main term of the integral Γ1(X) from Γ
(1)
1 (X). Making use

of (2.8), one expresses the sums (3.11) as

L±(t, X) =
∑

d|P (z)

λ±(d)Sd(t) . (5.1)

We change the order of summation and integration in (3.13) to obtain

Γ
(1)
1 (X) =

∑

di|P (z)
i=1,2,3

λ−(d1)λ
+(d2)λ

+(d3)

×

∫

|t|≤∆

Υ(t)e(ηt)Sd1(λ1t)Sd2(λ2t)Sd3(λ3t)dt .
(5.2)
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Let

Si = Sdi(λit) , (5.3)

Ii = Idi(λit) =
1

ϕ(di)

X
∫

λ0X

e(λity)dy , (5.4)

Ri = Rdi = (1 +∆X) max
y∈[λ0X,X]

|E(y, di,−2)| , (5.5)

where E(x, q, a) is defined by (2.1). Using (2.6), it is not difficult to prove the
estimate

Si ≪
X logX

di
. (5.6)

From the inequality
n

ϕ(n)
≤ eγ log log n (see [4, §XV III, Theorem 328]) we get

the following estimate for |Ii|:

|Ii| ≤
X

ϕ(di)
≪

X log logX

di
≪

X logX

di
. (5.7)

Our aim is to separate the main part of the sum (5.2).

As the first step, we replace the product S1S2S3 by I1I2I3, as far as the integral
over I1I2I3 is easier to be estimated. We use the identity

S1S2S3 = I1I2I3 + (S1 − I1)I2I3 + S1(S2 − I2)I3 + S1S2(S3 − I3) . (5.8)

Let 2 ∤ k. Applying Abel’s transform to Sk(α), one gets

Sk(α) = −

X
∫

λ0X

∑

λ0X<p≤t

p+2≡0 (k)

log p.
d

dt
e(αt)dt+ e(αX)

∑

λ0X<p≤X

p+2≡0 (k)

log p .

Using (2.1), we have

Sk(α) =−

X
∫

λ0X

[

t− λ0X

ϕ(k)
+ E(t, k,−2)− E(λ0X, k,−2)

]

d

dt
e(αt)dt

+

[

X − λ0X

ϕ(k)
+ E(X, k,−2)− E(λ0X, k,−2)

]

e(αX)

=
1

ϕ(k)

[

−

X
∫

λ0X

(t− λ0X)
d

dt
e(αt)dt+ (X − λ0X)e(αX)

]

+O

(

X
∫

λ0X

max
y∈(λ0X,X]

|E(y, k,−2)||α|dt

)

+O

(

max
y∈(λ0X,X]

|E(y, k,−2)|

)

,
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whence

Sk(α) =
1

ϕ(k)

X
∫

λ0X

e(αt)dt+O

(

max
y∈(λ0X,X]

|E(y, k,−2)|(1 + |α|X)

)

.

Let |α| ≤ ∆ . Then from (5.3), (5.4) and (5.5) we obtain

Si = Ii +O(Ri), i = 1, 2, 3 . (5.9)

From (5.5) - (5.9) it follows that

S1S2S3 − I1I2I3 ≪(X logX)2(1 + ∆X)

( max
y∈(λ0X,X]

|E(y, d1,−2)|

d2d3

+

max
y∈(λ0X,X]

|E(y, d2,−2)|

d1d3
+

max
y∈(λ0X,X]

|E(y, d3,−2)|

d1d2

)

.

Using (5.2) and the above inequality one gets

Γ
(1)
1 (X) = M (1) +O(R(1)) , (5.10)

where

M (1) =
∑

di|P (z)
i=1,2,3

λ−(d1)λ
+(d2)λ

+(d3)

∫

|t|≤∆

Υ(t)e(ηt)I1(λ1t)I2(λ2t)I3(λ3t)dt , (5.11)

R(1) =(X logX)2(1 + ∆X)
∑

di|P (z)
i=1,2,3

|λ−(d1)λ
+(d2)λ

+(d3)|

( max
y∈(λ0X,X]

|E(y, d1,−2)|

d2 d3

+

max
y∈(λ0X,X]

|E(y, d2,−2)|

d1 d3
+

max
y∈(λ0X,X]

|E(y, d3,−2)|

d1 d2

)

∫

|t|≤∆

|Υ(t)| dt.

Let us estimate R(1). Since |Υ(t)| ≤
3ε

2
(see (3.7)), we find

∫

|t|≤∆

|Υ(t)| dt ≪ ε∆.

Then using (3.3) we obtain

R(1) ≤ε∆(X logX)2(1 + ∆X)
∑

di≤D
i=1,2,3
2∤ di

( max
y∈(λ0X,X]

|E(y, d1,−2)|

d2d3

+

max
y∈(λ0X,X]

|E(y, d2,−2)|

d1d3
+

max
y∈(λ0X,X]

|E(y, d3,−2)|

d1d2

)

≪ ε∆(1 +∆X)X2(logX)4
∑

d≤D
2∤ d

max
y∈(λ0X,X]

|E(y, d,−2)| .

(5.12)
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We shall use the following well-known result.

Theorem 2 (Bombieri - Vinogradov). For any A > 0 the following in-
equality is fulfilled (see [3, ch.28]):

∑

q≤X
1
2 /(logX)C+5

max
y≤X

max
(a, q)=1

∣

∣

∣

∣

E(y, q, a)

∣

∣

∣

∣

≪
X

(logX)C
.

We apply the above theorem with C = 4A+5 to the last sum in (5.12). Using
(2.6) and (2.5) we obtain

R(1) ≪ ε∆(1 +∆X)X2(logX)4
X

(logX)4A+5
≪

ε∆2X4

(logX)4A+1
. (5.13)

Then from (5.10) and (5.13) it follows

Γ
(1)
1 (X)−M (1) ≪

ε∆2X4

(logX)4A+1
. (5.14)

As a second step we represent M (1) in the form

M (1) =
∑

di|P (z)
i=1,2,3

λ−(d1)λ
+(d2)λ

+(d3)

ϕ(d1)ϕ(d2)ϕ(d3)
B(X) +R , (5.15)

where

B(X) =

∞
∫

−∞

Υ(t)e(ηt)

(

X
∫

λ0X

X
∫

λ0X

X
∫

λ0X

e(t(λ1y1+λ2y2+λ3y3))dy1dy2dy3

)

dt , (5.16)

R≪

∣

∣

∣

∣

∞
∫

∆

Υ(t)e(ηt)

(

X
∫

λ0X

e(λ1ty1)dy1

X
∫

λ0X

e(λ2ty2)dy2

X
∫

λ0X

e(λ3ty3)dy3

)

dt

∣

∣

∣

∣

×
∑

di|P (z)
i=1,2,3

|λ−(d1)λ
+(d2)λ

+(d3)|

ϕ(d1)ϕ(d2)ϕ(d3)
.

On using

∣

∣

∣

∣

X
∫

λ0X

e(λityi)dyi

∣

∣

∣

∣

≪
1

|λi| t
and |Υ(t)| ≤

3ε

2
(see (3.7)) we obtain

R≪
ε

∆2

∑

di|P (z)
i=1,2,3

|λ−(d1)λ
+(d2)λ

+(d3)|

ϕ(d1)ϕ(d2)ϕ(d3)
.

From (2.6), (3.3) and the equality

∑

n≤x

1

ϕ(n)
= C log x+ C ′ +O(x−1+ε)
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(see [9, ch. 4, §4.4, ex. 4.4.14]), we find

R≪
ε

∆2





∑

d≤D

1

ϕ(d)





3

≪
ε log3X

∆2
. (5.17)

From (5.15) and (5.17) we obtain

M (1) = B(X)
∑

di|P (z)
i=1,2,3

λ−(d1)λ
+(d2)λ

+(d3)

ϕ(d1)ϕ(d2)ϕ(d3)
+O

(

ε log3X

∆2

)

and from (5.14) we have

Γ
(1)
1 (X) =B(X)

∑

d1|P (z)

λ−(d1)

ϕ(d1)

∑

d2|P (z)

λ+(d2)

ϕ(d2)

∑

d3|P (z)

λ+(d3)

ϕ(d3)

+O

(

ε log3X

∆2

)

+O

(

ε∆2X4

(logX)4A+1

)

.

(5.18)

The function ∆ defined by (2.5) is such that
ε log3X

∆2
=

ε∆2X4

(logX)4A+1
. Therefore,

using (2.3), (2.5) and (5.18), we find

Γ
(1)
1 (X) = B(X)

∑

d1|P (z)

λ−(d1)

ϕ(d1)

∑

d2|P (z)

λ+(d2)

ϕ(d2)

∑

d3|P (z)

λ+(d3)

ϕ(d3)

+O

(

X2

(logX)2A+B

)

.

(5.19)

Let

G± =
∑

d|P (z)

λ±(d)

ϕ(d)
. (5.20)

Then from (5.19) and (5.20) it follows

Γ
(1)
1 (X) = B(X)G−(G+)2 +O

(

X2

(logX)2A+B

)

. (5.21)

We conclude this section with the following lemma:

Lemma 3. If (1.3), (1.4) hold and

λ0 < min

(

λ1
4|λ3|

,
λ2

4|λ3|
,
1

16

)

,

then B(X) defined by (5.16) satisfies

B(X)≫ εX2 ,

and the constant in “≫” depends only on λ1, λ2 and λ3.
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Proof. Let us consider B(X). We change the order of integration and use that
Υ(t) is Fourier’s transform of υ(t) to obtain

B(X) =

X
∫

λ0X

X
∫

λ0X

X
∫

λ0X

υ(λ1y1 + λ2y2 + λ3y3 + η)dy1dy2dy3 .

From the definition (3.1) of υ follows the inequality

B(X) ≥

∫∫∫

V

dy1dy2dy3 = B1(X) , (5.22)

where

V = {|λ1y1 + λ2y2 + λ3y3 + η| < ε/2, λ0X ≤ yj ≤ X, j = 1, 2, 3} .

Since λ1, λ2, λ3 are not all of the same sign, we may assume that λ1 > 0, λ2 > 0
and λ3 < 0. We substitute λ1y1 = z1, λ2y2 = z2, λ3y3 = −z3, then

B1(X) =
1

λ1λ2|λ3|

∫∫∫

V ′

dz1dz2dz3 (5.23)

with V ′ = {(z1, z2, z3) : |z1+z2−z3+η| < ε/2, λ0|λj |X ≤ zj ≤ |λj |X, j = 1, 2, 3}.
Set

ξ1 =
2λ0|λ3|

λ1
, ξ2 =

2λ0|λ3|

λ2
,

ξ′1 = 2ξ1, ξ′2 = 2ξ2 ,

λ0 < min

(

λ1
4|λ3|

,
λ2

4|λ3|
,
1

16

)

.

Then λ0 < ξ1 < ξ′1 < 1, λ0 < ξ2 < ξ′2 < 1,

λ0λ1X < ξ1λ1X <z1 < ξ′1λ1X < λ1X ,

λ0λ2X < ξ2λ2X <z2 < ξ′2λ2X < λ2X ,

λ0|λ3|X < z1 + z2 − ε/2 + η <z3 < z1 + z2 + ε/2 + η < |λ3|X ,

(5.24)

and from (5.22), (5.23) and (5.24) there follows

B(X) ≥ B1(X)≫

ξ′1λ1X
∫

ξ1λ1X

(

ξ′2λ2X
∫

ξ2λ2X

(

z1+z2+ε/2+η
∫

z1+z2−ε/2+η

dz3

)

dz2

)

dz1

= ε(ξ′2 − ξ2)λ2X(ξ′1 − ξ1)λ1X = 4λ20λ
2
3εX

2

≫ εX2 .
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6. UPPER BOUND FOR Γ
(2)
1 (X).

We shall use (2.6) and the following lemma:

Lemma 4 ([13, Lemma 1], [15, Lemma 12]). Suppose α ∈ R\Q with a

rational approximation
a

q
satisfying

∣

∣

∣

∣

α −
a

q

∣

∣

∣

∣

<
1

q2
, where (a, q) = 1, q ≥ 1, a &= 0.

Let D be defined by (2.6), ξ(d) be complex numbers defined for d ≤ D and ξ(d)≪ 1.
If

L(X) =
∑

d≤D

ξ(d)
∑

X/2<p≤X
p+2≡0 (d)

e(αp) log p , (6.1)

then we have

L(X)≪
(

logX
)37
(

X

q1/4
+

X

(logX)A/2
+X3/4q1/4

)

.

Let us consider any sum L±(α, X) denoted by (3.11). We represent it as sum
of finite number of sums of the type

L(α, Y ) =
∑

d≤D

ξ(d)
∑

Y/2<p≤Y
p+2≡0(d)

e(αp) log p ,

where

ξ(d) =

{

λ±(d), if d|P (z) ,
0, otherwise.

We have
L±(α, X)≪ max

λ0X≤Y≤X
L(α, Y ) .

If

q ∈

[

(logX)A,
X

(logX)A

]

, (6.2)

then from the above lemma for the sums L(α, Y ) we get

L(α, Y )≪
Y

(log Y )A/4−37
. (6.3)

Therefore

L±(α, X)≪ max
λ0X≤Y≤X

Y

(log Y )A/4−37
≪

X

(logX)A/4−37
.

Let
V (t, X) = min

{

|L±(λ1t, X)|, |L±(λ2t, X)|
}

. (6.4)

We shall need the following result:
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Lemma 5. Let t, X, λ1, λ2 ∈ R,

|t| ∈ (∆, H) , (6.5)

where ∆ and H are defined by (2.5) and (2.4), let λ1, λ2 satisfy (1.5) and V (t, X)
be defined by (6.4). Then there exists a sequence of real numbers X1, X2, . . . with
limXn =∞ such that

V (t ,Xj)≪
Xj

(logXj)A/4−37
, j = 1, 2, . . . . (6.6)

Proof. Our goal is to prove that there exists a sequence X1, X2, . . .→∞ such
that for every j ∈ N at least one of the numbers λ1t and λ2t, with t fulfilling (6.5),
can be approximated by rational numbers with denominators satisfying (6.2). Then
the proof follows from (6.3) and (6.4).

Since
λ1
λ2

∈ R/Q then, by [12, Corollary 1B], there exist infinitely many frac-

tions
a0
q0

with arbitrary large denominators such that

∣

∣

∣

∣

λ1
λ2
−

a0
q0

∣

∣

∣

∣

<
1

q20
, (a0, q0) = 1 . (6.7)

Let q0 be sufficiently large and X be such that q20 =
X

(logX)A
(see (2.2)). Let us

notice that there exist a1, q1 ∈ Z such that

∣

∣

∣

∣

λ1t−
a1
q1

∣

∣

∣

∣

<
1

q1q20
, (a1, q1) = 1, 1 < q1 < q20 , a1 &= 0 . (6.8)

The Dirichlet theorem (see [7, ch.10, §1]) implies the existence of integers a1 and

q1 satisfying the first three conditions in (6.8). If a1 = 0, then |λ1t| <
1

q1q20
and

from (6.5) it follows

λ1∆ < λ1|t| <
1

q20
, q20 <

1

λ1∆
.

From the last inequality, (2.2) and (2.5), one obtains

X

(logX)A
<

X

λ1(logX)A+1
,

which is impossible for large q0, respectively, for a large X. So a1 &= 0. By analogy
there exist a2, q2 ∈ Z, such that

∣

∣

∣

∣

λ2t−
a2
q2

∣

∣

∣

∣

<
1

q2q20
, (a2, q2) = 1, 1 < q2 < q20 , a2 &= 0 . (6.9)
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If qi ∈

[

(logX)A,
X

(logX)A

]

for i = 1 or i = 2, then the proof is completed.

From (2.2), (6.8) and (6.9) we have

qi ≤
X

(logX)A
= q20 , i = 1, 2 .

Thus it remains to prove that the case

qi < (logX)A , i = 1, 2 (6.10)

is impossible. Let qi < (logX)A, i = 1, 2. From (6.8), (6.9) and (6.10) it follows
that

1 ≤ |ai| ≤
1

q20
+ qiλi|t| <

1

q20
+ qiλiH ,

1 ≤ |ai| <
1

q20
+

1000(logX)A+1λi
ε

, i = 1, 2 .

(6.11)

We have

λ1
λ2

=
λ1t

λ2t
=

a1
q1

+

(

λ1t−
a1
q1

)

a2
q2

+

(

λ2t−
a2
q2

) =
a1q2
a2q1

·
1 + T1

1 + T2
, (6.12)

where Ti =
qi
ai

(

λit−
ai
qi

)

, i = 1, 2. From (6.8), (6.9) and (6.12) we obtain

|Ti| <
qi
|ai|

·
1

qiq20
=

1

|ai|q20
≤

1

q20
, i = 1, 2 ,

λ1
λ2

=
a1q2
a2q1

·

1 +O

(

1

q20

)

1 +O

(

1

q20

) =
a1q2
a2q1

(

1 +O

(

1

q20

))

.

Thus
a1q2
a2q1

= O(1) and

λ1
λ2

=
a1q2
a2q1

+O

(

1

q20

)

. (6.13)

Therefore, both fractions
a0
q0

and
a1q2
a2q1

approximate
λ1
λ2

. Using (6.9), (6.10) and

inequality (6.11) with i = 2 we obtain

|a2|q1 < 1 +
1000(logX)2A+1λ2

ε
≪ (logX)2A+B+2 <

q0
logX

, (6.14)
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so |a2|q1 &= q0 and the fractions
a0
q0

and
a1q2
a2q1

are different. On using (6.14) we

obtain
∣

∣

∣

∣

a0
q0
−

a1q2
a2q1

∣

∣

∣

∣

=
|a0a2q1 − a1q2q0|

|a2|q1q0
≥

1

|a2|q1q0
≫

logX

q20
. (6.15)

On the other hand, from (6.7) and (6.13) we have
∣

∣

∣

∣

a0
q0
−

a1q2
a2q1

∣

∣

∣

∣

≤

∣

∣

∣

∣

a0
q0
−

λ1
λ2

∣

∣

∣

∣

+

∣

∣

∣

∣

λ1
λ2
−

a1q2
a2q1

∣

∣

∣

∣

≪
1

q20
,

which contradicts (6.15). Therefore (6.10) can not happen. Let q
(1)
0 , q

(2)
0 , . . . be

an infinite sequence of values of q0, satisfying (6.7). Then using (2.2) one gets an
infinite sequence X1, X2, . . . of values of X, such that at least one of the numbers
λ1t and λ2t can be approximated by rational numbers with denominators, satisfying
(6.2). The proof of Lemma 5 is completed. �

Let us estimate the integral Γ
(2)
1 (Xj), defined by (3.14). Using |Υ(t)| ≤

3ε

2
(see (3.7)), (6.4) and estimate (6.6), we find

Γ
(2)
1 (Xj)≪ε

∫

∆<|t|<H

V (t,Xj)
[

|L−(λ1t,Xj)L
+(λ3t,Xj)|+|L

+(λ2t, Xj)L
+(λ3t, Xj)|

]

dt

≪ε

∫

∆<|t|<H

V (t,Xj)

(

|L−(λ1t, Xj)|
2 + |L+(λ2t, Xj)|

2 + |L+(λ3t, Xj)|
2

)

dt

≪
εXj

(logXj)A/4−37
max
1≤k≤3

∫

∆<|t|<H

|L±(λkt, Xj)|
2 dt .

Since the above integral has the same value over the positive and the negative t,
one gets

Γ
(2)
1 (Xj)≪

εXj

(logXj)A/4−37
max
1≤k≤3

Ik , (6.16)

where Ik =

H
∫

∆

|L±(λkt, Xj)|
2 dt. In order to estimate Ik, let y = |λk|t , dt =

1

|λk|
dy.

Using |L±(y, Xj)|
2 ≥ 0 one obtains

Ik ≤
1

|λk|

[

|λk|H
]

+1
∫

0

|L±(y, Xj)|
2 dy .

From (3.11) it follows

|L±(y, Xj)|
2 =
∑

di|P (z)
i=1,2

λ±(d1)λ
±(d2)

∑

λ0Xj<p1, p2≤Xj
p1+2≡0(d1)
p2+2≡0(d2)

e((p1 − p2)y) log p1 log p2 .
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Then

Ik ≤
1

|λk|

∑

di|P (z)
i=1,2

λ±(d1)λ
±(d2)

×
∑

λ0Xj<p1, p2≤Xj
p1+2≡0(d1)
p2+2≡0(d2)

log p1 log p2

[

|λk|H
]

+1
∫

0

e((p1 − p2)y)dy .

(6.17)

Since e(my), m ∈ Z is periodical with period 1, there holds

[

|λk|H
]

+1
∫

0

e((p1 − p2)y)dy =

(

[

|λk|H
]

+ 1

)

1
∫

0

e((p1 − p2)y)dy . (6.18)

From
1
∫

0

e((p1 − p2)y) dy =

{

1, if p1 = p2 ,

0, if p1 &= p2 ,

(6.18) and (6.17) one gets

Ik ≤

[

|λk|H
]

+ 1

|λk|

∑

di|P (z)
i=1,2

λ±(d1)λ
±(d2)

∑

λ0Xj<p≤Xj
p+2≡0(d1)
p+2≡0(d2)

(log p)2 .

From the last inequality and using (3.3) we find

Ik ≪ H(logXj)
2
∑

di≤D

µ(di) $=0, i=1,2

∑

λ0Xj<p≤Xj
p+2≡0([d1, d2])

1 . (6.19)

Let d = (d1, d2), ki =
di
d
, [d1, d2] = dk1k2. Since µ(di) &= 0, i = 1, 2, then

(d, ki) = 1, i = 1, 2. Now from (2.4), (2.6) and (6.19) we obtain

Ik ≪
(logXj)

3

ε

∑

d≤D

∑

ki≤
D
d

i=1,2

∑

λ0Xj<n≤Xj
n+2≡0(dk1k2)

1

≪
(logXj)

3

ε

∑

d≤D

∑

ki≤
D
d

i=1,2

Xj

dk1k2

=
Xj(logXj)

3

ε

∑

d≤D

1

d

(

∑

l≤D
d

1

l

)2

≪
Xj(logXj)

6

ε
.
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From the last inequality and using (6.16) we get

Γ
(2)
1 (Xj)≪

εXj

(logXj)A/4−37
·
Xj(logXj)

6

ε
≪

X2
j

(logXj)A/4−43
. (6.20)

Summarizing, from (3.12), (4.4), (5.21) and (6.20) we obtain

Γ1(Xj) = B(Xj)G
−(G+)2 +O

(

X2
j

(logXj)A/4−43

)

. (6.21)

7. PROOF OF THEOREM 1.

Since the sums Γ2(Xj), Γ3(Xj) and Γ4(Xj) are estimated in the same fashion
as Γ1(Xj), we obtain from (3.9) and (6.21)

Γ(Xj) ≥ B(Xj)W (Xj) +O

(

X2
j

(logXj)A/4−43

)

, (7.1)

where

W (Xj) = 3(G+)2
(

G− −
2

3
G+

)

. (7.2)

Let f(s) and F (s) are the lower and the upper functions of the linear sieve. We
know that if

s =
logD

log z
=

1

3α
, 2 < s < 3 (7.3)

then
F (s) = 2eγs−1 , f(s) = 2eγs−1 log(s− 1) (7.4)

(see [1, Lemma 10]). Using (5.20) and [1, Lemma 10], we get

F(z)

(

f(s) +O
(

(logX)−1/3
)

)

≤ G− ≤ F(z) ≤ G+

≤ F(z)

(

F (s) +O
(

(logX)−1/3
)

)

.

(7.5)

Here,

F(z) =
∏

2<p≤z

(

1−
1

p− 1

)

≍
1

logX
, (7.6)

see Mertens formula [9, ch.9, §9.1, Theorem 9.1.3] and (2.7). To estimate W (Xj)
from below, we shall use the inequalities (see (7.5))

G− −
2

3
G+ ≥ F(z)

(

f(s)−
2

3
F (s) +O

(

(logX)−1/3
)

)

,

G+ ≥ F(z) .

(7.7)
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Let X = Xj . Then from (7.2) and (7.7) it follows

W (Xj) ≥ 3F3(z)

(

f(s)−
2

3
F (s) +O

(

(logX)−1/3
)

)

. (7.8)

We choose s =
logD

log z
= 2.994. Then

f(s)−
2

3
F (s) ≥ 0, 0000001 ,

and from (7.3) we get
1

α
= 8.982. From (2.3), (7.1),(7.6), (7.8) and Lemma 3 we

obtain:

Γ(Xj)≫
X2

j

(logXj)B+4
+

X2
j

(logXj)A/4−43
. (7.9)

We choose A ≥ 4B + 192. Then

Γ(Xj)≫
X2

j

(logXj)B+4
.

Finally, we note that if Γ0(Xj) is the number of the triples pi ∈ [λ0Xj , Xj ], pi+
2 = P8, i = 1, 2, 3, satisfying (1.7), then there exists a positive constant c such
that

Γ0(Xj) ≥
1

(logXj)3
Γ(Xj) ≥

cX2
j

(logXj)B+7

and for every prime factor q of pi + 2, i = 1, 2, 3 we have q ≥ X0.1113. That
completes the proof of Theorem 1.
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