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1. INTRODUCTION

Let C be the complex plane and

G = {z = x+ iy | x ∈ (−∞,∞), y ∈ (0,∞)} ⊂ C

be the upper half plane of C. Throughout, v : G→ (0,∞) will be a function such
that v(z) = v(x+ iy) = v(iy) for every z = x+ iy ∈ G, and

inf
y∈[ 1

c
,c]
v(i y) > 0 for every c > 1. (1.1)

We define
ϕv(y) = − ln v(iy), y ∈ (0,∞) ,
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and property (1.1) is reformulated as the following property of ϕv(y):

sup
y∈[ 1

c
,c]

ϕv(y) <∞ for every c > 1. (1.1′)

The weighted Banach spaces of holomorphic functions Hv(G) and Hv0(G) are
defined as follows

• f ∈ Hv(G) if f is holomorphic on G and

‖ f ‖v= sup
z∈G

v(z)|f(z)| <∞ ;

• f ∈ Hv0(G) if f ∈ Hv(G) and f is such that for every ε > 0 there exists a
compact Kε ⊂ G for which

sup
z∈G\Kε

v(z)|f(z)| < ε.

Here, we use notations from [1, 2, 3, 4, 5].

In [1], [2] the authors find an isomorphic classification of the spaces Hv(G) and
Hv0(G) provided the weight function v satisfies some growth conditions.

In [3], [4] weighted composition operators between weighted spaces of holomor-
phic functions on the unit disk in the complex plane are studied and the associated
weights are used in order to estimate the norm of the weighted composition oper-
ators.

The associated weights are studied in [5].

This paper is about weights that have some of the properties of the associated
weights. We prove that Hv(G) and Hv0(G) are exactly the same spaces as Hw(G)
and Hw0

(G), where w is the smallest log-concave majorant of v. Here, the smallest
log-concave majorant of v is exactly the associated weight, but in case of other
weighted spaces this coincidence might not take place. Our work is based on the
theory of convex functions and some specific properties of the weighted banach
spaces of holomorphic functions under consideration.

The results of this paper are communicated at the conferences [7] and [8].

2. DEFINITIONS AND NOTATIONS

Let Φ be the set of functions ϕ satisfying the following conditions:

• ϕ : (0,∞) → R and

• there exists a ∈ R such that

inf
x∈(0,∞)

(
ϕ(x)− ax

)
> −∞.

226 Ann. Sofia Univ., Fac. Math and Inf., 102, 2015, 225–245.



Note that if ϕ ∈ Φ, then −∞ < ϕ(x) <∞ for every x ∈ (0,∞).

We denote by âϕ the limit inferior

âϕ = lim inf
x→∞

ϕ(x)

x
, ϕ ∈ Φ.

If ϕ ∈ Φ, then

• âϕ ∈ R ∪ {∞}, âϕ > −∞ ;

• âϕ = sup
{
a | a ∈ R, inf

x∈(0,∞)
(ϕ(x)− ax) > −∞

}

If ϕ ∈ Φ is convex in (0,∞), then

âϕ = lim
x→∞

ϕ(x)

x

By Φ1, Φ2, Φ3 we denote the following subsets of Φ:

Φ1 =
{
ϕ : ϕ ∈ Φ, âϕ = ∞

}
;

Φ2 =
{
ϕ : ϕ ∈ Φ, âϕ <∞, lim inf

x→∞
(ϕ(x)− âϕx) = −∞

}
;

Φ3 =
{
ϕ : ϕ ∈ Φ, âϕ <∞, lim inf

x→∞
(ϕ(x)− âϕx) > −∞

}
.

Note that Φ1, Φ2, Φ3 are mutually disjoint sets and Φ1 ∪ Φ2 ∪ Φ3 = Φ.

If ϕ ∈ Φ2 ∪ Φ3 is convex on (0,∞), then

lim inf
x→∞

(ϕ(x)− âϕx) = lim
x→∞

(ϕ(x)− âϕx).

Note that a function ϕ ∈ Φ is not necessarily continuous. In fact, ϕ ∈ Φ is not
supposed to satisfy any conditions beside those of the definition of Φ, Φ1, Φ2, Φ3.
There are a number of simple functions that belong to Φ, Φ1, Φ2, Φ3, for instance,

• ϕ1(x) = x
2 belongs to Φ1 ;

• ϕ2(x) = x−
√
x belongs to Φ2 ;

• ϕ3(x) = x
−1 belongs to Φ3 ,

and ϕ1(x), ϕ2(x), ϕ3(x) are all convex on (0,∞).

For a ϕ ∈ Φ let

Mϕ =
{
(a, b)

∣∣ a, b ∈ R, inf
t∈(0,∞)

(ϕ(t)− at) > b
}
.

The function ϕ∗∗ : (0,∞) → R is defined as

ϕ∗∗(x) = sup
(a,b)∈Mϕ

(ax+ b).

ϕ∗∗ is referred to as the second Young-Fenhel conjugate of ϕ and it is the largest
convex minorant of ϕ.
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3. MAIN RESULTS

Here we state our main results.

Theorem 3.1. Let ϕ, ψ ∈ Φ. If ψ is convex on (0,∞), then

inf
x∈(0,∞)

(
ϕ(x)− ψ(x)

)
= inf

x∈(0,∞)

(
ϕ∗∗(x)− ψ(x)

)
.

Theorem 3.2. Let ϕ, ψ ∈ Φ. If ψ is convex on (0,∞) and, in addition,
lim

x→0+

(
ϕ(x)− ψ(x)

)
= ∞, then

lim
x→0+

(
ϕ∗∗(x)− ψ(x)

)
= ∞ .

Theorem 3.3. Let ϕ ∈ Φ and ψ ∈ Φ \ Φ3. If ψ is convex on (0,∞) and, in
addition, lim

x→∞

(
ϕ(x)− ψ(x)

)
= ∞, then

lim
x→∞

(
ϕ∗∗(x)− ψ(x)

)
= ∞ .

The next examples show that the assumption for convexity of ψ in Theorems
3.1–3.3 cannot be omitted.

Example 3.1. Theorem 3.1 does not hold with the functions

ϕ(x) = min{x, 1}+ 1, ψ(x) =
x

x+ 1
, x ∈ (0,∞) .

Note that ϕ ∈ Φ, and ψ ∈ Φ is not convex on (0,∞). We have ϕ∗∗(x) = 1,
x ∈ (0,∞), and

1 = inf
x∈(0,∞)

(
ϕ(x)− ψ(x)

)
.= inf

x∈(0,∞)

(
ϕ∗∗(x)− ψ(x)

)
= 0 .

Example 3.2. Theorem 3.2 does not hold with

ϕ(x) =
1

x2
+

1

x
sin

1

x
+

2

x
, ψ(x) = ϕ(x)− 2

x
, x ∈ (0,∞) .

Note that ϕ, ψ ∈ Φ, the function ψ is not convex on (0,∞) and

∞ = lim
x→0+

(
ϕ(x)− ψ(x)

)
> lim inf

x→0+

(
ϕ∗∗(x)− ψ(x)

)

This fact is proved in Proposition 4.1.

Example 3.3. Theorem 3.3 does not hold with

ϕ(x) = x2 + x sinx+ 2x, ψ(x) = ϕ(x)− 2x, x ∈ (0,∞).

Note that ϕ ∈ Φ, ψ ∈ Φ \ Φ3, ψ is not convex on (0,∞) and

∞ = lim
x→∞

(
ϕ(x)− ψ(x)

)
> lim inf

x→∞

(
ϕ∗∗(x)− ψ(x)

)

This fact is proved in Proposition 4.2.
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Corollary 3.1. If ϕ, ψ ∈ Φ are such that

lim
x→0+

(
ϕ(x)− ψ(x)

)
= ∞ ,

then
lim

x→0+

(
ϕ∗∗(x)− ψ∗∗(x)

)
= ∞ . (3.1)

Proof. Since ψ∗∗ ≤ ψ, we have

lim
x→0+

(
ϕ(x)− ψ∗∗(x)

)
≥ lim

x→0+

(
ϕ(x)− ψ(x)

)
= ∞.

Now Theorem 3.2 applied to ϕ, ψ∗∗ proves (3.1). �

Corollary 3.2. Let ϕ ∈ Φ and ψ ∈ Φ \ Φ3. If ϕ and ψ satisfy

lim
x→∞

(
ϕ(x)− ψ(x)

)
= ∞ ,

then
lim
x→∞

(
ϕ∗∗(x)− ψ∗∗(x)

)
= ∞ . (3.2)

Proof. Note that

• ψ∗∗ ∈ Φ \ Φ3 by the Lemma 4.1;

• ψ∗∗ ≤ ψ.

Theorem 3.3 applied to ϕ, ψ∗∗ implies (3.2). �

Example 3.4. Let ϕ(x) = x2 + x and

ψ(x) =





3x− 1, x ∈ (0, 1]

5− 3x, x ∈ (1, 2]

x2 + x− 7, x ∈ (2,∞) .

We observe that ϕ, ψ ∈ Φ and

• ϕ is convex on (0,∞), and therefore ϕ∗∗ = ϕ,

• ψ is not convex on (0,∞) and

ψ∗∗(x) =

{
−1, x ∈ (0, 2]

x2 + x− 7, x ∈ (2,∞) .

A direct calculation shows that

inf
x∈(0,∞)

(
ϕ(x)− ψ(x)

)
= 0 .= 1 = inf

x∈(0,∞)

(
ϕ∗∗(x)− ψ∗∗(x)

)
.
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Thus, there is no analog of Theorem 3.1 involving ϕ∗∗ and ψ as in Corollar-
ies 3.1 and 3.2. �

4. AUXILIARY RESULTS

Proposition 4.1. Let

ϕ(x) =
1

x2
+

1

x
sin

1

x
+

2

x
and ψ(x) = ϕ(x)− 2

x
, x ∈ (0,∞).

Then ϕ, ψ ∈ Φ, the function ψ is not convex on (0,∞) and

∞ = lim
x→0+

(
ϕ(x)− ψ(x)

)
> lim inf

x→0+

(
ϕ∗∗(x)− ψ(x)

)
.

Proof. The function ψ satisfies

ψ(x) ≥
{

1
x2

− 1
x
, x ∈ (0, 1) ,

1
x2
, x ∈ [1,∞) ,

hence, ψ(x) ≥ 0 for every x ∈ (0,∞), and this implies that ψ ∈ Φ.

Since ϕ ≥ ψ, we have also ϕ ∈ Φ .

Note that

lim
x→0+

(
ϕ(x)− ψ(x)

)
= lim

x→0+

2

x
= ∞.

Let

xk =
1

3π
2 + 2kπ

, x̃k =
1

5π
2 + 2kπ

, k = 0, 1, 2, . . . .

We observe that xk > x̃k > xk+1 > 0, lim
k→∞

xk = 0, and the harmonic mean of xk,

xk+1 is equal to x̃k. A direct computation shows that ψ′′(x̃0) < 0, therefore ψ is
not convex on (0,∞).

Let

f(x) =
1

x2
+

1

x
, x ∈ (0,∞).

The function f is convex on (0,∞) and f(x) ≤ ϕ(x), x ∈ (0,∞). So, f is a convex
minorant of ϕ and thus f ≤ ϕ∗∗.

Therefore, f(xk) ≤ ϕ∗∗(xk) ≤ ϕ(xk) = f(xk) and this implies that

f(xk) = ϕ
∗∗(xk), k = 1, 2, 3, . . . .

Furthermore,

ψ(x̃k) = f(x̃k) ≤ ϕ∗∗(x̃k) ≤
xk − x̃k
xk − xk+1

ϕ∗∗(xk+1) +
x̃k − xk+1

xk − xk+1
ϕ∗∗(xk) ,
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because of the convexity of ϕ∗∗. Thus,

0 ≤ ϕ∗∗(x̃k)− ψ(x̃k) ≤
xk − x̃k
xk − xk+1

f(xk+1) +
x̃k − xk+1

xk − xk+1
f(xk)− f(x̃k) .

After some simple calculations we obtain

xk − x̃k
xk − xk+1

f(xk+1) +
x̃k − xk+1

xk − xk+1
f(xk)− f(x̃k) = (3 + x̃k)π

2 .

Consequently, 0 ≤ ϕ∗∗(x̃k)− ψ(x̃k) ≤ (3 + x̃k)π
2, k = 1, 2, 3, . . . , and

lim inf
x→0+

(
ϕ∗∗(x)− ψ(x)

)
<∞. �

Proposition 4.2. Let

ϕ(x) = x2 + x sinx+ 2x and ψ(x) = ϕ(x)− 2x, x ∈ (0,∞) .

Then ϕ ∈ Φ, ψ ∈ Φ \ Φ3, the function ψ is not convex on (0,∞) and

∞ = lim
x→∞

(
ϕ(x)− ψ(x)

)
> lim inf

x→∞

(
ϕ∗∗(x)− ψ(x)

)
.

Proof. The function ψ satisfies the inequalities

ψ(x) ≥




x2, x ∈ (0, π) ,

x2 − x, x ∈ [π ,∞) ,

therefore ψ(x) ≥ 0, x ∈ (0,∞), and thus ψ ∈ Φ. Moreover,

âψ = lim inf
x→∞

ψ(x)

x
≥ lim inf

x→∞

x2 − x
x

= ∞ ,

therefore âψ = ∞ and thus ψ ∈ Φ1 ⊂ Φ \ Φ3.

Now ϕ ∈ Φ since ϕ ≥ ψ and ψ ∈ Φ. Moreover,

lim
x→∞

(
ϕ(x)− ψ(x)

)
= lim

x→∞
2x = ∞ .

Let

xk =
3π

2
+ 2kπ, x̃k =

5π

2
+ 2kπ , k = 0, 1, 2, . . .

Note that, for k ∈ N, 0 < xk < x̃k < xk+1, xk + xk+1 = 2x̃k and lim
k→∞

xk = ∞.

A direct computation shows that ψ′′(x̃0) < 0, hence ψ is not convex on (0,∞).

Let
f(x) = x2 + x, x ∈ (0,∞).
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The function f is convex on (0,∞) and f ≤ ϕ therein. So, f is a convex minorant
of ϕ and thus f ≤ ϕ∗∗. Therefore, f(xk) ≤ ϕ∗∗(xk) ≤ ϕ(xk) = f(xk), and this
implies

f(xk) = ϕ
∗∗(xk), k ∈ N .

Furthermore, by the convexity of ϕ∗∗ , we have

ψ(x̃k) = f(x̃k) ≤ ϕ∗∗(x̃k) ≤
xk+1 − x̃k
xk+1 − xk

ϕ∗∗(xk) +
x̃k − xk
xk+1 − xk

ϕ∗∗(xk+1) .

Thus,

0 ≤ ϕ∗∗(x̃k)− ψ(x̃k) ≤
xk+1 − x̃k
xk+1 − xk

f(xk) +
x̃k − xk
xk+1 − xk

f(xk+1)− f(x̃k) .

After some simple calculations we obtain

xk+1 − x̃k
xk+1 − xk

f(xk) +
x̃k − xk
xk+1 − xk

f(xk+1)− f(x̃k) = π2, k ∈ N .

Consequently, 0 ≤ ϕ∗∗(x̃k)− ψ(x̃k) ≤ π2, k ∈ N, and

lim inf
x→∞

(
ϕ∗∗(x)− ψ(x)

)
<∞. �

Lemma 4.1. If ϕ ∈ Φ, then

(1) lim inf
x→0+

ϕ(x) = lim
x→0+

ϕ∗∗(x) ;

(2) lim inf
x→∞

ϕ(x)

x
= lim

x→∞

ϕ∗∗(x)

x
.

Proof. Let ϕ ∈ Φ. Then

lim inf
x→0+

ϕ(x) ≥ lim inf
x→0+

ϕ∗∗(x) = lim
x→0+

ϕ∗∗(x) ,

lim inf
x→∞

ϕ(x)

x
≥ lim inf

x→∞

ϕ∗∗(x)

x
= lim

x→∞

ϕ∗∗(x)

x
.

Let a0, b0 ∈ R be such that a0x+ b0 ≤ ϕ(x), x ∈ (0,∞). Then

lim inf
x→0+

ϕ(x) ≥ b0 > −∞ , (4.1)

lim inf
x→∞

ϕ(x)

x
≥ a0 > −∞ . (4.2)

Let b be such that lim inf
x→0+

ϕ(x) > b > −∞. We choose δ > 0 so that

inf
0<x<δ

ϕ(x) > b.
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Then

inf
x>0

ϕ(x)− b
x

≥ min
{

inf
0<x<δ

ϕ(x)− b
x

, inf
δ≤x

ϕ(x)− b
x

}

≥ min
{
0, inf

δ≤x

(
a0 +

b0 − b
x

)}
> −∞ .

Set a = min
{
0, inf

δ≤x

(
a0+

b0−b
x

)}
, then (a, b) ∈Mϕ and consequently ϕ∗∗(x) ≥ ax+b,

x ∈ (0,∞). Thus,
lim

x→0+
ϕ∗∗(x) ≥ b

and, by our choice of b,

lim
x→0+

ϕ∗∗(x) ≥ lim inf
x→0+

ϕ(x) .

Hence, assertion (1) of Lemma 4.1 is proved.

Let α be such that lim inf
x→∞

ϕ(x)
x
> α > −∞. We choose ∆ > 0 such that

inf
x>∆

ϕ(x)

x
> α.

Then

inf
x>0

(
ϕ(x)− αx

)
≥ min

{
inf

0<x≤∆
(ϕ(x)− αx), inf

x>∆
(ϕ(x)− αx)

}

≥ min
{

inf
0<x≤∆

(a0x+ b0 − αx), 0
}
> −∞

Let β = min
{

inf
0<x≤∆

(a0x+ b0 −αx), 0
}
. Then (α, β) ∈Mϕ and consequently,

ϕ∗∗(x) ≥ αx+ β for every x ∈ (0,∞). Therefore,

lim
x→∞

ϕ∗∗(x)

x
≥ α

and, by our choice of α,

lim
x→∞

ϕ∗∗(x)

x
≥ lim inf

x→∞

ϕ(x)

x

Thus, assertion (2) of Lemma 4.1 is proved. �

Lemma 4.2. ϕ ∈ Φi ⇐⇒ ϕ∗∗ ∈ Φi, i = 1, 2, 3.

Proof. The assertion ϕ ∈ Φ1 ⇐⇒ ϕ∗∗ ∈ Φ1 is proved as (1) of Lemma 4.1.

The proof of Lemma 4.2 will be completed once we prove that

ϕ ∈ Φ3 ⇐⇒ ϕ∗∗ ∈ Φ3.
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Let ϕ ∈ Φ2 ∪ Φ3 and

âϕ = lim inf
x→∞

ϕ(x)

x
= lim

x→∞

ϕ∗∗(x)

x
.

If ϕ∗∗ ∈ Φ3, then ϕ ≥ ϕ∗∗ implies ϕ ∈ Φ3.

Now let us suppose that ϕ ∈ Φ3. Let a0, b0 ∈ R be such that a0x+ b0 ≤ ϕ(x)
for every x ∈ (0,∞). Let b ∈ R be such that lim inf

x→∞

(
ϕ(x)− âϕx

)
> b > −∞.

Let ∆ > 0 satisfy
inf
x>∆

(
ϕ(x)− âϕx

)
> b.

Then,

inf
x>0

(
ϕ(x)− âϕx

)
≥ min

{
inf

0<x≤∆
(ϕ(x)− âϕx), inf

x>∆
(ϕ(x)− âϕx)

}

≥ min
{

inf
0<x≤∆

(a0x+ b0 − âϕx), b
}
> −∞ .

Let b̂ = min
{

inf
0<x≤∆

(a0x+b0− âϕx), b
}
. Then (âϕ, b̂) ∈Mϕ and consequently

ϕ∗∗(x) ≥ âϕx+ b̂ for every x ∈ (0,∞). Thus,

lim inf
x→∞

(
ϕ∗∗(x)− âϕx

)
≥ b̂ > −∞ ,

and ϕ∗∗ ∈ Φ3. �

Lemma 4.3. Let ϕ ∈ Φ. If a is such that a < âϕ, then

inf
x>0

(
ϕ(x)− ax

)
> −∞

and
lim
x→∞

(
ϕ(x)− ax

)
= ∞ .

Proof. Let a0, b0 ∈ R be such that (a0, b0) ∈ Mϕ, let a and a1 satisfy the
inequalities −∞ < a < a1 < âϕ, and ∆ > 0 be such that

inf
x>∆

ϕ(x)

x
> a1.

So, ϕ(x)− ax > (a1 − a)x for x > ∆ and lim
x→∞

(
ϕ(x)− ax

)
= ∞. Therefore,

inf
x>0

(
ϕ(x)− ax

)
= min

{
inf

0<x≤∆

(
ϕ(x)− ax

)
; inf
x>∆

(
ϕ(x)− ax

)}

≥ min
{

inf
0<x≤∆

(
a0x+ b0 − ax

)
; inf
x>∆

(a1 − a)x
}
> −∞.

Lemma 4.3 is proved. �
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Lemma 4.4. Let ψ : (0,∞) → R be convex on (0,∞) and

ψ̂(x) = ψ(x)− ψ′(x−)x, x ∈ (0,∞) ,

where ψ′(x−) = lim
t→x−

ψ(t)−ψ(x)
t−x . If 0 < x1 < x2, then

ψ̂(x1) ≥ ψ̂(x2).

Proof. Let x3 = x1+x2
2 . Note that

• 2ψ(x3) ≤ ψ(x1) + ψ(x2),

• f(u, v) = ψ(u)−ψ(v)
u−v is a monotone non-decreasing function of each variable

u, v > 0, u .= v, and

−∞< lim
t→x−

ψ(t)− ψ(x)
t− x =ψ′(x−)≤ψ′(x+)= lim

v→x+

ψ(v)− ψ(x)
v − x <∞ , x > 0 .

Now, ψ̂(x2) ≤ ψ̂(x1) follows from the inequalities

ψ̂(x2) = ψ(x2)− ψ′(x−2 )x2 ≤ ψ(x2)−
ψ(x2)− ψ(x3)

x2 − x3
x2

=
(
ψ(x3)− ψ(x2)

) 2x2

x2 − x1
− ψ(x2) = ψ(x3)

2x2

x2 − x1
− ψ(x2)

x2 + x1

x2 − x1

≤
(
ψ(x2) + ψ(x1)

) x2

x2 − x1
− ψ(x2)

x2 + x1

x2 − x1

= ψ(x1)
x2 + x1

x2 − x1
−

(
ψ(x1) + ψ(x2)

) x1

x2 − x1

≤ ψ(x1)
x2 + x1

x2 − x1
− ψ(x3)

2x1

x2 − x1
= ψ(x1)−

(
ψ(x3)− ψ(x1)

) 2x1

x2 − x1

= ψ(x1)−
ψ(x3)− ψ(x1)

x3 − x1
x1 ≤ ψ(x1)− ψ′(x+

1 )x1 ≤ ψ(x1)− ψ′(x−1 )x1

= ψ̂(x1).

�

Lemma 4.5. Let ψ ∈ Φ2 ∪ Φ3. If ψ is convex on (0,∞) and

lim
x→∞

(
ψ(x)− ψ′(x−)x

)
> −∞ ,

then ψ ∈ Φ3.

Proof. Note that the limit value exists due to Lemma 4.4.

Let α ∈ R satisfy

lim
x→∞

(
ψ(x)− ψ′(x−)x

)
> α > −∞.
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Let ∆ > 0 be such that inf
x>∆

(
ψ(x)− ψ′(x−)x

)
> α. Then,

ψ(x)− ψ(t)− ψ(x)
t− x x > α , ∆ < t < x

and therefore
ψ(t)− α

t
≥ ψ(x)− α

x
, ∆ < t < x .

Consequently,

ψ(x)− α
x

≥ lim
x→∞

ψ(x)− α
x

= lim
x→∞

ψ(x)

x
= âψ , x > ∆ .

Thus, ψ(x)− âψx ≥ α for x > ∆, and

lim
x→∞

(
ψ(x)− âψx

)
≥ α > −∞ ,

i.e. ψ ∈ Φ3. �

As a direct consequence from Lemma 4.5 we obtain

Corollary 4.3. Let ψ ∈ Φ2. If ψ is convex on (0,∞), then

lim
x→∞

(
ψ(x)− ψ′(x−)x

)
= −∞ .

5. PROOFS OF THE MAIN RESULTS

Proof of Theorem 3.1. Let ϕ ∈ Φ, ψ ∈ Φ and ψ be convex on (0,∞). Since
ϕ ≥ ϕ∗∗, we have

inf
x∈(0,∞)

(
ϕ(x)− ψ(x)

)
≥ inf

x∈(0,∞)

(
ϕ∗∗(x)− ψ(x)

)
. (5.1)

We consider separately two cases:

Case 1. inf
x∈(0,∞)

(
ϕ(x)− ψ(x)

)
= −∞. We have

inf
x∈(0,∞)

(
ϕ(x)− ψ(x)

)
= inf

x∈(0,∞)

(
ϕ∗∗(x)− ψ(x)

)
= −∞ .

Case 2. c := inf
x∈(0,∞)

(
ϕ(x)− ψ(x)

)
> −∞. In this case,

ϕ(x) ≥ ψ(x) + c, x ∈ (0,∞)

and ψ + c is a convex minorant of ϕ. Therefore, ϕ∗∗(x) ≥ ψ(x) + c, x ∈ (0,∞),
i.e. inf

x>0
(ϕ∗∗(x)− ψ(x)) ≥ c and

inf
x>0

(ϕ∗∗(x)− ψ(x)) ≥ inf
x∈(0,∞)

(
ϕ(x)− ψ(x)

)
.
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It follows from here and inequality (5.1) that

inf
x∈(0,∞)

(
ϕ(x)− ψ(x)

)
= inf

x∈(0,∞)

(
ϕ∗∗(x)− ψ(x)

)
. �

Proof of Theorem 3.2. Recall that ϕ, ψ ∈ Φ, ψ is convex on (0,∞) and

lim
x→0+

(
ϕ(x)− ψ(x)

)
= ∞ .

Note that lim
x→0+

ψ(x) =: ψ(0+) ∈ R ∪ {∞} and ψ(0+) > −∞, because ψ ∈ Φ

and ψ is convex on (0,∞). Therefore, ϕ(0+) = ∞ and from Lemma 4.1 we obtain
that ϕ∗∗(0+) = ∞.

If ψ(0+) <∞, then

lim
x→0+

(ϕ∗∗(x)− ψ(x)) = ϕ∗∗(0+)− ψ(0+) = ∞.

In order to complete the proof, we have to examine the alternative when ψ satisfies
ψ(0+) = ∞. We shall define a new function ψ̃ that is a convex minorant of ϕ.

Let a0, b0 ∈ R be such that (a0, b0) ∈ Mϕ and c ∈ R. We choose ∆1 > 0 such
that

inf
0<x<∆1

(
ϕ(x)− ψ(x)

)
> c .

Next, we choose ∆2 such that ∆1 > ∆2 > 0 and

inf
0<x<∆2

(
ψ(x) + c− (a0x+ b0)

)
> 0.

Now, we choose ∆3, ∆2 > ∆3 > 0, so that ψ(x) is monotone non-increasing on
(0,∆3). For x ∈ (0,∆3) we have the following inequalities for the convex function
ψ:

0 ≥ ψ(∆3)− ψ(x)
∆3

≥ ψ(∆3)− ψ(x)
∆3 − x

≥ lim sup
t→x+

ψ(t)− ψ(x)
t− x =: ψ′(x+)

and from ψ(0+) = ∞ it follows that

lim
x→0+

ψ′(x+) = −∞.

Further, we choose ∆4, ∆3 > ∆4 > 0, such that

sup
0<x<∆4

ψ′(x+) < a0.

If x ∈ (0,∆4), then

lim sup
x→0+

(
ψ′(x+)(∆1 − x) + ψ(x) + c

)

= lim sup
x→0+

(
ψ′(x+)(∆1/2− x) + ψ(x) + c+ ψ′(x+)∆1/2

)

≤ lim sup
x→0+

(
ψ(∆1/2) + c+ ψ

′(x+)∆1/2
)
= −∞ .
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Finally, we choose ∆5 so that ∆4 > ∆5 > 0 and

sup
0<x<∆5

(
ψ′(x+)(∆1 − x) + ψ(x) + c

)
< a0∆1 + b0 .

Let x1 ∈ (0,∆5). We set

a1 := ψ′(x+
1 ), b1 := −ψ′(x+

1 )x1 + ψ(x1) + c ,

hence,
ψ′(x+

1 )(x− x1) + ψ(x1) + c = a1x+ b1, x ∈ (0,∞).

From

a1x1 + b1 = ψ(x1) + c ≥ a0x1 + b0,

a1∆1 + b1 < a0∆1 + b0

we conclude that there exists x2 ∈ [x1,∆1] such that a1x2 + b1 = a0x2 + b0.

We define a function ψ̃ as follows:

ψ̃(x) :=





ψ(x) + c, x ∈ (0, x1)

a1x+ b1, x ∈ [x1, x2]

a0x+ b0, x ∈ (x2,∞).

The function ψ̃ is convex on (0,∞) because it is continuous, ψ′(x−1 ) ≤ a1 ≤ a0

and ψ + c is convex on (0, x1).

Furthermore,

ψ̃(x) = ψ(x) + c ≤ ϕ(x), x ∈ (0, x1) ,

ψ̃(x) = a1x+ b1 ≤ ψ(x) + c ≤ ϕ(x), x ∈ [x1, x2] ,

ψ̃(x) = a0x+ b0 ≤ ϕ(x), x ∈ (x2,∞) .

Hence, ψ̃ is a convex minorant of ϕ, and ϕ∗∗(x) ≥ ψ̃(x), x ∈ (0,∞).

Thus ϕ∗∗(x) ≥ ψ(x) + c, x ∈ (0, x1), and

lim inf
x→0+

(
ϕ∗∗(x)− ψ(x)

)
≥ c ,

which, according to the choice of c, implies that

lim
x→0+

(
ϕ∗∗(x)− ψ(x)

)
= ∞. �

Proof of Theorem 3.3. Recall that ϕ ∈ Φ, ψ ∈ Φ \ Φ3, ψ is convex on (0,∞)
and lim

x→∞

(
ϕ(x)− ψ(x)

)
= ∞.
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By Lemma 4.1 we have

âϕ = lim inf
x→∞

ϕ(x)

x
= lim

x→∞

ϕ∗∗(x)

x
,

âψ = lim inf
x→∞

ψ(x)

x
= lim

x→∞

ψ∗∗(x)

x

Let ∆ > 0 be such that

inf
x>∆

(
ϕ(x)− ψ(x)

)
> 0,

then ϕ(x) ≥ ψ(x) for every x ∈ (∆,∞) and

âϕ = lim inf
x→∞

ϕ(x)

x
≥ lim inf

x→∞

ψ(x)

x
= âψ.

The proof proceeds with separate consideration of several cases:

Case 1: âϕ > âψ.

Let a1, a2 ∈ R be such that

âϕ > a1 > a2 > âψ.

We choose ∆ < ∆1 such that

ϕ∗∗(x)

x
> a1 > a2 >

ψ(x)

x
, x ∈ (∆1,∞).

Hence, ϕ∗∗(x)− ψ(x) > (a1 − a2)x, x ∈ (∆1,∞), and

lim
x→∞

(
ϕ∗∗(x)− ψ(x)

)
= ∞ .

Thus Case 1 is settled.

Case 2: âϕ = âψ. This case is split into three subcases.

Case 2.1: ϕ ∈ Φ3. We make the following observations:

• Lemma 3.2 implies that ϕ∗∗ ∈ Φ3.

• ψ ∈ Φ2 and since ψ is convex, we have

lim inf
x→∞

(
ψ(x)− âψx

)
= lim

x→∞

(
ψ(x)− âψx

)
= −∞ .

We claim that
inf
x>0

(
ϕ∗∗(x)− âϕx

)
> −∞. (5.2)

Indeed, let us choose the real numbers b, ∆2, a0 and b0 in the following way:
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– b is such that
lim inf
x→∞

(
ϕ∗∗(x)− âϕx

)
> b ;

– ∆2 > 0 is such that
inf

x>∆2

(
ϕ∗∗(x)− âϕx

)
> b ;

– a0 and b0 are such that (a0, b0) ∈Mϕ and therefore

a0x+ b0 ≤ ϕ∗∗(x) , x ∈ (0,∞).

We have

inf
x>0

(
ϕ∗∗(x)− âϕx

)
= min

{
inf

0<x≤∆2

(
ϕ∗∗(x)− âϕx

)
; inf
x>∆2

(
ϕ∗∗(x)− âϕx

)}

≥ min
{

inf
0<x≤∆2

(
a0x+ b0 − âϕx

)
; b

}
> −∞

and claim (5.2) is proved. Now,

lim inf
x→∞

(
ϕ∗∗(x)− ψ(x)

)
= lim inf

x→∞

(
(ϕ∗∗(x)− âϕx) + (âψx− ψ(x))

)

≥ inf
x>0

(ϕ∗∗(x)− âϕx) + lim inf
x→∞

(âψx− ψ(x))

= inf
x>0

(ϕ∗∗(x)− âϕx) + lim
x→∞

(âψx− ψ(x)) = ∞

Case 2.1 is settled.

Case 2.2: ϕ ∈ Φ2 and Case 2.3: ϕ ∈ Φ1.

Let c ∈ R, ∆ > 0 satisfy inf
x>∆

(ϕ(x) − ψ(x)) > c, and a0, b0 be such that

(a0, b0) ∈ Mϕ. In the present cases, the assumptions imply that ϕ ∈ Φ2 (ϕ ∈ Φ1)
and âϕ > a0. So, âψ = âϕ > a0, ψ ∈ Φ2 (ψ ∈ Φ1), and by Lemma 4.3,

lim
x→∞

(ψ(x)− a0x) = ∞.

Let ∆1 > ∆ be such that

inf
x>∆1

(
ψ(x) + c− (a0x+ b0)

)
> 0.

Since ψ ∈ Φ2 (ψ ∈ Φ1) is a convex function, we have

ψ′(x−) ≤ ψ′(x+) < âψ, x > 0.

For a fixed x′ and ∞ > x > x′ > 0 we have

ψ(x′)− ψ(x)
x′ − x ≤ lim

t→x−

ψ(t)− ψ(x)
t− x = ψ′(x−) < âψ

=⇒ lim
x→∞

ψ(x)
x

− ψ(x′)
x

1− x′

x

= lim
x→∞

ψ(x′)− ψ(x)
x′ − x ≤ lim

x→∞
ψ′(x−) ≤ âψ ,
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therefore
lim
x→∞

ψ′(x−) = âψ . (5.3)

Let ∆2 > ∆1 be such that

inf
x>∆2

ψ′(x−) > a0.

We claim that there exists ∆3 > ∆2 such that

ψ′(x−)(∆− x) + ψ(x) + c < a0∆+ b0, x > ∆3. (5.4)

The arguments for the proof of this claim in Case 2.2 and Case 2.3 are different.

In Case 2.2 we have âψ <∞, and Corollary 4.3 applied to ψ imply

lim
x→∞

(ψ(x)− ψ′(x−)x) = −∞ .

Therefore by (5.3) we obtain

lim
x→∞

(
ψ′(x−)(∆− x) + ψ(x) + c

)
= −∞

On the other hand, in Case 2.3 we have lim
x→∞

ψ′(x−) = âψ = ∞ and

ψ′(x−)(∆− x) + ψ(x) + c ≤ ψ′(x−)(2∆− x) + ψ(x) + c− ψ′(x−)∆
≤ ψ(2∆) + c− ψ′(x−)∆ ,

since ψ′(x−)(t− x) + ψ(x) ≤ ψ(t) for x, t > 0. Hence,

lim
x→∞

(ψ′(x−)(∆− x) + ψ(x) + c) = −∞ .

Thus (5.4) is proved and let ∆3 > ∆2 be such that (5.4) is fulfilled. For x1 > ∆3

we set
a1 = ψ′(x−1 ), b1 = −ψ′(x−1 )x1 + ψ(x1) + c.

Note that a1 > a0. Then

a1x+ b1 ≤ ψ(x) + c, ∀x ∈ (0,∞) ,

a1x1 + b1 = ψ(x1) + c ≥ a0x1 + b0 ,

a1∆+ b1 < a0∆+ b0 .

We choose x2 ∈ (∆, x1] so that

a1x2 + b1 = a0x2 + b0,

and define a function ψ̃ : (0,∞) → R as follows:

ψ̃(x) =





a0x+ b0, x ∈ (0, x2] ,

a1x+ b1, x ∈ (x2, x1] ,

ψ(x) + c, x ∈ (x1,∞) .
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Notice that ψ̃ is convex on (0,∞), because it is continuous, a0 ≤ a1 ≤ ψ′(x−1 )
and ψ + c is convex on (x1,∞). Moreover, ψ̃(x) ≤ ϕ(x) for every x ∈ (0,∞).

Therefore, ψ̃(x) ≤ ϕ∗∗(x), x ∈ (0,∞).

Thus for x > x1 we have ψ(x) + c ≤ ϕ∗∗(x) and

lim inf
x→∞

(
ϕ∗∗(x)− ψ(x)

)
≥ c .

It follows from our choice of c that

lim
x→∞

(
ϕ∗∗(x)− ψ(x)

)
= ∞. �

6. APPLICATION

In this section we apply Theorems 3.1, 3.2 and 3.3 to the theory of spaces
Hv(G) and Hv0(G).

We make use of the following notation:

Mf(y) = sup
x∈(−∞,∞)

|f(x+ iy)|,

ψf (y) = lnMf(y), ∀y > 0, f ∈ Λ(p) ,

where f is a holomorphic function defined on the upper half plane G.

Note that
− ln ‖ f ‖v= inf

y>0

(
ϕv(y)− ψf (y)

)

Here we reformulate our results from [6].

Theorem A. [6, Th. 1.2] If ϕ satisfies condition (1.1′), then

Hv(G) .= {0} ⇐⇒ ϕ ∈ Φ ,

where v = e−ϕ.

Theorem B. [6, Th. 1.3] If ϕ satisfies condition (1.1′), then

Hv0(G) .= {0} ⇐⇒
∣∣∣∣
ϕ ∈ Φ,
ϕ(0+) = ∞ ,

where v = e−ϕ.

Theorem C [6, Th. 1.4] If ϕ satisfies condition (1.1′) and Hv0(G) .= {0}, then

ψf ∈ Φ \ Φ3 for every f ∈ Hv0(G) \ {0},

where v = e−ϕ.

Note that ψf is convex on (0,∞) and ψf ∈ Φ, ∀f ∈ Hv(G) \ {0}.
In this section we prove two new theorems.
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Theorem 6.1. If ϕ satisfies condition (1.1′) and ϕ ∈ Φ, then

(
Hv(G), ‖ · ‖v

)
≡

(
Hw(G), ‖ · ‖w

)
,

where v = e−ϕ and w = e−ϕ
∗∗

.

Proof. Let v = e−ϕ and w = e−ϕ
∗∗

. The following implications hold:

• ϕ > ϕ∗∗ =⇒ ϕ∗∗ satisfies condition (1.1′) ;

• ϕ ∈ Φ =⇒ ϕ∗∗ ∈ Φ, because Mϕ∗∗ =Mϕ .= ∅.

Thus, Hv(G) .= {0} and Hw(G) .= {0}, by Theorem A. Moreover, Hv(G) ⊃ Hw(G),
because ‖ f ‖v≤‖ f ‖w<∞, ∀f ∈ Hw(G).

Note that for every f ∈ Hv(G) .= {0} the function ψf = lnMf is convex on
(0,∞) and ψf ∈ Φ. Therefore, by Theorem 3.1,

inf
x∈(0,∞)

(
ϕ(x)− ψf (x)

)
= inf

x∈(0,∞)

(
ϕ∗∗(x)− ψf (x)

)

Thus f ∈ Hw(G) .= {0} and ‖ f ‖v=‖ f ‖w. �

Theorem 6.2. If ϕ satisfies condition (1.1′), ϕ ∈ Φ and ϕ(0+) = ∞, then

(
Hv0(G), ‖ · ‖v

)
≡

(
Hw0

(G), ‖ · ‖w
)
,

where v = e−ϕ and w = e−ϕ
∗∗

.

Proof. Let v = e−ϕ and w = e−ϕ
∗∗

. The following implications hold:

• ϕ > ϕ∗∗ =⇒ ϕ∗∗ satisfies condition (1.1′) ;

• ϕ ∈ Φ =⇒ ϕ∗∗ ∈ Φ, since Mϕ∗∗ =Mϕ .= ∅ ;

• ϕ∗∗(0+) = ϕ(0+) = ∞, by Lemma 4.1 (1).

By Theorem B, Hv0(G) .= {0} and Hw0
(G) .= {0} . Moreover, Hv0(G) ⊃ Hw0

(G),
because of

0 ≤ v(iy)|f(x+ iy)| ≤ w(iy)|f(x+ iy)|
for every f ∈ Hw0

(G) and x ∈ (−∞,∞), y ∈ (0;∞).

By Theorem 6.1, ‖ f ‖v=‖ f ‖w for every f ∈ Hv0(G) .= {0}.
We have to prove that f ∈ Hw0

(G) .= {0} for every f ∈ Hv0(G) .= {0}. Let
f ∈ Hv0(G) .= {0}. In view of the definition of Hv0(G),

lim
K↑G

sup
z∈G\K

v(z)|f(z)| = 0 ,
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where K ⊂ G and K is compact. So,

lim
y→0+

v(iy)Mf(y) = 0, lim
y→∞

v(iy)Mf(y) = 0 ,

and after reformulation,

lim
y→0+

(
ϕ(y)− ψf (y)

)
= ∞, lim

y→∞

(
ϕ(y)− ψf (y)

)
= ∞ .

By Theorem C, ψf ∈ Φ \ Φ3. By Theorem 3.2 and Theorem 3.3 we have

lim
y→0+

(
ϕ∗∗(y)− ψf (y)

)
= ∞, lim

y→∞

(
ϕ∗∗(y)− ψf (y)

)
= ∞ ,

i.e.
lim
y→0+

w(iy)Mf(y) = 0, lim
y→∞

w(iy)Mf(y) = 0 .

For an arbitrary ε > 0 we choose c > 1 such that

sup
y< 1

c

w(iy)Mf(y) < ε, sup
y>c

w(iy)Mf(y) < ε .

The quantity

m =

sup
1
c
≤y≤c

w(iy)

inf
1
c
≤y≤c

v(iy)

satisfies m < ∞, since ϕ∗∗ ∈ Φ and therefore inf 1
c
≤x≤c ϕ

∗∗(x) > −∞ for every
c > 1.

In view of the definition of Hv0(G) there exist x1 > 0, c1 > c and a compact

K1 = {x+ iy | − x1 ≤ x ≤ x1,
1

c1
≤ y ≤ c1}

satisfying

sup
x+iy∈G\K1

v(iy)|f(x+ iy)| ≤ ε

m
.

Let K = {x+ iy | − x1 ≤ x ≤ x1,
1
c
≤ y ≤ c}, then

sup
x+iy∈G\K

w(iy)|f(x+ iy)|

= max
{

sup
y< 1

c

w(iy)Mf(y), sup
|x|>x1,
1
c
≤y≤c

w(iy)Mf(y), sup
y>c

w(iy)Mf(y)
}

≤ max
{
ε, sup

|x|>x1,
1
c
≤y≤c

v(iy)m|f(x+ iy)|, ε
}
≤ ε

and therefore f ∈ Hw0
(G). �
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