A CLASS OF COMPACT ABELIAN GROUPS

Dikran Dikranjan, Ivan Prodanov

In this paper we consider compact Abelian groups G such that each
non-zero closed subgroup of G contains non-zero periodic elements of G. It
turns out that they possess many properties of the usual standard tori. We
call them exotic tori.

Section 1 is purely algebraical, and contains the main properties of the
character groups of the exotic tori. They are called strongly non-divisible
groups and may be characterised in various ways. Some of them are expo-
sed in Theorem 1.4. The structure of those groups is studied in Propositions
1.6, 1.6 and in Theorem 1.9. ,

Section 2 is devoted to the exotic tori. Some of their properties are
obtained by a translation of the corresponding ones in Section 1, using the
Po(riltg'igin’s duality. Characteristic conditions are given in Theorems 2.4*
and 24.

The exotic tori are closely related to minimal and totally minimal group
topologies. A topological group G is called minimal (and the topology of
G is said to be minimal) if G is Hausdorff, and every group topology on
G which is coarser than the topology of G is non-Hausdorff. A topological
group G is called fotally minimal, if each quotient group G/H with respect
to a closed normal subgroup H is minimal. The first examples of non-
compact minimal groups may be found in [3]) and [6]. Examples of non-
compact totally minimal groups are given in [2].

In Section 3 we apply exotic tori to study minimal and totally minimal
topologies on periodic groups. Theorem 3.3 for example states that a perio-
dic divisible group G admits a minimal precompact group topology
if and only if G=(Q/Z)* (n=1, 2,. - .). The precompact minimal group
topologies on those groups are totally minimal and are induced by the
embeddings into the connected exotic tori.

In general, the notations follow those of [5]. If G is an Abelian group,
by 7 (G) we denote the periodic subgroup of G, by S(G)— the socle of G,
i. e. the subgroup of G generated by the elements of G with prime period,
and by r(G) — the rank of G.
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1. STRONGLY NON-DIVISIBLE ABELIAN GROUPS

An Abelian group X is called strongly non-divisible, if for each proper
subgroup Y of X the quotient group X/Y is non-divisible. Obviously that
condition means that there exists a natural n with nX4+Y+X,

Clearly every strongly non-divisible group is reduced, but the converse
is not true. For example, if p is a prime the group

Q,,={7;"7: mEZ,nEN}

is reduced, while the quotient group Qp/Z=1Z (p>) is divisible. The group
é Z/p* Z is periodic, reduced, and not strongly non-divisible.
=l

The following proposition demonstrates an elementary property of the
strongly non-divisible groups. It is proved in more general form in [1}. For
completeness we give a proof.

1.1. Proposition. If the sequence

(1) 0 X' X — X" =0

of Abelian groups and homomorphisms is exact, the group X is strongly
non-divisible if and only if X’ and X" are strongly non-divisible.

Proof. The necessity is evident. Let X’ and X" be strongly non-divisible.
Assume there exists an epimorphism ¢: X — D, where D is non-zero divisible
group. If X’ ¢ ker¢o, we consider the restriction ¢: X’ — D. ¢ is not an epi-
morphism, since X’ is strongly non-divisible. Hence the divisible group
D/e(X") is non-zero. Taking the composition

instead of ¢, we may assume X' C kerq. The exactness of (1) gives an
epimorphism ¢: X" — D, which is a contradiction, since X” is strongly non-
divisible. Therefore X is strongly non-divisible. Q.E.D

12. Corollary. Let X, X,, - - -, X, be Abelian groups. Then the
group X; P X, @ - - P X, is strongly non-divisible if and only if each
X, is strongly non-divisible (=1, 2,. . ., n).

1.3. Corollary. Every finitely generated Abelian group is strongly
non-divisible.

It suffices to show that the group Z is strongly non-divisible, which is
obvious.

The following theorem contains a few equivalent forms of the defini
tion of a strongly non-divisible group.

14. Theorem. Let X be an Abelian group. Then the following five
conditions are equivalent:

i) X is strongly non-divisible;

ii) there does not exist an epimorphism of the form ¢:X—1Z (p=)
(p€P);

iii) the rank of X is finite and for every free subgroup A of X with
r(A)=r(X) holds
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peP
where for each p¢P there exists a natural 2 with
3 P*T,=0;

iv) the rank of X is finite and there exists a free subgroup A of X
with 7(A)=r(X) such that (2) and (3) are fulfilled;

v) each proper subgroup of X is containedin a maximal proper subgroup.

Proof. i) = ii). Trivial.

ii) =>iii). Let us assume that the rank of X is infinite. If { X, }® ,is an
infinite independent system in X, we obtain an epimorphism ¢:H —Z (p>)

setting ¢ (Xn)=—[;l,,—-+Z (n=1, 2,. . .), where H is the subgroup generated

by {xn}>,- Since Z (p~) is divisible, we may extend ¢ to X, which contra-

dicts ii). Therefore the rank of X is finite.

Let A be a free subgroup of X with r(A4)=r(X). Then X/A is periodic,
nence there exists a representation (2), where 7, is a p-group (p¢P). We
have only to prove that for each p¢P there exists 2¢N with (3). For this
purpose it is sufficient to know that the group T, of the characters of 7,

is periodic. In fact, the compactness of 7" implies the existence of a com-
mon period of the elements of 7,. Then the elements of T, have the same

common period, since the characters separate the points of 7,. Thus we
obtain (3).
Let us assume that the group 7 is not periodic. Then there exists a

non-periodic character y: 7, — R/Z. Obviously x(7,) € Z(p=), and the non-
periodicity of y implies y (7,)=Z(p=). We extend the epimorphism y: 7, —
Z(p~) to X/A. Then the composition

X — X/A-2+ Z (p=)

is an epimorphism which contradicts ii).
iii) = iv). Obvious.
iv) > v). Let Y be a proper subgroup of X. If Y+A=UX, then

X[Y =(Y+A)[Y =A[ANY)

is a finitely generated group. Hence there exists a maximal proper subgroup
H of X[Y. The inverse image of M is a maximal proper subgroup of X
containing Y. Consider now the case Y+ A=%X, and let

o: X— X /A=@P Ty
pe
be the canonical epimorphism. Then o (Y)4=@7T,, hence it suffices to show
psP

that the group
T Y)=@T;
‘(g;) p)fe(Y) ”‘@k ?

13 Fon. Ha Cod. yuus,, dak. 1o ma TeMaTHka ¥ MeXaWuka, T. 70, 1975/76
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possesses maximal subgroups. By (3), p*7,=0 holds. We prove that every
T, possesses maximal subgroups. In fact, for each character y: T,—R/Zwe

have y(7,)CZ/p*Z. Since the latter group is finite, it has maximal sub-
roups.

& I\)r)=>z'). Let Y be a proper subgroup of X. We have to verify that
the group X/Y is not divisible. Take a maximal subgroup M of X which con-
tains Y. Then X/M is cyclic, hence finitely generated and non-divisible
according to Corollary 2. Therefore X/Y is also non-divisible. Q.E.D.

The following proposition shows that the strongly non-divisible groups
can be approximated by direct sums of free groups and periodic groups.
We shall denote from now on by p,, pe,: - -, Ps - - - the sequence of the
primes (in an arbitrary order).

1.5. Proposition. An Abelian group X of rank 7 is strongly non-
divisible if and only if there is a representation ‘

(4) Xom D Xomy

m=0

where the group X, is free and r(X,)=n,
(5) XOCXICX’C o e e CXMC . . e

is an increasing sequence of subgroups and for each natural m there exists
a non-negative integer k,, such that '

(6) P X C Xpa(m=1, 2,. . -).

Proof. Let X be a strongly non-divisible group. By iv) in Theorem
1.4 there exists a free subgroup A of X with r(A)=n for which (2) and
(3) hold. For an arbitrary non-negative integer m we denote by X, the

m
inverse image of @® 7,, under the canonical homomorphism X ->€I};) T, It
1 »

is easy to verify that (4), (5) and (6) hold.
Conversely, if the group X has a representation satisfying (4), (5) and
(6), the group X, is free with 7(X,)=n and

X/Xo =@ Tp,,.»
m=1

where prm Tpp,=0 (m=1, 2,...), since pt ph. . -p:m X,,C Xm—y by (6).

Now we apply Theorem 1.4, iv). Q.E.D.

Let X be a strongly non-divisible group. Each representation (4) with
(5) and (6) is called canonical.

The following two propositions describe two properties of canonical
representations.

1.6. Proposition. Let X be a strongly non-divisible group of rank
n and (4) be a canonical representation of X. Then each of the groups X,
(m=1, 2,. . .) is a direct sum of a free subgroup of rank n and a perio-
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e e

dic subgroup of X with period pf:. . . pkm, where k), Ry, . . . are deter-
mined in (6).

Proof. We have r(X,)=r(X)=n. Now (5) implies r(X,)=n (m=1, 2,
.. -). By (6), pft- . - p*m X, cX, Since X, is free, the pzriodic elements
of X, have a common period t=p# . . . p*n. Thus we obtain the exact
sequernce

0 - T'(X,) = Xn— t Xn—0

which splits, since the group tX,, is free. Q.E.D.

1.7. Proposition. Let X be a strongly non-divisible torsion free
group, and (4) be a canonical representation of X. Then the groups X,
(m=1, 2,- - .) are free and each of the quotient groups Xpa/Xm- (m=1,
2.. . ) is a finite p,-group.

Proof. Obvious.

The following lemma is a step to the main property of the canonical
representations.

1.8. Lemma. Let X be a strongly non-divisible group and (4) be a
canonical representation of X. If for x¢ X there exist natural numbers N

and m such that
(7) (plpz‘ ‘ 'pm)NxEva

then x¢.X,.
Proof. By (4), there exists ¢ with x¢X,. If £<m, the statement is

proved. Assume £>m. Then thzie exist integers 4 and o such that

l=u(pyps- - - pe)¥+opinfl pog2. - - pit.
Then
(8) x=u(pyps- - - pm)" x+0(P,nY PR - - - P x.
From (6) and x¢ X, it follows
el S AT P O

Hence x¢ X, in account of (7) and (8). Q.E.D.
1.9. Theorem. Let X be a strongly non-divisible group, and (4) and

(9) X= U X
m=0

be canonical representations of X. Then for each s'ufficientlil large m we
have
(10) Xm_=X,'..

Proof. 1t is enough to see that for each sufficiently\large m we have
chX,'n. Since the group X, is of maximal rank, and X, is finitely gene-
rated, there are natural /[ and s with

(1P - P XoC X,
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Now (5) implies
picte Pl I -l XS XoC X (m>)

Hence by Lemma 1.8 X,c X, (m>I). QE.D.

1.10. Corollary. If X and Y are isomorphic strongly non-divisible
groups, and (4) and

(11) Y= U Y,
m=0

are canonical representations of X and Y respectively, the groups Xm/X,—;
and Y,/Y,—, are isomorphic for each sufficiently large m.

Let X be a strongly non-divisible torsion free group, and (4) be a ca-
nonical representation of X. By Proposition 1.7 for each natural m there is
a non-negative s, such that | X, /X, |=pSm. Thus we find an infinite se-

quence
(12) S1 Sgy + - S vt

We shall call (12) a determinant of the canonical representation (4). By
Corollary 1.10, the determinants of every two canonical representations
coincide for sufficiently large m. Thus to every strongly non-divisible tor-
sion free group X corresponds an equivalence class of sequences (12) which
coincide for sufficiently large m. We shall call thisclass (and also each sequence
(12))a determinant of X. Obviously the determinants of isomorphic strongly
non-divisible torsion free groups coincide.

The following two propositions contain properties of the determinant of
a subgroup and a quotient group respectively.

1.11. Proposition. Let X be a strongly non-divisible torsion free
group and X’ be a subgroup of X. If (12) is a determinant of X, and
Sp Sy ¢+ 5 Sy, ¢+ - —a determinant of X°, we have s, =5, for each suf-.
ficiently large m.

Proof. If (4) is a canonical representation of X, the sequence

X =X.nX (m=0,1,2-..)

is a canonical repesentation of X’. Now the statement follows from the
obvious inclusion

XX, CXnfXoy (m=1,2,.-.).

Q.E.D.

1.12. Proposition. Let X be a strongly non-divisible torsion free
group, and X’ be a subgroup of X such that X/X' is torsion free. If (12)
is a determinant of X, and s, s3,- - -, s,,- - - —a determinant of X/X",
we have s <s, for each sufficiently large m.

Proof. 1f (4) is a canonical representation of X, the sequence
X' =Xn/(XaNX') (m=0, 1, 2,. . .)
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P

is a canonical representation of X/X’. Now the statement follows from the
jsomorphism

(13) XX (=X (Xna+XmNX) (m=1, 2, - )
and gom the fact that the right side of (13) is a quotient group of Xm/Xm—,.
Q-Ec .

Propositions 5 and 6 show that strongly non-divisible groups are closely related to
the free groups of finite rank. The following examples point out some differences.
Example 1. For each natural n there exists a continuum of non-isomorphic strong-
ly non-divisible torsion free groups of rank n. Obviously, it is enough to show
that every sequence (12) of non-negative integers is a determinant of a strongly
non-divisible torsion free group X of rank n, and that is straightforward.
Exampl e 2. The periodic subgroup of a strongly non-divisible group is not always
1

(a direct summand. Let X' be the subgroup of Q, generated by the numbers xp= ;2—;5—-;2—
171 Py
k=1,2, .. .)and T= &ZIp Z). We show first that '
f.

(14) Ext! (X°, T)#0.
rom the exact sequence

0-T—s QIZ —= Q] Z -0,

where { is the canonical embedding, and u is the mutiplication of the p-th component by
p for each p€P, we obtain the exact sequence

0—Hom (X', T) —%» Hom (X', Q/Z)—%» Hom (X', Q/Z) — Ext’ (X' T). L
To prove (14) it is enough to show that u; is not an epimorphism. Consider the homo-

morphism
X - X|Z - QZ

and assume that there exists a homomorphism f: X' —QJZ with uf=p. Then uf (H
=g¢(1)=Z. Hence there are s¢ Z and m ¢ N with

s
(15) f(l)-np——-lpz. - .pm+z.
On the other hand, the equalities uf (X 4 1)=9 (Xp +1)=%m +1+Z imply
v
16 X = Z(eN),
(16) S mi)= g g YR UEN

where v, t€Z, and (v, ;yPa. . . Pm+1)=1. From (15), (16) and (7 pa. . . P+ 1)
X% 4+1=1 it follows

s v
hP. . -Pm +Z_P1P2- . 'pm+l+Pm+2- . Py
which is impossible, since pp 4 does not divide v. Therefore a homomorphism f with

uf=¢ does not exist. This proves (14). From (14) it follows that there is an Abelian
group X such that the sequence

+Z (¢ €2)

0T XX =0

is exact and does not split. Since the groups T and X’ have the property iv) of Theorem
1.4, they are strongly non-divisible. Proposition 1.1 now implies that the group X is also

strongly non-divisible.
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Example 3. If X is a strcngly non-divisible group such that in the representation
T (X):@Tp only finitely many of the summands Tp are different from 0, 7(X) is a

direct :l‘immand of X. Indeed, we have the exact sequence

A
{17 0—T (X) +X—s X' — 0,

where the group X'=X|T (X) is strongly non-divisible and torsion free. Let X'o= U X'm
' m=0

be a canonical representation of X', t+0 be a period of T(X), and for m=! the prime
Pm does not divide £. Choose a homomorphism p;: X’ — X such that Ay, is the identity of

X‘ . We show that p; may be extend'ed t'o a homoutorphism p,.H:X; 41—~ X such tlzat
My is the identity of X; 41-Let xj,x, . . ., x, bea base of X, such thatpjy x,,
P x;. NN 7 _’|'_| X, be a base of X; Since A is an epimorphism, there are elements
Xy, X9,. . ., Xp of X with A (x,)=x_ (v=1, 2,. . ., n). At the same time

$ § ’ S ’ $ .
A U’z—?—t X, —wm (P x,))=P,_'1_1 x,—Piyy %,=0.
Hence
3 5 ’
Piy *,—w (Pl x,)=y,€T(X).
Since p; 4, does not divide ¢, there is a 2z €7 (X) with

S, 8 ’
P (x,=2,) =1 (P}, *,)
fNow it is clear that the equalities
b (B)=%—2, 0=1,2,.. ., 7

define a desirable extention of p,. In the same way we extend p, +1 to a homomorphism p, +2

X; +2 —> X, and so on. Thus by induction we receive a homomorphism p : X’ — X such that
l“ is the identity of X’. Hence (17) splits, and so T (X) is a direct summand.

Example 4. There exists a strongly non-divisible torsion free group X and a
subgroup Y of X such that XJY is torsion free and Y is not a direct summand in X.
indeed, let X" be as in Example 2, and Y be the subgroup of Q, generated by the num
bers .

yk:pT:D;l—_——..ph (k=1, 2,. . .).
It follows from Proposition 1.5 that the groups X’ and Y are strongly non-divisible. Using
the exact sequence
0-Y—>Q—-Q/Y -0,
as in Example 2 we show that Ext! (X', ¥)+=0. Now the argument finishes as in Example 2

2. EXOTIC TORI

A compact Abelicn graup G is called exotic torus if each non-zero closed
subgroup of G contains non-zero periodic elements of G.

Clearly, each n-dimensional standard torus is an exotic torus.

2.1. Proposition. A compact Abelian group G is an exotic torus if
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i

and only if the group G* of the continuous characters of G is strongly non-
divisible.

Proof. 1t follows immediately from the Pontrjagin’s duality that an
Abelian group X is non-divisible if and only if the group X* contains non-
zero periodic elements. Therefore X is strongly non-divisible if and only if
each non-zero closed subgroup of X* contains non-zero periodic elements.
Q-E.D.

This proposition pcrmits us to transfer mutatis mutandis the content of
Section 1 to exotic tori. For the sake of completeness we lay down a few
of the statements found in this way.

2.1*. Proposition. If the sequence

o 0—=G"—-G—-G -0
of compact Abelian groups and continuous homomorphisms is exact, then G
is an exotic torus if and only if G’ and G are.

2.4*. Theorem. For an arbitrary compact Abelian group G the fol-
lowing five conditions are equivalent:

i)* G is an exotic torus;

ii)* for each prime p the group G contains no copy of Z,;

iii)* the space G is finite dimensional, and if #=dim G for each conti-
nuous epimorphism

(n A:G—Tn
we have
psP

where G, is a compact p-group (p¢P);

iv)* the space G is finite dimensional, and if #=dimG, there is a con-
tinuous epimorphism (1) with (2);

v)* each non-zero closed subgroup of G contains a minimal closed non-
zero subgroup of G.

2.5%. Proposition. A compact Abelian group G of dimension # is an
exotic torus if and only if there is a representation of G as a projective
imit

=lim G
) o=z

m

isuch that G,=T", the continuous homomorphisms o, in the projective sy-
stem

(4) GO&GI&G"— R 10.—’”(;',”0—» e

are epimorphisms, and ker o, is a compact pp,-group for each natural m.
We call a representation (3) with the properties described in Proposi-
tion 2.5% a canonical representation of the exotic torus G.

2.6*. Proposition. If G is anexotic torus with dim G=n and (3) is a
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canonical representation of G, then each of the groups G, is a product of
T* and a periodic compact group with a period

Pl P2 . e p:'m (k#GN, p=1 2. .., m).

2.7%. Proposition. f G is a connected exotic torus with
n=dim G, and (3) is a canonical representation of G, then each of the

groups G, coincides with T#, and ker oy, is a finite p_ -group.
Example 1* For each natural n there is a continuum of non-isomorphic connected

n-dimensional exotic tori.
Example 2*. The connected component of 0 in an exotic torus G.is not always a

topological direct multiplicand of G.
2.2. Proposition. Let G be an exotic torus and G, be the connected

component of 0. Then
6ie,=[ ] 7.

peP

where T, is a compact p-group (p ¢ P). Algebraically G, is a direct summand

in G.
Proof. 1t follows from Proposition 2.1 that the group X=G* is strong-

ly non-divisible. Let T(X)= (-BT By property iii) in Theorem 1.4, for

each p¢P there is a natural & thh p*Tp=0. From the exact sequence
0-—»6—) Tp—.bX-—rX'-bO,

peP
where X’ is a strongly non-divisible torsion free group we obtain the exact
sequence

o-J] - Gex+ o,
peP
where the group X'* is connected, since X’ is torsion free. It is not diffi-
cult to see that X'* is the connected component of 0 in G. On the other
gand, the group G,=X"* is divisible, and hence G, is a direct summand in
. Q.E.D.

23. Proposition. For every exotic torus G the periodic subgroup
T (G) is dense in G.

Proof. By Proposition 2.1, the group X=G* is strongly non-divisible.
It follows from the Pontrjagin’s duality that the statement will be proved,
if we show that the periodic characters of X separate the pomts of X.

For each §¢.X with £3-0 we have to verify that there is a periodic
character y: X — T with x(§)3<0. Let n=r(X), and A be a free subgroup
of X with r(A)=nr andE¢B. By the Property iii) in Theorem 1.4, we have
an exact sequence

0>A-X"@® T, 0,
peP

where for each p¢P there is a natural 2 with
(5 Pl =
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e

From § ¢ A it follows ¢ (§)30. Therefore, we only have to show that the
periodic characters separate the points of T, But it is well-known that the cha-
racters separate the points of every discrete Abelian group, and on the
other hand it follows from (5) that the characters of T, are periodic. Q.E.D.

The following theorem contains some other characteristic properties of
the exotic tori.

2.4. Theorem. For every compact Abelian group G the following
three conditions are equivalent:

i) G is an exotic torus;

ii) the group T (G) is dense and totally minimal;

jiii) the group T (G) is dense and minimal.

Proof. i) — ii). By Proposition 2.3, the group 7 (G) is dense. Let H be
a non-zero closed subgroup of G. Then H is an exotic torus. Again
by Proposition 2.3, the group T(G)NH=T () is dense in H. Now Theorem
1 in [2] shows that T (Q) is totally minimal.

ii) = iii). Obvious.

iii) = i). By Theorem 2 in [6), each non-zero closed subgroup of G
intersects T (G) in a non-trivial way. Hence G is an exotic torus. Q.E.D.

Let G be a connected exotic torus. Then the group X=G* is strongly
non-divisible and torsion free. Therefore we may form the determinant

(6) Spy Sgyr oy Smyc - -
of X. We shall call (6) (and the equivalence class of all the sequences
coinciding with SG) for sufficiently large m) a determinant of G. It is easy
to see that if (6) is a determinant of G and (3) is a canonical repesenta-
tion of U, then for each sufficiently large m the number of the elements
of ker o, coincides with pfn. If two connected exotic tori are algebraically
and topologically isomorphic, then their determinants (as equivalence classes)
coincide. If dim G=1 the opposite is also true, but if dim G>1 the situa-
tion is more complicated. A connected exotic torus G with dim G=n is
isomorphic with 77 if and only if s,=0 for all but a finite number of m’s.

2.5. Proposition. If G is a connected exotic torus, and in (6) infi-
nitely many s, are zero, then for each connected closed subgroup A of
G the socle S(H) is dense in H.

Proof. First we consider the case H=G. Using the Pontrjagin’s duality,
we see that the statement is equivalent to the following one.

If X is a strongly non-divisible torsion free group, and in the deter-
minant (6) of X infinitely many s, are zero, then S(X*) separates the
points of X.

To show this, choose an arbitrary §¢ X with §3=0. Let n=r(X), and
A be a free subgroup of X with r(A)=n, and & ¢ A. Consider the quotient
epimorphism
(M) M X—-XA=PT,.

DeP

Obviously A (E)+0. Let the period of A(§) be m. Then mE¢A. Therefore
“there exist a base x;, x5 - - -, xn of A and £¢Z, {50 suchthat m§=¢x,.
Now choose a prime ¢ in such a way that (¢,m)=1, (¢,£)=1, T,=0, and
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denote by A’ the group generated by gx;, x4 - - -, xn. Since A/A'=Z/qZ,

it follows by (7)
X/ =@ TI®Z/g ).
ps
Let
VX — XA =(D To)D(Z/q2)
pe
be the canonical quotient epimorphism, and
r (@ TIOEID) ~ 2ig 2

be the corresponding projection. Then pd’':X -»Z/gZ is a character from
S(X*). Therefore the statement will be proved, if we show that

8 pA’ (E)=0.
From (¢, ¢)=1 it follows ¢x, ¢ A’. Hence

) N (mB) =X’ (£x,)+O.
On the other hand

(10) g\’ (mE) =1’ (£gx,) =0,

ince ¢gx;¢A’. As for each p4=g we have ¢qT,=T, (9 and (10) imply
pr’'(m§)==0. Now (8) is obvious and the statement is proved for H=G.
Let now A be a connected closed subgroup of G. Then f is a con-
nected exotic torus. By Proposition 1.12, infinitely many members of the
determinant of H are zero. Now the above proof is aplicable. Q.E.D.

3. MINIMAL PRECOMPACT TOPOLOGIES
ON PERIODIC
ABELIAN GROUPS

Recall that a Hausdorif topological group G is called precompact, if
the completion G of G is compact.

3.1. Proposition. Let G be a periodic minimal precompact Abelian
group. Then the completion G is an exotic torus.

Proof. Since GCT(G) and G is minimal, T(G) is minimal and dense
in G. By Theorem 2.4, G is an exotic torus. Q E.D.

3.2. Corollary. The group G* of the continuous characters of a pe-
riodic minimal precompact Abelian group G is strongly non-divisible.

Indeed, G*==(G)*, and we apply Proposition 2.1.

3.3. Theorem. Let G be a periodic divisible Abelian group endowed
with a minimal topology. Then G=(Q/Z)* for a non-negative integer n, and
G is totally minimal.

Proof. By Proposition 3.1, the completion G is an exotic torus. Accor-

ding to Property iv)* from Theorem 2.4* there exist a non-negative integer
n and an exact sequence
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A
(l) O—bHGp-—»G-——'Tﬂ_;O'
psP

where the groups G, are compact, and for each p¢P there exists a non-
negative integer k, with p*» G,=0.
First we prove that

@) (T (@)= T (T =(Q/Z)"
Suppose 7€ 7" and ky=0. Then n=2 (x) fora x¢G with kxen G, since the
P

ps
sequence (1) is exact. Let k=pi1... p§s. Choose v and w in H G, such

pelP
that for their coordinates hold

vp= {(kx),, for p=py- - -, Ps
0 for peP\{p1- - . Psh
and
={ 0 for p=py: - -, ps
g (kx)l’ for pGP\{Px.- ° ':P.r}'

Clearly, there exists w,eH G, with hw,=w. Since kx=v+w, we have

P
k(f —'wl)T)'v, and hence J‘:—'wl is periodic. This proves (2), because n=AX(x)
=A(X—w,).

On the other hand, T (H Go)=® G,, and from (1) and (2) we obtain
peb per
the exact sequence
) 0~ @G, 7(G) - (Q/Z)y - 0.
pe

We show now that
4) T(G)=G.
Obviously Gc T(G). Suppose x¢ T (G), then

91 * - dmX =0,
where ¢,, ¢,,- - -, gm are primes, not necessarily different. We prove x¢G
by induction. Let m=1. Then the cyclic group generated by x is simple,
and must intersect G in a non-trivial way, by Theorem 2 in [6]. Hence
x¢G. Let now the statement be true for m—I1. Then ¢, - - - ¢,—1 (gmx)=0,
and so g, x¢G by the inductive hypothesis. Since the group G is divisible,
there exists y € G such that ¢, x=¢, y. Hence ¢,(x—y), and so x—y¢G.
Therefore x¢€G, since y¢G. This prove (4).
From (3) and (4) we obtaia the exact sequence

(5 Oagopdai..(q/z)o_,o_
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Since G is periodic and divisible, we have

(6) G= @PZ (p“)(ap).
On the other hand
(7 Q/Z)y =§g Z (p>))

Consider the p-subgroups in (5). From (6) and (7) we obtain the exact
sequence

(8) 0-Gy—(Z( P>))ap) ﬁ» (Z( )" — 0.

The exactness of (8) and p* G,=0 imply a,=n. Therefore G=(Q/Z)".
On the other hand, by Theorem 2.4 and (4), G is totally minimal.

Q.E.D.
3.4. Corollary. Let G be a connected exotic torus, and n=dim G.

Then T (G)=(Q/Z)".
Indeed, by Theorem 2.4, the group 7 (G) is minimal. On the other

hand G is d1v181b1e, since G* is torsion free. Hence T (G) is also divisible.
5. Corollary. Let G be an exotic torus, and n=dim G. Then 7(G)

—(Q/Z)”G-) ((—B T,), where T, is a compact p-group (p¢P).
Indeed, |f G, is the component of 0 in G, then by Prosition 2.2 G=G,

@H T,, where T, is a compact p-group. Clearly, for each p¢P there

psP
exists k, with p* T,=0. Then

r@=r@er([] n)-ezre@r,
psP

according to Corollary 3.4.
36. Corollary. Let G be a periodic Abelian group which admits a

totally minimal topology. Then
©) G=(Q/Zr® (@, T»)

where T, is a compact p-group (p¢P).
Indeed, G is precompact, by Theorem 3.8 in [4]. Then the completion

G is an exotic torus, by Theorem 2.4, since GCT(G) and consequently
T(G) is minimal and dense in G. On the other hand, G:)T (G), since G

is totally minimal, by Example 6 in [2]. Hence G= T (G), and we can apply

Corollary 3.5.
3.7. Proposition. A countable periodic Abelian group G admits a

minimal topology if and only if there exist a non-negative integer n and
for each p¢P — a finite p-group 7, such that for H=(Q/Z)*®D 6-) Tp)
holds

(10 S(H)cGcH.
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P

Proof. Let the group G admits a minimal topology. By Theorem 8 in
(5}, the group G is precompact. According to Theorem 3 from the same
paper, for X=G* there is an exact sequence

(1) 0-+A#X—»@PF,—>0,
ps
where A is a free subgroup of X of maximal rank, and F, is a finite p-
group (p€P). From (11) we obtain 7T (X)=@ T, where for each p¢P the
P

group T, is finite. Consider now the exact ’:equence

0-PT,—>X->X -0,

peP

where X’ is a strongly non-divisible torsion free group. Passing to the
character groups, we receive the exact sequence

(12) OeHTp«-AG«—X'*«-O

"peP
of compact Abelian groups and continuous homomorphisms. Since X™ is the
component of zero in U, from the exactness of (12) it follows

(13) T (G)=(Q/ZD (S?p T,).
Clearly
(14) Gc T (G).

On the other hand G is minimal and dense in G. Then each non-
zero closed subgroup of G intersects G\.{0}, by Theorem 2 in [6]. That is

why S (T(t)))cG. Now (13) and (14) prove the necessity.

Conversely, let G satisfy (10). Take an arbitrary strongly non-divisible
torsion free group X’ with 7(X")=n. Let X be a group for which the se-
quence

0-PT,—- X—X -0
peP
is exact. Then X* is exotic torus, and
T(X*)=Q/Z2)*® ,(.,(:? Ty).

Now every isomorphism between f1 and 7 (X*) endows A with a minimal
topology. Since each non-zero subgroup of A intersects S(H)\{0}, and
hence G\ {0}, the topology induced on G is minimal. Q.E.D.
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EIWH KJIAC OT KOMITAKTHW ABEJIEBU I'PYTIU

A Ouxpanlan, U Mporanos

(PE3IOME)

B pa6orara ce pasriexaT KOMNAKTHHTe aGesieBH IpynH, B KOHTO BCSIKa
HeHyJeBa 3aTBOPEHAa HOATpYNa CLABPIKA HEHYJEBH NEPHOLHIHH €JIEMEHTH.
[Mopanu nMpHIHKaTa UM CBC CTAHAAPTHHTE TOPYCH Te3u TPYNH ca HapeyeHM
eK30THYHH TOPYCH M Ca ONHCAHH C IMOMOMTA HAa JAyajaHuTe UM rpyn. [To-
CJeIHHTE Ce XapaKTepusHpaT ¢ ToBa, ue (HAKTOprpynHTe UM HHKOra He ca
aenuMu. ETo 3amo Te ca HapeyeHH CHJIHO HEX>JIHMHU.

Tlo-BaXkHHTE CBOACTBA Ha CHJIHO HEJCNIHMHTE TpyNH Ce ChAbPKAT B
TeopeMu 1.4, 1.9 u npepnoxenna 1.5 u 1.6. [To-BaxkuuTe CBOHCTBA Ha €K30-
THUHHTE TOPYCH ce ChbAbpWAT B TeopeMu 2.4* u 2.4. Oka3pa ce, ye Te ca
TACHO CBBHpP3aHH C MHHHUMAJHHTEe TONOJOrHYHH rpynu. IleponuunHaTa vacT Ha
eAHH €KSOTHYEH TOpyC € MHHHMAJHa H TOBa € XapaKTePHCTHYHO CBOHCTBO
Ha KJaca Ha eK30THyHHTe TopycH. C noMomra Ha eK30THYHH TOPYCH € 1o
Ka3aHa teopeMa 3.3, KOATO rJjacH, d9e eXHa NEpHOAHYHA JeJHMa rpyna jxo-
NycKa NpeAKOMNA<THa MHHHMaJHa TOMOJIOTHA TOYHO KOraTo e H3oMopdHa ¢
(Q/Z)* (n=0, 1, 2,. - .). BcHuKH TaKBBa TONOJIOTHH €A H TOTAJHO MHHHMAJHH
M Ce MoJyYaBaT oT Bjaraneto Ha (Q/Z)" B CBBP3aHH E€K3OTHYHH TOPYCH'
Haxkpas e nokasaHo Kak MOraT Jia ce ONHIIAT BCHYKH MHHHMAJIHH TOMNOJO-
ruH B H3OpouMa mepuojandHa abeneBa rpyna.



