L,-CONVERGENCE OF RANDOM PROCESSES DEFINED
BY STOCHASTIC EQUATIONS

Jordan M. Stoyanov

A wide class of random processes with a continuous time can be ob-
tained as a solution of a stochastic differential equation (SDE). It is con-
venient to consider two types of SDE: W-SDE and P-SDE which include
stochastic integrals about the Wiener process w(f) and the Poisson random
measure p ([0, Z], A), respectively. There are many problems stated and solved
for M-SDE—a more general class of SDE including stochastic integrals
about a martingale. _

In this paper we will consider W-stochastic ordinary differential equa-
tions with delay (W-SODED) the right side of which depend on a small
parameter €. Let the random process 7,(£) be a solution of such an equation.
The aim is to find another, more simple, random process approximating %, (f)
when €—0. A concrete scheme is given for transforming the. coefficients
of W-SODED and in result we obtain W-stochastic ordinary differential
equation (W-SODE) which is already without delay and without dependence
on e. Let the random process x(f) be its solution. One of the main results

(theorem 1) is the following: for an arbitrary finite ¢ =, (t/e)—Li-’x(t) when
s—0. C ;
Some results similar to the presented here were communicated by the
author at the International Conference on Differential Equations, Russe, June
1975 (see [11)).

The results of the present paper extend to W-SODED some of the
results of A. Halanay [2] and J. Hale [3] and also generalize the ones
of V. Kolomiets [6].

1. PRELIMINARIES. MAIN RESULT

Let (Q F, P) be a complete probability space and {F}, £=0, be a
tamily of nondecreasing o-algebras, F,CF, for s<t and F,CF, ¢=0. The
symbol E denotes an integration with respect to the measure P.

Let w (¢), =0, be a standard Wiener process adapted with the family
(F,}. The stochastic integrals used below are in Ito’s sense [1, 5).

The general form of the W-stochastic ordinary differential equation with

delay (W-SODED) is the following:
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?(f), —A=t<0,

¢ t
10=10@+ [ ats, 26—, nN ds+ [, ms— BN dw(s), £20.
0 0

Here ¢ (2), a(s, x, y) and b(x, y, 2) are given functions and the delay A
is a constant.

In this paper we will study the family of random processes {, (),
8 € (0, &), t=0} where ,(¢) is defined by the equation

x., '-Aét<0t

A n®=y, . f a (s, n. (s—A), 7 (5)) ds+ee f b(s, ne(s—8), n(s)) dw (s)

0
t=0.

The equation (1) is said to be W-SODED in standard form. There again
A=const>0, «=1/2 and x, is a random vatiable not depending on the
process w (£), E{xf}<oo for each e.

We shall assume that the following conditions are fulfilled:

(Ay) The functions a (s, x, y) and b(s, x, y) are: measurable functions
of their arguments; continuous in s; satisfy the local Lipschitz condition in
% v 1. e a(s, % y)—a(s, &, Y)|+1b(s x, 9)—b(s, ¥, ¥)sSCx(x—x|
+y+y) for 1x|, |y} | ¥'|, |3|=Cwn, Cn=const>0; bounded by a linear
function, i. e. [a(s, x, ¥)|+|0(s, x, ¥)|sSK(1+|x|+]y|) K=const>O0.

(Ag) There is a {F,}-adapted Wiener process w,(¢), £=0, such that

for every ﬁnitetstw(t/e)-i’—»wo (#) at e—0.

It follows from the results of [1, 5] that under condition (A,;) the
W-SODED (1) has a unique solution 7, (£), £=0.

Let us consider the new functions a, (s, x) and b, (s, x) where

a, (s, x)=a(s, x, x), b (s, x)=b(s, x, x).

Our basic assumption ‘is the following:
(As) There are functions ag(x) and bg(x) such that

T
}13; (l/T)f[al (s, x)—aq(x)]ds=0,
0

T
lim (1/T) Of by (s, X)—by (P ds=0

uniformly in x.

By aid of the functions a,(x) and b,(x), the Wiener process w,(¢) and
some new random variable x, not depending on w,(f) we construct the fol-
lowing W-SODE (without delay and without dependence on ¢):
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¢ ¢
@ x O=xo+ [0y (x (N ds+ 5[ by (% (5)) AW (3)-
0

It is not difficult to see that a,(x) and b,(x) satisfy conditions similar
(in fact more simple) to those for @(-) and b(). Therefore the W-SODE
(2) has a unique solution x (f), £=0.

Both processes, »,(¢) and x (£), are continuous with probability 1 but x(f)
is simpler. It is a homogeneous Markov process while #,(f) is non-homo-
geneous and non-Markov.

We are interested in the following question. Is there any connection
petween the random processes ,(f) from W-SODED (1) and x(f) from
W-SODE (2).

The answer of this question is contained in theorem 1.

Theorem 1. Let the conditions (A,), (Ay) and (Ay) be fulfilled
and a=1/2. If 8(s)=E{(x,—x,)?}—0 at e—-0 then for each finite ¢

n,(t/s)-—"'—» x(t) at e—0, i. e. for an arbitrary T,, 0<T ;< ,
. _ =0,
lim sup E {(n. (¢/e) x(#))*}=0

2. SUPPLEMENTARY RESULTS

Now we shall formulate and prove a few other results which will be
used for proving the theorem 1.

By the aid of the functions a,(s, x), b;(s, x) and ag(x), by(x) we
obtain two W-SODE in standard form:

¢ ¢

3) Co(B)=x.+8 f a, (s, Co(8)) ds+eo f by(s, T (s)dw (s),

4 4
4) V(t) =x,+¢ f a, (v, (s)) ds+e* f bs (v, (s)) dw (s).
0 0

Theorem 2. Let the condition (A,) be fulfilled and «=1/2. Then for
an arbitrary 7,5, 0<Ty< o,
li () =%, (£))*}=0.
lim = sup _ E{(n@-LE}
Theorem 3. Under the conditions (A,), (Ag) and «=1/2 for an arbi-
trary T3, 0<T < 00,

lim sup E{{.(5)—v. (£)?}=0.

e-0 O=/STee™t -

Theorem 4. If the conditions (A;), (Ay), (Ag) are fulfilled, «=1/2 and
8(c) »~ 0 at e— 0 (as in theorem 1) then for an arbitrary 7T, 07, <oo,

lim sup E{(v.(t/e)—x (£))*}=0.

s=0 0t T,
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8. PROOFS OF THEOREMS 1-—4

It is more convenient when we prove these theorems to observe that
(A;) contains the uniform Lipschitz condition with some constant K, The
proofs in the case of a local Lipschitz condition can be obtained after a
passage to the limit (see [5], p. 45).

Proof of theorem 2. Let us take some fixed T,>0, a=1/2 and ¢ from
the interval [0, Tqe].

If we put

L (S)=a(s, 1 (s—A4), n(8)—ay (s, Tu(s))
II(S)"b (S, ﬂg(S—A). s (S))—-b1 (S, CC(S))’
then for the difference %,(9)—¢, () we get

. 4 2 — : 2
(- T (P2 e of Ls)ds)'+2(}s f (s dw (3)

Using the Holder inequality and the properties of the stochastic integ-
rals [5] we find

r (8, )=E{(n (=L, (£))7)} < 2¢% f E{f}(s)}ds+2 J’ E{f(s)}ds.
0

It is easy to see that (A,) gives (further on, K;=const)
4 {

t
[ E {3 (s)}ds=<2K, f r(e. s)ds+2K, f E {(n. (s—4)—L, (5))?}ds.
0 0

According to the results of [5, p. 48} and theorem. 2 in [10] for each

tef0, Tye—1] we have E{(n.(s—A4)—n.(s)?}< KaeA, where K, is a constant
not depending on ¢, A and s. Let us note that in the case ¢=1 similar es-
timate can be concluded from the results in [9]). Therefore

4

af E{(n (s—A8)—%, (5))*}ds<2 ! E {(n (s—8)—mn.(s))*} ds

t t
+2 f E {(1, (s)—{. (5))?) ds < 2K, teA+-2 f r(e, s)ds.
0 0

Thus
t ¢
5[ E{/(s)}ds<K, f re, s)ds+K,teh,
0
where the constants K; and K, do not depend on s, A and £
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-

¢
Evidently, a similar estimate will also be valid for f E{f; (s)} ds.
(¢}

Therefore
¢ ¢

r(e, <26 (K5 | r(e, 8)ds+KteA)+-2e(Ks | 7 (e, s)ds+ KgteA)
o sl e s
Since £€[0, Tye—1) then ef< T, and

¢

r(e, t)_geK.,fr(s, s)ds+ K €A,

0

where K; and K, again do not depend on e, A and ¢ Applying the well-
known Gronwall-Bellman inequality we obtain

r(e, H)<Kgedexp[K;et]<Kyel exp[K;T].
It means that lin; r(e, )=0 for ¢£¢[0, Tye™ 1.

&)
Theorem 2 is proved.

Proof of theorem 3. It suffice to take a=1/2. From (3) and (4) we
have

t t
Lo )—v.()=¢ | Jy(s)ds +Ve | Jois)dw (s),
/ /*

where
N ($)=J11 (5)+T15(5), Ja(s)=Tg1(5)+ I3 (5),
Jus)=a,(s, &(8)—a,(s, v:(5))y Jia(s)=0118, V() —0q(v.(5)),
J51(8)=by(s, §,(5))—b1ts, v,(5)), Ja3(s)=01(s, 0 (s5))—b4 (v, (s)).
Further on, if p(e, §)=E{({, (£)—w.(¥))?} then

t t
2 2
o (e, t)g4e2t6[E{J"(s)}ds+4e2E{(Ole,(s)ds)}
t t
2 2
+4e a[ E{J% (s)} ds+4e Of E {J%(s)} ds.

From the Lipschitz condition for @, (-) and b,(:) follows that

4 ¢ t
5[ E {J% (s)} ds+ f E {J3 (5)) ds<K, f o (e, 5)ds.
0 0
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Using the method of proving of theorem 1 in [4] and theorem 2.1 in [8]
we come to the following relations: for #¢ {0, T3¢~} and e =0

= : 2 — U, = t 2 - V.
5 () 495{( of Jia (s)ds)} 0, 3 (e)=4¢ of E{/%(s)}ds —0

After applying the Gronwall-Bellman inequality we get
sup  p(e, =Ko (5 (s)+8:(s)) =0 when ¢—0.

0<t=Tys ?
This completes the proof of theorem 3.
Proof of theorem 4. The proof follows from the concrete structures of
the processes 7, (¢) and x(f) and uses essentially the condition (A;) and the
convergence properties of the stochastic integrals with respect to the Wiener

process.
Proof of theorem 1. Firstly we rewrite the statements of theorems 2

and 3 in another form:
lim sup E{(n, (¢/e)—&.(t/e))?}=0
SI=T,

g0 0s¢ [

lim sup E G (/)04 ¢/e)") =0.

and

From these relations and theorem 4, since Ty, Ty, Ty and T, are arbi-
trary constants, we get
lim sup E{(nt/e)—x ()}

.-’o ogté I

=< 1i_r3 S E{(n{/e)—§. (¢/s))*}

+lim sup E{({ (¢/e)—.(t[e))?}

=0 0=I5T

+ lim sup E{(v,(¢/e)—x (¢))?}=0.

—0 04T,

Theorem 1 is proved.

4. SOME COMMENTS

4.1. The results proved in this paper are valid also in the case when
the coefficients a() and b(:) are random functions. More precisely: let
a()=a(s, x, y, w), b(-)=b(s, x, y, v), s=0, x, ye Ry, w¢R. In this case
we must assume that they satisfy (A;) with probability 1 and are {F,}-
adapied { er an arkitrary pair (x, y). Let a,(s, x, w)=a(s, x, x, wv),
b (s, x, #)=b(s, x, x, v).] nstead of the condition (A;) we require fulfil-
ling the strong law of the large numbers, i. e. there are random functions
ay(x, w) and by (x, w) such that
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T
gﬂ(l/r)s{ f (81 (5, % w)—ay(x, m)]ds}=-0.

T
;i_"‘;(l/ﬂﬁ{ f [0, (s, x, w)—bg(x, w)]ids}zo.
0

Since (when a(-) and b(.) are random) the proof of the statements analo-
gical to those in theorems 1—4 does not require to develop new ideas we
do not give any details.

4.2. Let us recall that in theorem 1 a=1/2and in theorems 2—4 a=>=1/2.
It turned out that the case «>1/2 is also interesting. We will formulate
the following resuit.

Theorem 5. Let the functions a(s, x, y) and b(s, x, y) (from part1)
satisfy (A,), (Ag) be fulfilled only for a(-L), a>1f2 and T,>0 be an arbi-

trary finite constant. If E{A ¢ |F}< 00, x.—‘-k*xo for some constant x, ate— 0,
>0 then for each r € (0, %]

Lf
7. (£fe) — x (f),
where ,(¢) is defined by W-SODED (1) and x(¢) is a deterministic function
satisfying the equation

¢
x O =xo+ [y (x(s) ds.
0

The proof of this theorem follows from the above reasonings (parts
1—3) and uses the results from [7].

4.3. If the coefficients a(-) and &(-) are nonrandom (as in parts 1—3)
then the process %, (f) is a non-Markov process and at the same time each
of the processes {,(£), v,(¢) and x(f) is a Markov one. Therefore, theorems
I—5 offer a possibility, in principle, for approximating the non-Markov pro-
cess 7, (f) by another process (some of &,(¢), v, (f) and x(£)) which is already
a Markov one.

4.4. It seems to us that the theory of stochastic equations with delay
can be used successfully for treating many problems of mechanics and engine-
ering. It is enough to recall that the behaviour of many practical systems
with aftereffects is described namely by differential equations with delay. The
W-stochastic differential equations with delay are their natural generalizations.
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L,-CXOOMMOCT HA CJIYYAMHU TIPOLIECH,
JE®UHUPAHU CbC CTOXACTHMYHU YPABHEHUA

U. M. Ctoanos

(PE3IOME)

Hexa cayuaituuar npouec ,(¢), =0, e pemenne Ha W-COINY3 (W-cto-
XaCTHYHO OOGHKHOBEHO AH(pepeHUMAaNHO ypaBHEHHE CBC 3aKbCHEHHE) H C AfCHA
YacT, 3aBHcellla OT MapaMeTnbpa &.

lleata e ma ce HaMepu APYT, MO-NPOCT CJy4YaeH Npoiec, anpoKCHMHpAIL
7, (!) npn MaikxH crofiHocTH Ha €. [lpeisioxeHa e cxema sa npeoOpasyBaHe Ha
koedunuenture Ha W-COJ1Y3, B pesyarat Ha koeto noayuyasaMe W-COIY —
6e3 3akbcHenve H Ge3 3aeHcHMocT oT & Heka x(f) e HeroBoTo peienne.

OcHOBHHAIT pe3ysTaT Ha paGoTaTa € CJCHAHUAT: 3a NPOH3BOJHO KpailHo ¢

uMaMe 1), (t/e)—Lf-*x(t) npu € —0,
Iloxasanute Tyk pe3yarath npeHacat 3a W-COJIY3 muskon or pesya-
taTute Ha Xananafl [2) u Xe#n [3] u o6GoGmaBar Te3n Ha Kosomuern {6).



