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6 General introduction

Preface

Branching processes theory originates from the study of human populations and their
destiny. However the main object is not to study neither biological populations such
as animals, bacteria or cells, nor physical populations such as splitting particles in a
neutron transport. Contemporary branching processes theory can be used to answer
questions about any idealized population where in general the members generate new sets
of members.

The probabilistic theory of branching models started in the second half of 19 century,
with the objective to give answer to the problem of extinction of family lines of the
European aristocracy, according to forerunners Bienaymé (1845) [15] and Galton and
Watson [45]. Their outstanding study actually formed part of the development of the
Theory of Probability and Mathematical Statistics according to numerous monographs
published on this theory and its applications. Among others we would like to point out
those of Harris [60], Sevast’yanov [118] , Athreya and Ney [12], Jagers [67], Asmussen and
Hering [10], Guttorp [50], Kimmel and Axelrod [74], Haccou, Jagers and Vatutin [52],
Ahsanullah and Yanev [2] or Gonzdlez et al. [46], the book (in Bulgarian) for students
with classical (and some modern) models of branching processes published recently by
Slavtchova-Bojkova and N. Yanev [131] and the extensive review paper by Mitov and
Yanev [94] dedicated to the results of the Bulgarian branching school founded by Professor
Nickolay Yanev.

L. J. Bienaymé [15] introduced in 1845 the first model of branching processes, and years
later, in 1874, independently of him, Galton and Watson published their first work on such
kind of processes, although the terminology “Branching Process” was introduced by A.N.
Kolmogorov and Dmitriev [79]. The branching model, commonly called the Bienaymé—
Galton—Watson process, has been widely studied and applied to describe the behaviour of
systems whose components (cells, particles, individuals in general) reproduce, transform,
and die, in fields as diverse as Biology, Epidemiology, Genetics, Medicine, Nuclear Physics,
Demography, Financial Mathematics, Algorithms, etc. (see, for example, Yanev and
Yakovlev [139], [140], [138], Pakes [108], Devroye [33], G. Alsmeyer, C. Gutiérrez, and R.
Martinez [8], Farrington and Grant [40] or Epps [36]).

The main purpose of this dissertation thesis is to present several original and innovative
results in the field of the branching processes theory and is applications motivated by
modeling purposes of epidemiology and cancer disease. The presented results are obtained
in the priod 1996-2016 and published in 13 journal articles — cited as [ [6], [7], [19], [20],
[47], [48], [49], [121], [122], [123], [125], [130], [132] | in the bibliography. Content is
organized into three parts. Each part is divided in chapters. Each chapter is entitled as
the eponymous article and for the convenience of the reader it begins with the necessary
notations and preliminaries even they were already used before.

The Part I is concerned with the theoretical study of a class of non—decomposable
branching processes, in discrete and continuous time, with two types of immigration - in
the state zero and of a renewal type.

In Chapter 1 the age-dependent branching processes allowing two types of immigra-
tion , i.e. one in the state zero and another one according to the i.i.d. times of an
independent ergodic renewal process, are studied. The multidimensional case is consid-
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ered and asymptotic properties and limit theorems are established both in subcritical and
supercritical cases. These results generalise both the results of the discrete theory and
those for the one—dimensional continuous—time. model.

The purpose of Chapter 2 is to present a probabilistic proof under week conditions
of the convergence in probability of the subcritical age-dependent branching processes
allowing two different types of immigration, i.e. one type in the state zero and another
one according to the i.i.d. times of an independent ergodic renewal process.

In Chapter 3 we prove a strong law of large numbers and a central limit theorem
for the the Bellman—Harris process with immigration at zero and immigration of re-
newal type (BHPIOR) processes. Similar conclusions are obtained for their discrete-time
counterparts (lifetime per individual equals one), called Galton—Watson processes with
immigration at zero and immigration of renewal type (GWPIOR). Our approach is based
on the theory of regenerative processes, renewal theory and occupation measures and is
quite different from those in earlier related work using analytic tools.

Chapter 4 completes the study of the BHPIOR processes, generalizing the convergence
in probability for p-type (p > 1) ones.

The study of stochastic monotonicity and continuity properties of the extinction time
of Bellman-Harris and Sevastyanov’s branching processes depending on their reproduction
laws is presented in the Part II. Moreover, their applications are shown in an epidemio-
logical context, obtaining an optimal criterium to establish the proportion of susceptible
individuals in a given population, which has to be vaccinated in order to eliminate an in-
fectious disease. First the spread of infection is modeled by a Bellman—Harris branching
process and a simulation—based method to determine the optimal vaccination policies is
provided (Chapter 5).

Next we are dealing with a Sevast’yanov’s age-dependent branching process, describing
outbreaks of an infectious disease with incubation period. The main goal is again to define
the optimal proportion of susceptible individuals that has to be vaccinated in order to
eliminate the disease, but for a more adequate model. To this end we study the stochastic
monotonicity and continuity properties of the time to extinction of an infection, depending
on the proportion of the immune individuals into the population. From these results, we
suggest a vaccination policy based on the mean of the infection survival time. Finally, we
provide a simulation—based method to determine the optimal vaccination level and as an
illustration we analyze the data from outbreaks of avian influenza spreading in Vietnam
at the end of 2006 (see Chapter 6).

Usually we do not have complete information about the spread of the disease — do not
know the number of infected by each infectious individual. The combination of branch-
ing models and Bayesian methods allows us to estimate the basic reproduction number
using real data on reported cases, collected by institutions for control of public health. In
Chapter 7 the Bayesian estimation approach is considered for the same data set of mumps
propagation in Bulgaria. It is assumed that the offspring distribution of the branching
process belongs to the family of generalized power series distributions, which is quite a
broad class of discrete distributions, including binomial, Poisson and geometric ones. It
turns out that for this wide class of distributions, we are able to obtain exactly the distri-
bution of the total progeny of the Biemeymé-Galton-Watson branching processes, which
we need for estimation of the offspring mean. We find both point and interval estimates
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of the offspring mean, applying a Bayesian approach by simulating the posterior distribu-
tion using Metropolis-Hastings algorithm. The algorithm is implemented in the language
and environment for statistical computing R, version 2.11.1 (see R [112] development Core
Team).

The Chapter 8 is concerned with Crump-—Mode-—Jagers branching processes, describ-
ing spread of an epidemic depending on the proportion of the population that is vacci-
nated. Births in the branching process are aborted independently with a time-dependent
probability given by the fraction of the population vaccinated. Stochastic monotonicity
and continuity results for a wide class of functions (e.g., extinction time and total number
of births over all time) defined on such a branching process are proved using coupling ar-
guments, leading to optimal vaccination schemes to control corresponding functions (e.g.,
duration and final size) of epidemic outbreaks. The theory is illustrated by applications
to the control of the duration of mumps outbreaks in Bulgaria.

In Chapter 9 is considered the use of vaccination schemes to control an epidemic
in terms of the total number of individuals infected. In particular, monotonicity and
continuity properties of total progeny of Crump—Mode—Jagers branching processes are
derived depending on vaccination level. Furthermore, optimal vaccination polices based on
the mean and quantiles of the total number of infected individuals are proposed. Finally,
how to apply the proposed methodology in real situations is shown through a simulated
example motivated by an outbreak of influenza virus in humans, in Indonesia.

Part III contains results related to the cancer modelling by means of branching pro-
cesses. The corresponding algorithms and numerical and simulation codes are developed
to show the significance of the life-length distribution of cells for the risk of escaping the
further development of cancer. In Chapter 10 special new class of branching processes
with two types and in continuous time are introduced to model the dynamics of the num-
ber of different types of cells, which due to a small reproductive ratio are fated to become
extinct. However, mutations occurring during the reproduction process may lead to the
appearance of a new type of cells that may escape extinction. This is a typical real world
situation with the emergence of scatters after local eradication of a certain type of cancer
during the chemotherapy. Mathematically, we are deriving the numbers of mutations of
the escape type and their moments. A cell of the “mutation” type, which leads possibly to
the beginning of a lineage, that will allow indefinite survival is called “successful mutant”.
Using the results about the probability generating function of the single-type branching
processes, an answer about the distribution of the waiting time to produce a “successful
mutant” in continuous—time setting is obtained. In general, our results aim to prove the
limits of expanding the methods used by Serra and Haccou [117] for different schemes
leading to mutation.

A numerical method and related algorithm for solving the integral equations is de-
veloped in Chapter 11, in order to estimate the distribution of the waiting time to the
escaping extinction mutant cell is born. Numerical studies demonstrate that the proposed
approximation algorithm reveals the substantial difference of the results in discrete-time
setting. In addition, to study the time needed for the mutant cell population to reach high
levels a simulation algorithm for continuous two-type decomposable branching process is
proposed. Two different computational approaches together with the theoretical studies
might be applied to different kinds of cancer and their proper treatment. I would like to
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Chapter 1

Multi—type BHBP with two types of
immigration

1.1 Introduction

The theory of multi-type Bellman-Harris branching processes (BHBP), together with
its discrete counterpart, the Bienaymé-Galton-Watson processes, has been treated by
many authors. Excellent surveys are contained in Mode [96], Athreya and Ney [12],
Sevastyanov [118], etc. For the first time single-type branching processes with state—
dependent immigration appeared in Foster’s [43] and Pakes’ papers [102], [105]. In these
works a Bienaymé-Galton-Watson process allowing immigration whenever the number of
particles is zero was investigated. Foster [43] studied the asymptotics of the probability
of extinction and of the first two moments, and obtained the limit distribution of the
processes under proper normalization in the critical case. Later the continuous—time
Markov analog of this process was studied by Yamazato [143].

BHBPIO (i.e. BHBP with immigration only in the state zero) were introduced and
investigated in the critical case by Mitov and Yanev [92], [93]. Their asymptotic results
generalized those obtained by Foster [43] and Yamazato [143]. In the non—critical cases
limit results for the above-mentioned processes were obtained by Slavtchova and Yanev
[129]. Mitov [89], [88] extended the results for the multidimensional model in the critical
case, while the non—critical cases were studied in an author’s paper [120].

Weiner [136] placed the last model in a new setting by allowing in addition a renewal
immigration component. For BHBPIOR (i.e. BHBPIO which admit in addition a renewal
immigration component) he proved that in the critical case the rate of convergence in
probability is C't?/logt as t — oo, where C' is a certain constant. In contrast to this,
Slavtchova—Bojkova and Yanev [128] obtained that the subcritical processes have a linear
growth. In the supercritical case they generalized Athreya’s result [11] for the BHBPIOR
refining and making more precise the estimates of the growth of the processes on the set
of non—extinction. Under the classical X log X condition a convergence in distribution
was proved and the properties of the limit were investigated. It is the purpose of this
chapter to carry on this investigation for the multidimensional model.

On the other hand, Kaplan and Pakes [70] studied the supercritical BHBP allowing
in addition an immigration at the event times of an ergodic renewal process (BHBPRI).

13
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It turns out that their approach could be applied to the multidimensional BHBPIOR to
establish almost sure convergence (Theorem A.3). The reason is that the convergence
depends only on the asymptotics of the underlying age-dependent processes, so we can
apply similar approach to study the more general model with two types of state-dependent
immigration.

However, Kaplan [71] obtained a sufficient condition for the existence of a proper
limiting distribution of the subcritical multi-type BHBPRI and generalized many of the
results of the discrete theory and those of the one-dimensional continuous time model. In
comparison with his result the situation with BHBPIOR is rather different. In contrast to
Kaplan’s [71] and the author’s [120] results, we here establish that the rate of convergence
in probability of the subcritical processes is Dt, as t — oo, where D is a constant vector
(Theorem A.1). It would be desirable to have a proof of this result under only a second
moment hypothesis.

1.2 Definitions and notation

The prototype of the branching processes to be studied in this chapter is the model of
the BHBPIOR defined by Weiner [136].

Let p > 1 be an integer constant. About p-dimensional vectors x = (z1,22,...,Tp),
y = 1,92 .-,9), 1 = (1,1,...,1), 0 = (0,0,...,0) etc., we denote xy = > | z;y;,
x¥ = (2", 2%, ..., x7) and x >y or x >y if ; > y; or z; > y; for 1 < i < p respectively.

Let {X(t) = (XM(t),..., XP)(#))};50 be a p-dimensional population process, wherein
the individuals reproduce according to a p-dimensional BHBPIO augmented by an inde-
pendent immigration component {v;};>; of the same processes at the event times {7; };>;
of a given renewal process.

X(t) counts the number of the particles of the various types alive at time ¢, ¢t > 0,
X(0) = 0. The intervals T} = 71,7y = 79 — 71, ... between successive immigrations and
the sizes of the immigrants are assumed to be independent identically distributed random
variables (i.i.d.r.v.) with a common distribution function (d.f.) Go(t).

The {v;}i>1 are i.i.d. with common probability generating function (p.g.f.) fo(s).
The p-dimensional BHBPIO {Z(t) = (ZM(t),..., Z®)(t))}1>0 is governed by a vector of
the life-time distributions G(t) = (GW(t),...,GP)(t)), a vector of the offspring p.g.f.
h(s) = (hY(s),..., h")(s)), a multidimensional p.g.f. f(s) of the random vectors {Y; =
(V" .. V") }51 of the immigrants in the state zero and the common d.f. K(t) of the
duration {X;};> of staying in the state zero, where s = (s1,...,s,). It is assumed that
a= [TtdK(t) < oo.

Now we recall the definition of the p-dimensional BHBPIO given by Mitov [89]:

(A1) Z(t) = Znwm (= Sn) = Xvwe) sy +xvea<ns 2(0) =0,

where Z;(t) = (Zi(l)(t), . .,Zi(p)(t)), t >0, Z;0) =Y, ¢>1,is a p-dimensional BHBP
starting with random vector of particles, with particle life d.f. G®)(t), G*)(0+) = 0, and
p.g.f. of the offsprings h¥)(s), k = 1,...,p. As usual N(t) = max{n > 0: S, <t} is the

number of renewal events for the renewal process {5, }°°, with Sy = 0,S,, = Z U, U; =
i=1
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X, + 0;, where o; = inf{ ¢ : Z;(t) = 0}.

Let us mention that the process defined by (A.1) could be interpreted as follows:
starting from the zero state, the process stays at that state random time X; with d.f. K ()
and after that a random vector Y; of immigrants of different types enters the population,
according to the p.g.f. f(s). The further evolution of the particles is independent and
in accordance with a vector G(t) of the life-time distributions and a vector h(s) of the
p-g.f. of the offsprings. Then the process hits zero after a random period o;, depending
of the evolution of the inner BHBP Z;(t). The following evolution of the process could
be presented as the replication of such i.i.d. cycles.

Slavtchova—Bojkova and Yanev [129] analyzed the above model for the case p = 1
and the problem of determining necessary and sufficient conditions for the existence of a
limiting distribution in the non—critical cases was investigated.

Using the Definition (A.1) the p- dimensional BHBPIOR X(t) admits the following
representation:

n(t) v;

i=1 j=1

where {Z;;(t) }+>0,i;>1 1s the set of i.i.d. stochastic processes defined on a common prob-
ability space, each having the same distribution as the multidimensional BHBPIO Z(t)
and

(A.3) n(t) = max{n : 7, <t}.
Set: .
_ @) gk 220()
v Bs; ij (95 Os; !
_of@) 2f(1)
ﬁi — 0s; Nij = 851857
ch = fo(D), b = fiQ), L(t) = P{X; +0;, < t}, 1y = / tdL(t), po = / xdGo(x),
0 0
Wi = 2dGY(x),i, 5,k = 1,....,p, M = {mij}icijep Hij(t) = mi;GO(t), H(t) =

{ }1<z ]<p
Let H ) be the n-th fold convolution of H;;(t), where recursively, Hz(j)( ) = Hi;(t),

/ ZHH"*1 (t — u)dH;(u), for n > 1 and Hi(;])(t) = U(t), where U(t) = 1,
0 1=1
t>0,U(t)=0,t<0.

In order to avoid technical difficulties, we make the following assumptions.
Assumption 1.

() fO( )<1 O<mz] <0071§27j§p7

(ii) Go(0F) = 0,GD(0F) = 0,1 <4 < p, vy < 00, i < 00, iy < 00, B; < 00;
(iii) h(s) is not singular;

(iv) M is strictly positive;

(v) Go(t), GD(t), 1 <i < p, K(t) and L(t) are non-lattice distributions.
Assumption II.
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The “Malthusian” parameter  exists for the p-dimensional BHBP {Z(t)}. Let M(t)
be the matrix whose (i,7) entry is my; [~ e™*'dG"(¢). The Malthusian parameter is

that number aq (unique if it exists) such that the maximal eigenvalue of M(t) is one.

It follows from Assumption I that the matrix M has a maximal eigenvalue p which is
positive, simple, and has associated positive left and right eigenvectors u and v; u and
v are normalized so that (u,1) = (v,u) = 1. As it is done in the classical theory, we
will call the process {X(t)}+>0 supercritical, critical or subcritical depending on whether
p>1,=1lor <1

1.3 Integral equations

Let us denote ®(¢,s) = Es%® &(0, s) =1, Qo(t,s) = EsX® d4(0,s) =1, <I)0(t T,81,82) =
B{st sy "} 72 0, F(t5) = B0 = (Fi(1,5), .. Fy(t,9)), F(0,5) =

It is well-known (see e.g. Sevastyanov [118]), that the functions Fy(t,s) = E{szk(t) 1Z(0)
= ey}, (e, is p-dimensional vector which k-th component is one and the others are equal
to zero), satisfy the following system of integral equations:

t

A Filt,s) = / WO (B (t = u,8))dGH (u) + 5,(1 — GO(1)),

: 0

Fk(O,S) = Sk,k’ = 1,...,p
It is not difficult to show that the p.g.f. ®¢(¢,s) admits the representation
t
(A.5) Dy (t,s) = / Do (t — u,8) fo(P(t —u,s))dGo(u) + 1 — Go(t),
0

where the p.g.f. ®(t,s), satisfies the renewal equation (see Mitov [89)])

(A.6) d(t,s) = /Otcb(t —u,8)dL(u) + 1 — K(t) — L(t) + /Otf(F(t —u,s))dK (u).

The proof is quite similar to that for the single-type case and we omit it.
By the law of total probabilities it is not difficult to obtain the equation

t
(I)O(t, T, 81, 52) = / (I’o(t - u,T,sy, S2)f0(¢’(t - u,T,sy, 52))dG0(U)
0

(A7) N /t T ot — w2) fo(®(E 7 — 1. 82))dCo(u)

+(1 - Go(t + T)),
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where ®(t,7,81,82) = Els] 2 Z(HT |Z(0) = 0]. satisfies the following integral equation:
t
O(t,7,81,8) = / O(t —u,7,81,8)dL(u) +1 — K(t+7)
0
t
+/ [Ft+7—u,s) —F(t+7—u,0)]dK(u)
Ot-‘,—T
+/ Ot + 7 —u,s9)dL(u /S —u,T,S1,82)dK (u)
Ot t+7—u
+/ %(t—u,sl)(/ O(t+7—u—x,8)dV(z))dK(u),
0 t—u

with initial condition ®(0, 7,81, 8s) = ESQZ(T) = ®(7, ), where F(¢, 7,81,82) = E[s] Z(t) Z(HT |Z(0) =
YZ‘], 3(0, 7,81, SQ) = %(T, Sg) and 3(0, 0, S, SQ) = f(SQ) Wlth V(t) = ]P)(O'Z S t)
Denote the moments

M = S gy,
e = GG —mxmxv,
M () = 8(1;(;5;5) — EZ®) (1),
s=1
MED@) = %Sl EZ® (1) 20 (1)
Mo = T =ExOar,
s=1
e = T =Ez)
s=1
Ao - TS —EzPwr
Bt = | = wzpz)

where to simplify the notations we introduced E[ZY #)]7, E[Z® @), E[X®(#)]" as a
k
notation for the corresponding factorial moments of Z,gl) (t), Z®(t), X*)(t), respectively.

Under the Assumption I by differentiating (A.4)—(A.7) and setting s =81 =85 = 1
one obtains

(A8) M® @) / MO (¢ — w)dGo(u) + ¢, / M® (¢ — w)dGo(u),

MED( / MED (4 — w)dGo(u) + ¢ / MYt — w)dGo(u)
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+ g / t MYt — ) MP (¢ — u)dGo(u)
(A9) o / MO M® (¢ — u)dGo(u)

& / M (8 = w) M (t = w)dGio(u),
(A.10) MP(t /M (t — u)dL(u /Z@ O (¢ — u)dK (u),

P
MO / Z Z ”ijAz({)(t - U)A;(fl) (t — u)dK (u)
(All) = 1 j=1

t
+ / ZViBfkl)(t—u)dK(u)—i— / MED (¢ — w)dL(w),
((— 0

N(kl)(t 7 = /N’” (t — u, 7)dGo(u)

+ /M01 w)MO (¢ + 7 — u)dGo(u)
t

(A12) + oo / MO+ 7 — ) MP (= 1w)dGo(u)
0

- / M (¢ —u)MP (t + 7 — u)dGo(u)

¢
+ 06/ Nék’l)(t—u,T)dGo(u),
0

where N (t,7) = E[Z®0)(1) 20(t + 7)], 7> 0.

1.4 Preliminary results

In addition to its own intrinsic interest, the asymptotics of the moments of the multidi-
mensional BHBPIOR, plays a key role for establishing limit theorems. We concentrate
our study on the non-critical cases.

I. Subcritical case.
Before stating the results about the moments of the processes of interest we need the
following preliminary lemmas.
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Lemma A.1 Let Zk( t) be the vector of the number of particles alive at time t, k =
1,...,p, starting with one new particle of type k in a subcritical multi-type BHBP satisfy-

ing the Assumptions I and II. Then, zf/ ye Y dGW (y) < oo, / ye "dGy(y) < oo
0

and all moments of h®)(s), k=1,...,p exist ats =1, forn > 1, ast — oo,

(A.13) AY () ~ AV expoont,

where 0 < A < 00.

Proof. We will establish the result using induction on n.
For n = 1 it is known (see Sevastyanov, Th.VIIL.3, p.312) that for the subcritical
multi-type BHBP, as t — oo

(A.14) AR () ~ AR expeet
where

ukvl/ e[l — GO (u)]du
(A.15) Ay = — ,

E Okukvl

k=1

u; and v; are the ¢-th and j-th components of the right and left eigenvectors respectively,
corresponding to the Perron root p of the matrix E—M and M, ao & = Mk f —aoud k) (y).
Denoting

(A.16) Qi(t,s) =1— F(t,s),

after expanding the integrand on the right hand side of (A.4) in a Taylor series we obtain
componentwise

Qi(t,s) = (1—s)(1—G9) /ZQJ $)my;dG (u)

0 D ak
(A7) - Z%(—l)k > 85/? 5 /Her ,8)dG (u).

[e'e} p a (
R > Tove- aSl“aSlkdmu),

..... lk 1r=1
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where K;;(t) Z H (n Z G H , and F' % GG denotes convolution.

To compute A;CQ)( t) = E[Z( )( )(Z(l)( t)y—1)] = 8T21) for large ¢, using the fact that
l
Qi(t,1) =0 for all 1 <1 < p, after differentiating (A.18) at s = 1 we have

82h0) (1
ol 0
(A.19) AV (t) Z / At —u)A Z T a% Ry ().

l1l2 1

Using (A.14) and (A.15) it is clear that A,(g (t) ~ Aﬁge?aot, t — 00, where 0 < Aﬂg < 0.
Assume the result of the theorem for n — 1. Then, considering orders of magnitude of
t, (t — o0), it follows by the induction hypothesis that the asymptotic behaviour of

E[Z ,gl) (t)]™ is determined solely from the n-th derivatives with respect to s; of the term

T [ Gt~ w9)ut - wamiyw

7=1l1,l2=1
n (A.18), evaluated at s= 1.
By Leibnitz’s rule for successive differentiation, since Q;(¢,1) =0, 1 <[ < p,

(A.20) 0"Qr(t,1)Qm(t, 1) _ 3 (Z) Q. (t,1) 0"+ Qu(t,1)

sy dsy ds)*

k=1
Then using the induction hypothesis one obtains A,gli(t) ~ A,glie”aot as t — oo, where

0< /_1,(62 < 00, proving Lemma A.1. O

Lemma A.2 Let Z(t) be the vector of the number of particles alive at time t in a sub-
critical case BHBPIO. Then, under the assumptions of Lemma A.1 and if all moments
of f(s) exist ats =1, forn >1

M®) (t) ~ Ry < 00, a5 t — 00.

Proof. Denoting W (t,s) =1 — ®(t,s), then by (A.16) and (A.6), it follows that
(A20) W) /Wt—ude /fl— (t =, 8))dK (1),

As Ml(l) (t) = —ng’l) = E[Z"(t)] after differentiating (A.21) and setting s = 1 we have

MOt) = / MOt — wdL(u / Qull = :8) e )

0 &SZ 0s;

and via direct renewal methods, using Lemma A.1 it is not difficult to obtain, that

/ h zp: B AY (u)du

MY (t) ~ L =Ry,l=1,....p.
Vo
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After second differentiation of (A.21) at s = 1 we obtain the equation
MVt / M (t — w)dL(u)

0*f(1) 0Q;(t — u, 1) 0Q, (t — u, 1)
+ / —1 &siasj 8sl 831 dK(U)

' 0f(1) 0*Qi(t —u, 1)
+ /OZI T, E dK (u).

Hence applying Lemma A.1 by similar renewal techniques (see Slavtchova [120]) it follows
that

MQ(I)(t) ~ Ry <00, t— o00.

The rest of the proof is straightforward using the fact that the higher moments of Z(t)
satisfy renewal type equations to which we can apply renewal methods and Lemma A.1.
We can now present the asymptotics of the multi-type BHBPIOR. &

Theorem A.1 Under the assumptions of Lemmas A.1 and A.2 if in addition all moments
of fo(s) exist at s =1, then

0" Dy(t, 1
(A2 M0 = O = 20D gy
Sk
0" Dy(t, 1
(a2 M =B Oy = T2 | pprae
0s;' 0s,
ast — 00, n,ny,ne > 1, such that ny +ny = n, where 0 < Dy, < oo, k,l =1,...,p are

explicitly computed.

Proof. Expanding the integrand on the right hand side of (A.5) in a Taylor series
around 1 we have

CI)O(t, S) = 1- Go(t) + /t q)o(t — U, S)dGo(u)

_ / 1 — ®(t — u,8)|o(t — u,8)dGo(u)

+ Z/ 1 — ®(t —u,8)) ' Po(t —u,s)dGo(u).
Taking Laplace transforms and re—inverting, it follows that

Dot s) — 1+cg/0t[<1>(t—u,s)—1]@0(t—u,s)dH0(u)
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oo (l)
(A.24) + Z/ =AM ~ 20 (1 — Bt —u,8)) Dy (t — u, s)dHo(u),
1=2 /0

o0

where Hy(t) = Z Gil(t).
1=0
As Ml(l)( t) = E[Z"(t)], differentiating (A.24) by s; and setting s = 1 yields

(A.25) MO(t) = d, / MO (¢ — u)dHo(w).

0

Therefore from (A.26) and Lemma A.1 it follows that as t — oo

~R
(A.26) MY@) ~ ¢ / M du = Dyt,
o Mo

where D) = ¢, Ry1 /o, Il = 1,...,p. After second differentiating of (A.24) by s; and setting
s = 1 it is not difficult to obtain

MUt = ¢ / M (t — w)dHy(u)
(A.27) + / MYt — )MV (t = w)dHo(w)

cz; / MOt — w)PdHo(u),

l=1,...,p. Then by Lemmas A.1 and A.2, applying similar renewal techniques to the

equation (A.27) as in Theorem 3.1 (see Slavtchova [120]), it follows that the asymptotics

of the second moment Méé) (t) is determined by the second term on the right side, i.e.

Méé) () ~ 206/ Ry Dyudu = Dit*,  t — oo.
0

Considering orders of magnitude of ¢, (¢t — o0), it follows by induction, using Lemmas
A.1 and A.2, that for n > 2,

~ nd / MO = w) MY (t — u)dHo(u).

Again using induction , assume (A.22) for n — 1. Then by the methods of Yanev and
Mitov [92](Theorem 2, p. 761) one obtains, componentwise, for n > 2,

) R Dn—l
T e
0 Ho

completing the induction and establishing (A.22). The assertion (A.23) follows by the
similar arguments and we omit it. &

II. Supercritical case.



1.5. Limit theorems 23

Theorem A.2 Under the Assumption I, if p > 1, then lim; o M(glf)(t) exp{—apt} =
Mélf), where ag > 0 s the Malthusian parameter,

) MM Alag)

(k _ —AT1
(A.28) M = SRR AR =B

i emeotd K (u)[> BAY)
=1

1— [ e coudL(u)

(A.29) M® =

and /_1,(3 are defined by (A.15), [, k=1,...,p.
Theorem A.3 Assume the conditions of Theorem A.2. Then, if bfj < 00 and nf] < 00,
i,k =1,...,p, it follows that lim,_, Még) (t)e 20t = Még), where
(M3 + G + 2 MG M) [ e dGo ()
1— [7 e 200udGo(u) ’

(A.30) M =

MQ(k) = limy 00 MQ(k) (t)e=2a0t, Mé]f), Ml(k) are defined by (A.28) and (A.29) respectively.

Theorem A.4 Let the conditions of Theorem A.3 hold. Then componentwise Nék) (t,7) =
eao(%”)]\/[é];)(l + o(1)), uniformly for 7 > 0, where M((]I;) is defined by (A.30).

The proofs of Theorems A.2, A.3 and A.4 follow by the quite similar renewal approach
applied to the functional equations (A.8), (A.9) and (A.12).

1.5 Limit theorems

Theorem A.5 Under the assumptions of Theorem A.1, ast — oo, it is hold componen-

twise
X®@)/t = Dy k=1,....p.

Proof. From A.22 and A.23 we get E{X®(¢)/t}" ~ Dy, n > 1. The method of the
moments yields that X(¢)/t converges in probability to a constant random vector, whose
distribution is determined by the asymptotic moments of the process. &

It is interesting to mention, that while for the multi-type subcritical both BHBPIO (see
Slavtchova [120]) and BHBPRI (see Kaplan [71]) there exist a stationary limit distribution,
here we obtain convergence in probability to a constant random vector.

Theorem A.6 Assume the conditions of Theorem A.4.

(i) Then the vector process W (t) = X(t)/e*" converges in mean square to a positive
vector random variable W = (Wy,....,W,) , whose Laplace transform (L.T.) o(y) =
Ee YWy > 0 satisfies the equation:

(A.31) o(y) = /O N o(ye ") fo(v(ye™ ™)) dGo(u),
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and Y(y) is the unique solution of the equation
(A32) v)= [ oty L+ [ et )k @ - fla)

where 9 = (q1,-..,qy) with ¢ = tlg?oIP){Zk(t) = O\Zk((]) = ey} and O(y) = (b1(y),-- -,
0,(y)) have components 0;(u), 1 <1i < p, satisfying the system of integral equations:

(A.33) 0:(u) = /OO RO (6, (ue=), ..., O,(ue™)NdGO(t), i=1,...,p.
0
(i1) Furthermore,
EW® = M) and Var[WO] = M) — [M]%
(11i) Moreover, there exists a scalar r.v. w such that W = wu a.s. and

5" f) ([ G [ e ar )

Ew =d = =1

(1 - / _aoudL Z kukvl
0

k=1

J

where u is the left eigenvector of the matrix M.

Proof. To prove (i) consider

(A34) + e*QOZO(tJrT)Mé];) (t + 7.) + 672ao(t+7)MéIf) (t)
+ =2 0CHI N (¢ 1)

and observe that according to the Theorems A.2, A.3 and A.4 the right—hand side of (A.34)
approaches zero as t — oo, uniformly in 7 > 0 for all £k = 1,...,p. By completeness of
the space Ly(, F,P) there exist random variables W®) such that W®(t) =2 W ®)
t — 0.
The rest of the argument is a concequence of the results of Slavtchova [120] and Mode
[96]. O
Denote lim;_, o Zfl)(t)/eaot =W as.,il=1,...,p.

7

Theorem A.7 Under the assumptions of Theorem A.4 if in addition
(A.35) / E[Zi(t) /e — W2t < oo,
0

then
lim W(t) =W a.s.

t—o00
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Proof. We use the representation (A.2) of the process X(t).
It has been proven (see Slavtchova [120], Theorem 4.3) that under the condition (A.35)
Z;j(t)/e*" — W a.s. This implies that for each i there exists

t—o0

lim )~ Z;;(t)/e™'} =W, a.s.
Jj=1

The random vector W; has L.T. fo(¢(u)). It follows from the assumptions of Section

1.1 that {W;} are i.i.d. and independent of the {7;}. Define W = Ze*awwi.
i=1
Proceeding as in Harris ([60], Ch. VI) assume that h()(0) = 0 for each i = 1,...,p,
which forces the process X(t) to have nondecreasing sample paths with probability 1.
Therefore, it is sufficient to show that [ E[W®(¢) — W®]2dt < co. Observe that

n(t) 0o
WO — w2 <2 Z e W24 ( Y emonw

i=n(t)+1

= 2[J1(t) + Jo(t)].
From (A.2) by Schwarz’s inequality,

n(t) n(t)

2
Z e~ Q0T Z o 00T {Z Z(l t— Tz /eao(t*ﬁ') o Wz‘(l)}

It is not difficult to show that for the last sum we have

2
/ {ZZ(l t—7 /eao(tTi)_Wi(l)} dt
> o0 Vi 2
I X
© o] v 2
S Sz wola

By independence we conclude that

[ [ aa] <a) (S} st [

vy

S (20t et — Wf“>] dt

i=1 j=1
o 2
Note that E e 7| < o0o. Also by Schwarz’s inequality,
Y
i=1

“U
0

v1 [ee)
> (20 e Z Wi ] dt p < E{v}} / E[Z{)(t) /e — W dt.
j=1 0
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However, Slavtchova and Yanev [129] have shown that the last integral is finite under the
condition (A.35). Similarly,

E [ / N JQ(t)dt] < E { <§: e“O”) (i ne“O”(Wf”)2> } E[W,")
( (Feo/2)r ) EW,’,
<9

§e=@07/2_ 7 > 0. On the other hand E[W"]? =

IN

for & > 0 such that ze 0%

V1
E (Z Wf?) < E{v2YE{[W"]?}. Second moment assumption implies E{[WW; ] } < .
Therefore E fo Jo(t)dt < 0o, which completes the proof. &

Finally, we Would like to mention that it would be interesting to obtain limit results
if the immigration component was not independent of the inner process.
The results from this chapter are published by Slavtchova—Bojkova in [121].



Chapter 2

LLN for subcritical BHBP with

immigration

2.1 Introduction

Let us consider the following population process { X (t)};>o. At the random times 74, k =
1,2, ..., a random number of individuals enters the population. An individual appearing
at time 7, becomes an ancestor of Bellman—Harris branching process with immigration in
the state zero (BHBPIO) {Z(¢)}+>0. The process X (t) counts the number of individuals
alive at time ¢ and we call this model, Bellman—Harris branching process with immigration
at zero state and an immigration of renewal type (BHBPIOR).

The intervals between successive immigration 77 = 7y, T, = 75 — 71, ... and the num-
ber of immigrants vy, 1, ..., are assumed to be mutually independent random variables
(ir.v.). Ther.v. T} have common distribution function (d.f.) Gy(¢) and the r.v. vy are de-
fined by common probability generating function (p.g.f.) fo(s). The BHBPIO {Z(¢)}:>0
is governed by a lifetime distribution G(t), an offspring p.g.f. h(s), a p.g.f. f(s) of the
random number Y; of immigrants in the state zero and the d.f. K(¢) of the duration X;
of staying in the state zero. It is assumed that fooo tdK (t) < 0.

We will use the definition of BHBPIO given by Mitov and Yanev [92]:

(B.1) Z(t) = Znw+1(t — §()gw<ey, §(8) = Snry + X1, Z(0) = 0,

where {Z;(t)} are independent Bellman—Harris branching processes starting with random

number Y; of particles, N(t) = max{n >0: 5, <t}, So =0, S, = Z U, Uy = X; + o3,
i=1
o; = inf{ ¢ : Z;(t) = 0} and I, is the indicator function.

Let us mention that the process defined by (B.1) could be interpreted as follows:
starting from the zero state, the process stays at that state random time X; with d.f.
K(t) and after that a random number Y; of immigrants enters the population, according
to the p.g.f. f(s). The further evolution of each particle is independent and in accordance
with a d.f. G(t) of the life-time and the p.g.f. h(s) of the offspring. Then the process
hits zero after a random period o;, depending of the evolution of the inner BHBP Z;(t).
The following evolution of the process could be presented as the replication of such i.i.d.
cycles.

27
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We introduce the following notations for the p.g.f. of the local characteristics of the
processes

f(s) =Es" = kaSka h(s) = Zpksk, fo(s) = Es™ = Z%Sk-
k=1 k=0 k=0

It will be assumed:

(B.2) 0<A="n(1)<oo, m= f'(1) < oo, myg= fi(l) < o0,

(B.3) G(t), Go(t) and K(t) are non-lattice,

(B.4) 0<B=1"(1)<oo, n=f"(1)<o0, fi(l)=by < o0,

B.5 = OodG a = OodK = OodG .
(B.5) r /Ox () < 00,a /Ox (x) < 00,19 /03: o(z) < o0

Note that L(t) = P{X;+o0; < t} is non-lattice with L(0) = 0 and denote p =

/0 tL(t).

Let us mention that in the critical case for the first time the BHBPIOR was studied
by Weiner [136]. Later on, Slavtchova-Bojkova and Yanev [126], [127] analyzed the model
X(t) with two types of immigration in the non—critical cases and the problem of deter-
mining necessary and sufficient conditions for the existence of a limiting distribution were
investigated. The results in the subcritical case are proved under the strong assumption
of an existence of higher (n > 2) moments of the individual characteristics. Our results
are concerning the case, where the individual characteristics are finite. The methods are
quite different in the infinite moments case as might be seen in Erickson [37].

The aim of this work is to prove the convergence in probability of the subcritical
BHBPIOR X(¢) only under assumption that the first and second moments are finite.
The main result is the following theorem.

2.2 Convergence in probability

Theorem B.1 Let us assume that (B.2) — (B.5) hold. If A < 1, then
X(t) E)

?

(g means convergence in probability) as t — oo, where ¢ = mmqr/(1 — A)uro.

Proof. To start the proof, at first we give an equivalent representation of the process
X(t).
Let {Z;;(t);>0} be a doubly infinite collection of independent random processes each
having the same distribution as the BHBPIO {Z(t)};>o. Furthermore, let all these pro-
cesses be assumed to be independent of the sets of r.v. {7;} and {1;}. By going to the
product space, we can assume that all the above mentioned random quantities are defined
on a common probability space.
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Define the renewal function n(.) by setting n(t) =k if 7, <t < 7441, £ >0, 70 =0. It
now follows from the assumptions in section 1, that for each ¢ > 0

n(t) v;
(B.6) X(t) = Z Zij(t—1) a.s.

=0 j=

It is known for the subcritical BHBPIO Z(t) (see Slavtchova and Yanev [129]), that

tlLIEOEZ(t) =mr/(1—Au, p= /000 tdL(t),

and there exists stationary limit distribution, i. e.

lim P{Z(t) = k} = @) = P{Z(c0 Z D=1, d(s) = i L
|s] <1 and
(B.7) EZ(c0) = ®'(1) =mr/(1 - A)p = a.

Let us denote

my;(t) = EZy(t),

n(t) v,

S(t) = —ZZZ”

=0 j=1

n(t) v

i=0 j=1

To prove the theorem one need to check that for every € > 0

We have the following estimation:

P{S(t)—cl >} < P{IS®) =51 > S} +P{I5*(t) —c| > -}

L+ L.

Applying the Chebishev’s inequality for I; we obtain

VarlS(t) — S*(8)]

(B.8) L < -2
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Denote Fy = o(1,v;,0 =1,2,...,n(t);n(t)). Using that
E[S(t) — 5*(t)] = E{E[S(t) — 5" (1) 1]} =0,
for the variance we have

Var[S(t) — S*(t)] = E[S(t) — S*(t)]2
(B.9) = E{E[S(t) — S*(t)]*| F;}
n(t) wv;
= %E Z Z VarZij(t - Tj)

i=0 j=1

Set d = sup,E (Z;(t) — my;(t))*. Using Wald’s inequality and the fact that |VarZ;;(t —
7;)| < d < 00, as t — oo, from (B.8) and (B.9) we obtain

Var[S(t) — S*(t)] = E[S(t) — S*(1)]?

=E(E ((S(t) — 5*(1))*|F))

n(t) v,

=0 j=1

g dE§ LBy, < 2B
— v; = =En 1 <

T 12 Y= 4En

for all sufficiently large t, since
n(t)/t 5 1/En

and

En(t)/t — 1/Em, as t — 0.
Thus,
(B.10) I 50, as t — oo.

Now, note only that ¢ = aEv, /E7, where a is defined by (B.7). One has
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Now
n(t)
0 < [3 < — Z Vi,
n(t—T)
where Ry = sup,m;;(t) < oo.
Let T'= o(t) — oo, t — co. Therefore,
e N2 _ R
(B.11) P{ls>c} < —E > ui= — EvE (n(t) = n(t = T)) = o(1),
n(t—T)
as t — oo.
Denoting
r(T) = sup,>p [mij(z) — al,
we see that

n(t—T

)
r(T)
|14] < ; ZVz'
i=0

and, therefore, for any fixed € > 0

n(t—T)

(B.12) P{L| > < ) g Z EVlE (t—T) < Ryr(T) — 0

as first t — oo and then T — oo and Ry = Ev;/E7n. Finally, by the law of the large
numbers and the renewal theorem (see Feller [42], Section XI.6)

n(t=T) n(t=T)

(
1 nit—-T) 1 Evy
- ;= ; — —— a.s.
t ; 8 t  nt-T) Zo En o

and, therefore,

as t — oo. From (B.10) — (B.13) the desired statement follows. &
The results from this chapter are published by Slavtchova-Bojkova in [122].
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Chapter 3

LLN and CLT for subcrittical BHBP
and BGWBP

3.1 Introduction

How does immigration at recurrent random epochs affect the long run behavior of popula-
tions which would otherwise become extinct because their reproductive pattern is subcrit-
ical? This question will be investigated hereafter for some classical branching processes,
namely simple Galton—Watson processes (discrete time) and Bellman—Harris processes
(continuous time), and for a certain immigration pattern. Thus individuals of the consid-
ered populations have i.i.d. lifetimes (identically 1 in the discrete-time case) and produce
independent numbers of offspring at their death with a common subcritical distribution.
Immigration is assumed to occur at an independent sequence of renewal epochs, the num-
ber of immigrants being i.i.d., and further whenever a subpopulation stemming from one
of these immigrants or one of the ancestors dies out, possibly after a delay period. The
number of immigrants at these extinction epochs as well as the delay periods are each
sequences of i.i.d. random variables, too.

If only the second type of state-dependent immigration occurs then, by subcriticality,
the resulting branching process is easily seen to be a strongly regenerative process (see e.g.
Thorisson [135]) whose successive extinction times constitute regeneration epochs with
finite mean. It therefore converges in distribution to a limiting variable with positive
mean, see Proposition C.1. Since additional immigration at successive renewal epochs
leads to a compound of such processes a linear growth behavior is to be expected, at
least under some mild regularity conditions. Our main results are a confirmation of this
conjecture and a central limit theorem for the considered branching processes. The focus
will be on the continuous-time case because corresponding results in discrete time are
then obtained by almost trivial adjustments of the arguments. Essential tools will be
the theory of regenerative processes, renewal theory and occupation measures. This is
in contrast to earlier related work using the “classical” analytic approach towards such
processes based upon generating functions, Laplace transforms and integral equations.

The described immigration patterns for Bellman-Harris or Galton—Watson processes
have been discussed in a number of papers. The Galton—Watson process with immigra-
tion at 0 (Foster-Pakes model) was first studied by Foster [43] and Pakes [102], [104],

33
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[106], later by Mitov and Yanev [92] under additional assumptions. Its continuous time
analog was studied by Yamazato [143] and Mitov and Yanev [92]. Jagers [67] and Pakes
and Kaplan [109] provided results for Bellman—Harris processes with immigration of the
second type (at renewal epochs). Results for both immigration types appeared in Weiner
[136], but a combination of them was first investigated by Slavtchova—Bojkova and Yanev
[126] and Slavtchova-Bojkova [122]. The last reference proves Theorem C.2 below under
stronger conditions and by analytic means. Some of the afore-mentioned articles deal
with the case of critical reproduction. Immigration at 0 then still entails that the branch-
ing process is strongly regenerative but with cycles of infinite mean length. This in turn
causes a drastic change as to its asymptotic behavior which will not be an issue here.

Following Mitov and Yanev [92] and the above informal description, a Bellman-Harris
process with immigration at 0 (BHPIO) (Z(t))t>0 is a continuous-time age-dependent
branching process whose model parameters are an individual lifetime distribution G with
G(0) = 0, an offspring distribution (p;);>o with p.g.f. f(s), a number of immigrants
distribution (g;) ;>0 with p.g.f. g(s), and finally a distribution D of the delay times elapsing
after extinction epochs before new immigrants enter the population. The discrete-time
variant (Z(n)),>o, where t € [0,00) is replaced with n € Ny, and where G = §; (Dirac
measure at 1) and D is a distribution on Ny, will be called a Galton—Watson process with
immigration at 0 (GWPIO).

In order to extend the previous model by an additional immigration pattern at renewal
epochs let Z;; = (Z;j(t))i>0 for i > 0, j > 1 be independent BHPIO with one ancestor
and the same model parameters as (Z(t));>0. Let (0,,)n>0 be a zero-delayed renewal pro-
cess with increment distribution F' and (Y},),>1 a sequence of i.i.d. integer-valued random
variables with common distribution (h;);>¢ and p.g.f. h(s). The Y,, are supposed to be
the numbers of individuals entering the population at times o,. A further integer-valued
random variable Yj gives the number of ancestors of the considered population. It is as-
sumed that (0y,)n>0, (Yn)n>1, Yo and all Z;; are mutually independent. A Bellman-Harris
process with immigration at zero and immigration of renewal type (BHPIOR) (X (t))i>0
is then obtained as

N(t)

(C.1) X(t) €N Zit—o), t>0,
i=0
where Z;(t) 0 for t <0, N(t) o sup{n > 0:0, <t}, and

(C.2) Zi(t) = 3" Zy(t), t>0,

is a BHPIO with Y; ancestors. Its discrete time variant, where the Z; are GWPIO and
(0n)n>0 forms a discrete renewal process, is called a Galton—-Watson process with immi-
gration at zero and immigration of renewal type (GWPIOR).
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3.2 Results

In order to formulate our results some further notation is needed. Let (Z(t)):>0 be a
BHPIO (or GWPIO with t € Ny) as described in the Introduction. Define

m =S kp=f(1), me < / t G(dt),
0

k>1

and similarly mp and mp. Let the p-th moments of (pg)i>0, G, F, D be denoted as

My, Ma.p, Mp, and mp,, respectively. Put Py o P(-|Z(0) = k) for k > 0 and P* o

> k>0 kP, so that the initial distribution of (Z(t))i>0 under P* is (gx)r>0. We will sim-
ply write P in assertions where the distribution of Z(0) does not matter. Let T} be the
first extinction epoch of (Z(t)):>o after 0, defined as

Ty ¥ inf{t>0:Z(t=) > 0and Z(t) = 0}

in continuous time (and as inf{n > 1: Z(n) = 0} in discrete time). Note that, under each

P with k& > 1, (Z(t))i=0 o (Z(t)I{r, >4y )e>0 is an ordinary BHP with lifetime distribution

G (or GWP with G = 6,), offspring distribution (p;);>o and extinction time 77 which

has finite mean under every Py. Let ®(s, 1) YR 520 be the p.g.f. of Z(t) under P; and
m(t) € E Z(t) for t > 0. Put also A(t) € E*Z(¢) and Ay(t) = E*Z(t)? for t > 0. When

moving to the process (X (t))t>o defined in (1.1) we put Z(t) o Zp(t) for t > 0 and retain

the previous notation.

Proposition C.1 Let (Z(t))i>0 be a subcritical BHPIO with arbitrary ancestor distribu-
tion, ¢'(1) < 0o, and mg < 0o. Suppose also mp < oo, and that the convolution G x D is

nonarithmetic. Then Z(t) N Z(o0), t = oo, for an integer-valued random variable Z(00)
satisfying

D .
77 Zf n=yu,
(C.3) P(Z(oc) =n)=9q 1 = .
- P*(Z(t) =n) dt, if n>1,
B Jo
where [3 def E*T} + mp is finite. Z(oc0) has p.g.f.
mp 1 o
(C.4) 2(s,00) = 2+ 5 | (9(®(s,1)) —g(8(0,1))) di
and mean A(oco) given by
(1
(C.5) A(oo) = (91(_%.
Moreover,

(C.6) lim B,.Z(t) = lim A(t) = A(0)
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for all k > 0. If f"(1), mg2 and mpo are all finite, then also

(C.7) lim ExZ(£)* = lim Ay(t) = Ag(o0) ' EZ(00)?

holds for each k > 0, and

_gme 1 (40FQ)
(©8) Maloo) = FUE 2 (CLDCE)

+g”(1)) /Ooom(t)2 dt < oo.

Turning to the BHPIOR (X (t));>0 formally introduced by (C.1), let us first point
out for later use the following almost trivial consequences of the previous proposition.
Each (Z;(t));>0 defined by (C.2) is the random sum of Y; i.i.d. BHPIO (Z;;(t))i>0 with
one ancestor, and Y; is independent of these processes. Suppose that the conditions of
Proposition C.1 ensuring Z;;(t) % Z(o0) are satisfied and let Z'(00), Z2(00), ... be i.i.d.
copies of Z(oo) which are also independent of Y, a generic copy of Y1,Ys,... Then we
infer for each 7 > 1 that

(C.9) Zi(t) % Z*(c0) B Y Z(0), t— o,
and
(C.10) lim EZ;(t) = EZ*(o0) = h'(1)A(o0).

t—o00

For the last result it should be recalled that h denotes the p.g.f. of Y. If in addition to the
previous assumptions f”(1), mga, mp2, K'(1) and A”(1) are all finite, then Proposition
C.1 further implies

(C.11) lim EZ;(t)> = EZ*(c0)?
= Rh"(1)A(00)® + A (1)(Ax(c0) — A(0)?) < o0
for each 7 > 1.

Theorem C.2 Let (X (t))i>0 be a subcritical BHPIOR with arbitrary ancestor distribu-
tion, ¢'(1) < oo, h'(1) < 00 and mg < 0o. Suppose also mp < 0o, mp < oo, and that
G * D 1is nonarithmetic. Then

X(@) » gL ()me

t — 0.
t (1 —m)mpp’ >

(C.12)

As already mentioned in the Introduction, the previous result was proved under
stronger conditions and by different means in Slavtchova—Bojkova [122]. In fact, the
conditions imposed there will lead us now to the following central limit theorem.
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Theorem C.3 Let (X (t))i>0 be a subcritical BHPIOR with arbitrary ancestor distribu-
tion, ¢'(1) < oo, f"(1) < oo, K'(1) < o0 and mga < 0o. Suppose also mp < o0,
mpa < 00, and that at least one of G or D is spread out. Then

X(t) = (N@) + DI (D)A(o0) 4

(C.13) 12 5 N(0,mpZ(c0)?)
where
(C.14) E(00)? € (A1) — B'(1)%)A(00)? + I (1)(As(00) — A(00)?)

denotes the variance of Z*(00), the limiting variable defined in (C.9).

As one can easily see from the proofs in the next section, all previous results persist
to hold in discrete time, i.e. for GWPIO and GWPIOR. Minor adjustments are only
caused by the fact that the renewal process (0,,),>0 as well as the delay periods are now
integer-valued which entails that nonarithmetic renewal limits must be replaced with their
arithmetic counterpart. The following results are therefore stated without proof. The
attribute “l-arithmetic” is used as a shorthand expression for “arithmetic with lattice—
span 17.

Proposition C.2 Let (Z(k))r>o0 be a subcritical GWPIO with arbitrary ancestor distri-
bution and ¢'(1) < co. Suppose also mp < oo and that G * D = §; x D is 1-arithmetic.
Then Z (k) LS Z(0), t — o0, for an integer-valued random variable Z(o0) satisfying

i m=0,
(C.15) P(Z(x)=n)=< 1 . ,
=Y P(Z(k)=mn), if n>1,
i

where 8 %< BTy + mp. Z(00) has p.g.f.

(C.16) 0(s.00) = "2 4 57 (9(@(s. k) — a((0.8)))

P Bz
and mean A(oo) given by (C.5) with mg = 1. Moreover,
(C.17) lim E;Z(k) = lim A(k) = A(oc0)
k—o0 k—o0

forall 7 > 0. If f"(1) and mp s are finite, then also
(C.18) lim E;Z(k)* = lim Ay(k) = Ay(00)
k—o0 k—o0
holds for each 7 > 0, and
g'(1) 1 g
C.19 A = 1) |.
Theorem C.4 Let (X (k))g>o0 be a subcritical GWPIOR with arbitrary ancestor distribu-

tion and ¢'(1) < oo, h'(1) < co. Suppose also mp < 00, mp < 0o, and that G x D s
1-arithmetic. Then (C.12) remains true with mg = 1 and t — oo through the integers.

Theorem C.5 Let (X (k))g>o0 be a subcritical GWPIOR with arbitrary ancestor distribu-
tion, ¢'(1) < oo, h"(1) < oo and f"(1) < co. Suppose also mp < 00, mpa < 0o and that
G x D is 1-arithmetic. Then (C.13) remains true as t — oo through the integers.
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3.3 Proofs

Proor or ProrosITION C.1. Let T1,T5,... and Xi, X5,... denote the successive
extinction epochs and delay times of (Z(t));>o. Obviously, (Z(t))>o is a classical regener-
ative process (see Asmussen [9] Ch. V) with regeneration times 7T}, + X,,, n > 1. So cycles
start (and end) at successive immigration epochs (the first one at 0). They are indepen-
dent and for n > 2 also identically distributed with mean S the finiteness of which we will
show at the end of this proof. Since, by assumption, G * D and thus the distribution of
T} + X, are nonarithmetic, the ergodic theorem for regenerative processes (see Asmussen

9], Theorem. V.1.2) gives Z(t) A Z(00) with

1 T1+X3
(C.QO) [P’(Z(OO) = n) = B E*(/O H{Z(t):n} dt)

for n € Ny. It follows directly from (C.20) that

For n > 1, we obtain

o0 =) = 25 ([ 1 i)

B 0
L e
_ B/o PH(Z(t) = n) dt

completing the proof of (C.3). Now

O(s,00) = mD ﬁz/o s"PH(Z(t) =n) dt

n>1

BBl =
= 22 [ (st 0) - gl t>>) dr

for s € [0,1). As to A(oo) = (1, 00), where the prime means of course differentiation
with respect to the first argument of ®, we get

6/ ) dt = g/g) /Ooom(t) dt

and then further for I & fo t) dt, by conditioning upon the ancestor’s death time v

and offspring number,
I = El(/ Z(t) dt)
0
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A~

We used E.Z(t) = km(t) for the final equality. This shows I = 77¢ and thus A(cc) =

"(1)m .
?1(7371)% ie. (C.5).
def def

Turning to (C.6), put Sy = 0, S, = T, + X,, for n > 1, and notice that (.S,),>0
is a zero-delayed nonarithmetic renewal process under P*. Denote by U the associated
renewal measure and put further

1 o kakpl(Ve"Z(V):k):

k>1
Q = > k(k = DpePi(v € | Z(v) = k),
k>2
mo(t) € B Z(t)?,

v(t) ' Var Z(t) = my(t) — m(t)2.

~

Note that E*Z(t) = ¢'(1)m(t). It then follows that

At) = Y B Z(H)s, <<t

n>1
_ / E*Z(t — 2)lizy o0y U(da)
[0,2]
= / E*Z(t — ) U(dz)
[0,¢]
= / g (L)m(t — x) U(dz).
[0¢]
Since m(t) = f[O,t] Py (v >t —x)V(dz) (see e.g. Athreya and Ney [12], p. 151]), where v is

as given above and V =% _ Q7" denotes the defective renewal measure associated with
@1, we further infer

(C.21) A(t) = /[Ot] /[Ot ]g'(l) Py(v>t—x—y) Udr) V(dy).

The function ¢ — Py(r > t) is clearly directly Riemann integrable (mg < o0). Con-
sequently, a combination of the key renewal theorem and the dominated convergence
theorem (V([0,00)) = = < 00) yields

tliglo/\(t) = w /Oog’(l) Py(v > ) do = % = A(0)
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and thus proves (C.6) for P = P*. The same result is then obtained for P = Py, k > 0,
because

A~

[0,1]

forallt > 0 and k > 0, and

A A

as t — oo.
We proceed with the proof of (C.7) and (C.8) and assume from now on that mg o and
mp, are both finite. Notice that () has total mass f”(1). A standard renewal argument

A

using Varg Z(t) = kv(t) leads to

(C.23) mo(t) = /[Ot] Py(v >t —x) V(de) + /[Oﬂ m(t —x)? Qq * V(dw),

and with this identity a straightforward calculation yields

(C.24) /me(t) dt = —C 4 /") /Oom(t)2 dt.

1-m 1-—-m

We also compute

EZ(t)’ =Y aBaZ(t)’ =) ge(ko(t) + Km(t)*) = ¢'()ma(t) + ¢"(1)m(t)*

E>1 E>1

for any ¢ > 0. It is not hard to verify that m(¢)* and my(t) are directly Riemann integrable.
Using these facts we get

EZ(t)? = ) EZ(t)Is, <i<r)

n>1

E*Z(t — x)QH{T1>t_$} U(dl‘)

|
S—

[

0,1]

E*Z(t — z)? U(dz)

I
S—

[0,¢]

— / (g'(l)mQ(t —z)+¢"(1)m(t — x)2> U(dx)
[0,2]
and then by appealing to the key renewal theorem

] / 1) o] g//(l) o]
C.25 hmE*ZtQZ&/ mtdt—l——/ m(t)? dt.
(€.25) tin 207 = £ [T e T2 [t
By computing ®”(1,00) = EZ(00)(Z(o0) — 1) from (C.4) one can check that the right
hand side of (C.25) also equals Ay(c0). An equation similar to (C.22) holds for E; Z(¢)?
and leads to the conclusion that lim;_, ExZ(t)? = limy o E*Z(t)? = Ag(c0) for each
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k > 0. This completes the proof of (C.7). By plugging (C.24) into (C.25), we further
obtain (C.8).

We finish this proof by showing that g = E*T} + mp is finite. Since mp < oo by
assumption we must actually verify E*T} < oo. Note that E,T7 < kE,T) for each &k > 1
because 17 is distributed under P, as the maximum of k& independent variables with the
same distribution as 77 under P;. Consequently,

ETy =Y gDy < BTy Y kg =g () ETy < oo

k>0 k>0

as desired. o

ProOF OF THEOREM C.2. By (C.1), X(t) = Zf\i%) Zi(t — ;). It suffices to prove
(C.12) with P = P* because only Z,(t) in the previous sum depends on the initial distribu-

tion and clearly satisfies t=1Zy(t) % 0 regardless of that distribution (choice of P). Thus
fixing P = P*, (C.9) after Proposition C.1 gives Z;(t) KA Z*(o0) for each i > 0. Since the
(Zi(t))i=0 are cadlag and independent of (o7,),>0, the Skorohod-Dudley coupling theorem

(see Kallenberg [69], Th. 3.30) ensures the existence of processes (Z;(t))i>0 and random
variables Z;(00), i > 0, such that

(1) 2
(2) Zo(o0) L Zy(o0) £ ... L Z*(c0);

i () 2 Z;i(t) for all t € [0,00) and 7 > 0;

(4) the (Z;(t))ic(o,o) are mutually independent and also independent of (0,),>0.
As an immediate consequence we get

N(t)

o ZZ t—o) L X(¢)

for each ¢ € [0, 00), whence it suffices to prove t ' X (t) 5 % To this end write

N(t)

(C-26) Xt(t):Nt(t)<N1(t)Z<Zi(t 7) = Zi(00) + 7 Z )

Note that ( — My F a.s. by the elementary renewal theorem and that

N(t)

: _ g D)me
ZZ ) = H(DA(e) = £ 707

a.s. by the strong law of large numbers and (C.10). We are thus left with the proof of

N(t)

(C.27) —Z( — Zi(oo )) %0, t— oo
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Put n(t) o Li—;j for t > 0. Then P(N(t) > n(t)) — 0. Since Zi(t — 0;) — Zi(o0) a.s.,
and B, Zi(t — 0;) = ExZ;(00) by (2.4) of Proposition C.1 (o; independent of (Z;(t))0),
a generalization of Scheffé’s lemma (see e.g. Bauer [25], p. 94) implies

t—o0

Zi(t — o)) — Zi(oo)’ —0

for any ¢ > 1 and k£ > 0. It follows that
1 - =
lim ~ ZO Ek’Zi(t —0i) — Zi(oo)’H{N(t)Sn(t)} =0

which in combination with P(N(t) > n(t)) — 0 gives (C.27) for P = P} for any k£ > 0.
In order to prove Theorem C.3 we need the following auxiliary result.

Lemma C.3 Under the conditions of Theorem C.3,

(C.28) A(t) = A(oo) +o(t™h), t— oo

ProOF. We use the same notation as in the proof of Proposition C.1. Note that

MY sup;cg A(%) is finite and that (C.21) may be rewritten as

(C.29) A(t) = g’(l)(V*U(t) - G*V*U(t)), t>0,
because P (v € -) = G. Consequently, for each s,t > 0,

A(t+5) — A(t) = g’(l)(V s ULt +5]) — G+ Vs U((t,t + s]))
Now use lim; o A(t) = A(oc0) to infer

A@) = Aoo)| < sup

s>0

Alt+s) — A(t))

< g (Dsup |V« U((t,t +s]) — G+ V= U((¢,t + )

s>0

< JMIVHU(t+)—GxVxU{t+)|,

where || - || denotes total variation norm. The latter expression is indeed of the required
order o(t™!) because, by assumption, the increments of (S,),>o (the renewal process
associated with U) are spread out and square integrable, see Lindvall [82], (6.8)(i) on p.
86]. This completes the proof of the lemma.

PROOF OF THEOREM C.3. Again it suffices to verify (C.13) under P = P* as one can

easily check. Put A*(oc0) o EZ*(00) = ¢'(1)A(c0). With this and the notation from the

proof of Theorem C.2 we have the decomposition

X(t) = (N(t) + 1)A*(c0)
$1/2
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N()
— tl% S <Zz~(t — 03) = Zi(00) — A*(t — o) + A*(oo))

=0
N(t

+tl% Z) <A*(t —0y) — A*(oo))

] N(t)
o D (Zi(o0) = A (),

=0

and denote the three terms on the right hand side as A;(t), As(¢) and As(t). The last
expression As(t) consists of i.i.d. random variables with mean zero and finite variance

Z(00)? which together with t~'N(¢) — my' implies by a version of Anscombe’s theorem
(see Gut [51], Th. 1.3.1)

N(t)

S (Zi(o0) — A%(00)) 4 N(0,mrE(00)?).

1=0

So it remains to show that A;(t) 2 0 and A,(t) 2 0. Let Up denote the renewal measure
associated with (0,),>0. Starting with A;(¢), we obtain by conditioning upon (o,),>0

that
Uz))
Ui) H{@St})

N(#) )
EA,(1)? = —E(ZE((Z(t — ;) = Zy(00) — A*(t — o) + A*(oo))

E<ZE((Zi<t—ai> — Zi(o0) ~ A" (= ) + ()

A combination of Zy(t) — Zy(oo) a.s. with (2.5) yields

_ N N 2
tlggoE(Zo(t) - Zo(oo)> ~0
by another appeal to the generalization of Scheffé’s lemma and thus also

tim E(Zo(t) — Zo(oo) — A*(t) + A*(00)) = lim Var (Zy(t) — Zo(oc) ) = 0.

t—o00 t—o00
Put Cy © sup,s, E(Zo(t) — Zo(00) — A*(t) + A*(c0))? for b > 0. Using

lim ¢t 'Up((t — b,t]) =0 and lim tUp([0,t — b)) = mz'
—00

t—o00

for all b > 0, we now infer

lim E E(Zo(t —5) — Zy(c0) — A*(t — 5) + A*(oo))2 Ur(ds)
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< lim lim

b—o0 t—00

Ur([0,t — b)) Up((t —b,t])
(D=t DeO=tg) g

and thus EA;(¢)> — 0 which in turn shows A, (t) 2 0.
As to As(t), we first note that Lemma C.3 implies

[A*(t) — A*(00)| = W(1)]A(t) — A(oo)| < R(t)(t +2)

for some bounded decreasing function R with supremum ||R||». By further using the

well known fact that v < sup;s Ur([t,t + 1]) < oo we now infer

1 N(t)
El4s(t) < t—/E< |A*<t—ai>—A*<oo>|>

= L[ A= s) = A*(00)| Un(ds)

t1/2 0.4

1 R(t —s)
—_ [ 278 g4
tl/Q/[oﬂt—S—}-QUF( s)

IA

IA

lt]—1
“ﬁl'f (UF([O, )+ > L Up(ftn 1t - "D>

—~n +1
YR
< 72 <1 + log(t + 1))

Since the latter expression converges to 0 as t — oo we conclude E|As(t)] — 0 and

particularly Ay(t) 2 0 as desired. O
The results from this chapter are published by Alsmeyer and Slavtchova—Bojkova in
[7].



Chapter 4

LLIN by means of renewal theory

4.1 Introduction

What is the effect of immigration at recurrent random epochs on the longterm behavior
of populations that would otherwise become extinct because their reproductive pattern
is subcritical? This question was investigated by Alsmeyer and Slavtchova—Bojkova [7]
for some classical branching processes, namely simple Galton—Watson processes (discrete
time) and Bellman—Harris processes (continuous time), and for a certain immigration
pattern. Thus, individuals of the considered populations have i.i.d. lifetimes (identically
1 in the discrete-time case), different for each type, and produce independent numbers of
individuals of different types of offspring at their death with a common subcritical repro-
duction. Immigration is assumed to occur both, at an independent sequence of renewal
epochs, the vectors of immigrants of different types being i.i.d., and further whenever a
subpopulation stemming from one of these immigrants or one of the ancestors dies out,
possibly after a delay period. The vectors of immigrants at these extinction epochs as well
as the delay periods are each sequences of i.i.d. random vectors and variables, also. If only
the second type of state-dependent immigration occurs then, by subcriticality, the result-
ing branching process is easily seen to be a strongly regenerative process (see Thorisson
[135]) whose successive extinction times constitute regeneration epochs with finite mean.
It therefore converges in distribution to a limiting vector with positive mean (see Lemma
2.1). Because additional immigration at successive renewal epochs leads to a superposi-
tion of such processes, a linear growth behavior is to be expected, at least under some mild
regularity conditions. Our main result is a confirmation of this conjecture, as it is in one-
dimensional case. We state the result in the continuous-time case because corresponding
results in discrete time are then obtained by almost trivial adjustments of the arguments.
It again follows essentially by use of the theory of regenerative processes, renewal theory
and occupation measures, that is in contrast to earlier related work using the classical
analytic approach towards such processes based upon generating functions, Laplace trans-
forms and integral equations. The described immigration patterns for Bellman-Harris or
Galton- Watson processes have been discussed in a number of papers. The Galton- Wat-
son process with immigration at 0 (Foster-Pakes model) was first studied by Foster [43]
and Pakes [102], [104], [106] under varying additional assumptions. Its continuous time
analog was studied by Yamazato [143] and later by Mitov and Yanev [92]. Jagers [66] and
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Pakes and Kaplan [109] provided results for Bellman—Harris processes with immigration
of the second type (at renewal epochs). Results for both immigration types appeared in
Weiner [136], but a combination of them was first investigated by Slavtchova-Bojkova and
Yanev in [126] and by the author in [122]. The last reference proves Theorem 2.1, below,
under stronger conditions and by analytic means.

Following previous results of the author (see Slavtchova-Bojkova [120]) and the above
informal description, a p—dimensional Bellman-Harris process with immigration at 0 (BH-
PIO) Z(t) = (ZW(t),ZP(t),...ZP(t)), whose [—th component Z"(t) means, that
there exist Z(l)(t) particles of type [ at the moment t, [ = 1,2,...,p is a multi-type
age-dependent branching process whose model parameters are the vector of an individual
lifetime distributions G(t) = (GW(t), G (t),...,GP(t)), with G(0) = 0, an offspring
distributions {IP’((Q}, ac NP [ =1,2,...,p with multivariate p.g.f.s f{(s), correspond-
ing to the offspring distribution of type [ particles, a vector of immigrants distribution
{9a }aene with p.g.f. ¢(s), and finally a distribution D of the delay times elapsing after
extinction epochs before new immigrants enter the population.

In order to extend the previous model by an additional immigration pattern at renewal
epochs, let Z;; = (Z;;(t))i>0 for @ > 0, j > 1 be independent BHPIO and with the
same model parameters as (Z(t))i>0. Let (0,)n>0 be a zero-delayed renewal process with
increment distribution F' and (Y,),>1 a sequence of i.i.d. integer-valued random vectors
with common distribution (ha)ene with multivariate p.g.f. h(s). The Y,, are supposed
to be the vectors of individuals entering the population at times o,. A further integer-
valued random vector Y, gives the number of ancestors of the considered population.
It is assumed that (0,)n>0, (Yn)n>0, Yo and all Z;; are mutually independent. A p-
type Bellman-Harris process with immigration at zero and immigration of renewal type

(BHPIOR) (X(t)):>0 is then obtained as

(D.1) Zz t—o;),t>0,

where Z;(0) =0, for t <0, N(t) = sup{n >0:0, <t} and
Y;

(D.Q) Zz(t) = Z Zij(t)7t > 0,

j=1

is a BHPIO with Y, ancestors.

4.2 Main results

In order to formulate our results some further notation is needed. Let s = (s1, So,...5,),
0=(0,0,...,0), 1 =(1,1,...1), s* = 3?133‘2. R L (0%,...,0" ...,6}’;) = (0,...,

1,...0),5;1:{(1) ’ ”AJ PIE SIDIRID o)

) a1=0 as=0 ap=0

Let (Z(t))i>0 be a BHPIO as described in the Introduction. Define

mg = (/OOO tGI(dt), . . .,/OOO tG(p)(dt)) :
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and similarly mg and mp. Put P(Olz(t) = P(Z(t) = a|Z(0) = 6) and P* = ZgaIP(OlZ, SO
ol

that the initial distribution of (Z(t)),5, under P* is (ga)aen. We will simply write P in

assertions where the distribution of Z(0) does not matter. Let 77 be the first extinction

epoch of (Z(t)),s, after 0, defined as

Ty =inf{t >0:Z(t—) >0 and Z(t) = 0}.

Note that, under each P(Olz, <Z(t)> = (Z()yr,>43) o, is & p—dimensional BHP with
0 2

lifetime distribution G, offspring distributions IPE-Q and extinction time 77, which has finite

mean under every ]P’(Olg. Let ®(s,t) = (®W(s,t),..., 2% (s,?)) be the p.g.f. of Z(t), where
oW (s,t) is the p.g.f under PY).

Lemma D.1 Let (Z(t)),5, be a subcritical BHPIO with arbitrary ancestor distribution,
g (1) < oo, and mg < oo. Suppose also mp < oo, and that the convolution G x D is

non arithmetic. Then Z(t) KN Z(o0), t — oo, for an integer-valued random vector Z(oo)
satisfying

b if a=0,

(D.3) P(Z(0) = a) = 15 © .
B/O PY(Z(t) = a)dt, if a>1,

where f = E*Ty +mp is finite. Z(c0) has p.g.f.

(D.4) ®(s.00) = "2+ / T (g(®(s. 1)) — g(®(0.1)))dr.

Proof: Let T7,75,... and X, Xo,... denote the successive extinction epochs and
delay times of (Z(t)),-, . Obviously, (Z(t)),s, is a classical regenerative process (see As-
mussen [9], Chpt. 5) with regeneration times T}, + X,,, n > 1. So, cycles start (and end)
at successive immigration epochs (the first one at 0). They are independent and for n > 2
also identically distributed with mean (. Because, by assumption, G * D and thus the
distribution of T} + X; are non arithmetic, the ergodic theorem for regenerative processes

(see Asmussen [9], Thm. V.1.2) gives Z(¢) N Z(o0) with

1 T1+X3
(D.5) P(Z(c0) = (a1, 00, ..., ) = BE* ( /O Lz (0)=a1,2 t)=as...., Z(p)(t)ap}dt)'

It follows directly from (D.5) that

For a« > 1, we obtain

1 I
P(Z(c0) = (a1, a2,...,0)) = BE* ( / Lz (h=a1,2 (9)=a,..., z<v>(t>=ap}dt)
0



48 Chapter 4. LLN by means of renewal theory ...

1 [~ _ = .
_ B/o PH(Z(t) = a)dt

completing the proof of (D.3).

Now,
Bs.00) = 03 > | 5o @ = ayi
- D2y / ) az ga aesz,:azl SCPO(Z(1) = a)di
_ % v % /OOO a;,lga <<I'(s, He - <I>(0,t)a) dt
= P2t [ @) - g@0.0)
completing the proof of (D.4). o

Theorem D.1 Let (X(t))i>0 be a subcritical BHPIOR with arbitrary ancestor distribu-
tion, ¢'(1) < oo, h'(1) < oo, and mg < 0o0. Suppose also mp < oo, and G x D is non
arithmetic. Then

(D.6) @ 2 X(00), t — o0,

where the random vector X (oo) is positive and EX(co0) > 0.

Proof: It suffices to prove (D.6) with P = P*, because only Zy(t) in (D.1) depends on
the initial distribution and clearly satisfies t'Zo(t) 2 0 regardless of that distribution
(choice of P). Thus, fixing P = P*, Lemma D.1 and equation (D.2) give Z;(t) KN Z*(00) for
each i > 0. Because the (Z;(t)),-, are cadlag and independent of (0,,),>0, the Skorohod-
Dudley coupling theorem (see Kallenberg [69], Theorem 3.30) ensures the existence of

processes <Zl(t)) and random variables Z;(c0), i > 0 such that
>

Z
2) Zo(00) £ Zy(00) £ ... £ Z*(o0);
Z

As an immediate consequence, we get

N()
XY S Zit - o) LX), t=0.
=0

The rest of the proof follows by the same arguments as in Alsmeyer and Slavtchova-
Bojkova [7] and for technical reasons we omit it. O
The results from this chapter are published by Slavtchova—Bojkova in [123].
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Chapter 5

Continuous time branching model

5.1 Introduction

The Bellman—Harris branching process (BHBP) is a continuous-time model, which has
been widely studied in the stochastic processes theory (see for example Chapter 4 in
Ahtreya and Ney [12] for details). Moreover, from a practical outlook, it has been used
to describe the evolution of populations along time in different situations, as for example,
to solve many problems related to cell populations (see for example Axelrod et al. [14]
Axelrod et al. [13], Kimmel [75], Kimmel et al. [76], Yakovlev and Yanev [139] and
Yakovlev and Yanev [140]).

It is well-known that a BHBP becomes extinct or explode to infinity depending on
the mean value of its reproduction law. This property is inherited from its embedding
Galton—Watson process (EGWP), leading us to the classification of subcritical, critical and
supercritical cases. Then, the extinction happens almost surely (a.s.) in the subcritical
and critical cases, and has a positive probability in the supercritical case (obviously under
the corresponding conditions to avoid trivial cases).

However, the time necessary for the extinction of a BHBP can not be deduced from its
EGWP. This time is a random variable which depends on the continuous—time structure
of the BHBP on its own. Even though the study of the extinction time is very interesting
from both theoretical and practical view points, it has not been considered deeply enough
(see for example Agresti [1], Farrington and Grant [40], Heinzmann [56] and Pakes [107]).
Gonzéles, Martinez and Slavtchova-Bojkova [48] deal with this problem, investigating the
dependence of the extinction time of a BHBP on its reproduction law. Moreover, they
apply the obtained results in an epidemiological context. Actually, the problem of how
to model the evolution of an infectious disease is very important and widely considered
in the recent literature (see for example Becker and Britton [27], Farrington et al. [41],
Isham [62], Mode and Sleeman [98] and Pakes [107]. However only in few papers (see
for example Andersson and Britton [4], Barbour [22], Farrington and Grant [40] and
Nasell [99]) the waiting time to extinction of the disease has been used as a main tool to
determine a vaccination policy. Mainly because there are not enough results on this r.v.
In the work Gonzales, Martinez and Slavtchova-Bojkova [48] a new approach to this topic
was proposed.

In this chapter we study consecutively some properties of the distribution function

ol
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of the extinction time of a BHBP, mainly those related to stochastic monotonicity and
continuity depending on its reproduction law. Then, we apply this study to investigate
the behavior of the time elapsed by an infectious disease becomes extinct depending on
the proportion of the immune individuals of the population. We consider diseases which
follow a SIR (susceptible-infected-removed) scheme. It is well-known that branching
processes fit adequately this scheme (see Andersson and Britton [4] and Ball and Don-
nelley [18]). So, first, we model the spread of infection by a BHBP. Then we study its
extinction time distribution and we propose an optimal vaccination level to immunize
individuals in the population, based on the quantiles of such distribution. To guarantee
the applicability of these results, we propose a simulation—based method which allows us
to calculate the optimal proportion of susceptible individuals to be vaccinated. We also
provide an illustrative example. Finally, to ease the reading, the proofs are presented in
paragraph 5.7.
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5.2 Properties of the extinction time

In this paragraph we study some properties related to the extinction time of BHBPs. First
we draw our attention on obtaining results concerning to a BHBP with fixed reproduction
law, which is referenced in terms of its probability generating function. Then, we study
the properties of the extinction time of BHBPs with different reproduction laws but with
the same distribution of the life-length. Specifically, we establish stochastic monotonicity
and continuity properties depending on the reproduction law.

To this aim, we denote by T the extinction time of a BHBP, {Z;}>0, initiated at time
0 with a single individual, with reproduction law given by its p.g.f. f(-) and life-length
with distribution function (d.f.) G(-) such that G(0%) = 0, i.e., there is null probability
of instantaneous death. Mathematically, we have

Tf:mf{tz()Zt:O},

where Z; denotes the number of individuals of the population at time ¢. Intuitively, T’ is
the maximal time that the population survives when the probability generating function
of the reproduction law is f(-).

Fixed the p.g.f. f(-), we denote by vs(-) the d.f. of the extinction time 77, i.e.

’Uf(t) = p(Tf < t), teR.

Since G(07) = 0, then vs(0) = 0. Furthermore, using the methods given in Athreya
and Ney [12] (see p. 139, Theorem IV.2.1), it is easy to deduce that v(-) is the unique
bounded function that satisfies the integral equation:

0, t <0,

E.1 = t
(E1) ortf) / Fos(t = $)dG(s), ¢ > 0.

0
Moreover, let gf be the extinction probability of a BHBP started with one ancestor and
with reproduction law given by its p.g.f. f(-). It is clear that ¢f = P(Ty < oo0) and
it is also well-known that ¢y = 1 iff my < 1, where m; denotes the reproduction mean
associated to f(-). So that, for such a p.g.f. f(-) with m; > 1, vs(-) is the d.f. of a
non-proper r.v. because P(Ty < oo) < 1. In any case, it follows that

_ /
(E.2) 5r(t) = P(T; < t|Ty < 00) = LB 4> 0,
ay

and from (E.1) it is easy to obtain that v(-) also satisfies the equation

B (t) = / 9Tt — 5))dG(s), t >0,

where ¢(s) = qJ?lf(qfs) is a p.g.f. such that my, < 1, that is, v¢(t) = v,(¢), for all ¢ € R.
Therefore, without loss of generality, from now on, in many situations we can consider a
p.g.f. f(-) such that the extinction time T} is a proper r.v., i.e. my < 1.
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The d.f. vs(-) inherits some properties of the d.f. G(-) as follows. Both of them have
support on the non-negative real numbers. Moreover, if the d.f. of the life-length G(-)
is discrete, then the d.f. of the extinction time vy(-) is also discrete. For the absolutely
continuous case we obtain the analogous result.

Proposition E.1 If G(-) is an absolutely continuous d.f., then v (-) is also an absolutely
continuous d.f.

The d.f. vy(-) is determined implicitly from (E.1). However, it is useful to obtain
procedures which allow us to know or at least to approximate the value of this function
on each point t. To this end, we introduce the functional operator H(-), defined on
any function u(-) from the non-negative real numbers R, to the closed interval [0, 1], as
follows:

Hy(u)(t) = /0 Fult — $))dG(s), t > 0.

Also, for all n > 1, we denote by H7(-) the n-th composition of the operator Hy(-), that is,
H}‘+1(u)(~) = Hy(H}(u))(-), n=1,2,... and H}(u)(-) = Hs(u)(-). Using this notation,
from (E.1) we obtain that vy(-) is the unique bounded function satisfying the fixed-point
equation u(-) = Hy(u)(-). We also derive the following result:

Theorem E.1 If f(-) is a p.g.f., then for each function h : Ry — [0, 1], it is verified that

(E.3) ve(t) = 7112{)10 HE(R)(t), t > 0.

This result, besides giving us a way to approximate the d.f. wvy(-) at each point,
provides a useful tool to investigate the behaviour of the extinction times for BHBPs with
different reproduction laws and the same life-length distribution. So, next we consider
the behaviour of v¢(-) depending on f(-), when G(-) is fixed.

Theorem E.2 Let f(-) and g(-) be p.g.f. If f(s) < g(s) for all 0 < s < 1, then vs(t) <
vy (t) for allt > 0.

Remark E.1 It is not hard to obtain that if the reproduction law given by f(-) is stochas-
tically greater than that given by g(-), then f(s) < g(s) for all0 < s < 1. But, in general,
the viceversa is not true.

From the previous theorem we deduce that the condition f(s) < g(s) forall0 < s <1
implies that the extinction time of the BHBP with p.g.f. f(-) is stochastically greater
than that of the BHBP with p.g.f. g(-), i.e., the monotonicity property of the p.g.f.s is
inherited by the d.f. of the extinction time.

Now, we show in the following result that minor changes in the p.g.f. f(-) generates
minor changes in the extinction time.

Theorem E.3 Let f(-) be a p.g.f. such that my < 1. For each ¢ > 0, there exists
d =4(g, f) > 0 such that if () is a p.g.f. satisfying

sup |f(s) —g(s)] <6,

0<s<1
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then

sup. [or(t) — v, ()] < e.
0<t<o0

Remark E.2 1) It is important to point out that given a p.g.f. it is possible to find
another one so close to that as one wants. Actually, fixed f(-) and any § > 0, there exists a
p.g9.f. g(+) such that supge,q | f(8)—g(s)| < d. Indeed, since f(-) is a uniformly continuous
function on the interval [0, 1], then there exists 0 < oo < 1 such that |f(s)— f(s*)| < 8, for
all s, s* with 0 < s,s* <1 and |s—s*| < a. Foreach0 <s <1, let g(s) = f(a+(1l—a)s).
We will show in the next section that g(-) is a p.g.f. Since a + (1 — a)s — s < « for all
0 <s <1, then supgc< | f(s) — g(s)] < 6.

2) In the previous theorem, specifically, we have proved a continuity property for the d.f.
vs(-) depending on f(-), when my < 1. Taking into account (E.2), we can also deduce this
continuity property when my > 1. Indeed, let f(-) be a p.g.f. such that my > 1. From the
embedded generation process associated with the BHBP and the equation f(qf) = qy, it is
not hard to obtain the continuity of q; depending on f(-). Moreover, since vs(t) = qpvg(t),
where recall g(s) = q;lf(qfs) is a p.g.f. such that my, < 1, then from the previous theorem
the continuity property can be proved.

5.3 Application to epidemic modelling

Branching processes have been widely used to model epidemics and to describe the evolu-
tion of an infectious disease following a SIR scheme, at least in their early stages, (see, for
example, Andersson and Britton [4], Ball and Donnelley [18], Haccou, Jagers and Vatutin
[52], Kimeml and Axelrod [74], Mode and Sleeman [98] and Pakes [108]). In particular,
infectious diseases with long incubation period and negligible contagious time, such as
avian flu, measles, mumps, can be described by a BHBP.

To model the spread of an infectious disease by using BHBP, we consider the following
scheme. Let us assume that three types of individuals may exist in the population: in-
fected, healthy but susceptible to catch the infection (susceptible individuals), and healthy
and immune to this disease. The disease is spreading when an infected individual is in
contact with susceptible individuals. Notice that during the incubation period, the in-
fected individual as yet neither shows any symptoms of the disease nor passes the disease
to any susceptible individual. Moreover, when the infectious disease is observed in an in-
dividual, this individual is either isolated (for example in human or animal populations)
or culled (for example in animal populations with very dangerous diseases), so that the
individual ceases to be infective. Hence, just after the incubation period and before to be
isolated or culled, there is a very short contact period (in comparison with the incubation
one) in which the individual may infects others. We denote by p; the probability that
one infected individual contacts k healthy individuals, £ > 0, and by a (0 < a < 1) the
proportion of immune individuals of the population. We suppose that both infected and
immune individuals are dispersed uniformly in the population. Furthermore, we assume
that the population size is fixed and large enough in comparison with the number of in-
fected individuals, so that o and the contact distribution law, {px}x>0, can be considered
stable along time (see Isham [62]). Notice that this is neither a restriction in critical and
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subcritical processes because of their almost sure extinction, nor in the early stages of
supercritical processes.

Under these assumptions, the probability that an infected individual transmits the
disease to k susceptible individuals when « is the proportion of immune individuals in
the population, is given by

(E.4) Pak = i (‘;) o (1 = a)'p;,

J=k

i.e. the infected individual has been in contact with j healthy individuals and among them
there have been k susceptible individuals. We call {p, 1 } x>0 the infection distribution law
when the proportion of immune individuals of the population is a. Notice that if every
individual is non-immune, o = 0, then every individual will be infected whenever he/she
contacts an infected one, i.e. py = pi, for all & > 0. On the other hand, if all individuals
are immune, a = 1, then the infection does not spread, i.e. p;; = 0, for all & > 0.
Following this spreading scheme along time, infected individuals pass on the disease to
other susceptible individuals and so on. We model the number of infected individuals
in a population with a proportion a of immune individuals by a BHBP, such that its
offspring law is determined by the infection distribution law {pa i }r>0 and the d.f. of the
life-length of an infected individual is given by an arbitrary d.f. G(-) of a non-negative
r.v. By life-length we mean the period (measured in real time) till either he/she infects
susceptible individuals or the disease disappears in this individual, that is, the incubation
period. Notice that we assume the life-length of an infected individual depends neither
on the proportion of immune individuals in the population nor on the contact distribution
law.

In order to immunize a proportion of susceptible individuals, we suppose that a vac-
cination policy is applied. Our objective is to determine what proportion, «, of these
individuals might be vaccinated/immunized to guarantee the extinction of the disease,
possibly in a given period of time. We call this proportion vaccination level. Specifically,
we deal with the problem of determining the optimal vaccination level depending not only
on the speed of the transmission of the disease, expressed in terms of infection distribution
law {pa.i }x>0, but also on the time till the epidemic becomes extinct after the vaccination
process finishes. To this end, we first study the behaviour of the extinction time of the
epidemic depending on the vaccination level, applying the results of the previous sections.
Then, from this study, we propose an optimal vaccination level, and finally we illustrate
determining of this optimal vaccination level by means of a simulation method.

5.4 The extinction time of the epidemic

In what follows, our goal is to investigate the distribution of the extinction time of a
BHBP depending on the vaccination level a.. To this end, for each a such that 0 < a <1,
we denote by f,(-) the p.g.f. of {par}tr>o. From (E.4) it is easy to obtain that

(E.5) fa(s) = fla+ (1 —a)s), 0<s <1,
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being f(-) the p.g.f. of {pr}r>0. Moreover, we denote by T, the extinction time of a
BHBP initiated at time 0 with a single infected individual and with p.g.f. f,(-) and by
Uq(+) the d.f. of T,. Intuitively, T, is the maximal time that the infection survives into
the population when the proportion of immune individuals is «.

Also we denote by m the mean of contacts of an infected individual and by m,, the
mean of susceptible individuals, who are infected by a contagious individual, given that
the proportion of immune individuals in the population is c. Then, from (E.4) it is easy
to calculate that

(E.6) me = (1 — a)m.

Taking into account (E.6), m, < 1 is equivalent to max{0,1 — m™} < o < 1, which
depends on the mean of contacts of an infected individual. In order to simplify the
notations, from now on we denote by i,y = max{0,1 —m~!'} the smallest proportion of
immune individuals, so that the infectious disease becomes extinct a.s.

From the properties of f(-), (E.5) and Theorems E.2 and K.1, it is not hard to obtain that
for each t > 0, the function v, (t) is non-decreasing and continuous on « for aj,r < @ < 1,
i.e. in continuous way the greater is the proportion of immune individuals, the more
probable is that the infectious disease disappears faster.

Furthermore, some parameters of T, inherit these properties of v,(-). Next we inves-
tigate the monotonicity and the continuity properties of the quantiles of the distribution
of the infection extinction time, depending on the proportion of the immune individuals
into the population.

For fixed a and p, with iy < o <1 and 0 < p < 1, we denote by ¢ the quantile of
order p of the variable T,. We have the following result.

Theorem E.4 Let p be such that 0 < p < 1.
1. If ape < ap < ag < 1, then ty? <t

2. If a is such that 0 < my < Mg, then lim 3 = to-

d—sat P

Moreover,

a) If va(t2) = p, then t& < lim ¢5 < ¢*, with t* = sup{t : v, (t) = p}.

a—a~

b) If va(ty) > p, then lim t5 =12

Goa— P

c¢) If v,(-) is an increasing and absolutely continuous function, then limt% = ty-
a—o

Remark E.3 Notice that if G(-) is an increasing and absolutely continuous function de-
fined on the non-negative real numbers, we deduce from Proposition E.1 that v,(-) is also
of the same type and therefore, for amme < o < 1, & is a continuous function depending
on Q.
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5.5 Determining vaccination policies

When an infectious disease is strongly detrimental for the population where it is spreading,
such that it becomes an epidemic, then a vaccination policy should be applied to prevent
the susceptible individuals and terminate the epidemic. Since it is impossible to immunize
the whole population in most of the cases, only a proportion of susceptible individuals can
be prevented by vaccination. How to determine this proportion is an important problem
which depends on multiple factors. A significant factor for public authorities to assess the
vaccination efficiency, is the time that the infectious disease should be allowed to survive
after vaccination.

In what follows we propose an optimal proportion of susceptible individuals to be
immunized. Without loss of generality, we suppose that before vaccination, every healthy
individual who is in contact with an infected individual is not immune, i.e. the contact al-
ways produces the infection. Then, before the vaccination, with probability py an infected
individual passes the disease on k susceptible individuals. Moreover, after the vaccination
process, we suppose that every vaccinated individual is immune to the infectious disease.
If at the end of the vaccination process we have a proportion « of susceptible individuals
which has been vaccinated, then with probability p, (see (E.4)) an infected individual
transmits the disease to k susceptible individuals.

To guarantee the extinction of the disease a.s., o should be at least equal to .
Intuitively, we have obtained that the increasing of the vaccination level leads to the
decreasing (stochastically) of the extinction time of the infection. Obviously, the best is
to vaccinate all the population, but it is not reasonable from practical standpoint in most
of the cases. That is why, we propose a possible way of defining optimal proportion of
vaccinated individuals, to guarantee that the infection terminates by given instant of time
after the vaccination process ended. The vaccination policy is based on the quantiles of the
extinction time 7. For fixed p and ¢, with 0 < p < 1 and ¢ > 0, we look for vaccination
policies which guarantee that the infectious disease becomes extinct, with probability
greater than or equal to p, not later than time ¢ after the vaccination process ended. Let
us suppose that we have vaccinated a proportion « of susceptible individuals. If at the
end of the vaccination process there is a single infected individual of the population, since
this infected individual might have already lived some time before, then the probability
that the disease becomes extinct no later than time ¢ after vaccination process is greater
than or equal to v,(t). In Appendix a mathematical justification of this fact is provided.

On the other hand, if there are z infected individuals at the end of the vaccination
process, since each individual reproduces/infects independently from the others, then the
probability that the disease becomes extinct no later than time ¢ after vaccination process
can be bounded by (v,(t))?.

Consequently, any vaccination level a such that v, (t) > p*) or equivalently t;‘(z) <t,

with p*) = p'/#, could be used. Taking this fact into account, we propose as optimal
vaccination policy that one, which corresponds to the smallest « of all of them, i.e.

ag=ay(p,t,2) = inf{la:am < a<1,v,(t) >p®}
= inf{a:ap <a< 1,t;‘(z) < t}.

Applying the monotonicity and continuity properties of the functions v,(t) and 7 (de-
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pending on «) we have that v, (t) > p*) and thz) < tif a; > cunr. Notice that since
(va(t))? is a lower bound of the probability of interest, then some « less than a, could also
be followed to this aim. Moreover, although ¢ and p have been fixed arbitrarily, in order
to find a solution of the problem, it is necessary that t > t;(z) or equivalently p® < v (t).

5.6 Simulation—based method

In the previous paragraphs we have proposed a vaccination policy defined by «,. This
vaccination policy depends on the d.f. of extinction time. Therefore, to calculate «,
it is necessary to know v,(-), for a such that ajr < a < 1. Although v,(-) satisfies
(E.1), in general it is not possible to obtain this function in a closed form. Recently, some
numeric and simulation methods have been provided in order to approximate the function
satisfying (E.1) and (E.3). In what follows we determine «,, approximating v,(-) by means
of a simulation-based method when {py}r>0 and G(-) are considered known. When « is
fixed, such that a;,r < a < 1, we apply the Monte—Carlo method to estimate the empirical
d.f. of extinction time when the proportion of immune individuals is . Taking different
a’s sufficiently close, then we approach ¢, from its definition. To simulate the spread of
the disease when the proportion of immune individuals is «, it is enough to know G(-)
and {px}r>0. Usually, the life-length distribution and the contact distribution law are
estimated from the information that becomes available as the epidemic proceeds (see, for
example, Johnson, Susarla and Van Ryzin [68]).

Next we illustrate the simulation-based method by means of the following example.
Let the life-length of an infected individual follow gamma distribution I'(2,1). Also let
the contact distribution law follow Poisson distribution with parameter m. These types
of distributions have been related to such kind of problems (see for example Farrington
and Grant [40], Farrington et al. [38] and Mode and Sleeman [98]). From (E.5) we have

fa(s) = fla+ (1 —a)s) = e7mmorlmaks) — gmmall=) g <5 <1,

which means that infection distribution law also follows Poisson distribution with param-
eter m, = (1 — a)m, which is the expectation of susceptible individuals catching the
disease from infected individuals. Notice that, for fixed m, « is determined one-to-one
by mg. Therefore, instead of calculating oy, we determine m, = (1 — a;)m. From the
definition of oy, we obtain

mq = mq(tap7 Z) - Sup{mp : 0 S mp S 17Ump(t) Z p(z)}7

where up,, (-) is the d.f. of the extinction time when infection distribution law follows
Poisson distribution with parameter m,. Notice that v,(-) = wy,(-) and that m, is
independent on the magnitude of m.

Therefore, to approximate m, we only need to obtain the empirical distribution w,,(-)
for 0 < m, <1, using the Monte-Carlo method. To this end, for each fixed m,, 10.000
processes have been simulated and their extinction time have been calculated. In left
graphic of Figure 5.1 the behaviour of empirical d.f. wy,(-) for several m,’s is shown.
Notice that increasing m, the extinction time also increases (stochastically).
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Figure 5.1: Left graphic: Behaviour of the empirical distribution functions of w,(-)
depending on m,,. Right graphic: Behaviour of estimated value of u,,,(15), jointly with
an upper confidence bound at level 95%, depending on m, (doted line).

As an example, to compute m, we take p = 0.9, ¢ = 15 and z = 3. Then we have
p®) = 0.965. The behaviour of the estimated value of U, (15), jointly with an upper
confidence bound at level 95%, depending on m,, is given in the right graphic of Figure
5.1. Tt is illustrated that, given p*) = 0.965, an approximation of m,(15,0.9,3) is 0.64.

Finally, in Figure 5.2 we illustrate the proportion of individuals to be vaccinated de-
pending on m and taking into account my(15,0.9,3). Notice that, if the mean m of
contacts per individual is close to 1.5, then we need to vaccinate about 57% of the popu-
lation in order to guarantee that the infectious disease becomes extinct with probability
greater than or equal to 0.9 not latter than time 15 after vaccination period ended.

Remark E.4 For the computer simulation, we used the language and environment for
statistical computing and graphics R (“GNU S”) (see R Development Core Team [112]).

Figure 5.2: Proportion of individuals to be vaccinated depending on m and taking into
account m,(15,0.9,3) = 0.64.
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5.7 Proofs

In this paragraph we provide the proofs of the results stated in the previous ones.

Proof of Proposition E.1

For all t > 0, we have

w) = [ ' Fluos(t — £)dG(s)
(£7) — FO)G() + (1 - £(0) / Fy(t — )dG(s),

with Fr(y) = (1 — f(0))"*(f(vs(y)) — f(0)) for y > 0. Since f(-) is a p.g.f. and vy(-) is a
d.f., then F(-) is also a d.f. on non-negative real numbers, and therefore

/O Fy(t — 5)dG(s) = /O TRt — $)dG(s) = (Fy = G)(1),

is the convolution of Fy(-) and G(-). If G(-) is an absolutely continuous d.f., then it is
well-known that Fy x G(-) is also an absolutely continuous d.f. (see Billingsley [28], p.
272). Therefore, since vs(+) is a convex linear combination of two absolutely continuous
d.f., then it is also an absolutely continuous d.f. &

)
)

Proof of Theorem E.1

Let h(-) be a function from R, to the closed interval [0, 1]. In order to obtain the result
it is enough to prove the following four statements:

S1. For all t > 0, G(t) < Hs(h)(t) < G(t), with G(t) = f(0)G(t).

S2. Hg(-) is a non-decreasing operator, i.e. if h; : Ry — [0, 1], with ¢ € {1,2}, are two
functions such that hy(t) < ho(t) for all t > 0, then Hf(hy)(t) < H(ho)(t) for all
t>0.

S3. For all t > 0, there exist u(t) = lim, o H;}(é)(t) and uy(t) = lim, o HF (G)(1).

S4. uq(-) and us(-) are solutions of the fixed point equation u(-) = Hy(u)(-), and then
vp () = wi () = ua(-).

Indeed, from these statements it is easy to prove that for alln > 1 and ¢t > 0

ve(t) = wi(t) = lim H}(G)(t) < lim H}*(h)()

n—oo n—oo

< nlglgo HE(G)(t) = ua(t) = vg(t).

It remains to prove the statements S1-54.
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S1. Since f(-) is an increasing function such that f(1) =1, we have

G@:ﬂ@ﬂ@gl%@wﬂ»m@gaw.

S2. Since f(-) is an increasing function and hy(t) < ho(t) for all ¢ > 0, then the
statement is shown. B

S8. By §1, S2 and taking iterations we have, for each ¢ > 0, that {H}(G)(t)}n>1
is an upper bounded non-decreasing sequence and {H}(G)(t)},>1 is a lower bounded
non-increasing sequence. So, the statement is deduced.

S4. Since f(-) is a continuous function, then by S8 and applying the Dominated
Convergence Theorem it follows for each fixed ¢ > 0

w(t) = lim HYY(G)()

n—o0

= lim [ f(H}G)(t— $))dG(s)

n—oo 0

_ /Otf ( lim H}(G)(t — s)) dG(s)

n—oo

:Aﬂmwmm®:mwm-

Moreover, since vs(-) = Hy(vs)(-) and u4(-) is bounded, then uy(-) = vy(-), because only
one bounded function is a solution of (E.1) (see Athreya and Ney (1972), p. 139). In the
same way we deduce the statement for the function us(-). &

Proof of Theorem E.2
Since vy(+) is a distribution function and f(s) < g(s) for all 0 < s <1, then for each ¢ > 0
Hi(vg)(t) < Hy(vp)(t).

Taking this fact into account and (E.1), we have vy(t) < Hy(vs)(t), for all ¢ > 0.
Moreover, by S2 in proof of Theorem E.1 and taking again iterations, for all n > 1 and
t > 0, we obtain

vp(t) < Hy'(vp)(2),

and the proof is completed from Theorem E.1. &
Remark E.5 We notice that the proof of Theorem E.1 and Theorem E.2 hold even when
myg > 1.

Proof of Theorem K.1

We show by induction on n, for each n > 1, that for all t > 0

(E-8) [HF (G)(t) = Hy(G)(1)] < e(1 —mj).
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Fixed ¢t > 0 and 0 = (1 — my), since G(-) is a d.f., for n = 1 we deduce that

[Hy(G)(t) — Hy(G)(t)] < /Ot [f(G(t=s)) = g(G(t — 5))|dG(s) < e(1 —my).
By induction hypothesis, (E.8) holds for n. Then for n + 1 we have
[H ™ (G)(t) — Hy Y (G)(0)] < [Hp(HF(G)(t) — Hy(Hg(G))(t)]
| Hy(Hg (G))(t) — Hy(Hg (G))(t)].

By S1 and 52 of proof of Theorem E.1 and iterating, we deduce, for all n > 1, that
HP(G)(t) <1and Hy(G)(t) < 1. Taking these facts into account, we obtain

HIH}(G))(0) — By (G)(0)] <
< [ 1O - 9) - FHy G - s)lacit)

< my swp [HIG)(s) — HIG)(s")

0<s*<oo
< g(1- m?)mf,

and
|Hy(Hg (G))(t) — Hy(Hy (G))(t)]| <

< [ 1O - 9) - oGt — )IdG(s
< e(l—my).
Therefore, we conclude that
[HFPH(G)(t) — Hy ™ (G) ()] < e(1 = mfp)my +e(1 —my) = e(1 —mj™).
Since my < 1, from (E.8) by applying Theorem E.1 we obtain

sup. [or(t) — v, (D] <,
0<t<o0

and therefore the proof is completed. &

Proof of Theorem K.2

Let p be such that 0 < p < 1.
1. Let ai, ay be such that ajy < a3 < as < 1. Taking into account stochastic
monotonicity property of the extinction time, we obtain

P < va, (8") < vay (83,

and therefore, by definition of ¢?, we deduce that ;> < ¢
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2. Let a be such that 0 < m, < mg,,. From the previous part, we guarantee the
existence of limg_,q+ ¢, which is equal to # = sup{ty : @ > a}. Therefore £ < t5. On
the other hand, from continuity property of the extinction time, we deduce that for each

e > 0 there exists n = (e, a) > 0 such that
p—e< va(tg) —e< va(tg) < wy(?),

for all & such that 0 < @ — a < 7. Then p < v,(f) and so ty = t.

(a) Applying the first part, we deduce that limg .- tg exists, that it is equal to
t = inf{tg t @ < a}, and that t5 < t. Next, we prove that £ < ¢*. We split the proof
in two cases, v,(t*) > p and v,(t*) = p. First we consider the case v, (t*) > p. Let
e = Ua(t*) — p. From continuity property of the extinction time we deduce that there
exists n = n(e, ) > 0 such that

Vo (t") —va(t*) <e =v,(t") —p

for all @, 0 < @« —a < 7. Then p < vz(t*) and therefore we have t;‘f < t* and consequently
t <t

Finally, we consider the case v,(t*) = p. By the definition of ¢*, we have p < v,/(t) for
all t > t*. For each t > t*, let € = v,(t) — p. From continuity property of the extinction
time, we deduce that there exists 7 = n(e, @) > 0 such that

Va(t) —va(t) < e =v,(t) —p,

for all @, 0 < a — a < n. Then p < v5(t), tg <t and ¢t <t, and consequently t < ¢*.
(b) It is proved as the previous case when v, (t*) > p, replacing t* by 5.
(¢) From (a) we obtain that limg_,- t3 = t&, and the proof is completed. &

5.8 Appendix

We consider a BHBP initiated with one individual, with reproduction law {pg . }r>0,
where 0 < o < 1, with d.f. of the initial progenitor’s life-length G*(-) and with d.f. of
the life-length G(-) for other individuals. We suppose that G*(t) > G(¢t) for all £ > 0. In
epidemiological context, this condition reflects the fact that the life-length distribution
G*(+) of the initial individual after vaccination, is always less than or equal to its total
life-length, given by G(-).

We denote by T, the extinction time of such a BHBP. Also, we denote by U,(-) the
d.f. of the extinction time T, i.c. 0,(t) = P(T, < t), for all t € R. Following a heuristic
derivation as in

Athreya and Ney [12] (see p. 138) we obtain the integral equation

t

(E.9) Ua(t) = / falva(t — 5))dG*(s), t > 0.
0

From (E.7) and (E.9), for all £ > 0 one obtains

va(t) = fa(0)G(t) + (1 = fa(0))(Fu x G)(t)
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and
Ua(t) = fa(0)G* (1) + (1 = fa(0)) (Fu + G7)(1),
where F,, * G*(-) means the convolution of F,(-) and G*(-), with

Fa(y) = (1= £a(0)) ™ (falva(y) — fa(0)),

for all y > 0. Since G*(t) > G(t) for all t > 0, then (F,*G*)(t) > (F,*G)(¢t) forallt > 0
and therefore v, (t) > v,(t), for all t > 0. &

The results from this chapter are published by Gonzalez, Martinez and Slavtchova—
Bojkova in [48].
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Chapter 6

Sevastyanov’s Branching model in
epidemiological modelling

6.1 Introduction

When an infectious disease is strongly detrimental for the population where it is spread-
ing, control measures should be applied to protect the susceptible individuals. Vaccination
programme represents one of the most effective ways of controlling. However, immunizing
the whole population is impossible in most of cases (because there exists a real impossi-
bility or it is very expensive) and then only a proportion of susceptible individuals can
be immunized by vaccination. In this last situation, infections can still occur and their
spread depend on the immunized level. How to determine this proportion is an important
public health problem in its own right, which depends on multiple factors. A significant
factor for public authorities to assess the vaccination efficiency is the time elapsed by the
infectious disease in becoming extinct after vaccination, called time to extinction of the
disease.

The aim of this chapter is to provide an approach to this problem modelling epidemic
spread and controlling its time to extinction by means of branching processes. These
processes have been applied widely to model epidemic spread (see for example the mono-
graphs Andersson and Britton [4], Daley and Gani [31], Mode and Sleeman [98] or Pakes
[108]).

In terms of epidemic spreading we draw our attention to the SIR (Susceptible-Infective-
Removed) model. Measles, mumps or avian flu are examples of infectious diseases which
follow this spreading scheme model. We notice that branching processes approach is ap-
propriate for homogeneously mixing population, when the number of infected individuals
is small in relation to the total population size (see Isham [62]). For this reason, we shall
assume this scenario. Clearly this happens during the early stages of an epidemic.

The study of the spread of infectious disease following the SIR model and depending on
a vaccination/immunized level has been considered in De Serres, Gay and Farrington [32],
using branching processes in discrete time. However, these models are not appropriate
to evaluate the time to extinction in real time, but only by generations. This is the
reason for suggesting here a more accurate approach to this problem. From now on, we
propose to model the number of infectious individuals in the population depending on

67
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the vaccination level by means of Sevast’yanov’s age-dependent branching processes (see
Sevast’yanov [118]). This model is a particular case of the general branching process (see
Jagers [67]), also called Crump-Mode-Jagers (CMJ) branching process, which is the most
adequate model to fit infectious diseases following SIR scheme (see Ball and Donnelley
[18]). The Sevast’yanov’s branching process (SBP) is specially adequate to model the
evolution of diseases with incubation period (and a negligible contact period) for which
the virulence of the disease could be a function of this period. Therefore, using SBPs,
our target is to determine the optimal proportion of susceptible individuals which might
be immunized by vaccination to guarantee the extinction of the disease within a given
period of time. An advance without proofs of this work has been published in Gonzéles,
Martinez and Slavtchova-Bojkova [47].

The chapter has been split in 9 subsections. First, we model the spread of the disease
by way of SBPs which depend on the proportion of immune individuals in the popula-
tion. For that reason in the subsequent section we consider the time to extinction of an
infectious disease, depending on the proportion of immune individuals into the popula-
tion. Then, we study the main monotonicity and continuity properties of the time to
extinction. In the subsequent section, first we propose a policy for defining the optimal
vaccination /immunized level, based on the mean of the time to extinction distribution of
the disease. Moreover, we provide a simulation based method to calculate the optimal
proportion of susceptible individuals to be vaccinated. At the end of this chapter we
analyze the data from avian influenza spreading in Vietnam at the end of 2006. In the
following section we point out concluding remarks. Finally, the proofs are consigned to
the end in the Section 6.8 and in the subsequent section a comparison between the two
policies based on the mean of the time to extinction distribution of the disease and on the
quantiles of the same distribution, respectively, is made by use of simulation examples.

6.2 Model of epidemic spread

We assume that three types of individuals may exist in the population: infected, healthy
but susceptible to catch the infection (susceptible individuals), and healthy and immune
to this disease (immune individuals). The disease is spreading when an infected individual
is in contact with a susceptible one and any contact between infectious and susceptible
individuals implies new infective. The survival time of the disease in an infected individual
will be treated as the “age” of this individual in the branching model. On the other hand,
it is essential for the epidemic we are trying to model, that the survival time of the
disease consists of two periods: an incubation or latency period and comparatively very
short (negligible) contact period. During the incubation period the infectious individual
does not yet pass the disease to any susceptible and the symptoms of the disease do not
appear yet in this individual. Moreover, when the infectious disease is observed in an
individual, this is either isolated (for example in the case of human populations) or culled
(for example in the case of very contagious animal diseases like classical swine fever, foot-
and-mouth disease or avian influenza), and then the individual stops being infective. For
that reason we consider that the “offspring”, meaning in epidemic setting the number of
contacts, is produced in a very short period of time (called the contact period) and that it
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happens only once after the incubation period. One final but very essential remark is that
the disease may have different levels of severity during its survival period. So, it would be
a mistake to model a survival time of a disease and the number of contacts as mutually
independent. All the above considerations lead us to conclude that SBP is adequate to
fit the evolution of an infectious disease with these characteristics.

More specifically, for modelling the epidemic spread we denote by pg(u) the probability
that one infected individual with survival time (incubation plus contact periods) u > 0
contacts k healthy individuals, £ > 0, and by a (0 < o < 1) the proportion of immune
individuals in the population. We assume that the population size is fixed and large
enough so that a and the family of contact distribution laws, {pg(u)}r>0, u > 0, can be
considered stable along time. Then, it is not hard to obtain that the probability that
an infected individual with survival time u > 0 transmits the disease to k susceptible
individuals is given by

®.1) psl) = 3 (1)1 = ),

J=k

i.e., the infected individual with survival time u has been in contact with j(=k, k+1,...)
healthy individuals and among them there have been k susceptible individuals. We call
the family {par(w)}r>0, w > 0, the infection distribution laws when the proportion of
immune individuals in the population is a. Notice that if every individual is non-immune,
a = 0, then every individual will be infected whenever contacts an infected one, i.e.,
pox(u) = pp(u), for all k£ > 0, u > 0. On the other hand, if all individuals are immune,
a = 1, then the infection does not spread, i.e. p;(u) =0, for all k > 0, v > 0. Following
this spreading scheme along time, infected individuals pass on the disease at the end of
their survival time to other susceptible individuals and so on. We model the number of
infected individuals when the proportion of immune individuals in the population is a by
a SBP, such that its offspring law is determined by the family of infection distribution
laws {pak(u)}r>0, w > 0, and the distribution function (d.f.) of the survival time of an
infected individual is given by an arbitrary d.f. G(:) on the non-negative real numbers.
Let us remind that by survival time we mean the period (measured in real time) consisting
from the incubation period and contact period (very short -negligible- in comparison to
the incubation period). Notice that we assume the family of contact distribution laws
depends on the survival time of each infected individual.

6.3 The time to extinction of the epidemic

The objective of this section is to investigate the distribution of the time to extinction of
a SBP depending on the vaccination level a and when the family of contact distribution
laws is {pr(w)}x>0, v > 0. To this end, for each o, 0 < o < 1, we denote by T, the time
to extinction of a SBP initiated at time 0 with a single infected individual, with family
of infection distribution laws {p, x(u) }x>0, v > 0, and with d.f. of the survival time G(-).
Intuitively, T, is the maximal time that the infection survives into the population when
the proportion of immune individuals is «. From now on, we denote by v,(-) the d.f. of
the extinction time T,, i.e. v,(t) = P(T, < t) for all t € R. For each u > 0 we also
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denote by f,(u,-) the probability generating function (p.g.f.) of {pax(«)}r>0. Moreover,
we suppose that G(0T) = 0, i.e., there is null probability of instantaneous death and
consequently v, (0) = 0. Then, from Sevast’yanov [118] we deduce that v,(+) is the unique
bounded function such that

0 t <0,

)
t

(F:2) valt) /O Fo(tt, v (t — w))AG(u), £ > 0.

This expression plays an important role in our study, together with the following rela-
tion between o and the family of contact distribution laws. Let m(u) be the mean of
contacts of an infected individual with survival time u, and m,(u) be the mean num-
ber of susceptible individuals which are infected by a contagious individual with survival
time u, given that the proportion of immune individuals in the population is a. Let also
m = [7"m(u)dG(u) < oo and mg = [ ma(u)dG(u) < 0o, 0 < o < 1. Intuitively, m is
the average number of contacted individuals by a contiguous individual during its survival
time and m,, is the average number of infected individuals when the vaccination level is
«. Then, from (F.1) it is easy to obtain that

(F.3) me = (1 —a)m.
Also, it is easy to prove that
(F.4) falu,s) = flu,a+ (1 —a)s), 0<s<1, u>0,

with f(u,-) the p.g.f. of the contact distribution law {px(u)}r>0, u > 0.

Moreover, let g, = P(T, < o0) be the extinction probability of a SBP with family
of reproduction laws {pax(w)}rs0, v > 0. It is well known that g, = 1 iff m, < 1 (see
Sevast’yanov [118]). Notice that m, is the critical threshold parameter of our model. So
that, for such an « for which m, > 1, v,(+) is the d.f. of a non-proper random variable
(r.v.) because P(T, < c0) < 1.

From now on, we consider « such that the extinction time 7}, is a finite r.v., i.e. m, < 1,
which implies that the infectious disease becomes extinct almost surely (a.s.). Taking
into account (F.3), m, < 1 is equivalent to max{0,1 — m~'} < a < 1, which depends
on the mean of contacts of an infected individual. In order to simplify the notations,
we denote by a;,; = max{0,1 — m~'} the smallest proportion of immune individuals,
so that the infectious disease becomes extinct a.s. Notice that the corresponding mean
Ma,,; = min{l,m} is the greatest mean number of susceptible individuals catching the
disease by an infected individual, so that it is guaranteed that the disease becomes extinct
a.s. Moreover, m; = 0, i.e., the infectious disease does not spread to any susceptible
individual and therefore the extinction time is given by the survival time of the initial
infected individual, i.e., v1(t) = G(t) for all ¢ > 0. It stands to reason that if there
are non-immune individuals into the population, then it is probable that the infectious
disease takes more time to become extinct. In the following result, we show this fact
investigating the behaviour of v,(-) depending on the parameter o and when the family
of contact distribution laws is fixed.

Theorem F.1 If0 < a; < ag <1, then vy, (t) < va,(t), for all t > 0.
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Intuitively, it is clear that the greater is the proportion of the immune individuals,
more probable the infectious disease disappears faster. Consequently, for any o with
Qg < o < 1, the d.f. v,(-) is upper bounded by v1(-) = G(-) and lower bounded by
Va,,;(-). Furthermore, all of them are lower bounded by vy(-), which is not necessary to
be a proper d.f.

Moreover, we obtain that minor change in the proportion of the immune individuals
causes minor change in the extinction time.

Theorem F.2 Let o« be such that m, < My, ;- Then for each € > 0 there exists n =
n(e,a) > 0 such that for all o, with my <1 and | — o*| < n,

sup |va(t) — vas(t)] < e.
0<t<o0o

More specifically, we have proved the continuity of the d.f. v,(-) depending on «, for
ainp < o < 1. Notice that a, s has been excluded, which matches with m, = min{1, m}.
This is not necessary if m < 1. Moreover, the continuity is uniform along the time.

Furthermore, some parameters of T, inherit these properties of v,(-). In what follows
we establish the monotonicity and the continuity properties of the mean of the distribution
of the infection extinction time, depending on «. Let’s denote by pu, the mean of time to
extinction of infectious disease when the proportion of immune individuals is a.. Since T,
is a non-negative r.v., then

(F.5) o = E|T,] = /0 T (1= va(t))dt.

Theorem F.3
1. If ainy < ap < ag <1, then fia, < fla,-

2. If @ is such that 0 < mg < My, and sup{p, : @ < a < 1} < oo, then g is finite
and g = ali)r%ua. Moreover, for all o with @ < o < 1, it follows that égrrélua = -
Remark F.1 If the process starts with z infected individuals, then its time to extinc-
tion when the proportion of immune individuals in the population is o, will be T, . =
maX{Tcsl), . ,TCSZ)}, where TS are i.d.d. r.v. with the same distribution as Ty. So de-
noting by v, () the distribution function of T, ., we have that v, .(t) = (va(t))?, t € R.
From this expression and considering the properties of the power functions, it is easy to
establish for v, .(-) the same properties of monotonicity and continuity as those of va(+).
Moreover, these properties can be extended to the mean value of T, ., that we will denote

by o,z

6.4 Determining vaccination policies

In this section we propose a method of obtaining the optimal proportion of susceptible
individuals to be immunized. To guarantee the extinction of the disease almost surely
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(a.s.), the proportion of immune individuals in the population after vaccination, «, should
be at least equal to ay,e. But, we are going to propose a possible way of defining optimal
proportion of individuals to be vaccinated (immunized), to guarantee not only that the
infection terminates after the vaccination period but also that this happens within a given
period of time. The procedure is based on the mean of the time to extinction.

Let us recall that we model the spread of the disease by a SBP as follows. Without
loss of generality, we suppose that before vaccination, every healthy individual which is
in contact with an infected individual is non-immune, i.e. the contact always produces
the infection. At an arbitrary time ¢y after the infection occurred into the population, the
vaccination process of susceptible individuals starts. We suppose that this vaccination
process finishes at time t;. Therefore t; — t; is the time that is taken for immunization,
called the vaccination period. We suppose that this vaccination period is fixed a priori
by public authorities and that it does not depend on the proportion to be vaccinated.
We also suppose that every vaccinated individual is immune to the infectious disease at
least after time #;. Actually, we consider the vaccination period to include not only the
vaccination process but also the time that each vaccinated individual takes to develop
the immunological response, and that the efficacy of vaccination is complete. Given the
binomial scheme, this latter assumption does not lack of generality.

6.5 Vaccination based on the mean value

For fixed 7 > 0, we are interested in investigating vaccination policies, which guarantee
that the average time to extinction of an infection after vaccination period, ¢, is less than
or equal to t; + 7. We determine these vaccination policies applying the results of the
previous section as follows. Let us suppose that we have vaccinated a proportion a of
susceptible individuals. If at the end of the vaccination period there is a single infected
individual into the population, then this infected individual might have already lived some
time before time t;. Therefore the probability that the disease becomes extinct no latter
than time ¢; + 7 is greater than or equal to v, (7).

However, the number of infected individuals at time ¢; is a random variable depending
on « and on the number of infected individuals at the time t;. We shall approximate it
by its expected value. In general this is hard to calculate, but it is upper—bounded by the
expected number of infected individuals at time t; providing the vaccination policy has
not been applied. Indeed, if Z(¢;) denotes the number of infected individuals at time ¢y,
assuming that there has been no vaccination and the individuals have already lived some
time before t;, then the probability that the disease becomes extinct no later than time
t1 4+ 7 is greater than or equal to F(t1,v,(7)), where F(t1,-) denotes the p.g.f. of Z(t1).
By Jensen’s inequality, F(t1,v,(7)) < (va(7))EZ ] Therefore, if 2 is the greatest integer
number smaller than or equal to the expected value E[Z(t1)], then the probability that the
disease becomes extinct no latter than time ¢; + 7 can be bounded by v, .(7) = (v (T))?.
The expected value of Z(t;) can be determined by means of a renewal integral equation
(see Sevast’yanov [118]).

Then, any vaccination level o such that p, . < 7 could be followed. The optimal
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vaccination policy is that one which corresponds to the smallest «, that is,
Qopt = Qopt (T, 2) = Inf{a : s < a <1, py. < 7}

Taking into account the results of the previous section we have that fi,,, . < 7 if
Qopt > iing. Therefore, vaccinating a proportion agyp, of susceptible individuals, the infec-
tious disease becomes extinct in average, no latter than time 7 after vaccination period.
Moreover, although 7 has been chosen arbitrarily, in order to find a solution of the prob-
lem, it is necessary that 7 > py ..

The vaccination policy aop; depends on the d.f. of time to extinction. Therefore, to
calculate agpt, it is necessary to know v,(-), for o such that aipr < oo < 1. Although v, ()
satisfies the integral equation defined by (F.2), in general it is not possible to obtain this
function in closed form. Recently, some numerical and simulation methods have been pro-
vided in order to approximate the solution of integral equations (see for example Brunner
[29] or Martinez and Slavtchova-Bojkova [86]). We determine o,y approximating v, ()
by means of a simulation-based method when {pg(u)}x>0, v > 0, and G(-) are considered
known. For each fixed a we apply the Monte-Carlo method to approximate the d.f. of
time to extinction, v,(-). We approximated oy by simulating various sufficiently close
a’s. To simulate the spread of the disease when the proportion of immune individuals is
a, it is enough to know G(-) and {pg(u)}r>0, u > 0. Usually, the survival time distribu-
tion and the family of contact distribution laws are estimated from the information that
becomes available as the epidemic proceeds (see, for example Guttorp [50] and Johnson,
Susarla and Ryzin [68]).

6.6 Control measures for avian influenza in Vietnam

It is well-known that highly pathogenic H5N1 avian influenza virus requires an incubation
period after which it appears to be extremely virulent for a variety of domestic and wild
bird species (see for example IDSA [61]). The usual routes of bird—to—bird transmission
are airborne transmission if birds are in close proximity, or direct contact with contami-
nated respiratory secretions. Also, since the contact period is considered to be very short
(negligible) in comparison with the incubation period, an SBP is appropriate to model
the spread of H5N1 virus in birds.

According to the official reports given by the World Organization for Animal Health
(see the web page http://www.oie.int), Vietnam has been the country with greatest
number of outbreaks of avian influenza in domestic birds from the end of 2003. In 7"
December 2006 an outbreak started widespread itself in the southern part of the country
and became extinct on 14™ January 2007 (see OIE [101]). The left plot of Figure 6.1
shows the numbers of infected domestic birds detected each day along this period. The
non-null values are also given in Table 6.1. From 20" December the number of cases
decreases, probably because some control measures were taken (see OIE [101]). We guess
that these strategies should have started before 19*" December.

Next, we analyze the spread of the H5N1 avian influenza virus in Vietnam from 19"
December until 14" January by comparing it with the simulated times to extinction of
SBP for different vaccination levels. First, in order to apply the above simulation-based
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Table 6.1: Non-null values of infected domestic birds detected between 7™ December 2006
and 14" January 2007.

Date Cases Date Cases Date Cases Date Cases Date Cases

7 Dec 80 22 Dec 382 27 Dec 140 1 Jan 8 7 Jan 330
13 Dec 188 23 Dec 127 28 Dec 189 3Jan 160 8 Jan 42
14 Dec 225 24 Dec 12 29 Dec 60 4Jan 378 9 Jan 10
19 Dec 6073 25 Dec 262 30 Dec 18 5Jan 240 12 Jan 880
20 Dec 40 26 Dec 1908 31 Dec 130 6Jan 300 14 Jan 1621

method, we consider that G(-) is the d.f. of a gamma distribution and, for each u > 0,
{pr(u) } x>0 follows a Poisson distribution with parameter Au, being A > 0. These types of
distributions have been found to be appropriate for the survival time (including incubation
and contact periods) and the number of contacts, respectively (see for example Daley and
Gani [31], Farrington and Grant [40], Farrington, Kannan and Gay [41] or Mode and
Sleeman [98]). Intuitively, A represents the power of the virus. The average number of
infected individuals is considered proportional to time, i.e. the longer the survival period
(in our case almost equal to incubation period, because contact period is negligible), the
more infected individuals there will be. Taking into account that the incubation period
of H5N1 avian influenza virus is estimated at between 3 and 7 days (see IDSA [61]) — this
can be observed in our data at the beginning of the outbreak— we consider the gamma
distribution with mean 5 and shape 16, to guarantee that the survival period in 90%
of individuals is between 3 and 7 days. Therefore, we deduce that m = 5X. Since the
number of infected individuals at the first outbreak (on 7** December) is 80, and after the
incubation period (in 13"™ and 14" December) the total number of infected individuals
was 413, we can estimate the rate m, using Lotka’s estimator, as m = 413/80 (see Guttorp
(1991)). We did not take more outbreaks into account in our consideration because, as was
observed above, some control measures have been applied before 19" December. Thus,
in order to apply our method, we consider this date the end of vaccination period. We
estimate the number of individuals incubating the virus at this date at z = 413m ~ 2132.
Finally, for each vaccination level, a, 0 < o < 1, we deduce from (F.4) that {pgo(u)}rs0
also follows a Poisson distribution with parameter u(1 — a)\, u > 0.

The right-hand plot of Figure 6.1 shows the histogram of 10,000 simulated times to
extinction for @« = 1, i.e. when all susceptible individuals are immunized. Assuming
that our model fits well, we deduce from the fact that the virus took close to 30 days to
become extinct after the vaccination time, while the maximum of simulated extinction
times is less than 30, that the control measures followed in Vietnam did not cover all the
susceptible individuals. Consequently, the control measures in Vietnam correspond to a
vaccination level o < 1 in our setting. Let us now determine agpy which corresponds to
these control measures. From Theorem F.1 we deduce that the smaller is o the longer
the time to extinction. This behaviour is shown in the left-hand panel of Figure 6.2
where the empirical d.f. of the time to extinction is plotted for a = 1,0.95,0.90 and
0.85. Since the virus took close to 30 days to become extinct, then we deduce that the
vaccination level must have been close to 1. Taking into account the vaccination policy
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Figure 6.1: Left: Numbers of infected domestic birds detected between 7** December 2006
and 14" January 2007. Right: Histogram of simulated times to extinction for a = 1.
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Figure 6.2: Left: Empirical d.f. of the time to extinction for a = 0.85,0.90,0.95 and 1.
Right: Histogram of simulated extinction times for a = 0.97.
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based on the mean value of the time to extinction, we obtain by applying the simulation-
based method, that a.p (7 = 30,2 = 2132) = 0.97. The right-hand panel of Figure 6.2
shows the histogram of 10,000 simulated times to extinction for a = 0.97. In conclusion,
the control strategies followed in Vietnam correspond, in our setting, to a vaccination
level close to 1 (aept = 0.97). Of course one must observe that such a high proportion
is connected with the great risk of death not only in the birds but also in the human
population in the case of of bird-to-human transmission.

Remark F.2 For the computer simulation, we used the language and environment for
statistical computing and graphics R (“GNU S”) (see R Development Core Team) [112].

6.7 Concluding remarks

We have presented a method for defining an optimal vaccination level of a population
where a strongly detrimental disease has started to spread following a SIR scheme. We
tackled this problem using a continuous-time branching model, namely the Sevast’yanov
age-dependent branching process, taking the age and reproduction of an individual are
not to be independent. In epidemiological terms, this lack of independence takes into
account that the number of contacts of an infected individual will depend on the survival
time of an infection.

We are aware of the fact that the Sevast’yanov’s branching model we have proposed
here is a particular case of the general branching process. In particular, SBPs follow
from general branching processes if reproduction is assumed to occur once at the end
of the individual’s life and the offspring depends on the age of the individual. They
are therefore appropriate for modeling infectious diseases with an incubation period and
negligibly short contact period. Using this SBP model, we were able to define an optimal
vaccination level using the mean value of the time to extinction of the epidemics after
vaccination took place.

We used a real set of data from the outbreaks of avian influenza virus that spread
in South Vietnam at the end of 2006 to illustrate the application of the technique. Our
analysis, assuming SBP fits the situation well, showed that the model would indeed be
useful for controlling the spread of avian influenza virus.

Mathematically, we established monotonicity and continuity properties for the time
to extinction of SBP.

Generalization of the results in the framework of the general branching processes seems
to be an important direction for further investigations.

6.8 Proofs

In this section we provide the proofs of the results. For each « such that 0 < o < 1, we
introduce the functional operator H,(-), defined on set of functions A(-) from non-negative
real numbers, R, to the interval [0,1], as follows

Ho(h)() = /Ot £o(s, h(t — $))dG(s), t > 0.



6.8. Proofs 77

Also, for all n > 1, we denote by H"(-) the n'® composition of the operator H,(-). With
this notation, (F.2) can be rewritten as the fixed-point equation v, (t) = H,(v,)(t), t > 0.
Moreover, v4(+) has the following property:

Proposition F.1 Fized a, 0 < o < 1, for every function h(-) from R, to the interval
0, 1], it is satisfied
v (t) = lim HZ(h)(t), t>0.

n—00

Proof.

Let o, 0 < aw < 1,and h: Ry — [0, 1]. To proof the result it will be enough to establish
the following statements:

Al. Foreacht >0,
G(t) < Hyu(h)(t) < G(t)

with G(t) = [ fa(s,0)dG(s).

A2. H,(-) is a non-decreasing functional operator, i.e., if h;: R, — [0,1], 1 = 1,2, are
functions such that hy(t) < ho(t), for all t > 0, then

Ho(h)(t) < Ho(ho)(), for all > 0.

A3. For each t > 0, there exist

ui(t) = lim H}(G)(t) and wuq(t) = lim H}(G)(1).

n—oo n—oo

A/. () and ug(-) are solutions of the fixed-point equation h(-) = H,(h)(+), and then

Va(+) = wa () = ua(").
Indeed, from these four statements it can be established that, for ¢ > 0,

va(t) = wi(t) = lim HI(G)(t) < lim HI (h)(1)

< lim Hy(G)(t) = us(t) = va(t).

Let’s prove A1-A4.
Al. Tt is clear considering that, for each s > 0 and 0 <t <1,

fa(5,0) < fals,t) < fals, 1) = 1.
A2. This statement is due to the fact that for every s > 0, f,(s,-) is an increasing

function.

AS8. By A1-A2, for each t > 0

G(t) < Ho(G)(t) < Ha(G)(1) < G(1).
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So, by an iterative procedure, for n > 1 and each ¢t > 0

H(G)(1) < HYMNG)(t) < HYPHG)(1) < HIG)(1).

Therefore, {H™(G)(t)}n>1 is a non- -decreasing sequence upper bounded by 1, and then
there exists ui(t) = limy_eo H*(G)(t), t > 0. Morcover, {H"(G)(t)}n>1 is a non-
increasing sequence lower bounded by 0, and then there exists uy(t) = lim, oo H2(G)(1),
t>0.

AJ. Let’s prove this statement for u;(-). In a similar way it can be proved for us(-).

Let t > 0, then using A3, the fact that f,(s,-) is increasing and continuous for each
s > 0, and the dominated convergence theorem, it can be established that
w(t) = lim H™Y(G)(t)
n—o0

t

= lim [ fu(s, HY(G)(t — s))dG(s)

n—0o0 0

_ / lim fo(s, H(G)(t — ))dG(s)

n—oo

= [ fuls Jim F2G) ¢ = s)ac(s

— /Ofa(s,ul(t—s))dG(s)

= Ha(ul)(t)

Since u;(-) is a bounded function verifying the fixed-point equation h(-) = H,(h)(:) and
Uq(+) is the unique bounded function verifying this equation, then u;(t) = v,(t), for every
t > 0. This concludes the proof. &

Proof of Theorem F.1
Let aq, ay be such that 0 < ag < ag < 1. Then, as v,, (+) is a distribution function,
a;+ (1 — a1)vg, (t—35) <ag+ (1 — az)vg, (t—s)
for all 0 < s < ¢. Therefore
for (8,00, (t =) = f(s,01 4+ (1 —aq)v,, (t —s))
< s, 00 4 (1= a2)va, (t = 5)) = fay (s, va, (E = 5)),

and then vy, (t) = Ha, (Va, ) (t) < Ha,(va,)(t), for all ¢ > 0.

Taking into account that the functional operators H,(-) are non-decreasing (see S2 in
the proof of Proposition F.1, it is clear that vy, (t) < HZ, (vq,(t)), for all ¢ > 0 and n > 1.
Then, applying Proposition F.1, for all £ > 0,

Vay () < Tim H g, (04, (1)) = va, (1),

n—oo
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<

concluding the proof.
Proof of Theorem F.2

Let ¢ > 0 and let a be such that m, < m,,,, = min{l,m}. Let also n = n(c,a) =
e(1 —mgy)m™t. Given o* such that m,- < 1 and |a — «*| <, since for all ¢, 0 < ¢ < 1,
la+ (1 —a)t — (a* 4+ (1 — a*)t)| < |a — o], from the mean value theorem and (F.4), it
follows that for every s > 0 and 0 <t <1,

(F.6) |[fa(s, 1) = far (s, 1) < m(s)|a — 7] < m(s)n.
Taking into account this fact, next we show by induction on n, for each n > 1, that
(F.7) [HA(G)(t) = Ho-(G) (1) < e(1 —mg), ¢ = 0.

Fixed t > 0, for n = 1 we deduce from (F.6), that
|Ha(G)(t) — Ho (G)(t)| < /0 |fa(87 G(t - S)) - fa*(sv G(t - 8))|dG(8)

< e(1—mg)m™* /000 m(s)dG(s)e(1 —my).

By induction hypothesis, (F.7) holds for n. Then for n + 1 we have that

[HEPH(G)(t) — H (G) ()] < [Ha(H(G)(t) — Ho(Hy (G))(8))]
+ [Ho(H(G))(E) = Hoe (Hy (G))(2))].
Moreover, using again the mean value theorem,

|Ho(Hg (G))(t) = Ha(Hy (G))(1)] <

o

< / fals, HY(G)(t — ) — fuls, H.(G)(t — $))|dG(s)

< / ma ()| H(G)(t — 5) — HE(G)(t — 5)|dG(s)

< ma sup [Hy(G)(s) — Hy.(G)(s)]

«
0<s<00

IN

e(1 —mp)ma,
and, from (F.6),

|Ho(H- (G))(t) = Ho (Ha (G))(8)] <

< / fals, HY(G)( — 8)) — foe (s, HP(G) (¢ — $))|dG(s)
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< (1 —my).
Therefore, we conclude that

[Hy T (G)(E) — HiH(G)(B)] < e(1 = mg)ma +e(1—ma) = (1 —mg™).

«

Finally, using Proposition F.1 and the fact that m, < 1, from (F.7), we obtain that

sup |va(t) — var (t) < ¢,

0<t<o0o

and then the proof is completed. &

Proof of Theorem F.3

1. Let ay,as be such that o < a3 < as < 1. From Theorem F.1, we have that
Vay () < vay(t), t > 0, and taking into account (F.5), it follows that fin, < fia,-

2. Let @ be such that 0 < mg < my,,, and M = sup{p, : @ < a < 1} < co. First we
show that pg is finite. For fixed ¢ > 0 and N > 0. Applying Theorem F.2, there exists
n =mn(a,e, N) such that for all & > @, with « —a <, it follows that

vo(t) —va(t) < N7te, t > 0.
Therefore,

/N(1 —va(t))dt < /N(N_ls +1—va(t))dt < e+ M,

and we deduce that p is finite. Hence, there exists ng = ng(e, @) > 0 such that
(F.8) / (1 — va())dt < 2-1c.
no

Let « be such that @ > @. Then, after applying Theorem F.2, we guarantee that there
exists n = n(a, e,n9) > 0 such that if |&@ — a| <7, then |v,(t) — vz(t)] < (2ng) 'e for all
t > 0, and therefore

/ V6 (t) — va(t)|dt < 27 'e.
0

Moreover, since (F.8) holds, from Theorem F.1, we have, for @ > @, that

/ [va(t) — va(t)|dt < 271,

0

and the proof is completed. &



6.9. Comparison of vaccination policies 81
6.9 Comparison of vaccination policies

In the previous section we have proposed two vaccination policies. That gives rise to the
natural question which one and when is reasonably to use? That is why, in what follows
we compare the two approaches by way of simulation examples, modelling the spread of
the disease by means of SBP with the distributions of the incubation period and of the
number of contacts (remain, every contact produces infection when there are no immune
individuals in the population) belonging to probability distributions, commonly used in
epidemic modelling for such situations.

Namely, we consider as incubation period distribution (plus the negligible short contact
period) a gamma distribution and for the contact distribution a Poisson distribution with
parameter \u, being A, u > 0. These types of distributions turned out to be appropriate
for the incubation period and the number of contacts (or infected individuals generated by
one infected individual), respectively (see for example Daley and Gani [31], Farrington and
Grant [40], Farrington et al. [38] or Mode and Sleeman [98]). Intuitively, A represents
the power of the virus and u the length of the incubation period. Hence, the average
number of infected individuals by one infected individual is considered proportional to
its incubation period, i.e. the larger incubation period is, the larger will be the number
of infected individuals. With respect to incubation distribution, we have chosen gamma
distribution with mean 15 and shape 30, which guarantee that the survival period in more
than 95% of individuals is between 10 and 21 days. Moreover, with respect to contact
distribution we have selected A = 1/3. A similar model was used to fit HSN1 Vietnam
data (see OIE [101] and Gonzales et al. [49]). For the last selected parameters, we deduce
that m, the average number of individuals which are infected by one infectious individual,
is 5 (when there are no immune individuals in the population). Moreover, we deduce that
ains = 0.8. This means that to get the disease under control, i.e. to guarantee that it will
disappear, we must vaccinate at least 80% of the susceptible individuals. But we want
guarantee not only the extinction, but also that it happens in a given period of time.

To this aim, from now on, we consider that z = 1. Intuitively, this could mean that
new outbreaks, after vaccination, starts with only one infectious individual. Therefore, in
this case, to determine both vaccination policies, we obtain the empirical approximation
to the distribution v,(+), for 0.8 < a < 1, using the Monte-Carlo method. To this end,
for each « in a grid of step 0.01, 10 000 processes have been simulated and their duration
have been obtained. As an example, in left graphic of Figure 8.5 we show the histogram
of simulated times to extinction for a = 0.89.

As an illustration of both vaccination policies we take 7 = 30, which is actually twice
the mean incubation period. In right graphic of Figure 8.5, the behaviour of the mean time
to extinction, jiq,1, depending on « is shown. Then, we derive that the optimal vaccination
policy based on the mean of the time to extinction is (30, 1) = 0.89. From the simulated
extinction times for a = 0.89 we estimate vy g9(30) by 0.682. This means that if 89% of
the population is immunized, then the probability that the disease disappears in less
than 30 days is 0.682. Comparing that to the optimal vaccination policy based on the
quantiles, what we are telling is that «,(0.682,30,1) = 0.89. We notice that p = 0.682
is greater than 0.5, because of the skewness of the distribution of the time to extinction
(see left graphic of Figure 8.5). Therefore, vaccinating 89% of susceptible individuals, it is
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Figure 6.3: Left: Histogram of simulated extinction times for e = 0.89. Right: Behaviour
of fte,1 depending on a.

guaranteed that at least 68.2% of new outbreaks take no more than 30 days to disappear.
Finally, we notice that this probability is not very high. The larger that probability is, the
larger will be the optimal vaccination coverage based on the quantiles. Indeed, in Figure
6.4, the behaviour of ¢, a value such that v,(t§e) = 0.9, depending on « is shown. t§,
is a such value which allows us to establish that 90% of outbreaks, when the proportion
of immune individuals in the population is «, will last less than a time ¢{,. From Figure
6.4, we derive that the optimal vaccination policy based on the quantiles of the time to
extinction when p = 0.9 is «,(0.9,30,1) = 0.97, greater than 0.89. Therefore, if we want
to guarantee with probability 0.9 that the disease disappears before 30 days, then we have
to vaccinate 97% of the susceptible population.

From the previous study, we suggest that if the infectious disease is not extremely
detrimental for the population and we want to control it in a reasonable time, then
the policies based on the mean could be adequate, guaranteeing with probability higher
than 0.5, the disease becomes extinct in the desired period of time and therefore it is
under control. On the other hand, when the infectious disease is highly detrimental,
we would like to eliminate it in the predefined time with high probability. In this case,
vaccination policies based on the quantiles are preferable, although this will imply an
optimal vaccination rate greater than that based on the mean.

Discussion

In the review paper (see Slavtchova—Bojkova et al. [130]) we have surveyed two methods
for defining an optimal vaccination rate of a population, where a detrimental disease
starts to spread. We have tackled this problem using continuous-time branching models,
in terms of which then, we have supposed that the age and reproduction of an individual
are not necessarily independent. The latter in terms of epidemic takes into account that
the number of contacts of an infected individual can depend on the incubation period
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of the infection. The novelty of our approach is in the use of models allowing us to
work in continuous time, as it is in fact in most real world situations. The methods
are rather different from the well-established discrete settings, widely used for modelling
the early stages of epidemic spread. Concretely, we have used the Bellman—-Harris and
Sevast’yanov branching processes. These are particular cases of the general branching
process which is the model that best fit an epidemic process as it was proved by Ball
and Donnelly [18]. Nevertheless, this process is more complicated than both models we
have considered, involving more unknown parameters, and our processes are appropriate
enough at least to model infectious diseases with incubation period and negligible short
contact period. In any case, generalizations of our results in the framework of the general
branching processes seem to be an interesting direction for further investigations.

The results from this chapter are published by Gonzalez, Martinez and Slavtchova—
Bojkova in [49], [47] and [130].
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Chapter 7

Bayesian estimation of the offspring
mean

7.1 Biological background and motivation

The fundamental epidemiological quantity determining whether an infectious disease will
persist in a host population is the basic reproduction number, Ry (see Anderson, May
[5] and Heesterbeek, Dietz [55]). This is defined as the average number of secondary
infections caused in a susceptible population by a typical infected. Ry is a key factor in
determining how fast an infection will spread in a population. If Ry > 1, the infectious
agent has the potential to persist indefinitely, whilst if Ry < 1, the incidence of infection
will decay to zero. The reason is clear: if a primary infection is unable to generate at
least one replacement secondary infection, the numbers of infected in the population will
inevitably decline through time.

This work presents a Bayesian approach of estimating Ry for infectious diseases like
mumps, measles and possibly others, that follows so-called SIR (susceptible — infective
— removed) and SEIR (susceptible — exposed — infective — removed) scheme in epi-
demiological context, from the case data comprising of the number of infected on a weekly
base. Our methods are stochastic and rely on the theory of branching processes. The
last have been proven to suit well for the purpose of infectious disease surveillance, since
they require data only on outbreak sizes. However, we are well aware of the fact that
the methods rely on an approximation to the epidemic process. We show that branching
process models, applied to surveillance of mass vaccination programmes in conditions of
elimination, might be of practical use for public health authorities.

Under the assumption that each infective infects a random number of individuals in
accordance with some probability distribution and that this distribution does not change
over time and is the same for all individuals, it is reasonable to model the number of
infected by a branching process. We will use the simplest class of branching processes —
Bienaymé—Galton—Watson processes. In fact, the assumption that the distribution of the
number of infected individuals by one infectious does not change over time, is not always
realistic, because increasing the number of infectious individuals reduces the number of
susceptible to the disease. However, in populations with large number of susceptible — over
100, this assumption is not away from reality (see Farrington, Kanaan, Gay [41]). Since
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these are discrete time processes, we count the number of infected by each infectious not
in real time, but at the end of its infectious period (the period during which one infective
could transmit the disease to others susceptible). Despite its idealization, such models are
widely used in epidemiology, for example see Becker [26], Heyde [57], Farrington, Grant
[40], Yanev, Tsokos [141], Farrington, et al. [41]. More complex branching process also
have been applied for modeling of infectious diseases, see Marschner [85] Ball, Donnelly
[18] Becker, Britton [27] Gonzdlez, Martinez, Slavtchova-Bojkova [48, 49] and Jacob [65].

Usually we do not have complete information about the spread of the disease — do not
know the number of infected by each infectious individual. Models of branching processes
and application of Bayesian methods allows us to estimate the basic reproduction number
Ry using data on reported cases, collected by institutions for control of public health. A
similar approach was proposed by Farrington, et al. [41].

We will apply the inference to real data on the number of reported cases of mumps
in Bulgaria during the period 2005-2008 provided by the National Center of Infectious
and Parasitic Diseases. It will be assumed that the offspring distribution of the branching
process belongs to the family of generalized power series distributions, which is quite
a broad class of discrete distributions, including binomial, Poisson and geometric ones.
It turned out that for this wide class of distributions, we are able to obtain exactly the
distribution of the total progeny of the BGWBP, which we need for estimation of offspring
mean A\. We find both point and interval estimates of A, applying a Bayesian approach by
simulating the posterior distribution using Metropolis-Hastings algorithm. The algorithm
is implemented in the language and environment for statistical computing R, version 2.11.1
(see R development Core Team [112]).

Section 7.2 introduces the models of BGWBP and the total progeny, as well, in the
context of the spread of infectious diseases. In Section 7.3 the Bayesian estimation ap-
proach is considered. Section 7.5 shows how these models are applied to the data on
reported cases of mumps in Bulgaria.

7.2 Bienaymé—Galton—Watson BP

Branching processes model the dynamics of populations of individuals, generating a ran-
dom number of individuals of the same or different type. In general, the individuals might
be of different nature — elementary particles, cells, plants, animals, people and many oth-
ers. A more detailed exposition of the theory of branching processes can be found, for
example in Jagers [67] or Slavtchova—Bojkova and Yanev [131]. In this section we will
consider branching processes as a model of the spread of an infectious disease in a human
population.

Bienaymé—Galton—Watson process — definition

We assume that each infectious individual infects a random number of susceptible indi-
viduals distributed as a random variable X. Let us start with s infected individuals. All
infected individuals due to a contact with them are called first generation, and let us
denote their number by Z;. Infected individuals in contact with the first generation form
the second generation, with Z5 individuals, etc. This process can be depicted as a tree (a
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set of trees).

Let X;(n) are independent and identically distributed random variables (i.i.d. r.v.)
with the same distribution as X. The distribution of X is called offspring distribution,
the mean of X is denoted by A = EX. Formally, we define {Z,,,n =0, 1,2,...} as follows:

Zy = Xi(H)+...+ X4 (1)

Zn = Xin—1)+... 4 Xz, _,(n—1)= ZXi(n—l),
i=1

where X;(n — 1) is the number of infected by i-th individual of (n — 1)-th generation.
The sequence of r.v. {Z,,n=0,1,2,...} is called Bienaymé-Galton—Watson process.

The event {Z, = 0, forsome n > 1| Zy = 1} is called extinction. Denote the
probability of extinction ¢ = P{Z,, =0, for some n > 1| Z, = 1}. From the theory of
branching processes it is known that for A <1, ¢ =1, and for A > 1, ¢ < 1.

If the process starts with s individuals, the probability of extinction is {Z, = 0,n >
1] Zy=s}=¢"

Depending on whether the offspring mean A is less than, equal to or greater than 1,
process is called subcritical, critical and supercritical, respectively.

We'll assume that X has a generalized power series distribution, i.e.

a;ﬁk
A(0)’
where a, > 0, A(9) = >, ax0*, 6 > 0, K C {0,1,2,...}. The parameter 6 is called canon-

ical parameter. Distributions of this type are the binomial, Poisson, negative binomial
(in particular — the geometric). The mean of X is

P(X =k) = kek

A" (0)
AN=FX = .
A(9)
In the case of Poisson distribution we have:
—Gek
P(X =k) = ekl . k=0,1,2,...
1 0
U =77, A(0) = €, A= FEX =0,

And for the Geometric case:

P(X=k)=0"(1-0), k=0,1,2,...
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7.3 Total progeny in a BGWBP

As we noticed, one of the reasons to use branching processes as models of infectious disease
spread is the obvious fact, that the offspring mean A is identified as a basic reproduction
number Ry in epidemiology. Our task is to estimate A on the basis of data on the number
of infected individuals. Most often we do not have data on the number of infected ones by
each infectious, but of the total number of infected individuals for a given period of time.
Therefore, our estimation of A will be based on the total number of infected individuals
by the end of the outbreak, called a total progeny in a branching processes’ context.

Let us denote by Y the total progeny of BGWBP or the total number of infected
individuals by the end of the outbreak. It is defined as follows

Y = i L.
n=0

Then as a consequence, the distribution of Y has the form
P(Y=r)=2P(Xi+Xo+. .+ X, =r—s), r=s s+1, 5+2...
T

where X, Xo,..., X, are i.i.d.r.v. with the same distribution as X (see Jagers (1975)).
It is obvious that the distribution of Y is given by r-th convolution of X.

In what follows we will show the method of obtaining total progeny distribution given
the offspring one in particular cases of Poisson and geometric offspring distributions. Geo-
metric and Poisson offspring distributions correspond respectively to the limiting branch-
ing process for a general stochastic epidemic and a Reed-Frost epidemic model (see Ball

[16].
Poisson offspring
Let the offspring distribution be Poisson:
—A /\k
P(X=Fk) =5 T k=012

Using that the sum of r i.i.d. Poisson r.v. has Poisson distribution with parameter Ar
we directly express:

—\r A k
P(X,+Xo+...+ X, =k) = %
Thus the distribution of the total progeny is:

P(Y=1) = ;P(X1+X2+...+XT:7“—5)

e A (Ar)?

57, r=s,s+1, s+2,...,
r(r—s)!

i.e. Y has a Borel-Tanner distribution (see Haight and Breuer [54]).
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Geometric offspring

Let the offspring distribution be geometric:
P(X =k)=0%1-9), k=0,1,2,...

Using the relation between A and the canonical parameter 6 in terms of generalized
power series distributions, it is easy to see, that we have the following presentation:

)\k

P(X = k) = e

k=0,1,2,...

Now, having in mind that the sum of i.i.d. geometric random variables has a negative
binomial distribution, it follows:

k—1 AP 1
P(X1+"‘+Xr:/€):(r+ )

k T+ N1+ M)

In this case, the distribution of the total progeny will be as follows:

P(Y:T) = ;P(X1+X2++Xr:r_8)
_ s r+r—s—1 AT 1
o r—s (T+N)r=—=(1+A)r

s{2r—s—1 AT L1542
= - _— r=s,s+1, s+2 ...,
r\ r—s J(1+N¥’ ’

i.e. Y has a distribution of Haight (see Haight [53]).

7.4 Bayesian estimation of )\

In this section we will consider the basic ideas of Bayesian approach for parameter estima-
tion, in particular, applied to the offspring mean of BGWBP. We will use the Metropolis—
Hastings algorithm, with which some computational difficulties in Bayesian estimation
could be avoided. More details on this topic can be found in Robert [113], Robert and
Casella [114], [115] and Hoff [58].

Actually, we will estimate A having data from a single outbreak, i.e. knowing that
the total number of infected is y, and the initial number of infected is s. In this case the
likelihood function for A\ has the form:

L(y[A) = P(Y =y;s,A).

Following a Bayesian approach, we assume that the parameter A is a random variable
with prior distribution 7(A). Then the posterior density is given by the Bayes’ formula:
L(y[M)m(A)

L{y|N)m(N)d\

F(Aly) = =
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If we use squared error loss function, the Bayesian estimate of A, will be the mean of
the posterior distribution:

X = E(\y).

Concerning the interval estimation of A, let us recall that the interval [a,b] is called
100(1 — )% highest posterior density interval (HPDI) for parameter ), if the following
conditions are satisfied:

(al) P(A € [a,b] | y) =1 — a, for a fixed « € (0,1);
(a2) Tt Ay € [o,8] and A, & [a,8], then f(uly) > f(hly).

In general, the explicit calculation of the posterior density f(A]y) is difficult. To avoid
such difficulties, we use Metropolis—Hastings sampling based on random walk to evaluate
the posterior distribution. This algorithm allows us to simulate any random variable, if
we know its density up to a normalizing constant, in our case: f(\|y) = cL(y|A\)7(\) and
is not necessary to calculate ¢ = 1/ [~ L(y|A\)m(A)dA.

After generating Aj, Ao, ..., Ay ~ f(Ay) we will use their empirical distribution as an
approximation of f(A|y). So the Bayesian estimate of A will be:

A+ A+ + An
N .

As prior distributions for A will be considered uniform UJ0, 2] and log-normal LN (u =
0,0 = 1). Both have median 1, i.e., are neutral with respect to whether A <1 or A > 1.

Considering two cases for offspring distribution — Poisson and geometric, the likeli-
hood function L(y|\) will be the Borel-Tanner probability mass function and the Haight
probability mass function, respectively.

/A\:

7.5 Mumps in Bulgaria

In this section we will illustrate the described methods for estimation of offspring mean
of BGWBP, using data on the number of reported cases of mumps in Bulgaria during the
period 2005-2008.

Mumps

Mumps is a viral infectious disease of humans and spreads from person to person through
the air. The period between mumps transmission and the beginning of mumps symptoms
is called the incubation period for mumps. This period is between 14 and 24 days (median
18 days). The infectious period starts about 2 days before the onset of symptoms and
usually, an individual with mumps symptoms is immediately isolated from the population.
In view of the length of the incubation period, we consider that an outbreak in a region
is a sequence of weeks with no more than three consecutive weeks without cases. That
is, when we observe more than three weeks without cases we consider that the outbreak
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has become extinct, with the next outbreak starting in the first subsequent week in which
there is at least one new case.

In 2007 in Bulgaria there was an outbreak of mumps. Over 60% of those infected at
the beginning of the year are aged between 15 and 19 years, about 20% between 20 and
24 years. It is assumed that the outbreak was the result of poor immunization policy in
the 80s. One third of patients aged between 15 and 19 years have never been vaccinated,
about half was given only one dose of vaccine, which is found not effective. Over 90% of
20-24-years-old have not been vaccinated against mumps (see Kojouharova, Kurchatova,
Marinova, Georgieva [77]).

Data

The data, provided by the National Center of Infectious and Parasitic Diseases, consists
of the number of reported cases of mumps in Bulgaria during the period 2005 to 2008, on
weekly base for each of 28 regions of the country. We will treat 28 regions separately.

Estimates of the reproduction number

We consider each outbreak as a realization of a branching process. The data that is
observed about the process are the total number y of infected and the initial s number
of infectious. We will estimate the reproduction number for the outbreaks in Sofia—city
and in the regions of Kyustendil and Lovech. For the offspring distribution we consider
2 distributions — Poisson and geometric and for each of them we use 2 prior distributions
— uniform and log-normal, so we get a total of 4 estimates for A\. For each of the options
we generate 5000 random numbers with the corresponding posterior distribution and
ignore the first 500. For calculating highest posterior density interval we use the function
HPDinterval from coda package (see Plummer, Best, Cowles, Vines [111]).

Sofia-city

In Sofia-city during the period from the 40th week of 2006 to the 52nd week of 2008 a
total number of 2124 cases of mumps was reported and the initial number of infectious
individuals was 2, i.e. y = 2124;s = 2. Point estimates for A and HPD intervals (95%
HPDI = 95 percent highest posterior density interval) are given in Table 7.1.

~

Offspring distribution | Prior distribution A 95% HPDI
1 Poisson Uniform 1.0011 | [0.9577,1.0436]
2 Poisson Log-normal 0.9981 | [0.9540, 1.0412]
3 Geometric Uniform 1.0002 | [0.9459, 1.0646]
4 Geometric Log-normal 0.9996 | [0.9383, 1.0598]

Table 7.1: Point and interval estimates of A for Sofia-city.
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One can see that the estimates A and HPD intervals are quite close for different
assumptions about offspring and prior distributions.

The region of Kyustendil

In the region of Kyustendil during the period from the 4th week of 2007 to the 33rd week
of 2008, there were a total number of 405 cases of mumps. The initial number of infectives
was 2 (y = 405; s = 2). Estimates for A and HPD intervals are given in Table 7.2.

~

Offspring distribution | Prior distribution A 95% HPDI
1 Poisson Uniform 0.9990 | [0.9055,1.1019]
2 Poisson Log-normal 0.9942 | [0.9030, 1.1047]
3 Geometric Uniform 0.9972 | [0.8558,1.1257]
4 Geometric Log-normal 0.9997 | [0.8659, 1.1330]

Table 7.2: Point and interval estimates of A for the region of Kyustendil.

Again we note that estimates \ are quite close for different assumptions about offspring
and prior distributions. HPD intervals for the geometric offspring distribution are wider
than in the case of Poisson offspring distribution, i.e. posterior distribution of A is more
dispersed in the case of geometric offspring distribution.

The region of Lovech

In the region of Lovech during the period from 24th to 34th week of 2008 there was an
outbreak with 29 infected, and 5 initial cases (y = 29;s = 5). Estimates for A and HPD
intervals are given in Table 7.3.

~

Offspring distribution | Prior distribution A 95% HPDI
1 Poisson Uniform 0.8606 | [0.5338,1.2171]
2 Poisson Log-normal 0.8349 | [0.5224,1.1422]
3 Geometric Uniform 0.9127 | [0.5018, 1.4115]
4 Geometric Log-normal 0.8735 | [0.4752, 1.3838]

Table 7.3: Point and interval estimates of A for the region of Lovech.

Here we noticed that in the case of geometric offspring distribution and uniform prior
distribution (option 3) the estimate A is greater than the others. Again, HPD intervals
for the geometric offspring distribution are wider than for the Poisson distribution.
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Discussion

With different assumptions about the offspring distribution and prior distribution we get
similar estimates of the reproduction number for Sofia—city and the region of Kyustendil
— approximately 1. For the region of Lovech estimates slightly vary from distributions —
between 0.83 and 0.91.

Estimates of Ry in Sofia—city and the region of Kyustendil show that mumps is not
eliminated in these areas, which can be attributed to poor vaccination for certain age
groups in these regions. Estimates of Ry in the region of Lovech are consistent with the
small number of cases in the region. We are in debt to some accuracy aspects of the
modeling approach and their comment is left depending on the case study.

In conclusion, we could summarize that Bayesian estimation using Metropolis-Hastings
sampling works very efficiently in combination with BGWBP and might be of direct use
to decision makers in public health sector.

The results from this chapter are published by Angelov and Slavtchova—Bojkova in
6].
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Chapter 8

Crump-Mode-Jagers BP

8.1 Introduction

Branching processes have been applied widely to model epidemic spread (see for example
the monographs by Andersson and Britton [4], Daley and Gani [31] and Mode and Slee-
man [98] and the review by Pakes [108]. The process describing the number of infectious
individuals in an epidemic model may be well approximated by a branching process if the
population is homogeneously mixing and the number of infectious individuals is small in
relation to the total size of the susceptible population, since under these circumstances the
probability that an infectious contact is with a previously infected individual is negligible
(see, for example, Isham [62]). Such an approximation dates back to the pioneering works
of Bartlett [24] and Kendall [73] and can be made mathematically precise by showing
convergence of the epidemic process to a limiting branching process as the number of
susceptibles tends to infinity (see Ball [16], Ball and Donnelly [18] and Metz [87]). The
approximation may also be extended to epidemics in populations that are not homoge-
neously mixing, for example those containing small mixing units such as households and
workplaces (see Pellis et al. [110]).

Before proceeding we give outline descriptions of some common branching process
models (see e.g. Jagers [67]) for further details), which describe the evolution of a single—
type population. In all of these models individuals have independent and identically
distributed reproduction processes. In a Bienaymé-Galton—Watson branching process,
each individual lives for one unit of time and then has a random number of children,
distributed according to a random variable, ¢ say. In a Bellman—Harris branching process
(BHBP), each individual lives until a random age, distributed according to a random
variable I say, and then has a random number of children, distributed according to (,
where I and ( are independent. The Sevastyanov branching process (SBP) is defined
similarly, except I and ¢ may be dependent, so the number of children an individual
has is correlated with that individual’s lifetime. Finally, in a general branching process,
also called a Crump-Mode-Jagers (CMJ) branching process, each individual lives until
a random age, distributed according to I, and reproduces at ages according to a point
process £. More precisely, if an individual, ¢ say having reproduction variables (1;, &;), is
born at time b; and 0 < 731 < 735 < ... < [; denote the points of &;, then individual ¢ has
one child at each of times b; + 731, b; + T2, . . ..

95
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This chapter is primarily concerned with models for epidemics of diseases, such as
measles, mumps and avian influenza, which follow the so-called SIR (Susceptible — In-
fective — Removed) scheme in a closed, homogeneously mixing population or some of
its extensions. A key epidemiological parameter for such an epidemic model is the basic
reproduction number Ry (see Heesterbeek and Dietz [55]), which in the present setting is
given by the mean of the offspring distribution of the approximating branching process.
In particular a major outbreak (i.e. one whose size is of the same order as the popula-
tion size) occurs with non-zero probability if and only if Ry > 1. Suppose that Ry > 1
and a fraction c¢ of the population is vaccinated with a perfect vaccine in advance of an
epidemic. Then Ry is reduced to (1 — ¢) Ry, since a proportion ¢ of infectious contacts is
with vaccinated individuals. It follows that a major outbreak is almost surely prevented
if and only if ¢ > 1 — Ry'. This well known result, which gives the critical vaccination
coverage to prevent a major outbreak and goes back at least to 1964 (e.g. Smith [133]),
is widely used to inform public health authorities.

Observe that, if the population is large, both the total size and the duration of an
outbreak may still be appreciable when Ry is reduced to its critical value of one. Indeed,
in the limit as the population size tends to infinity, both of these quantities have infinite
expectation under any plausible modelling assumptions. Thus Gonzalez et al. [48], [49]
studied properties of the time to extinction of an epidemic given that a fraction ¢ of
individuals is vaccinated, when the number of infectious individuals in the population
is modelled by a continuous-time BHBP and a (more general) continuous-time SBP,
respectively. In an earlier work, De Serres et al. [32] used a discrete-time Bienaymé-
Galton—Watson branching process to study the spread of an infectious disease under
various control measures, specifically to estimate the effective (i.e. post—control) value of
Ry from observations on size and durations of small outbreaks.

The main objective in Gonzdlez et al. [48], [49] was to determine the optimal pro-
portion of susceptible individuals which has to be vaccinated so that the mean (or given
quantile of the) extinction time of the disease is less than some specified value. To that
end, stochastic monotonicity and continuity properties of the distribution function and
mean of the time that the infection survives, depending on the vaccination coverage rate
were first determined.

As a consequence of the above result, many analyses of vaccination strategies in the
epidemic modelling literature have focussed on reducing Ry to its critical value of one.
However, if the population is large, both the total size and the duration of an outbreak
may still be appreciable. Indeed, in the limit as the population size tends to infinity, both
of these quantities have infinite expectation under any plausible modelling assumptions.
In practice, there may be a cost associated with an individual contracting the disease being
modelled, in which case it is of interest to determine vaccination strategies which reduce
the expected value of the total cost of an outbreak to an acceptable level. Alternatively,
it may be desired to control the duration of an outbreak, for example if the presence
of an outbreak means that restrictions are placed on the population within which it is
spreading. The above remarks pertain to the common situation of controlling an epidemic
that is in its increasing phase. A different situation arises with diseases, such as measles
and mumps, which are controlled by mass vaccination but small outbreaks still occur
among unvaccinated individuals. Supplementary vaccination may be used to reduce the
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size or duration of such outbreaks (as in the illustrative example of mumps in Bulgaria.
A similar phenomenon occurs with pathogens, such as monkeypox virus, which primarily
affect animals but spill over into human populations giving stuttering chains of human-
to-human transmission (Lloyd-Smith et al. [83]. In at least some of the above scenarios
it may be the case that a specific vaccination level cannot be achieved immediately but
rather the fraction of the population that is vaccinated will be time—-dependent. The aim
of this chapter is to develop a methodology based on branching processes for addressing
the above issues in a unified fashion.

Gonzélez et al. [48], [49] studied properties of the time to extinction of an epidemic
given that a fraction ¢ of individuals is vaccinated, when the number of infectious indi-
viduals in the population is modelled by a continuous-time BHBP and a (more general)
continuous-time SBP, respectively. In an earlier work, De Serres et al. [32] discrete-
time Bienaymé-Galton-Watson branching process to study the spread of an infectious
disease under various control measures, specifically to estimate the effective (i.e. post—
control) value of Ry from observations on size and durations of small outbreaks. The
main objective in Gonzdlez et al. [48], [49] was to determine the optimal proportion of
susceptible individuals which has to be vaccinated so that the mean (or given quantile
of the) extinction time of the disease is less than some specified value. To that end,
stochastic monotonicity and continuity properties of the distribution function and mean
of the time that the infection survives, depending on the vaccination coverage rate were
first determined.

In the present chapter we extend the results in Gonzdlez et al. [48], [49] in several
directions that are both practically and theoretically important. First we assume that the
spread of infection is modelled as a CMJ branching process. The CMJ branching process
is appropriate for modelling the early stages of a very wide variety of SIR epidemics,
and includes both BHBP and SBP as special cases. Secondly, we consider more general
vaccination processes. In Gonzilez et al. [48], [49] it was assumed that the fraction
of the population that is vaccinated remained constant with time. We now allow this
fraction to be an arbitrary but specified function of time, thus capturing for example the
setting in which people are vaccinated as the disease spreads. Thirdly, we consider the
control of more general functions of the epidemic process. Gonzélez et al. [48], [49] focused
on controlling the duration of the epidemic. The methods developed in this chapter are
applicable to a wide class of functions of the epidemic process. In addition to the duration
of an outbreak, this class includes, for example, the total number of people infected and
the maximum number of infected people present during the epidemic.

The methodology developed here is very different from that of Gonzdlez et al. [48],
[49] The key stochastic monotonicity and continuity results in these previous papers were
obtained by analysis of integral equations governing properties of the time to extinction of
the branching process. In the present chapter, a main tool is coupling and, in particular,
a pruning method of constructing a realisation of a vaccinated process from that of the
corresponding unvaccinated process. As indicated in Section 8.5, this methodology is very
powerful and applicable to a broad range of processes.

In the next Section 8.2, we describe a very general model for an SIR epidemic in
a closed, homogeneously mixing community and explain why its early spread may be
approximated by a CMJ branching process. We introduce a very general vaccination pro-
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cess and give the basic coupling construction for obtaining a realisation of the vaccinated
epidemic process from that of the unvaccinated process. The theoretical results of the
chapter are given in Section 8.3.

8.2 Model and coupling construction

Consider first the following model for the spread of an epidemic in a closed, homoge-
neously mixing population. Initially there are a infectives and N susceptibles. Infectious
individuals have independent and identically distributed life histories H = (I,§), where
I is the time elapsing between an individual’s infection and his/her eventual removal or
death and & is a point process of times, relative to an individual’s infection, at which
infectious contacts are made. Each contact is with an individual chosen independently
and uniformly from the population. If a contact is with an individual who is susceptible
then that individual becomes infected and itself makes contacts according to its life his-
tory. If a contact is with an individual who is not susceptible then nothing happens. The
epidemic ceases as soon as there is no infective present in the population. Note that, for
simplicity, we assume that every infectious contact with a susceptible necessarily leads to
that susceptible becoming infected. The model is easily extended to the situation when
each contact with a susceptible is successful (i.e. leads to infection) independently with
probability p by letting H = (1,&’), where £ is a suitable thinning of &.

The above model is essentially that introduced by Ball and Donnelly [18] who noted
that it included as special cases a range of specific models that had hitherto received
considerable attention in the literature. For example, SIR and SEIR (Susceptible —
Exposed (i.e. latent) — Infective — Removed) models come under the above framework.
The only difference between the above model and that in Ball and Donnelly [18] is that,
in the latter, each contact is with an individual chosen independently and uniformly from
the N initial susceptibles (rather than from the entire population of N +a individuals). In
the same paper, a coupling argument (which also holds for the present model) is used to
prove strong convergence, as the number of initial susceptibles N — oo (with the number
of initial infectives a held fixed), of the process of infectives in the epidemic model to a
CMJ branching process (see Jagers [67]) in which a typical individual lives until age I and
reproduces at ages according to . Thus for large N, the epidemic may be approximated
by the CMJ branching process. The approximation assumes that every contact is with
a susceptible individual. The proof in Ball and Donnelly [18] maight be extended to
epidemics other than SIR, e.g. SIS (Susceptible — Infective — Susceptible) and SIRS
(Susceptible — Infective — Removed — Susceptible), by suitably generalizing the life
history H to allow for removed individuals to become susceptible again (see e.g. Ball [17]
in the context of epidemics among a population partitioned into households). Indeed,
for a very broad class of homogeneously mixing epidemic models, the early stages of an
epidemic in a large population with few initial infectives may be approximated by a CMJ
branching process.

This research is concerned with the use of vaccination schemes to control an epidemic,
for example, in terms of its duration or of the total number of individuals infected. We are
thus interested in the short-term behaviour of the epidemic, so we model the epidemic as
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a CMJ branching process, Z = {Z(t) : t > 0}, where Z(t) denotes the number of infected
individuals at time t. Thus Z(0), which we assume to be fixed, represents the number of
infected individuals at the beginning of the outbreak.

We model the vaccination process by a function « : [0,00) — [0, 1], such that «(t) is
the proportion of the population that are immune at time ¢ (¢ > 0). Thus the probability
that a contact at time ¢ is with a susceptible (i.e. non-immune) individual is 1 — a(t). If
the vaccine is perfect, i.e. it confers immunity immediately with probability one, then a(t)
is given by the proportion of the population that has been vaccinated by time t. If the
vaccine is imperfect then that is implicitly included in the function . For example, if the
vaccine is all-or-nothing (i.e. it renders the vaccinee completely immune with probability
e, otherwise it has no effect), then «(t) = ea(t), where &(t) is the proportion of the
population that has been vaccinated by time ¢. Note that if the immunity conferred by
vaccination does not wane then « is nondecreasing in t. We denote by Z, = {Z,(t) : t > 0}
the vaccination version of Z, in which each birth in Z is aborted independently, with
probability «(t) if the birth time is at time ¢.

Let A be the space of all functions « : [0,00) — [0,1]. We construct coupled re-
alizations of Z and Z, (o € A) on a common probability space (2, F,P) as follows.
Let (4,71, P1) be a probability space on which are defined independent life histories
Hi, Ho, ..., each distributed as H, which are pieced together in the obvious fashion to con-
struct a realization of Z. More specifically, the life histories Hi, Ho, ..., H, are assigned
to the a initial infectives and, for ¢ = 1,2, ..., the ith individual born in Z is assigned
the life history H,.;. Note that with this construction Z may be viewed as a tree, which
is augmented with birth and death times of branches. Let (€, F5, P») be a probability

space on which is defined a sequence Uy, Us,, ... of independent random variables, each
uniformly distributed on (0,1). Let (Q,F, P) = (1 X Qq, Fy X Fa, P, X P2). Then, for
a € A, a realization of Z, is constructed on (2, F, P) as follows. Fori=1,2,..., let b;

denote the time of the ith birth in Z, if such a birth occurs. Then this birth is deleted in
Z,, if and only if U; < «a(b;). If a birth is deleted in Z,, then none of the descendants of
that individual in Z occurs in Z,. Thus, if the jth birth in Z is such a descendant then
Uj is redundant in the construction of Z,. With the tree setting in mind, the process of
deleting an individual and all of its descendants is called pruning. For a previous use of
pruning in a branching process framework see, for example, Aldous and Pitman [3].

Finally, we give some notation concerned with functions in A, which will be used
throughout the chapter. For a,a’ € A, write a < o if a(t) < o/(t) for all t € [0, 00).
Also, for any ¢ € [0,1] and any ¢y > 0, define the function o’ € A by

0 ift<t
ab(ty=4"
c ift > tg.

Thus, for example, o denotes the constant function equal to ¢ and o denotes the constant
function equal to 0.
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8.3 Monotonicity and continuity properties

Functions f(Z,) monotone to pruning

Let f(Z) be any non-negative function of Z taking values in the extended real line RU{oo}
and, for a € A, let u/ = E[f(Z,)]. Again with the tree setting in mind, we say that f is
monotonically decreasing with pruning, and write f € P, if f(Z') < f(Z) almost surely
whenever Z% is obtained from Z by pruning. For an event, E say, let 15 denote the
indicator function of E. Examples of functions that are monotonically decreasing with
pruning include:

(i) the extinction time 7" = inf{t > 0: Z(t) = 0} and 1yps4, where ¢ € [0, 00) is fixed;

(ii) the maximum population size (number of infected individuals in the epidemic con-
text) over all time, M = sup;» Z(t) and lprs,), where z € [0, 00) is fixed;

(iii) N(t), the total number of births (new infections in the epidemic context) in (0, ],
where ¢ € [0, 00) is fixed, and the total number of births over all time (outbreak total
size in the epidemic context) N(oo) = limy_, N(), together with the corresponding
indicator functions 1{y)>z} and l{n(eo)>z}, Where z € [0, 00) is fixed.

Throughout this chapter, we assume that Z is non-explosive, i.e. that P(N(t) < 00) =
1 for any t € (0,00). Conditions which guarantee this property may be found in Jagers
[67], Section 6.2.

Monotonicity and continuity of mean of f(Z,)

In what follows, we derive monotonicity and continuity properties of E[f(Z,)], when
viewed as a function of the vaccination process «, for functions f that are monotonically
decreasing with pruning.

Theorem H.1 If a,o’ € A satisfy « < o and f € P, then ul > ,u];/.

Proof

The result follows immediately from the above construction of Z and Z,, a € A, on
(Q, F, P), since f is monotonically decreasing with pruning and Z,, may be obtained from
Z,, by successive prunings. &

We now give conditions under which ;i is continuous in a.. For o, o’ € A, let |[a—d/|| =
SUDse0,00) [0(t) — &/(t)] and, for ¢ > 0, let [|a — o'[|; = sup,e(o 4 |a(s) — a'(s)[. For t >0,
write f € Py if f € P and f(Z) depends on Z only through {Z(s) : 0 < s < t}. Let m
be the offspring mean for Z. For ¢ € [0, 1], let m, denote the offspring mean of Z,o, so
m. = (1 — ¢)m. Further, let ¢;yy = max(0,1 —m™!) and note that m,_, < 1. For {5 > 0
and c € [0,1], let

A(e,tg) ={a € A:a(t) > cforall t > ty}.



8.3. Monotonicity and continuity properties 101

Theorem H.2 (a) Fix t >0, let f € Py and suppose that there exists a non-negative
real-valued function f, with E[f(Z)] < oo, such that, for P-almost all w € €,

(H.1) F(Za(w)) < f(Z(w)) for all a € A.

Then, for each e > 0, there exists n = n(e) > 0 such that for all a, o/ € A satisfying
lor = a/lls <,

(H.2) ud, — pl| <e.

(b) Suppose that m < oo. Let f € P and ty > 0, and suppose that there erists a
non-negative real-valued function f(Z « ), with E[f(Z « )] < oo, such that, for
Cinf
P-almost all w € (1,
(H.3) F(Zalw)) < f(Z 1o (W) for all a € A(cint, to)-

Cinf

to
Cinf

Then, for each € > 0, there exists n = n(e) > 0 such that (H.2) holds for all
a, ' € A(cig, to) satisfying ||a — /|| < n.

Proof
(a) Forn=1,2,... and o, € A, let

B (o, ) = m{w € Q: Uj(w) ¢ (min(a(b;), ' (b;)), max(a(b;), o' (b;))]},

and let By(a, o) = Q. Now P(N(f) < oco) = 1, since Z is non-explosive . Observe
that if w € Byy)(a, ) then, by construction, Z,(s,w) = Zy(s,w) for all s € [0,],
whence f(Z,(w)) = f(Zy(w)) since f € P;. Now, for any o € A,

,U/é =E |:f(ZOz>1BN(t)(a,a’):| +E [f(Za)lev(t)(a,o/)} )

where va(t)(&, o) =Q\ By (o, a’). Thus, for any a, o’ € A,

pl—ul =E [f (Za)lsa(t)m,a/)] —-EB [f (Za/)le)(a,a/)} ;

whence, since f is non-negative,

ul — | <E [f(Z)lBgv(t)(a,a')} :
Now X R
B (2155 wan| = B [F(2)E [Lng, @enlZ]]

Further, (i) Z determines N(t) and (ii) (Uy,Us,...) is independent of Z, so, P-
almost surely,

N(t)

B [l ocl?] = 1= T[]0~ () ~ @)

=1
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<1—(1-6)N®,
where 0 = ||a — o/||;. Hence, P-almost surely,
B Loy e 2] < B Lo, @goplZ]
whence, for a, o’ € A,

il = 1| SB[ F(2)1ng )]

(H.4) = [i(0) say.
Now P(N(t) < o0) =1, so P-almost surely,
f(Z)lBN(t)(aO’ ) —0 asd \l, 0

(in fact f(Z)ch yagad) =0 for all 6 € [0,0%), where 6* = min(Uy, Us, ..., Unw)),
so by the dominated convergence theorem fi;(6) — 0 as ¢ | 0. Thus, given € > 0,

there exists n such that fi,(§) < € for all § € (0,n) and the theorem follows using
(H.4).

For a € A(cing, to), the process Z, can be viewed as a vaccinated version of the
process Z al0 with vaccination function & given by

A {a(t) if ¢ < to,

2O > g,

Note that Z olo has offspring mean m until time ¢y, and m,, , < 1 after time t,.

mf

Thus, since Z is non-explosive (so P(Z(ty) < oo) = 1), the total number of births
over all time in Z_« (i.e. N i (00)) is finite almost surely. Also, [|[@ — &'| <
Cinf Cinf

(1 — cint) Y| — @'|]. The proof then proceeds as in part (a), but with Z and N(t)
replaced by Z « and N i (00), respectively, and o, o’ replaced by &, &'
Cinf

Qeing

o

Remarks

1 Suppose that m < 1. Then ¢y = 0 and it follows that Z oo = = Z and A(cit, to) = A.

Thus, for any f € P, Theorem H.2(b) 1mphes that, for any € > 0, there exists
n =mn(e) > 0 such that (H.2) holds for all o, € A satlsfymg o — o/H <.

Suppose that m > 1 and f € P. Then the argument used to prove Theorem H.2(b)
breaks down since P(Z(c0) < oo) < 1. Thus with our argument we can prove
continuity in a of pf for f € P, for any t > 0, but not for f € P. However,
this is no restriction from a practical viewpoint since ¢ in Theorem H.2(a), or t,
in Theorem H.2(b), can be made arbitrarily large. For example, in any real life—
setting there will be a maximum time frame over which it is of interest to evaluate
the performance of a vaccination process and ¢ or ¢y, can be chosen accordingly.
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8.3.1 Monotonicity and continuity of d.f. of f(Z,)

Using the previous results we establish in this subsection monotonicity and continuity
properties of the distribution function of f(Z,). For f € P and a € A, let

vl(z) = P(f(Za) < x) =1 = E[lfpza5a), 20,

o

be the distribution function of the random variable f(Z,).

For a € A and t € [0,00], let (1) (s) = E[s¥®] (0 < s < 1) denote the probability
generating function of N, (t). Suppose that P(N,(t) < oo) = 1. Then ¢n,(1—) =1
and gb;,i(t)(u) is well-defined for all w € [uqay,1], where u,; = P(Ny(t) = 0). Extend

the domain of ¢]_Vi(t) by defining ¢;fi(t) (u) = 0 for u € [0,uqay). Define the function
5a,t : [07 1] - [07 1] by

(H.5) dap(e) =1— oy (1 —¢), 0<e<1

Note that d,(¢) > 0 if € > 0 and lim. g da () = 0.

Theorem H.3 (a) Suppose that f € P and o, o’ € A satisfy o < . Then
(H.6) vl(z) <ol (x)  forall0 <z < oco.

(b) Fizt > 0 and suppose that f € P;. Then, for any e > 0,

(IL7) sup [vf () — vl (0)] <
0<zr<oco

for all a, 0’ € A satisfying ||o — o/[|s < da9.4(€).
(c) Suppose that f € P. Then, for any ¢ > 0, (H.7) holds for all a,a’ € A(cin, to)
satisfying o — /|| <6 10 (€).
Cinf7
Proof
(a) Fix z € [0,00) and let f» be the function of Z given by f,(Z) = 14(2)>a}- Then
fr € P and (H.6) follows from Theorem H.1, since v{(x) = 1 — E[f,(Z.)].
(b) For each z € [0, 00),
[0 (@) = vl ()] = |Elfe(Za)] = Elfe(Za)]

and f,(Z4(w)) < 1forall a € A and all w € Q. Fix ¢t > 0 and note that fr € P,
since f € P; . It then follows from (H.4), taking f(Z) = 1, that, for x € [0,00) and
a,a € A,

(H.8) ol (@) = vl (@)] < fulllo = a'|l0),
where, for § € [0, 1],
(6) = P (Byy (g, af)) =1 = E[(1 = 0)NV] =1 = dny(1 - 0).

Recall that N(t) = Nuo(t) and note that P(Nu(t) < oo) = 1 since Z is non-
explosive. Thus gb]_vlo () is well defined for all u € [0,1] and the theorem follows

0
since 1 — én (1 — 5ag i(€) <e.
OZO ’
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(¢) The proof is similar to part (b) but with N,o(¢) replaced by N« (00).

Cinf

¢

Remark H.1 1 Observe that the function 5a8¢’ defined using (H.5), is independent of
both f and x, so the uniform continuity of vl (z), with respect to o, holds uniformly
over all f € P and all xz € [0,00).

2 Similar to Remark 1 after Theorem H.2, Theorem H.3(c) shows that if m <1 (so
P(N(o0) < 0) =1) and f € P then, for any e > 0, (H.7) holds for all o,/ € A
satisfying [l — /|| < dqg,00(€)-

Monotonicity and continuity of quantiles

In applications we wish to control the qua ntiles of f(Z,), so we now derive related
monotonicity and continuity properties. Fix f € P and a € A, and define, for 0 < p < 1,

xg;p = inf{z : Ué(:[‘) > p},

with the convention that 7 , = oo if v](x) < p for all 2 € [0, 00). Thus ] , is the quantile
of order p of the random variable f(Z,). For o € A, let AT(a) ={a’ € A: a < }. For
a sequence {a,} and « in A, we define lim,,_,, a;,, = @ to mean lim,,_,, ||a, — af| = 0.

Theorem H.4 Suppose that f € P and p € (0,1).
(a) If a, 0 € A satisfy a < o, then xi/’p < xfy,p.

(b) Suppose further that f € Py for some t >0 and o € A is such that xévp < o0o. Let
{an} be any sequence in A satisfying lim,,_, o, = . Then lim,,_, vamp = xfw n
each of the following cases:

(1) an € AT () for all n;

(ii) v is continuous and strictly increasing at xfy’p.

Proof

(a) By Theorem H.3(a), {z : v/(z) > p} C {z : v/, () > p}, which implies xi/’p <af .

(b) Choose t > 0 such that f € P;. Let zgyp = limsup xfm,p and zj,s = liminf xén

n—00 n—00
Suppose that (i) holds. Then by part (a), Tep < xévp. Fix ¢ > 0. Then, since
lim,, o0 o, = a and |, — |y < ||y, — |, there exists ng such that ||a, — ||, <
040,4(€) for all n > ng, where d,0,(€) is defined at (H.5) — recall that N(t) = Nyo(t).
Now, a < @y, hence, by Theorem H.3 (a) and (b), v/ (z) —v(z) <e, forallz >0
and for all n > ng. In particular, setting z = xﬁmp and noting that v/ (xémp) >p
since v/ is right-continuous, yields that v{(z] ) > p — ¢ for all n > ng. Hence,
vl (zing) > p—e, since v! is increasing and right-continuous. This holds for all £ > 0,

p*
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solim, o z!f = =af

50 v! (zint) > p, whence i > xfy,p. Thus, Tint = Teup = T, - .

a?p’
as required.

Suppose that (i) holds. First we assume that o, < « for all n. Then, by part (a),
Tint > xf, . Note that v/ (2] ) = p, since v/ is continuous at z/, ,, and v/(x) > p for
all z > xoup, since v/ is str1ct1y increasing at xg;p. Fix x > xfy and let € = v/ (z)—p,
so € > 0. As before, there exists ng such that |, — al; < 5@871&(5) for all n > ng. It

then follows from Theorem H.3 that
vl (z) — vl (x) <e=vl(x) —p forall n > n,.
Thus v (x) > p for all n > ng, whence z/ = < x for all n > ny, Which implies

that zg,, < x. Since this holds for any = > x/, o 1t follows that g, < xf  which

a,p’
combined with xj,s > xf hp yields the required result.

Now, we consider an arbitrary sequence {ca,} that converges to a. For ¢ =1,2,...,
define functions o and a; by «; (s) = min{a(s) + é, 1} and oy (s) = max{a(s) —

%,0} (s > 0). Then hmqﬁooa = limy o a; = a. Further, o, < o < oﬁ for each
q¢=1,2,.... Hence, by part (i) and the above, lim,_, xf+ . = lim, o xf .= xip.
Qq , ).

For any fixed ¢ € N, o, < af for all sufficiently large n, so Theorem H. 4(a) implies

that lim inf,,_, x£ » 2 xf Lettmg q — oo then yields that x;,; > x . A similar

argument using the sequence {a,} shows that zg,, < x!

J,p» Whence hmrHOO xl
as required.

nD

Lop

o

Remark H.2 1 It is straightforward to extend Theorem H.4(b) to a family of vac-
cination processes with a continuous index set, for example {a, : s € T}, where T
is a connected subset of R? for some d € N. Theorem H./(b) implies that, under
appropriate conditions, limg_, ¢ xé p= xé .p- We use this extension when studying
optimal vaccination policies in the next subsection.

2 Invoking Remark 2 after Theorem H.3 shows that if m < 1 then Theorem H.4(b)
holds with Py replaced by P.

Optimal vaccination policies based on mean and quantiles

From the above monotonicity and continuity properties of mean and quantiles, we propose
next how to choose optimal as, i.e. optimal vaccination policies in a sense that is made
clear below, from a subset A* of A. Fix f€eP,b>0and 0 <p <1, and let A{: ={a €
A*: pf < b} and Af ={a e A*: zf , <b}. Notice that if, for example, f is the time

to extmctlon then Af and Af » comprise those vaccination policies in A* for which the
mean and the quantlle of order p, respectively, of the time to extinction is less than or
equal to some bound b. Then it is of interest to search for optimal vaccination policies
which satisfy these properties.
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Then, if they exist, optimal vaccination policies based on the mean are

argmax Ji/,
aEA{

and optimal vaccination policies based on the quantiles are

argmax xf
aEAf

We notice that the sets A{: and A;J;b can be empty. If they are not empty, optimal

vaccination policies may not be unique when a total order is not defined on the sets A{
and Af Otherwise, provided the conditions of Theorems H.1, H.2 and H.4 are satisfied,
the monotomclty and continuity properties of mean and quantlles of f ( «) proved in

those theorems imply that there exist unique 04f th € Af and aapt ob € Ap,b such that

I = maxua and xff = max xf
Xopt,b aEA “opt,p,b'P aEAf

Intuitively, « Opt , and O‘opt,p , are the smallest vaccination policies in A* such that the mean
and the pth quantile, respectively, of f(Z . ) and f(Z, . ) are less than or equal to b.
t,b t,p,b

Before giving some simple examples of A* §7ve discuss brleﬂy conditions that ensure the
existence and uniqueness of optimal policies.

For fixed f € P, define the binary relation <; on A by a <y ' if and only if pf < ,ui/.
Observe that, if @ < o then, by Theorem H.1, o' <; « for any f € P. The relation <;
is not an ordering, because av <y o’ and o <y o imply only that p) = ,ui/ (and not that
a = o). However, we can consider the equivalence relation ~ on A defined by a ~f o
if and only if uf = ,ui,. Then < is a total ordering on the quotient set A/ ~, i.e. the
set of all possible equivalence classes, using the obvious definition of <; on A/ ~.

Given a subset A* of A, a simple condition that ensures the existence of argmax i/

aEA{:

for any fixed b > 0 is that the set of real numbers {u/ : a € A*} is closed. More precisely,
this ensures the existence of an equivalence class on which the maximum is attained.
To obtain a unique maximum requires that <y is a total ordering on A* (or at least on
Al for fixed b). Note that even if < is a total ordering on .A*, Theorem H.1 does not
ensure that <; is a total ordering on A*. For the latter we require that pf > ui, for all
a,a’ € A* satisfying a < o/ and « # «'. The coupling argument in Section 8.2 can be
used to show that this holds for any practically useful f and it is assumed implicitly in
the sequel. Similar arguments to the above pertain for optimal vaccination policies based
on quantiles.

A simple example of A* is the set of constant functions, i.e., A* = {al: 0 <c <1}
On this set, the total order is defined by the order of the real numbers. Another example
is the set A* = {anrs,po: M >0,0<py<1,0<t,<py'}, where, for s >0,

0, ifs <M
(H.9) Mty po(S) =S po(s— M), it M<s<M+t,
tuPo, if M +t, <s.
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For fixed M, t, and py, the function aasy, p, describes the proportion of immune
individuals in the population when the vaccination process starts at time M, takes ¢,
time units and the proportion of individuals vaccinated per unit time is py. We notice
that a total order on A* is not possible. However, in practice, M and pg are usually known
before vaccination begins, and therefore, the functions can be parameterized through t,
alone. For fixed M and pg, denote a;, = aars, po and A* = {ay, © cinpy <t < py '}
Then </ is a total ordering on A* and Theorem H.2(b) ensures that {uf : a € A*} is
closed, so, provided A{ is non-empty, the optimal vaccination policy exists and is unique.
Moreover, it and the corresponding optimal policies based on the mean and quantiles are
given by o,y and o,y , with

opt,u opt,p’

= inf{t,: =/  <b},

Aty 5P

t{jpw = inf{t, : ,ugtv <b} and tf

opt,p

respectively.

Finally, we notice that, usually, p/ and xép cannot be derived in a closed form.
Therefore, in order to obtain optimal vaccination policies, we need to approximate them.
The coupling construction can be used to give a Monte-Carlo based estimation. Suppose,
for simplicity of argument, that m < 1. Fixn > 1, for7 = 1,...,n, one can simulate a

realization Z® of Z and U of Uy, for j =1,2,..., NV (c0), Where N®(00) is the total

number of births in Z®. For each a € A*, we obtain a realization f(Zc(f)) of f(Za), for
i=1,...,n. From these realizations we estimate p/, and z7 .

Time to extinction

We specialise the proceeding results to the case when evaluation of a vaccination strategy
« is based on the associated distribution of the time to extinction of the virus in an
outbreak. To this end, for z € N, we denote by T, . the time to extinction of the process
Z, when Z(0) = z, i.e.

T,.=1inf{t > 0: Z,(t) =0}.

Thus, T4, » is the maximal time that the infection survives in the population in an outbreak
when the time-dependent proportion of immune individuals is given by « and the number
of infected individuals at the beginning of the outbreak is z. Now individuals infect
independently of each other, so we have that

T, . =max{T\) T

alrdals -

(2)
o Tojl }7
where T, )1 are independent random variables with the same distribution as 7, ;. Hence

P(Ta,z <t) = (va(t)),

where v,(t) = P(T,1 < t). Therefore, to analyze the behaviour of T, ., for any z, it is
sufficient to study 7, through v,. From now on, we denote T, ; by T4,.

We first use the results of Section 8.3 to derive some continuity and monotonicity
properties of the distribution function v,. When every individual is immune, i.e. a(t) =1
for all £ > 0, the infectious disease does not spread to any susceptible individual and
then the extinction time is given by the survival time of the initial infected individual.
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It stands to reason that if there are non-immune individuals in the population, then it is
probable that the infectious disease takes more time to become extinct. In the following
result, which is an immediate application of Theorem H.3(a) with f = T, we show this
fact investigating the behaviour of v, depending on the function a.

Corollary H.1 Suppose that o, o’ € A satisfy a« < o'. Then v, (t) < vy (t), for allt > 0.

Intuitively, it is clear that the greater the proportion of immune individuals, the more
likely it is that the infectious disease disappears quickly. Consequently, for any a € A,
the distribution function v, is bounded above by v,0, the distribution function of the
survival time of the initial infected individual, and bounded below by v,0, which is not
necessarily a proper distribution function. Moreover, we obtain that minor changes in
the proportion of the immune individuals generate minor changes in the distribution of
outbreak duration. The following result is an immediate application of Theorem H.3(b),
(c) with f=T.

Corollary H.2 (a) Fizt > 0. Then, for each e > 0,

sup |va(u) — var(u)] < ¢,
0<u<t

for all a, o/ € A satisfying || — o[y < 5a8¢(5)'
(b) Fizty> 0. Then, for each e >0,

sup ‘Ua(t) - Uo/(t)| <e,
0<t<oo

for all a, o € Alcing, to) satisfying |la— /| <00 ().
Cinf’

Finally, we consider the quantiles of T,,. For o € Aand 0 < p < 1, let t,, = inf{t :
va(t) > p} be the quantile of order p of T,,.

Corollary H.3  (a) If o,/ € A satisfy a < o/, then to, < t,, for every 0 < p < 1.

(b) Suppose that o € A and 0 < p < 1 are such that t,, < oo and v, is continuous
and strictly increasing at to,. Then lim, . ta, p = tap, for any sequence {a,,} in
A satisfying lim,,_,.o o, = av.

Proof
(a) The result follows directly from Theorem H.4(a), on setting f =T
(b) Let t = to, + 1 and f = min{7,¢}, so f € P,. The conditions on t,, and v,

ensure that t,, = =/ for all @ € A. The result then follows immediately from
Theorem H.4(Db).
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&

Corollary H.3 can be extended to a family of vaccination processes with a continuous
index set; cf. Remark 2 following Theorem H.4. In order to apply Corollary H.3, we
need to determine conditions which guarantee that v, is both continuous and strictly
increasing.

Theorem H.5 Suppose that the lifetime random variable I is continuous. Then, for any
a € A, v, is a continuous distribution function.

Proof

Let By =0 and, forn =1,2,..., let B,, denote the time of the nth birth in Z, with the
convention that B,, = oo if N(o0) <n. Forn=0,1,..., N(c0), let I,, and D,, = B,, + I,
denote respectively the lifetime and time of death of the nth individual born in Z. Let
D = {Dy, D1, ...,Dn(x)} denote the random set of all death-times in Z. Observe that,
for any t > 0 and any a € A, T,, = t only if ¢ € D. Thus it is sufficient to show that
P(t € D) =0 for any t > 0.

Fix ¢t > 0 and define D,, = oo for n > N(oco). Then, since P(N(t) < o0) = 1,

(H.10) P(teD)=P <D{Dn - t}) < ip(pn —1).

Further, forn =10,1,...,

P(D, =t) =P(N(t) > n)P(D, = t|N(t) > n)
= P(N(t) > n)Eg,|n(t)2n[P(Dn = t|By, N(t) > n)]
=P(N(t) > n)Ep,ne)>n[P(In =t — Byn|B,, N(t) > n)]
= P(N(t) = n)Ep,n@w>n[P(Iy = t — By)]
=0

since I,, is independent of both B,, and {N(¢) > n}, and [ is continuous. It then follows
from (H.10) that P(t € D) = 0, which completes the proof. O

We notice that under weak conditions, the function v, is strictly increasing. Indeed,
let R be the number of points of £ in [0, I], so R is a random variable giving the number
of offspring of a typical individual in the CMJ branching process Z. Suppose that P(R =
0) > 0 and that I|R = 0 is an absolutely continuous random variable, having density
frir=0 satisfying frr=o(t) > 0 for all t € (0,00). Then it is easily seen that, for any
a € A, v, is strictly increasing on (0,00), since, for any open interval (a,b) in (0, 00),
the probability that the initial individual has no offspring and dies in (a,b) is strictly
positive. It is straightforward to give conditions under which v, is strictly increasing on
(0,00) when I has bounded support. For example, suppose that P(R = 0) and P(R = 1)
are both strictly positive, and I|R = 0 and B|R =1 are both absolutely continuous with
densities that are strictly positive on (0,%;), for some t; > 0. Here, B is the age that a
typical individual has his/her first child. Then, given any interval (a,b) C (0, 00), there
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exists ng € N such that with strictly positive probability (i) each of the first ng individuals
in Z has precisely one child, (ii) the (ny + 1)th individual in Z has no children and (iii)
T € (a,b). It then follows that P (T, € (a,b)) > 0, provided «(t) < 1 for all ¢ > 0.

As an illustration of how to apply our theoretical results and to show their usefulness,
we analyze a mumps data set from Bulgaria. In Bulgaria, an increasing number of new
cases of individuals infected with mumps has been observed in recent years. This might be
a result of a poor immunization of birth cohorts 1982-1992 (see Kojouharova et al. [77]).
In such a situation, it is necessary to provide supplementary doses of mumps, measles and
rubella (MMR) vaccine targeted at those cohorts in order to shorten the duration of the
outbreaks.

Thus the objective in Ball et all. [19] is to determine, using the observed data, optimal
vaccination levels based on the time to extinction that guarantee, with a high probability,
that the outbreak durations will be less than some suitable bound. As an example, we
determine the percentage of the target cohort that must be vaccinated to guarantee that
only primary and first-generation cases will be observed in at least 90% of outbreaks.

In order to apply our results, we model the spread of mumps by a CMJ branch-
ing process. This is reasonable since mumps is an infectious disease which follows the
SEIR scheme, and in general, the early stages of outbreaks following this scheme can
be approximated by a CMJ branching process. Although this is the general situation,
a deeper discussion is needed in the case of mumps. This disease concerns predomi-
nantly young people in schools and universities, which means small separate populations
and population-dependent propagation. Hence the approximation of mumps outbreaks in
these populations by CMJ processes is valid only when outbreaks are very short, which
is the case for the outbreaks studied.

The data we analyze (reported by the Bulgarian Ministry of Health) are the total
number of new cases of infected individuals with mumps observed weekly in each province
of Bulgaria from 2005 to 2008, whose birth cohorts were poorly immunized. Notice that
we do not observe outbreak durations, so, first, we describe the procedure to derive the
outbreak durations from these data. Then, taking into account the main features of
mumps transmission, we select an appropriate general branching process to describe the
evolution of infected individuals in an outbreak and estimate its main parameters from
the data set. Finally, once the model is fitted, we propose optimal vaccination levels based
on the quantiles of the outbreak duration. The detailed modelling methodology could be
seen in the Ball et all. [21].

8.4 Illustrative example: mumps in Bulgaria

As an illustration of how to apply our theoretical results and to show their usefulness, we
analyze a mumps data set from Bulgaria. In Bulgaria, an increasing number of new cases
of individuals infected with mumps has been observed in recent years (see Figure 8.1).
This may be a result of a poor immunization of birth cohorts 1982-1992 (see Kojouharova
et al. [77]). In such a situation, it is necessary to provide supplementary doses of mumps,
measles and rubella (MMR) vaccine targeted at those cohorts in order to shorten the
duration of the outbreaks. Thus our objective is to determine, using the observed data,
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optimal vaccination levels based on the time to extinction that guarantee, with a high
probability, that the outbreak durations will be less than some suitable bound. As an
example, we determine the percentage of the target cohort that must be vaccinated to
guarantee that only primary and first-generation cases will be observed in at least 90% of
outbreaks.

In order to apply our results, we model the spread of mumps by a CMJ branch-
ing process. This is reasonable since mumps is an infectious disease which follows the
SEIR scheme, and in general, the early stages of outbreaks following this scheme can
be approximated by a CMJ branching process. Although this is the general situation,
a deeper discussion is needed in the case of mumps. This disease concerns predomi-
nantly young people in schools and universities, which means small separate populations
and population-dependent propagation. Hence the approximation of mumps outbreaks in
these populations by CMJ processes is valid only when outbreaks are very short, which
is the case for the outbreaks we study as we show later.

The data we analyze (reported by the Bulgarian Ministry of Health) are the total
number of new cases of infected individuals with mumps observed weekly in each province
of Bulgaria from 2005 to 2008, whose birth cohorts were poorly immunized. Notice that
we do not observe outbreak durations, so, first, we describe the procedure to derive the
outbreak durations from these data. Then, taking into account the main features of
mumps transmission, we select an appropriate general branching process to describe the
evolution of infected individuals in an outbreak and estimate its main parameters from
the data set. Finally, once the model is fitted, we propose optimal vaccination levels based
on the quantiles of the outbreak duration.

8.4.1 Deriving the outbreak duration

Our first task is to determine the behaviour of mumps outbreak durations in Bulgaria
from 2005 to 2008, since our optimal vaccination level is based on outbreak duration.
However, outbreak durations have not been registered; only the total number of new
cases of infected individuals with mumps in each province has been observed (see Figure
8.2). Thus, instead, we derive the outbreak durations from this data set, taking into
account the main features of mumps transmission. Mumps is a viral infectious disease of
humans and spreads from person to person through the air. The period between someone
being transmitted mumps and that person first showing symptoms of mumps is called
the incubation period for mumps. This incubation period can be 12 to 25 days and the
average is 16 to 18 days. The infectious period (i.e. when an individual is able to transmit
the mumps virus to others) starts about 2 days before the onset of symptoms and usually,
an individual with mumps symptoms is immediately isolated from the population (see
http:/kidshealth.org). In view of the range of the incubation period, we consider that
an outbreak is formed by the cases that appear in a province in a sequence of weeks with
no more than three consecutive weeks without cases. That is, when we observe more
than three weeks without cases we consider that the outbreak has become extinct, with
the next outbreak starting in the first subsequent week in which there is at least one
new case. Applying this procedure for each province, we have obtained 262 outbreaks.
The left plot in Figure 8.3 could represent one such outbreak initiated by one infected
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individual. In this schematic representation we have considered that the infectious period
is negligible due to the fact that infected individuals are immediately isolated when they
show symptoms. The variable Z; denotes the underlying branching process, which is not
observed. The segments over/under Z; indicates the lengths of time for which Z; takes
the corresponding values. The tick marks on the axis represent weeks, and Z,, the number
of new cases observed during the n-th week. Indeed, Z,, n > 0, are the variables that are
observed. In this context, by outbreak duration we mean the time elapsing between the
appearance of the first case until isolation of the last one, that is the time to extinction of
the branching process minus the incubation period of the first individual. Thus, a more
accurate way to approximate outbreak duration from the observed data is by the total
number of weeks until extinction of the virus (giving an error, due to discretization, of at
most one week), yielding seven weeks in the outbreak of Figure 3 (left).

For each of the 262 outbreaks, we calculated the total number of weeks until extinction
of the virus (and, also, the outbreak size i.e. total number of infected individuals). We
noticed that the behaviour of these outbreak durations depends on the initial number
of infected individuals. Hence, we have considered only those outbreaks which started
with one infected individual, a total of 144. We checked that both outbreak duration
and outbreak size were homogeneous between provinces (Kruskal-Wallis test: p-values
0.4763 and 0.4782, respectively) and consequently assumed that disease propagation in
the different provinces are independent replications of the same process. Thus, the right
plot in Figure 8.3 shows the histogram of outbreak duration for all 144 outbreaks started
with one infected individual. We observe two different groups, outbreaks for which their
duration is less than 10 weeks (comprising 134 outbreaks) and another group where the
outbreak duration is greater than 10 weeks (comprising the remaining ten outbreaks).
Possibly, this happens because some cases observed in a week could not come from cases
of previous weeks, and then new outbreaks could have appeared overlapping in time.
Hence, we consider that the outbreaks corresponding to durations of this last group may
have been initiated no more than 10 weeks before. Thus, outbreak durations greater than
10 weeks have been removed from our study, and only durations less than 10 weeks have
been considered in order not to overestimate the duration of the outbreaks. Nevertheless,
an outbreak with apparent duration less than 10 weeks could actually be the superposition
of two or more separate outbreaks, but we cannot determine this.

The left plot of Figure 8.4 shows the duration of the 134 outbreaks considered. We
notice that 83% of these outbreaks have only one infected individual, so their outbreak
duration is 0. The remaining 17% of outbreaks seem to have a cyclical behaviour with
period given by the mean of the incubation period (approximately 2.5 weeks).

8.4.2 Modelling mumps transmission

As noted above, mumps is a contagious disease of humans that is spread from person to
person through the air. The most common method of transmission is through coughing or
sneezing, which can spread droplets of saliva and mucus infected with the mumps virus.
Hence, when an infected person coughs or sneezes, the droplets atomize and can enter the
eyes, nose, or mouth of another person. Following mumps transmission, a person does
not immediately become sick. Once the virus enters the body, it travels to the back of
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Figure 8.1: Number of new infected individuals weekly reported.
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Figure 8.2: Number of new infected individuals per week for the provinces of Bulgaria
with the highest incidence of mumps.
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Figure 8.3: Left: Schematic representation of an outbreak. Z; denotes the underlying
branching process and Z,, the number of new cases in the n-th week. Right: Duration for
outbreaks started with one infected individual.
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the throat, nose and lymph glands in the neck, where it begins to multiply. As indicated
previously, this period between mumps transmission and the beginning of mumps symp-
toms is the incubation period for mumps. People who have mumps are most contagious
from 2 days before symptoms begin to 6 days after they end and transmission may occur
at anytime in that period. Since an individual with mumps symptoms is immediately
isolated from the population, the infectious period is very short in comparison with the
incubation period, so, as indicated previously, we assume that transmission occurs only
at the end point of an individual’s incubation period. This assumption simplifies the
mathematical model and does not influence strongly outbreak duration. As the end of
the incubation period means that an individual’s viral load has reached a given threshold
to produce clinical signs, we assume that the mean number of individuals infected by an
infected individual is constant and does not depend on the length of his/her incubation
period.

An earlier analysis of these mumps data using Bienaymé-Galton-Watson branching
processes is given in Angelov and Slavtchova-Bojkova [6]. However, the above observations
imply that the Bellman-Harris branching process (BHBP) (see Athreya and Ney [12]) is
a more appropriate model for mumps transmission and indeed it provides an improved fit
to these data. Recall that a BHBP is a CMJ branching process, in which an individual
reproduces only at the end of his/her life-time, according to an offspring law which is the
same for all the individuals. In the epidemiological context, age is the incubation period
and the reproduction law is the contagion distribution.

Next, we describe the incubation period and contagion distributions used to model
mumps transmission in each outbreak in Bulgaria by means of the same BHBP (recall that
we did not find any difference in the behaviour of the outbreaks in different provinces). We
assume that the incubation period I follows a gamma distribution, with shape parameter
r > 0 and rate v > 0, so I has mean ry~! and probability density function

oy = 1w exp(—yu)
ff( ) F(T)

where I' is the gamma function, and that the contagion distribution follows a Poisson
distribution with mean m. These distributions are appropriate for the incubation period
and the number of infections, respectively (see for example Daley and Gani [31], Farrington
and Grant [40], Farrington et al. [41] or Mode and Sleeman [98]). Intuitively, m, the mean
number of individuals infected by an infected individual, represents the power of the virus.
Taking into account that the incubation period is estimated between 12 and 25 days and
the average is 16 to 18 days, we consider the gamma distribution with mean 17 and r = 50,
which implies that the incubation period in 98.7% of individuals is between 12 and 25
days. To estimate m we consider the maximum likelihood estimator (MLE) based on the
total number of births in independent extinct realisations of a BHBP. The total number
of births in a BHBP has the same distribution as that in a Bienayme-Galton—Watson
branching process with the same offspring distribution. In our application the offspring
distribution is Poisson and it follows that the total number of births N(co) (excluding the
initial a individuals) follows a Borel-Tanner distribution with probability mass function

(u > 0)7

amF (CL + k)k*le*(aﬁ*k)m

P(N(c0) = k) = -

(k=0,1,...).
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Figure 8.4: Left: Duration for outbreaks started with one infected individual without
overlapping. Right: Simulated durations from a BHBP for outbreaks started with one
infected individual.

(Note that, for [ = 1,2,..., the mean number of births in the /th generation is am!’,

so when m < 1 the expectation of this Borel-Tanner distribution is E[N(c0)] = a(m +
m? +...) = am(l —m)™!). Tt follows that the MLE of the offspring mean m, based

on L independent realisations, is given by m = (3>, n®) (325, a® + n®)~! where, for
i=1,2,...,L, a® and n® are respectively the initial number of individuals and the total

number of births in the ith realisation (for details see Farrington et al. [41]). In our case
L =134, 35 a® =134 and 3°%  n® = 62, whence 7 = 0.3163. Note that inference
based on duration of outbreaks is less sensitive to underreporting than that based on
the total number of births. However, estimating the offspring law based on the time to
extinction of each outbreak turns into a difficult problem in branching processes theory,
even for the simplest model (see for example Farrington et al. [41]).

Applying the general theory of branching processes, since the estimated value of m
is less than 1, we deduce that mumps transmission can still occur in Bulgaria, but such
spread cannot lead to a large-scale epidemic. This fact is consistent with the Figures 8.1
and 8.2. Although the epidemic becomes extinct, it can have different levels of sever-
ity. One measure of severity is the mean size of an outbreak, excluding the initial case,
viz. m(1—m)~!, which in our case is estimated by 0.463. However, we are concerned with
the problem of how to shorten outbreak durations by vaccination. To this end, we analyze
the random variable T, ad the time to extinction of a BHBP with incubation period and
contagion distributions as described above. Note that c;,y = 0, as m < 1, so here Tagm
is the extinction time when there is no supplementary vaccination. The variable Tagmf
includes the incubation period of the initial individual, which is not observed in practice.
Thus, from now on, we use the random variable Tagmf, the difference between Tagmf and
the incubation period of the initial individual (i.e. the definition of outbreak duration
given in the previous subsection) to model mumps outbreak duration in Bulgaria. The
right plot in Figure 8.4 shows a histogram of 10,000 simulated durations of outbreaks
(rounded up to the nearest integer), each initiated by one infected individual and mod-
elled by a BHBP with the above parameters. We notice that in 72.9% of these simulated
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outbreaks the initial infected individual does not infect any new individual (recall 83% for
real data). Moreover, the simulated outbreak durations show the same cyclical behaviour
as seen in the real data.

Comparing real and simulated durations, we deduce that mumps outbreak durations
in Bulgaria can be modelled by the variable Tagi (Pearson’s chi-squared test: p-value

nf

0.2951, grouping the tail for values greater than 8).

8.4.3 Determining the optimal vaccination levels

Once we have fitted the model, in order to apply our theoretical results we have assumed
that the proportion of immune individuals is constant with time, since, generally, vacci-
nation is applied when an individual is a child and the disease spreads when he/she is
a teenager. In the particular case of supplementary vaccination for Bulgarian mumps,
for simplicity we assume that this vaccination process occurs simultaneously across the
country (for example, in secondary schools at the same specific time). To determine the
optimal vaccination levels, we denote by fag the difference between 1,0 and the incuba-
tion period of the initial individual, when the proportion of immune individuals in the
population is ¢, with 0 < ¢ < 1. In the same way as was proved for T,o (see Corollary H.3

), we deduce that T a0 has the same quantile properties depending on ¢ as T,0 (notice that

T,0 is monotonically decreasing with pruning). Therefore, next we propose vaccination

policies based on the quantiles of T, a0, with 0 < ¢ < 1. Specifically, for fixed p and ¢, with
0 <p<1andt >0, we seek vaccination policies which guarantee that the mumps virus
becomes extinct in each outbreak, with probability greater than or equal to p, not later
than time ¢ after the outbreak has been detected with z initial infected individuals, that
is B

Copt = Copt(2,p,t) =inf{c:0<c< 1,x§27p1/z < t},

where 3320 /e denotes the quantile of order p'/# of the variable fag.

As ar?illustration, we take z = 5, p = 0.9 and ¢t = 3, being the time measured
in weeks. First we justify these values. Consider the value of z. Since the number of
infected individuals at the beginning of an outbreak is unknown, we bound it by the
greatest number of individuals infected by one infected individual. Taking into account
that the contagion distribution is Poisson and the estimate of m, we obtain the upper
bound to be 5, and therefore we take z = 5. Moreover, we select ¢ = 3, which, taking
into account the features of the incubation period, guarantees that only primary and
first-generation cases will be observed. Since in our situation the estimated value of m is
less than 1, to approximate cy:, we need to obtain the empirical distribution of T}, for
0 < ¢ <1, using the Monte-Carlo method described in Section 8.3.1. To this end, for each
¢ =0.01k, with £ = 0,...,100, 100, 000 processes have been simulated and their duration
calculated. The left plot in Figure 8.5 shows the behaviour of the empirical distribution
function of T, for several values of c. Notice that as ¢ increases, the outbreak duration
decreases in a continuous way, in accordance with Corollaries H.1 and H.2. The right plot
in Figure 8.5 shows the behaviour of ng,o.gl s5 depending on ¢, which is in accordance with

Corollary H.3. Since xgo 015 = 6.97, our model estimates that the duration of 90% of
inf’

C.
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Figure 8.5: Left: Behaviour of the distribution function of T, oo for ¢ =0,0.4,0.8. Right:
Behaviour of $Zo 0.01/5 depending on ¢, with 0 < ¢ < 1.

outbreaks in Bulgaria is less than 6.97 weeks, if vaccination is not applied (in our real data
97% of outbreaks have durations less than 6 weeks). In order to shorten the outbreak
duration, from our study, we deduce that c,(5,0.9,3) = 0.6 (see right plot in Figure
8.5). Therefore, vaccinating a proportion of 60% of susceptible individuals in the target
cohort, guarantees that in at least 90% of outbreaks of mumps in Bulgaria only primary
and first-generation cases will be observed after the vaccination. Finally, we notice that
Copt(5,0.9,0) = 0.94, that is, to guarantee that at least the 90% of outbreaks do not
spread after vaccination, the vaccination level should be 94% of susceptible individuals in
the target cohort.

The parameters of the gamma distribution used to model the incubation period have
been derived from knowledge of mumps transmission rather than estimated from data.
Thus we have performed a sensitivity analysis of their influence on the optimal vaccination
level. We have considered gamma distributions with mean and shape parameter r taking
values in a grid (giving different probabilities for the incubation period belonging to
range 12-25, which we denote as percentages of coverage), yielding the results shown in
Table 8.1. One can observe that increasing the mean (holding r fixed) clearly increases
the duration of the epidemic leading to higher values of c,,;. Moreover, increasing the
shape parameter r (holding the mean fixed) decreases the variance of lifetimes and hence
also the chance of long outbreak duration, leading to lower values of c,,. The optimal
vaccination level ¢, (5, 0.9, 3) is fairly stable in the vicinity of the chosen values of 17 and
50 for the mean and shape parameter r, respectively.

Remark H.3 From a computational point of view it is interesting to note that to find
optimal vaccination policies, the simulation method based on pruning, described at the
end of Section 8.3.1, has proved to be at least 17% faster than those in Gonzdlez et
al. [48], [49], which are also simulation—based methods but work directly with the distribu-
tion of the extinction time. For the BHBP there exist other methods to approximate the
distribution function of the time to extinction based on solving numerically an associated
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Shape parameter r

mean 30 40 50 60 70

16 | % Coverage | 92.2 95.3 97.1 98.8 98.8
copt(5,0.9,3) | 0.60 0.57 0.56 0.54 0.54
16.5 | % Coverage | 93 96.6 98.1 989 99.4
Copt(5,0.9,3) 1 0.63 0.60 0.58 0.56 0.55
17 | % Coverage | 94.9 955 98.7 99.3 99.6
copt(5,0.9,3) | 0.66 0.64 0.60 0.58 0.57
17.5 | % Coverage | 95.4 97.9 99 99.5 99.8
copt(5,0.9,3) | 0.70 0.67 0.65 0.62 0.61
18 | % Coverage | 95.3 97.8 99 99.5 99.8
copt(5,0.9,3) 1 0.73 0.71 0.68 0.65 0.64

Table 8.1: Sensitivity analysis on the mean and shape parameter of the gamma incubation
distribution

integral equation (see Martinez and Slavtchova-Bogjkova [86], which includes comparison
with simulation-based methods). Unlike the latter approach, the Monte-Carlo method pro-
posed in Section 8.3.1 is easily extended to time-dependent vaccination processes. All the
computations and simulations have been made with the statistical computing and graphics
language and environment R (“GNU S”, see [112]).

8.5 Concluding comments

The coupled pruning technique for proving monotonicity and continuity properties of
functions defined on CMJ branching processes depending on the vaccination function o
is both simple and powerful. It is clear that the proofs generalise easily to more general
branching processes, such as multitype CMJ branching processes, time-inhomogeneous
branching processes and branching processes in a random environment. The function «
does not have to represent vaccination. It could represent any control of disease propa-
gation that has the effect of reducing either the number of susceptibles or the probability
that a contacted susceptible becomes infected. However, for the coupled pruning tech-
nique to work it is necessary that, in the branching process setting, the control affects
only the probability that a birth is aborted and not the intrinsic reproduction law of the
branching process. Thus, for example, the method cannot be applied to density-dependent
processes, such as population size dependent branching processes, if the density depen-
dence relates to the size of the unvaccinated population rather than the total population
size.

Given that the results in the Bulgarian mumps illustration are based on simulation
alone, it may seem more appropriate to use an epidemic model rather than a branching
process that approximates such a model. However, there are several advantages in using
the simpler branching process formulation. First, branching process models can be fitted
directly to the data more easily; in particular they do not require knowledge of the size
of the population in which the outbreaks are occurring. Secondly, the coupled pruning
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technique enables the monotonicity and continuity properties pertaining to vaccination
functions to be proved easily. Thirdly, the coupled pruning technique yields an associated
Monte-Carlo method for determining optimal vaccination processes. It is not immediately
clear if and how the pruning argument can be extended to epidemic models in a useful
way; this is a topic for future research.

The framework for optimal vaccination policies studied in Section 8.3.1 can be ex-
tended to include alternative formulations of optimal policies. For example, one may
define a cost ¢(«) associated with each vaccination process a € A and then seek vaccina-
tion processes from a subset A* of A which either (i) minimise c¢(a) subject to pf < b or
(ii) minimise g subject to c(a) < c¢g, where ¢y is specified. Provided the cost function
¢(a) is suitably monotonic and continuous in a and A* is totally ordered, Theorems H.1
and H.2 imply the existence of unique such optimal vaccination processes and it should
be possible to extend the Monte-Carlo algorithm at the end of Section 8.3.1 to estimate
the optimal vaccination processes. Optimal vaccination policies that permit vaccination
costs to be taken into account are especially relevant in animal vaccination.

The results from this chapter are published by Ball, Gonzalez, Martinez and Slavtchova—
Bojkova in [19].
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Chapter 9

Total progeny of
Crump-Mode-Jagers BP

9.1 Introduction

In an epidemic context, the total number of infected individuals in a population is a
useful tool for public health authorities in order to determine the infection level of a
disease. Clearly, the total number of individuals that are infected is a key measure of the
impact of an epidemic on the population within which it is spreading. Further, from an
inferential viewpoint, surveillance systems typically provide more reliable information on
the total number of individuals infected than on the precise temporal pattern of spread of
an epidemic, so statistical analysis is often based on total infection data. This chapter is
concerned with the study of the total size of an outbreak for epidemic models of diseases
which follow an SIR (Susceptible-Infectious-Recovered) scheme in a closed, homogenously
mixing population or some of its extensions, for example an SEIR (Suscpetible-Exposed—
Infectious—Recovered) scheme. When the population is homogeneously mixing and the
number of infected individuals is small in relation to the total size of the susceptible
population, it is well known that the number of infected individuals in such an epidemic
may be well approximated by a single-type branching process, at least during its early
stages (see, for example, Jagers [67], Chapter 3). This approximation has a long history
going back to the pioneering works of Bartlett [24] and Kendall [73], and can be made
mathematically precise by considering a sequence of epidemics, indexed by the population
size, and showing convergence of the process of infected individuals to a branching process
as the population size tends to infinity (see, for example, Ball and Donnelly [18], where
such convergence of a very general epidemic model to a Crump-Mode-Jagers (CMJ)
branching process - see Jagers [67] - is proved). Hence, we model the epidemic as a
CMJ branching process, Z = {Z(t) : t > 0}, where Z(t) denotes the number of infected
individuals at time t. Thus Z(0), which we assume to be fixed, represents the number of
infected individuals at the beginning of the outbreak. Throughout the chapter, we assume
that Z is non-explosive, i.e., that P(Z(t) < co) = 1 for any ¢ € (0, 00). Conditions which
guarantee this property may be found in [67], Section 6.2.

A key tool in controlling the spread of an epidemic is vaccination and there have been
numerous mathematical studies of the effect of vaccination on disease dynamics. The
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majority of such studies using stochastic models have been concerned with the situation
where a specified fraction of the population is vaccinated prior to an outbreak, though see
Keeling and Rohani [72], Chapter 8, for examples of analysis of more general vaccination
policies in a deterministic setting. Recently, Ball et al. [19] have developed a framework
for analysing time—dependent vaccination policies for epidemics which are modelled by
a CMJ branching process. More specifically, a vaccination process is described by a
function « : [0,00) — [0, 1], such that a(t) represents the proportion of the population
which is immune at time ¢ (¢ > 0). Thus, since the population is homogeneously mixing,
the probability that a contact at time t is with a non-immune individual is 1 — «(¥).
(Modelling an epidemic as a CMJ branching process implies implicitly that changes in
the susceptible population owing to infection of individuals are ignored.) For perfect
vaccines, i.e. ones which confer lifelong immunity immediately with probability one, a(t)
is given by the proportion of the population that has been vaccinated (i.e. the vaccination
coverage) by time ¢. For imperfect vaccines, the vaccination coverage is implicitly included
in the function a.. For example, if the vaccine is all-or-nothing (i.e., it renders the vaccinee
completely immune with probability e;, otherwise it has no effect), then a(t) = e;a(t),
where a(t) is the vaccination coverage at time ¢. Note that « is necessarily nondecreasing
in ¢ if the immunity conferred by vaccination does not wane.

Given a CMJ branching process Z and a vaccination process «, we denote by Z, =
{Z,(t) : t > 0} the vaccinated version of Z, in which each birth in Z is aborted inde-
pendently, with probability «(t) if the birth time is at time ¢. Note that if a birth in Z
is aborted in Z,, then none of the descendents in Z of the aborted individual appear in
Z,. Hence, coupled realizations of Z and Z, may be constructed by pruning, i.e. deleting
individuals in Z and all of their descendants. In Ball et al. [19], such coupling was used to
prove stochastic monotonicity and continuity properties, with respect to the vaccination
process «, for functions defined on a CMJ branching process, first in a general context,
i.e. for generic functions, and then specialized to the extinction time. However, these
properties have not yet been explicitly obtained for the total progeny. Thus, in this chap-
ter we establish explicitly these properties for the total number of infected individuals
of the epidemic. To this end, we apply the general results given in the work of Ball et
al. [19], since total progeny is monotonically decreasing with pruning. In Section 9.2,
we deduce the monotonicity and continuity properties of the mean and quantiles of the
total progeny. After that, in Section 9.3, we present a simulated example, showing how to
obtain in practice optimal vaccination policies (based on the results given in the previous
section) to control the spread of a disease. The example is motivated by an outbreak of
avian influenza virus in humans that occurred in Indonesia in 2006.

We end the introduction by describing some notation that will be used in the sequel.
Let A be the space of all functions « : [0,00) — [0, 1]. For any ¢ € [0, 1] and any ¢, > 0,
we define the function o0 € A by

0 ift <t
al(ty =4 "'t
C lftZto,

which means that a proportion ¢ of the population is vaccinated at time t,. Thus, for
example, a? denotes the constant function equal to ¢ and a denotes the constant function
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equal to 0. Moreover, let cpy = max(0,1 —m™!), where m is the offspring mean for Z.
Thus, if m > 1, then ¢y is the critical vaccination coverage, i.e. the minimum proportion
of the population that should be vaccinated (at one single time) for the process to become
critical, that is to assure the epidemic will go extinct with probability one. Note that the
offspring mean of Z,0 is less than or equal to 1.

inf

Also, for tg > 0 and ¢ € [0, 1], let
Ale,tg) ={a e A:a(t) > cforall t > ty}.

Finally, for o, o/ € A, write o < o/ if a(t) < o/(t) for all t € [0,00) and let |ja — /|| =
SUPc(0,00) [(F) — a'(£)].

9.2 Monotonicity and continuity properties

For a given vaccination strategy, a € A, we denote by N, .(co) the total number of
births of the process Z, when Z(0) = z, with z > 1, that is the total number of infected
individuals in an outbreak when the vaccination process is defined by a. This random
variable is discrete, and in particular cases its probability distribution can be derived. For
example, when the proportion of immune individuals in the population is constant with
time, N, .(0c0) follows the Borel-Tanner distribution in some situations (see Farrrington
et al. [41]). However, when a vaccination policy is time dependent, it is not easy to obtain
the probability distribution of N, .(oc0) in a closed form.

Next we study monotonicity and continuity properties of the mean and quantile of
the total number of infected individuals depending on the vaccination function «. To this
end, since individuals infect independently of each other, we have that

No.(00) = N (00) + NP (00) + ... + N (00),

where Nc(f)l(oo) (1 =1,2,...,2) are independent random variables with the same distri-
bution as N, 1(0c0). Hence
E[Nq,:(00)] = Zﬂgv

where ;) denotes the expectation of N, ;(00), i.e. the mean number of infected individuals
when the outbreak starts with one infected individual and the vaccination process is
defined by a. Therefore, to analyze the behaviour of E[N, .(c0)], for any z, it is sufficient
to study pY. Applying Theorem 3.1 and an obvious extension of Theorem 3.2(b) in Ball
et al. [19], we deduce the following properties of p2.

Theorem 1.1
(a) If o,/ € A satisfy o < o, then pf > u?).

(b) Fizty > 0 and ¢ € (¢, 1]. Then, for each € > 0, there exists n = n(e) > 0 such
that for all a, o’ € A(c,ty) satisfying ||a — || < n,

(L.1) e — ply| <e.
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Remark 1.1

(a) Notice that, under the conditions of Theorem I.1, u™, < oo. Indeed, it is easy to
Q¢

obtain that, almost surely,

Z(to)
N, o(00) < N(to) + Y N (00),

‘ i=1
where N(ty) represents the total number of new infections in (0,ty). Therefore,
pote < E[N(t0)] + E[Z (t0)] go-

The conditions which guarantee that the process is not explosive, imply that E[N (to)]
and E[Z (to)] are finite. Moreover, pb, is also finite since Zyo is a subcritical process.

(b) If Z is subcritical, so cine = 0, then Theorem 3.2(b) in Ball et al. [19] implies that
for each € > 0, there exists n = n(e) > 0 such that (I1.1) holds for all a,a’ € A.

Notice that, in general, P(N,1(0c0) < pd) > 0.5, because of the skewness of the
distribution of the total progeny of the vaccinated CMJ branching process. Hence, if the
vaccination policy « is applied, more than half of the outbreaks would have total size less
than the mean ;%, which may be sufficient protection for the population as a whole if
the infectious disease is not too harmful for individuals. On the other hand, when the
infectious disease is highly detrimental, we would like to control with high probability the
total number of infected individuals and consequently consider vaccination policies based
on quantiles of the total size distribution. Thus, fix o € A, and define, for 0 < p < 1,

xgp = inf{x : P(N,,.(00) < z) > p},

with the convention that z) , = oo if P(N,.(00) < x) < p for all z € [0,00). Thus z], is
the quantile of order p of the random variable IV, ,(c0). Since this variable is not derived
from N, 1(00), then the next result about the monotonicity and continuity properties of
2 deduced from Theorem 3.4 in Ball et al. [19], depends on z, for any z > 0.

Ot,p7
Theorem 1.2 Suppose that p € (0,1).

(a) If a0’ € A satisfy a < o, then xl) , > x}) .

(b) Fizty >0 and o € A(cing, to), and let {a,} be any sequence in A satisfying o < a,
for all m and lim,,_, ||a, — || = 0. Then lim,, xévmp = xé\{p.

Remark 1.2

(a) Notice that Zai?nf has offspring mean m until time ty, and offspring mean me,, , <1
after time ty. Thus, since Z is non-explosive, the total progeny of Z « is finite
Cinf

almost surely, and therefore P(N, .(c0) < o00) = 1 and xé\{p < 00, for all a €
A(cint, to) and p € (0,1).
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N

(b) Since N,,.(c0) is a discrete random variable for each o and z, then x

function depending on «.

1S a step

Finally, from the above monotonicity and continuity properties of the mean and quan-
tiles of N, .(00), and in the same way as it was described in Section 3.5 in Ball et al. [19],
we propose how to choose optimal as based on the total number of infected individuals.
In particular, for fixed M, t, and po, with M > 0,0 <py < 1and 0 < ¢, < p;*, we define
the function auyy, p,, Where, for s > 0,

0, ifs< M
(1.2) Mty po(S) =S po(s — M), fM<s<M+t,
tuPo, if M +t, <s.

This function describes the proportion of immune individuals in the population when
the vaccination process starts at time M, takes ¢, time units and the proportion of indi-
viduals vaccinated per unit time is pg. In practice, M and py are usually known before
vaccination begins, in which case the vaccination function aasy, p, can be parameter-
ized through t, alone. Hence, for fixed M and pg, let oy, = anrs, p, and A" = {ay, :
cniPyt <ty < py'}. Since A* is a subset of A(ciug, M + cintpy ), then Theorems 1.1
and 1.2 ensure that, for each b > 0 and p € (0,1), optimal vaccination policies based
on the mean and quantiles exist and are unique, provided that {a € A* : z,ugt < b}
and {o € A*: at » < b} are non-empty. Then, we denote by N and N the
corresponding optimal policies based on the mean and quantiles, respectlvely, where

N

opt, b —

inf{t, : z,uévtv <b} and ¢t

opt,p,b —

inf{t,: =& ~<b}.

Aty P —

Notice that these optimal policies depend on M and pgy, which have been fixed previ-

ously. Moreover, xj\i » < b, though equality is not guaranteed since Na 2(00) is
opt,p,b opt I) b

a discrete random variable. On the other hand, zpu\ N

- b lft > C; )
opt,u,b ’ opt,u,b mfpo

9.3 Simulated example

To illustrate how to obtain optimal vaccination strategies based on the mean and quantiles
of the total size of an outbreak, we present a simulation study which has been motivated by
an outbreak of avian influenza in humans that occurred in Indonesia in 2006. The spread
of this disease can be considered as an SEIR epidemic and therefore its early spread
can be approximated by a CMJ branching process. In our simulations, we consider an
offspring mean of 1.14, so the corresponding CMJ process is supercritical and hence a
vaccination strategy (or some other mitigation measure) should be applied in order to
control the outbreak. It is known (see Yang et al.[142]) that for the transmission of
the avian influenza in humans, the latent period (the period elapsing between infection
of an individual and the beginning of his/her infectious period) has a probable range
of 3-7 days and the infectious period has a probable range of 5-13 days. So, in our
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study we assume that the latent and infectious periods are independent random variables
which follow gamma distributions with means 5 and 9, and shape parameters 23 and 19,
respectively. Hence, approximately 95% of incubation periods are between 3 and 7 days
and approximately 95% of infectious periods are between 5 and 13 days. Furthermore,
we assume that during the infectious period, infections occur according to a homogeneous
Poisson process, independently of the duration of incubation and infectious periods. Since
the mean of the infectious period is 9 days and the offspring mean is 1.14, we assume
that this Poisson process has rate 1.14/9 = 0.126667. These kind of distributions are
appropriate for latent and infectious periods, and for the number of infections made
by a typical infective (see for example Daley and Gani [31], Farrington and Grant [40],
Farrington et al. [41] or Mode and Sleeman [98]). In Yang et al. [142], the spread of
avian influenza in humans is modelled using a households epidemic model (Ball et al.
[21]) and the local (i.e. within-household) basic reproduction number Ry is estimated to
be 1.14. For homogeneously mixing epidemic models, R, is given by the offspring mean of
the corresponding approximating CMJ branching process (Ball and Donnelly [18]). The
definition of Ry is more complicated for epidemic models with household structure (Pellis
et al. [110]). Moreover, it is possible for the epidemic in the population at large to be
subcritical when the local reproduction number is greater than one, and vice versa. Thus,
although our choice of 1.14 for the offspring mean of the CMJ process used to model the
early spread of the disease corresponds to the estimate of the local reproduction number
in Yang et al. [142], it may well not reflect the true Ry for a homogeneously mixing model
of avian influenza in humans. Finally, all the simulations start with a single index patient.

Assuming the previous modelling and taking into account the kind of vaccination
policies defined by ((I1.2)), we seek an optimal vaccination strategy belonging to the set

A" = {aars, 001 €A M € NU{0}, 13 < t, < 100},

where, for s > 0,

0, ifs <M
i, 001(8) =< 0.01(s — M), if M <s<M+t,
0.01t,, if M +t, <s.

We recall that M represents the number of days until the vaccination process starts,
0.01 (1%) determines the proportion of individuals vaccinated per day during the vacci-
nation process and t, indicates the duration of the vaccination process (in days). Notice
that 13 is the smallest value of t, such that the vaccinated process becomes subcritical.
On the other hand, when ¢, = 100, all individuals are vaccinated during the vaccination
process, minimizing the propagation of the virus.

The left plot in Figure 9.1 shows the behaviour of Ml]lvM,lOO,O.Ol’ for M € {0,1,...,21},
which has been estimated by using the Monte-Carlo simulation-method described in Sec-
tion 3.5 in Ball et al. [19]. Specifically, we have simulated 10 000 processes and from
them we have estimated ung_m, for each M € {0,1,...,21} and t, € {13+ k : k =
0,1,...,87}. Notice that, by Theorem I.1(a), when M increases the mean of the total
number of infected individuals also increases. We observe that for M greater than 11 (ver-
tical dotted line in the plot), the mean of the total number of new infected individuals in
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Figure 9.1: Left: Behaviour of estimated value of ugM 000, depending on M. Right:
Behaviour of estimated value of ,uévl 110001 depending on .

M‘01234567891011

tN arar |29 31 32 33 33 35 36 38 38 42 45 53

Table 9.1: Estimated optimal duration of vaccination depending on M.

an outbreak started with one infected individual is greater than 7 (horizontal dotted line
in the plot), the size of the outbreak detected in Indonesia (see Yang et al. [142]). Hence,
for each M € {0,1,...,11}, the optimal duration of the vaccination based on the mean,
topt. a1 18 given by
t(])\lgtvM,NJ - inf{t” : MétVM,tv,o.m < 7}

Table 9.1 shows the estimated optimal duration of vaccination depending on the number
of days until the vaccination process starts. One can observe that these optimal durations
increase when M increases.

Now, we focus our attention on M equal to 11 (the most unfavourable situation). The
right plot in Figure 9.1 shows the behavior of the estimates of Mﬁ,tv,0.0h which decreases in
a continuous way when ¢, increases, by Theorem I.1. We find that the optimal duration of
vaccination, again to guarantee a mean number of infected individuals no greater than 7, is
53 days (which means that at the end of the vaccination process, we have vaccinated 53%
of susceptible individuals), so vaccination ceases 64 days (more than two months) after the
start of an outbreak. The left plot in Figure 9.2 shows the distribution of the total number
of infected individuals in the outbreak after applying this optimal vaccination procedure.
Obviously, although the mean of this distribution is 7 (dotted line in the plot), there exists
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Figure 9.2: Left: Histogram of simulated total number of new infected individuals for
M =11 and t, = 53. Right: Histogram of simulated time to extinction for M = 11 and
t, = H3.

a positive probability that more than 7 individuals are infected by the virus, which is less
than 0.5, because of the skewness of the distribution. Indeed, Lss.o.01,0.703 1S estimated
by 7, that is, vaccinating 53% of susceptible individuals guarantees that at least 70.3% of
new outbreaks infect no more than 7 individuals. Table 9.2 quantifies this probability as
well as the probabilities of being no greater than other upper bounds. The greater that
probability is, the greater will be the total number of infected individuals. Hence, when
the vaccination policy aq1 53,001 is applied, more than 90% of new outbreaks infect no more
than 25 individuals. Moreover, the right plot in Figure 9.2 shows the distribution of the
time to extinction of outbreaks started with one infected individual when one applies this
policy. We estimate that 55.7% of the outbreaks become extinct before 32 days (dotted
line in the plot), the observed value for the outbreak detected in Indonesia (see Yang et
al.[142]).

For fixed p = 0.90, a high probability, xﬁ’l Lt0.0.01,0.90 decreases as a step function in
t,, according to Theorem 1.2. The left plot in Figure 9.3 shows this behavior. Finally,
notice that, although ultimately all susceptible individuals are vaccinated, at least 10% of
new outbreaks infect more than 20 individuals, since this particular vaccination strategy
takes a time (100 days) to be completely applied (in general, because M > 0 and py # 1).
Moreover, since tf)\;mgogo is estimated by 64, we deduce that the optimal vaccination
coverage is 64%. The same behaviour is found for p = 0.95, where té\;t’o.%zg is estimated
by 55, see right plot in Figure 9.3.

Remark 1.3 For the computer simulations, we used the language and environment for
statistical computing and graphics R (“GNU §”) (see [112]).

The results from this chapter are published by Ball, Gonzalez, Martinez and Slavtchova—
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x ‘7 15 25 50 75 100

P(N, (oo)ﬁx)‘O.?OB 0.845 0.932 0.992 0998 1

a11,53,0.01

Table 9.2: Estimated probabilities of the total number of infected individuals, after ap-
plying optimal vaccination policy a1 53,0.01-
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Bojkova in [20].
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BP in cancer modelling
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Chapter 10

Two—type decomposable branching
processes

10.1 Introduction

This chapter is concerned with applications of branching models in different medical,
biological and environmental contexts where we find a general pattern of populations
that, due to a small reproductive ratio of the individuals/cells, will extinct after some
time, but as a result of a random occurrence of mutations this trend could be changed
dramatically. Such populations are, for example, the viruses which may become resistant
after antibiotics treatment, some insects populations after hybridization and others. Our
leading example will be the appearance of cancer cells after chemotherapy and we will now
be interested in the most basic question regarding the evolutionary dynamics of cancer
cells: how long does it take for a population to generate a single cell that will start a
pathway with indefinite survival? Or in other words what is the probability of success
or failure of the anti-cancer therapy? A typical situation of such populations is observed
after chemotherapy (see e. g. Iwasa et al. [63], [64] and Nowak et al. [100] together with
references therein). The chemotherapy reduces the capacity of division of the cancer cells,
which should lead to the destruction of tumors. However, sometimes mutations in the
cells provide resistance to the therapy. This new type of cells has a higher reproduction
and can avoid extinction.

Having in mind all the examples given above, it is of outstanding importance to have
good estimates of the probability of escaping extinction and related aspects, such as the
distribution of number of mutations which implies escaping extinction, the distribution
of waiting times until escape. It was done in discrete-time setting by Serra and Haccou
[117] and Serra [116] using discrete—time Galton—Watson branching processes (GWBP)
and as pointed out there mathematically discrete—time models are much easier to handle
than their continuous counterparts. In this chapter we will generalize and expand some
of these estimates in continuous-time setting using age-dependent branching processes.
Although, that at first glance mathematically this seems a methodological step, it turns
out to be not that easy to tackle such problems in a general setting.

Let us shortly remind that branching processes have been intensively studied during
the last decades. Classical references are the books of Harris [60], Athreya and Ney
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[12], Jagers [67], and Mode [97]. For recent books, with emphasis on applications, see
Axelrod and Kimmel [74], Haccou et al. [52] and also Durrett [35], especially for branching
modeling in cancer. For a nice example of how branching processes can be used to solve
important problems in biology and medicine, the reader is referred to the papers of Iwasa
et al. [63], [64]. The close-related research related to the waiting times to extinction are
some results of the author reviewed in the paper [124].

This chapter is organized as follows: Section 10.2 introduces the branching process
model with two types of cells in continuous time. Section 10.3 contains the main results
and proofs. In Theorem J.1 we prove the basic integral equations for probability generat-
ing function (p.g.f.) of the process itself. In Theorem J.2 of Subsection 10.3.2 we obtain
the p.g.f. of both the number of mutations occurred up to time ¢ and the number of
mutations to the escape type cells in the whole process. In the reminder of this section
we studied the distribution of the waiting time 7', which is actually the first moment in
time when a mutation cell will start the lineage that will never go extinct (Theorem J.3).
More precisely we obtain its distribution, which is actually degenerate at infinity and the
conditional expectation of T, conditioned of being finite. As a consequence of the results
in Theorem J.3 we show how one can obtain the probability of immediate escape from
extinction in terms of modified hazard function of the random variable T, conditioned in
addition on non—extinction of the process of type 1 cells, which have subcritical repro-
duction. Finally, we end with some concluding remarks and topics for further research.

10.2 Formulation of the model

We will first outline an age-dependent branching process with one type of cells. Consider
a cell proliferation process starting at time 0 with a single progenitor of type 1 of age 0
whose life-length 7 has distribution G(t) = P(r < t), G(0T) = 0, i.e. Z(0) = 1. With
probability px, £ > 0 it produces at the end of its life k£ similar cells of age 0, which
reproduce independently with the same distribution of the life-length 7 and reproduction

distribution {py, k > 0}, Z pr = 1. Provided that there is at least one offspring, the

k=0
death—and-reproduction process is repeated, and continues as long as individuals/cells

exist. The single-type process {Z(t),t > 0} or the so—called Bellman—Harris branching
process (BHBP) together with proper biological applications is studied by Jagers [67] and
more theoretically by Athreya and Ney [12].

Now we present a two—type decomposable age-dependent branching model (also known
as BHBP with two types of cells) {Z°(t), Z'(t),t>0}, where {Z°(t),t>0} and {Z'(t), t>0}
denote the number of cells of type 0 and type 1 at time t respectively. Suppose that cells
of type 1 are subcritical, i.e. have reproduction mean m;, 0 < m; < 1, and that each
one of their descendants can mutate at birth, independently of the others, to type 0
cells with probability u, 0 < u < 1. Individuals/cells of type 0 are supercritical, i.e.
have reproduction mean mgy, 1 < mgy < oo, and there is no backward mutation. Let us
mention here that if no mutation appear (u = 0) then the process will be described by
two independent classical single-type BHBP.

By Gi(t) = P(r; < t), G;(0%) = 0,4 = 0,1 we denote the distribution of the life-
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lengths 7; of the cells of type 0 and type 1 and by v;, ¢ = 0, 1 the offspring of type 7 cells,
1=0,1.

Let us introduce the followmg notations:

Filt; so,51) = E(sy Vs? V| 20(0) = 1, 29(0) = 0, # i), for i = 0,1,

F(t;s) = (Fo(t;s), Fi(t;s)), s = (o, 51)-

Unless stated otherwise, we assume that the process starts with just one cell of type 1,
ie. Z°(0) =0 and Z'(0) = 1. The p.g.f. of the offspring v; of type i cells will be denoted

by fi(s),i=0,1.

Similar results of the discrete version of the two-type branching process, i.e. GWBP
are obtained by Serra [116] and Haccou and Serra [117], where the distribution of the
waiting time to produce a cell that will escape extinction, is studied.

10.3 Main results

10.3.1 Basic integral equation

In the following theorem we will obtain the basic integral equation for the p.g.f. of the
age—dependent branching process defined in Section 10.2.

Theorem J.1 The p.g.f. F(t;s0,1) satisfies the following integral equations

(J]_) Fl(t S0, 81) = 81(1 —G1 / f1 UFo(t—y, So) -+ (]_ —U)Fl( —Y; So, 81))dG1( )
and
(JZ) F()(t, So, 81) F()(t So) = 80(1 — GO / f() F() t — Y, 80))dG0( )

where

E(Ov S0, Sl) = Si, ’S’L’ S 177/ = 07 L.

Proof. We start with a derivation of the basic integral equation ((J.1)). A decom-
position of the sample space €2 in accordance with the life-length 71 and number v of
offspring of the initial cell of type 1 suggests the relation:
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Fi(t;s9,81) =E <E(s§0(t)slzl(t)\Z1(0) =1,2%0) =0, {r, 1/1})>

= s1(1 — Gi(t))
/ 4G (y ZPZ ( ) oIS (L= ) Z0(0) = k, 21(0) = - k)
= s1(1 = G1(t))

/dG1 Zplj j () (1 — w)H(E (s 2°00) = 1, 21(0) = 0))x

(E(sq st y’\ZO<0> 0,2'(0) = 1)y ~*

~+

si(1—=Gi(t) + [ filuFo(t —y;so) + (L —u) Fi(t — y; 50, 51))dCGr(y),
0
where {pi, k > 0} is the distribution of the offspring of type 1 cells. Equation ((J.2)) is
derived in a similar way. Notice that this equation is the integral equation obtained for
the classical BHBP. O
Note that when G is the unit step function

0, fort <1,
Gu(t) = { 1, fort>1,

then ((J.1)) reduces to a functional iteration formula for F'(n; sg, s1) obtained by Serra in
[116]; while if

0, for t <0,
Gi(t) = { 1—e ™, fort>0,

then we have a two—type Markov branching process allowing mutations.

Let us mention here that the result in continuous time is rather different from that of
Serra [116] using GWBP, where actually the p.g.f. of the process is reduced to the single—
type GWBP and after that is used significantly to study the distribution of the number
of mutations. On the other hand, here we would like to point out that using equations
((J.1)) and ((J.2)) one can study the asymptotic properties of the mean, variance and
higher moments of types 0 and 1 cells when ¢ — oo, which is left for a later stage.

10.3.2 Mutants and probability of extinction

Unless mutations occur, the process of interest will be a single-type subcritical BHBP and
it is the appearance of mutants that makes the study of such populations an interesting
task. That is why it is important to study the total number of mutations that occur
in the whole process. This random quantity will play a crucial role in determining the
extinction probability of the process.

Consider the random variable (r.v.) I(t), t > 0, being the total number of mutants
produced until time ¢ (inclusive), and let I be the r.v. that represents the number of
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mutants in the whole process. By mutant we mean a cell of type 0, whose mother is of
type 1. It is obvious that the sequence of r.v. I(t),t > 0, converges pointwise to the r.
v. I. In our next theorem, we use this convergence to establish a functional and integral
equation for the p.g.f. of I, denoted by h;(s) and of I(t), denoted by hy(s), respectively.

Theorem J.2 The p.g.f. hi(s) of I and hiw(s) of I(t) satisfy the equations
(J.3) hi(s) = fi(us + (1 —u)h(s)),

(3.0 hiy(5) = 1= Grl0) + [ il + (1= Wi (66 ),

for all s € [0, 1].

Proof. First we establish a recursive relation for the p.g.f. of the r.v. I(t),¢ > 0. We
will use again a decomposition of the sample space €2 in accordance with the life-length
71 and the number of offspring 14 of the initial cell of type 1. It is clear that I(t) = 0, if

vi—rio

71 > t with probability 1 — G4(t), and I(t) = v1p + Z (t — 1), when 7 < t, where

V10 € Bi(v1,u) is the number of mutations between the descendants and v; — vy is the
number of type 1 cells, produced by the initial cell. Therefore

E(s'®|Z1(0) = 1, 2°(0) = 0)

v1—vi10

t vio+ Z Li(t —
:(1—G1(t))so+/0 dG1(y)E | s i=0

v1—vi10

> L(t—y)

t
=1-—Gi(t) +/ dGi(y)E | s"1° x s i=0
0

vi—vio

> Lt—y)

¢
=1-—Gi(t) +/ dGi(y)E |E | s"° x s =0 |(v1,v10)
0

:1—G1(t)+/0t Zplji (2) B(1 — u) sk x EsTiot Htv)
:1—G1(t)+/0t Z;sz]:( ) ML= w)? 7 " X (hrg—y)(s)) 7"

=1-— Gt / fi(us+ (1 — U)hl(t ( NAG1(y),

dG1(y)

dG1(y)
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where I;(t) are independent identically distributed copies of I(t) and hy)(s) = 1. After

that, using the techniques of embedded generation process (see Athreya and Ney, p. 141

[12]) we obtain that the result of the number of mutations in the whole process proved

by Serra [116] for Galton—Watson branching processes remains true for age—dependent

branching processes. &
We now proceed to determine the probability of extinction. Using the notation

q =P[Z°(t) = Z'(t) =0 for some t > 0]2°(0) =1,2'(0) = 0],

q =P[Z°(t) = Z'(t) =0 for some t > 0]2°(0) =0, 2'(0) = 1],

it follows, from the classical result on the extinction of branching processes, that ¢y is
the smallest root of the equation ¢y = fo(qo) in the interval [0, 1]. To determine ¢;, notice
that extinction of the process occurs if and only if all the supercritical single-type BHBP
starting from the mutants die out, since m; < 1. Therefore, since there are I such
processes, we have

¢ = Elgg] = hi(qo).

Then, we deduce that ¢; < 1, since my > 1 and ¢g < 1. Let us remind that assuming
small mutation rate u, Iwasa et al. [63], [64] provided approximations for particular
reproduction laws, namely for Poisson and geometric distributions. Their results extend
to even more complex scheme of mutations leading to branching processes with more than
two types of individuals.

10.3.3 Time to escape extinction

Now, we consider the r. v. T', which represents the time to escape extinction, i.e. the first
time in which a successful mutant is produced. By successful mutant we mean a mutant
that is able to start a single-type BHBP that allows indefinite survival. This variable
takes values in the set (0, 4+o00], with T'= oo, if no successful mutant is produced.

Theorem J.3 The distribution of T has the following properties:
(i) P(T > t) = hiwy(q) = Q, for t>0,

1 oo
(i) BT < o) = = [ lha(an) — il
41 Jo
where Q; are defined by
Qi =1—Gi(t) +/ filugo + (1 —u)Q—y)dG1(y)
0

Proof. To prove (i), observe that 7" > ¢ means that all mutants that occurred up to
time t were unsuccessful. Therefore,

P(T > t) = E(gg™) = huw (q0)-



10.3. Main results 139

To prove (ii), observe that (7' > t);>0 | (1" = 00) and it implies
]P(T > t)tZO \L ]P)(T = OO)

Then from (i)
lim P(T >t) = Lim 7oy (40)

and as I(t) converges pointwise to I, it follows
P(T =o0) = tlgglo hiwy(q0) = hi(q) = a1

For proving (iii) observe that 7' > 0 and, therefore,
MﬂT<w%i/(bP@§ﬂT<mmﬁ
0

o P(T <t T
0 I—q

1 o0
_ /'u_m_MTgmﬁ
L—aq1 Jo
1 o0
= P(T' >1t) —q)dt
— [ ®r>0-w
1 o0
T 1-q /0 (hi@)(90) — qu)dt,
with hy)(s) defined by equation ((J.4)). O

10.3.4 Immediate risk of escape

Another natural characterization of the appearance of a successful mutant is the prob-
ability of producing a successful mutant in a very short time interval dt after time ¢,
given that it has not been produced yet, called immediate risk of escape extinction. We
will show in this subsection how one can compute this probability theoretically using the
results of Theorem J.3.

In general one could use the hazard function of the variable T, defined by P(T" €
(t,t + dt)|T > t), but in this case we need to modify this function, as it is done in
discrete-time setting (see Serra and Haccou [117]). It is due to the fact that the r. v. T
has a defective distribution (7" = oo when no successful mutant is produced) and in fact,
if there are no subcritical individuals (i.e. of type 1) alive at time ¢, the probability of
producing a successful mutant immediately after this moment is zero. That is why we
will use the following modification of the standard hazard function:

(J.5) g(t)dt =P(T € (t,t + dt|T > t, Z'(t) > 0)).

We have
P(T € (t,t+dt))
P(T >t,Z'(t) > 0)
P(T € (t,t + dt))
P(T >t)—P(T >t Z(t) =0)

g(t)dt =
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The probabilities P(T" > t) and P(T € (t,t + dt)) are computed using Theorem J.3. The
second term in the denominator satisfies the following recursive formula:

P(T >t,Z'(t)=0)=P(T > t,Z*(t) = 0|r < t)P(1y < t)
+P(T > t,Z(t) = O|ry > t)P(ry > t)

— /OtIP’(T >t,Z(t) = 0|r = y)dGi(y)

- /0 DD (i) (ugo)* (1 = w)P(T > t, Z'(t) = 0))’ " dGu(y)

- /O filugo + (1 —w)P(T >t —y, Z'(t — y) = 0))dG1(y),

using that 7 is the life-time and {pyx, k > 0} is the distribution of the offspring of the
initial cell of type 1 and clearly the second conditional probability term is equal to 0.
Let us remind here that we receive the similar recursive formula as that established
by Serra and Haccou [117].
Indeed, from

(J.6) P(I'>t,Z(t)=0)= /Ot filugo + (1 = w)P(T > t —y, Z'(t — y) = 0))dG\(y)

when
0, fort <1,

Gu(t) = { 1, fort>1,

we obtain that
P(T >n,Z'(n) =0) = fi(ug + (1 —uw)P(T >n—1,Z (n—1) =0)), n>1,

which is exactly the result in Serra and Haccou [117].
So, the modified hazard function is given by

P(T e (t,t+dt))
P(T>t)—P(T >t,Z'(t) =0)
- Qidt
CQ—P(T >t ,7Z(t) =0)

g(t)dt =

where P(T > t, Z*(t) = 0) satisfies equation ((J.6)).

10.4 Concluding remarks

First, we would like to conclude that this study is the first step towards the expanding of
the theory and methods using continuous-time counterparts of the discrete-time GWBP
for different schemes leading to mutations. In the context of cancer dynamics, resistance
to the anti—cancer therapy and the possible appearance of metastasis we are tackling the
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problems of the distribution of the first moment of the occurrence of “successful” mutant
together with the growth of the population of the mutant cells. Let us mention here that
once the results are proved for models with one type of mutation, they could be extended
to more than one type and different mutation schemes, including backward and/or forward
mutations. Moreover, the branching models with continuous-time are more realistic and
reveal more adequately and accurately the behavior of cell populations with overlapping
generations.

Secondly, we found the analytical decisions in terms of p.g.f. of these r.v.s, which could
be used subsequently to derive their moments and corresponding limit theorems for the
BHBP driving the development of the real process, which might be considered per se as an
innovation in application of branching theory. In this connection, the following questions
for further research could be pointed out: to study the distribution of the waiting time to
attain certain levels of the branching processes in continuous—time setting and to obtain
limiting results for its distribution.

Thirdly, we obtain also a theoretical formulae for immediate risk of avoiding extinction
that could be used later on for the comparison of the behavior of the modified hazard
function for different offspring distributions.

Finally, the results proved generalize the similar ones obtained by Serra [116], Serra
and Haccou [117] and those for the exponential models of growth developed by Iwasa et
al. [63], [64] and Durrett [35], as well.

The results from this chapter are published by Slavtchova-Bojkova in [125].
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Chapter 11

Branching processes in continuous
time as models of mutations:
computational approaches and
algorithms

11.1 Introduction

The motivation for this study comes from the occurrence of mutant type cells after
chemotherapy treatment of cancer and we will now be tackling some basic questions
regarding the evolutionary dynamics of cancer cells using branching processes theory. In
a cancer research context, the distribution of both - the waiting time of the first mutation
that founds a family line that does not die out and the time for attaining high level of
the mutation type cell population, are of clinical importance since the extent of resistance
determines the choice of the therapy and patient diagnosis.

We are modeling a situation, where after local eradication of cancer in a given organ-
ism and application of proper therapy, there are cured cells, called type 1 cells, which
due to the applied treatment have a reduced capacity for division. In this sense, if the
treatment is successful, the applied therapy will lead to the destruction of the tumour.
However, during the reproduction phase of the treated cells, a mutation could appear.
That results in the appearance of new type of cells, called type 0 cells. The type 0 cells
differ from the initial type 1 cells, mainly by their high reproduction rate, which implies
they are resistant to the applied therapy. Moreover, what is essential here, is that some
of the mutants, called ”successful” mutants or cells of escape type, may start a lineage
that could avoid extinction. The two-type branching process model is a natural candi-
date for mathematical model of this real world situation because of the basic pattern of
independent cell evolution, consisting of birth, life, reproduction and death. The process
starts with one or more cells of type 1 with low capacity for division and, with certain
small probability, it is possible that these cells could mutate and lead to the appearance
of type 0 cells. Let us mention also that cells of type 0 could not produce cells of type 1,
so the resulting branching process is reducible. In addition, it is worth noticing that if a
mutation does not occur, then there will be only one type of cells in the organism, which

143
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correspond to the single-type branching process model. On the other hand, every mutant
cell of type 0 starts an independent branching process with high reproduction rate of cells.
The use of a branching process model in continuous time is basically motivated by
the studies which have shown that the life time of a cell is not deterministic but random
by nature (see Freise et al.[44], Krzyzanski et al.[80]). Moreover, different types of cells
have different life spans and they could depend on external factors like nutrition or stress
in the environment (see Lodish et al. [84]). This means that modeling the cellular
life time as a continuous random variable is a more suitable approach. That is why we
consider the two-type decomposable branching process as a model in which every cell
lives independently, has a continuously distributed life time, specific for each type, and
at the end of its life it reproduces independently of the life length or dies. This model is
known in the branching processes literature as a decomposable two-type Bellman—Harris
branching process (BHBP) or age-dependent BP, meaning that the probability that a cell
living at time ¢ dies in the interval (¢,¢ + dt) is, in general, a non-constant function of ¢.
Branching processes have been intensively studied during the last decades. Classical
references are the books of Harris [60], Athreya and Ney [12], Jagers [67], and Mode
[96]. For recent books, with emphasis on biological applications, see Kimmel and Axelrod
[74], Haccou et al. [52] and also Durrett [35], especially for branching modeling in cancer.
For a nice example of how branching processes can be used to solve important problems
in biology and medicine, the reader is referred to the papers of Iwasa et al. [63], [64].
This chapter is organized as follows: Section 11.2 introduces the branching process
model with two types of cells in continuous time and the basic integral equations for
probability generating function (p.g.f.) of the process itself and of both the number
of mutations occurred up to time t and the number of mutations to the escape type
cells in the whole process, obtained by Slavtchova—Bojkova [125]. The aim of the next
Section 11.3 is to prove an analogue of the classical limit result of Kesten and Stigum for
the continuous time counterpart of the two-type Galton—Watson BP revealing the limit
behaviour of the mutant cell population and characterizing its limit random variable as
well. This result is also the first step towards analysis of the probability of attaining high
levels of the same cellular population. In the remainder of this section we studied the
distribution of the event that jointly the first ”successful” mutant does not appear and
no cells of type 1 exist at time ¢ and an integral equation is obtained (Theorem K.5).
Another interesting and new result in Section 11.4 is the new algorithm developed
for the numerical approximation of the distribution of waiting time to the appearance of
the ”successful” mutant. It is important that in comparison with the non-decomposable
branching processes here the integral equations obtained are not of renewal type, making
the task rather different from the existing methodologies for finding solutions of such equa-
tions. The final goal is to investigate the behaviour of the hazard function for the waiting
time to appearance of the first "successful” mutant. What is surprising in continuous time
is that the hazard function depends strongly on the chosen type of the life length distri-
bution and it could be very simple (as in the case of exponentially distributed life length)
or much more complex (as in the case of trimmed normal distribution). That is why the
use of BHBP, where life length is continuous random variable, gives us opportunity to
investigate much more complex hazard functions than the one in Galton-Watson BP. The
numerical approach for calculating the distribution of the waiting time until ”successful”
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mutant arrives and the associated hazard function is suitable for a wide range of differ-
ent life time distributions, including smoothed empirical distributions. In Section 11.5
we presented two examples illustrating the features of the hazard function. Finally, in
Section 11.6 an approach to simulation of the two-type BHBP is described. Experimental
results for the expectation and the distribution of the time to attain high levels by the
mutant cells are provided. We end the chapter with some concluding remarks.

11.2 Notations, model and integral equations

We will first define the BHBP {Z(¢),¢t > 0} with one type of cells. The single-type
BHBP together with proper biological applications is studied by Jagers [67] and more
theoretically by Athreya and Ney [12]. Consider a cell proliferation process, which without
loss of generality is starting at time 0 with a single progenitor of age 0, i.e. Z(0) = 1,
whose life length 7 has distribution G(¢t) = P(7 < t), G(07) = 0. From mathematical
point of view the results could be generalized for more than one cell at the beginning -
random or non-random number. At the end of its life, it produces k similar cells of age 0,
k > 0, with probability p, which are living and reproduce independently with the same

distribution of the life length 7 and reproduction distribution {px }r>o, Z pr = 1. For

0
the sake of brevity we will denote from now on by the couple (f(s), G(t)) a BHBP with
probability generating function (p.g.f.) f(s) of the offspring distribution {p }r>0, and the
distribution G(t) = P(1 < t) of the life time 7 of each cell.

Provided that there is at least one offspring, the death-and-reproduction process is
repeated, and continues as long as cells exist. So, starting with initial number of Z(0)
cells, the process Z(t) is interpreted as the number of existing cells in the population at
time ¢ > 0.

Now, in order to introduce the mutations during the reproduction process, we present a
two-type decomposable BHBP {Z°(t), Z'(¢),t > 0}, where {Z°(¢),¢t > 0} and {Z'(t),t >
0} denote the number of cells of type 0 and type 1 at time ¢ respectively. Suppose that
cells of type 1 are subcritical, i.e. have reproduction mean my, 0 < m; < 1, and that each
one of their descendants can mutate at birth, independently of the others, to type 0 cells
with probability u, 0 < u < 1. Cells of type 0 are supercritical, i.e. have reproduction
mean mg, 1 < mg < oo, and there is no backward mutation. Let us mention here that
if no mutation appear (u = 0) then the process will be described by two independent
classical single-type BHBP.

From theoretical standpoint however, it is important to emphasize here that the pro-
cesses of interest are decomposable and consist of two sets of types: type 1 cells, which can
reproduce themselves and with positive probability eventually can mutate to type 0 cells,
forms one class. Another class is consisting of 0 type cells, which can reproduce them-
selves only. This class is final, i.e. once the process hits it, will stay there. While for the
non-decomposable multi-type BHBP there are well-known results about the probability
of extinction and limit theorems for their asymptotic behaviour, as well (see Athreya and
Ney [12], Mode [96]), for their decomposable counterparts the approach turns out to be
particular in any specific case. That is why our investigation proposes new methodology
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with respect to both the model and the techniques used.

11.2.1 Preliminary theoretical results

As we will use some previously obtained results (see Slavtchova-Bojkova [125]) for the
problems under this study, that is why we will shortly remind them in what follows.

By G;(t) = P(r; <t), G;(07) = 0, we denote the distribution of the life lengths 7;, by
v;, the offspring of type ¢ cells and by f;(s) the p.g.f. of the offspring v;, corresponding to
the distributions {p;x }r>0, of type i, i = 0,1 cells.

For the p.g.f. of the process {Z°(t), Z'(t),t > 0} it is proved (see Slavtchova-Bojkova
[125]) that Fy(t; so,81) = E(sZ ©sZ | Zi(0) = 1, 29(0) = 0,5 # i) for i = 0, 1 satisfy the
following system of integral equations:

(K.1) Fy(t; s0,51) = Fo(t; s0) = so(1 — Go(t)) + /Ot fo(Fo(t — y; $0))dGo(y),

and
(K.2) Fi(t;s0,51) = 81(1—G1(t))+/0 fi(uFo(t—y; so) + (1 —u) Fi(t —y; s0, 51))dG1(y),

where
Fi(0; 80, 81) = 83, s <1, =0, 1.

Concerning the probability of extinction/survival of type i cells, ¢ = 0,1 it turned out
that its behaviour depends on the total number of mutations that appear in the whole
process. Given that Z°(0) = 0, Z'(0) = 1, for the random variable (r.v.) I(t), t > 0, being
the total number of mutants produced until time ¢ (inclusive) and the r.v. I being the
number of mutants in the whole process, it is established (see Slavtchova-Bojkova [125]):

Theorem K.1 The p.g.f. hi(s) of I and hiu(s) of I(t) satisfy the functional and integral
equations respectively

(K.3) hi(s) = fi(us+ (1 —wu)h(s)),

(K.4) hiw(s) =1—Gi(t) + /0 fi(us + (1 = w)hrp—y (5))dGi(y),
for all s € [0, 1].

Remark K.1 As an immediate consequence of functional equation (K.3), by differentiat-

ing and replacing s by 1, it yields E[I] = #m By second differentiating of (K.3), us-

ing that Var[I] = h(1)4+R,(1)—h, (1), it is easy to find that Var[I] = uml(l[l_ﬁg(_lrf;))TQLUQUQ

(the same as in Serra and Haccou [117]), where o is the variance of the offspring distri-
bution of type 1 cells.
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Moreover, from (K.4) by differentiating and taking s = 1 one can obtain equations for
the moments of the number of mutants at time ¢, which is left for further study.

Now, for the probability of extinction/survival of type i cells, i = 0,1, we have, that
qo = P[Z°(t) = Z'(t) = 0 for some t > 0/Z°(0) = 1, Z*(0) = 0], is the smallest root of the
equation gy = fo(qo) in the interval [0, 1] (see Jagers [67], p. 140). Having in mind that
q =P[Z°(t) = Z'(t) = 0 for some t > 0/2°(0) = 0, Z*(0) = 1], then the extinction of
the process occurs, if and only if, all the supercritical (meaning that mq > 1) single-type
BHBP starting from the mutants die out, since m; < 1. Therefore, q; = E[¢}] = hr(qo).

Let us recall that by "successful” mutant we mean a mutant that is able to start a
single-type BHBP that allows indefinite survival. We will be interested in the distribution
of the r. v. T, meaning the waiting time until first ”successful” mutant appears. This
variable takes values in the set (0,4o00], with 7" = oo, if no ”successful” mutant is pro-
duced. Having in mind the special role of T"in the further investigations of the recurrence
time of cancer we also recall the following result:

Theorem K.2 (Slavtchova—Bogkova [125]) The distribution of T has the following prop-
erties:
(i) P(T > t) = hiwy(q) = Q, for t>0,
(i) BTIT < 50) = 1= [ [broo o) - il
—a
where Q; are defined by

(K.5) Qi =1—-Gi(t) + /Ot filugo + (1 —u)Q—y)dG1(y)

with Qo = 1 and qo and q, are the extinction probabilities of the process, starting with one
cell of type 0 and one cell of type 1, respectively.

We will apply this result in Section 11.4.

11.2.2 Comparison with single-type BHBP

It is important to recall the known results in one dimensional case, or otherwise for
the single-type BHBP because if there are no mutations, then Z'(¢) will be exactly a
single-type BHBP and in what follows we present the well-known limit theorem for these
processes, normalized by their expected value. It is convenient to point out here that in
supercritical case the BHBP are characterized by exponentially growing expected value,
where the rate of growth is the so-called Malthusian parameter of the processes, which
we will introduce in what follows. But, on the contrary, if there appears a mutation, then
it will lead to a new two-type BHBP, different from the single-type BHBP. However, the
result for the single-type case is useful for revealing the limit behaviour of the two-type
one.

It is well-known, that in continuous time the behaviour of single-type BHBP {Z(t),t >
0}, and of other more generalized BP in continuous time as well, is driven not only by
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the offspring mean (reflecting the capacity of a cell for division), but also by so-called
Malthusian parameter. The Malthusian parameter v of BHBP — (f(s), G(t)) is defined
as the root of the equation

A / eOtdG () = 1,
0

where A = f’(1). This way the BHBP — (f(s),G(t)) is called subcritical, critical or
supercritical if « < 0 (A < 1) (in case it exists), a =0 (A=1)ora >0 (4 > 1),
respectively (see Jagers [67], p. 131, p. 132, p. 156).

With the following result we would like to investigate the time for the mutation cells
to reach high levels. First let us remind that E[Z(¢)] ~ ce®?, as t — oo, for some proper
constant ¢ € R (see Atreya and Ney [12], Theorem 5.3A, p. 152). Also we need to recall
the classical result for supercritical BHBP, namely the analogue of Kesten and Stigum
theorem, which is the refinement of the estimates of the growth of processes on the set of
non-extinction.

Theorem K.3 (see Athreya and Ney [12], Theorem IV.2, p. 172) Assume that A > 1.
(i) If > pjjlogj = oo then W (t) = Z(t)/ce* — 0 in probability;
(it) If > pjjlogj < oo then W(t) converges in distribution to a non-negative r.v. W
having the following properties:
a) EW] =1;
b) The Laplace transform ow (\) = Ee™*W X > 0, is the unique solution of the equation

(K.6) ow () = / " Flow (e )dG(y)

i the class

(K.7) C=1{p: o\ = / T e NAE(t), F(04) < 1, / TR = 1)
) PW =0)=q=P(Z(t) =0 for some t);

d) The distribution of W is absolutely continuous on (0, 00).

11.3 Theoretical results

In the next theorem we will establish a limit result (in distribution) for the process

Z0(t)JEZO(t).

Theorem K.4 If the reproduction law {pox}tr>0 of type O cells satisfies the following
condition:

(K.8) Zpojjlogj < 00,

then there exists lim Z°(t)/e®" = U in distribution. Moreover, the Laplace transform ¢y

t—o0
of U satisfies the integral equation

(K.9) bu(\) = / " Fulupwo(he™) + (1 — w)du (Ae =) dGh (y)
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where pyo satisfies

(K.10) o) = / " holpwo (e ") dGioly)

and «og s the Malthusian parameter, defined as the smallest non-negative root of the
equation my [;° e~ dGy(t) = 1.

Proof.

First we will prove the convergence in distribution of the process Z°(t)/e®*. Secondly,
we will establish the integral equation for the limit r.v.

Let us notice here that due to the assumption of independence in cells evolution, with
every newly born mutant (meaning that the mother cell is of type 1) cell i of type 0 starts
an independent single-type Z?(¢), Z?(0) = 1 BHBP with supercritical reproduction rate
mo > 1, where ¢ = 1,2,...,1(t). Moreover all these processes are identically distributed
as the BHBP- (fo(s), Go(t)). Having in mind that Z'(0) = 1, then we obtain

Z ZO 0;)Is,<t, where ¢; is the birth time of the ¢ —th  mutant.

In what follows we will decompose every BHBP {Z?(t — ¢;)} as a difference of the total
number of cells born up to time ¢ and the total number of cells died up to time .

Let n)(t — &;) be the total number of cells of type 0 born up to time ¢ in the process
Z2(t — &;) with Z2(0) = 1 and p?(t — ;) be the number of type 0 cells that died up to
time ¢ in the same process. Let us denote

Z 7]2 ]15 <t

I(t)

Z,UZ 1[6 <t,

where I(t) is the total number of mutants produced until time ¢, satisfying equation (K.4)
and I(t) is independent of {n?(t — 4;)} and {ud(t — &;)}.

Then for the number Z°(t) of cells of type 0 existing at the moment ¢, we have the
representation

(K.11) Z°(t) = Sy (t) — Sa(t),

taking into account that the two-type process {Z°(t), Z'(t),t > 0} is such that Z°(0) =
0, Z1(0) = 1.

Under the conditions of the present theorem I(t) — I, as t — oo pointwise and
E[/] < oo.

On the other hand, we have for i > 1

t
m( ) — H;, in distribution,

eaot
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(see Doney [34], Theorem 1, p. 409) and from Theorem 2 (see Slavtchova-Bojkova and
Yanev [119], p. 39)

i (t)

o H;, in distribution, as t — oc.
e

Therefore as t — oo

I
(K.12) S0 > H;, in distribution
. caot 2 )
i=1
Sol) NS i i
(K.13) oot Z H;, in distribution.
=

From (K.11), (K.12) and(K.13) it follows that the process Z°(t)/e*! converges in
distribution to a certain r.v. U, say.

To obtain equation (K.9) we will use the integral equation (K.2) of the p.g.f. of the
{Z°(t), Z*(t),t > 0}. First we will consider the equation for Z°(¢) obtained from (K.2)
when Z1(t) = 0:

Fi(t; s0,1) = E(sy ?|2°(0) = 0,21(0) = 1) = 1 — G4 (1)

K.14 t
( ) + /o fi(wFo(t —y; s0) + (1 —w)Fi(t — y; 80,1))dG1(y).

Substituting s, = e~ **" in (K.14) we will get for the Laplace transform Ee=*2°(1)/¢*" of

the normalized process Z%(t) /e the following equation:

(K.15)
E(e—AZO(t)/eaot|Zo(O) — O, ZI(O) — ]_) =1 Gl(t)
t
+ / FiuFo(t — y; e M) + (L= u)Fy(t — y; 7M™ 1))dG (y) =
0

1 —-Gi(t)+

AZO(t*y) —agy

/\Zo(t y) e~ 0y _ e
/ fi(uEle” o0 T Z0(0) = 1] + (1 = w)E[e” o0 | Z°(0) = 0, Z*(0) = 1))G1 (y)

The rest of the argument follows by having in mind the result of Theorem K.2 and
the established existence of the limit of Z%(t)/e®?. Taking limit as t — oo in (K.15) we
have

du(A) = /Ooo Silupwo(Ae™ ) + (1 — u)du (Ae™ ™)) dGh (y),

where @0 is the Laplace transform of the r.v. W0 = lim;_, % and satisfies equations
(K.6) and (K.7). &
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The result of Theorem K.4 is a continuous analogue of Theorem 3.4 in discrete time
established in Serra [116]. It is however, only the first step towards finding the probability
of attaining high levels by the process Z°(t).

Theorem K.2 shows the probability Q; = P(T" > ¢) (a "successful” mutant has not
been born by time t) satisfies the integral equation (K.5). In the next theorem we will
prove that similar integral equation could be derived for P(T > t, Z*(t) = 0).

Theorem K.5 The joint probability that "successful” mutant has not been born yet and
we do not have cells of type 1 (with subcritical reproduction rate, my < 1) satisfies the
following integral equation:

(K.16) P(T >t,Z*(t) =0) = /fl(uqo + (1 —=uw)P(T>t—y,Z(t —y) =0))dG,(y).

Proof.
Using the law of total probability we can write

P(T>t,Z'(t)=0)=P(T >t,Z'(t)=0| 7 < t)P(r; < 1)
+P(T>t,2't) =07 > t)P(r; > 1)
=P(T>t,Z'(t)=0| 7 <t)P(ry < 1)

— /]P’(T >t72't) =01 =y)dGi(y).

If the initial cell of type 1 dies at time y it produces offspring at time ¢t = y with p.g.f.
f1(s). Then the event “we do not have a successful mutant and we do not have a cell of
type 1 at time t” is equivalent to the event “every cell from the offspring of the ancestor
is either a mutant at the moment ¢ or will lead to a generation of mutants only after
the moment ¢ and all of the produced mutants will start a BP that goes extinct”. This
happens if and only if all the mutants from the offspring of the initial cell lead to extinction
(with probability go for each) and all cells that are not mutants start a BP at time t = y
that will convert to mutants only to time ¢, all of which will be ”unsuccessful” (which has
probability P(T >t — y, Z'(t — y) = 0)).

The probability for mutation is u, so the probability for an offspring cell to become
an "unsuccessful” mutant is ugy and the probability to be normal cell but lead to ”un-
successful” mutants only is (1 — u)P(T >t —y, Z'(t —y) = 0). Then the probability for
all of the offspring cells (born at time y) to be either unsuccessful mutants or convert to
?unsuccessful” mutants only to time ¢ is fi(uqo + (1 —w)P(T >t —y, Z'(t —y) = 0)). So
we can write

P(T >t,Z*(t) =0) = /IP(T >t,ZYt) =0 1 = y)dGi(y)

— /fl(uqo +(1—uw)P(T >t—y, Z'(t —y) =0))dG(y).
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O

Remark K.2 The integral equations (K.5) and (K.16) are not renewal equations, al-
though they look similar, and we cannot apply the renewal theory (see Mitov and Omey
[91]) for their solution or asymptotic behaviour. However, these two integral equations can
be solved numerically. We also know that P(T > t) — P(T = o) and P(T > t, Z'(t) =
0) = P(T = o00) as t — co.

Remark K.3 We have that P(T > t, Z'(t) = 0) = P(T = oo, Z'(t) = 0) for everyt € R
due to the fact that we cannot have a “successful” mutant after time t if we do not have any
cells of type 1 left. Note that P(T = oo, Z'(t) =0) = P(T = oo | Z'(t) = 0)P(Z'(t) = 0),
where P(T = oo | Z'(t) = 0) < 1 since it could also happen that T <t | Z'(t) = 0 with
positive probability.

11.4 Approximations to the integral equations

In general we might not have an analytical form of the function G;(t), because it could
be derived from the data by using smoothing techniques (for example, kernel smoothing).
This means we need to use a numerical method for solving equation (K.5). What we gain
by using a numerical method is that it does not require to find the theoretical solution
and works not only for exponentially distributed life length, but also for much larger class
of distributions that have smooth probability density functions. Although it is possible
to estimate @y for each ¢ without an analytical form of the function Gy(.), the values of
that function at 0, h, 2h, ...t are needed to apply that method.

Despite there are many numerical methods for solving renewal equations in litera-
ture (see Mitov and Omey [90]) and finding the renewal function (see Xie [137] and
Bartholomew [23]), the equations (K.5) and (K.16) are not renewal ones and we need to
use another approach. This section presents numerical solutions to the integral equations
for P(T" > t) and P(T > t,Z*(t) = 0), which are then used for calculating the hazard
function, defined in Section 11.4.3. The presented approximations are suitable when the
distribution of life length G1(t) has smooth density function and G(0+) = 0.

11.4.1 Numerical approximation for P(T > t)

The probability for every mutant to time ¢ to initiate a process that eventually goes
extinet is Qy = P(T" > t) = 1 — Fp(t), where Fp(t) denotes the cumulative distribution
function of the r.v. T'. The algorithm presented below describes the numerical approach
for solving equation (K.5).

First consider the initial moment, ¢t = 0, when the branching process starts with a
single cell of type 1. Assuming G1(0+) = 0, we have that

(K.17) Qo=P(T>0)=1-Gy(0) =1,

i.e. Qo = 1. This assumption for the distribution of life length G;(t) is actually quite
natural because it states that the newly born cells do not die instantly after birth.
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h
Secondly for ¢ = h we can estimate the integral [ fi(ugo + (1 — u)Qn—,) dG1(y) (see
0

equation (K.5)) numerically by applying the right rectangle rule. If we do this and use
that Qo = 1 from equation (K.17), we get

Qn~1—Gi(h) + filugo + (1 —u)Qn_p) - G1(h)

(K.18) =1—-G1(h) + fi(ugo +1 —u) - Gy(h).

For t = 2h we can divide the integral in equation (K.5) in two parts:

/ fi(udo + (1 — u)Qan_y) dGi (y) = / fi(ugo + (1 — u)Qan_y) dG1 (y)
+ / filugo + (1 — u)Qan—y) dG1(y).

For each of the two parts we can use the right rectangle rule to approximate the integrals
and we get

Qan = 1 — G1(2h) + fi(ugo + (1 —uw)Qp) - [G1(h) — G1(0)]

(K.19) + fi(ugo + (1 — u)Qo) - [G1(2h) — G1(h)].

But we already know @y and @, from equations (K.17) and (K.18), so after substituting
them in equation (K.19) we can find Qap,.

We will consider now a more general case ¢ = kh and see how we can calculate
P(T > kh). As in the previous case of k = 2, we can divide the integral in k smaller parts:

kh

/fl(UqO + (1 = u)Qrr—y) dG1(y) =

0
nh

- Z / filugo + (1 — u)Qrr—y) dG1(y)

(n—=1)h
Then we can apply the right rectangle rule and get the following approximation:

Qrn =~ 1 — G1(kh)+

K. k
() + > (f1 (ugo + (1 = w)Qui—myn) - [Gr(nh) = Gr((n = 1)) ,

n=1

in which @, depends on the previous values Q—n)s, for all n = 1,..., k. By applying
equation (K.20) consecutively for k& = 0,1,...,t/h, we estimate the function @ in the
interval [0, t].
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11.4.2 Numerical approximation for P(T > t, Z'(t) = 0)

The probability P(T > ¢, Z'(t) = 0) satisfies the integral equation (K.16), similar to
equation (K.5). By applying the same technique as in Subsection 11.4.1 we can derive
the following approximation for P(T > ¢, Z'(t) = 0):

(K.21)
P(T > kh, Z\(kh) = 0) /fl(uqo + (1= WP(T > kh — y, Z\(kh — ) = 0)) dG4 (y)

0

k nh
-y / Fulugo + (1 — W)P(T > kh — y, Z'(kh — y) = 0)) dGy(y)
nzl(nfl)h

~ > filugo+ (1= w)P(T > (k—n)h, Z*((k — n)h) = 0)) - [G1(nh) — G1((n — 1)h)].

n=1

When k£ = 0 we have P(T > 0,Z'(0) = 0) = 0. Then by applying equation (K.21)
consecutively for k = 0,1,...,t/h we find the probability P(T' > ¢, Z'(t) = 0), i.e. the
solution to equation (K.21).

11.4.3 Numerical approximation for hazard function

In literature the hazard function is defined as the probability for an instantaneous failure,
on the condition it has not happened yet. In the context of the event of occurrence
of the first "successful” mutant, this standard definition represents the probability for
the instantaneous first ”successful” mutant to be born, given it has not been born yet.
However, if we have no longer cells of type 1 left in the population, then the probability for
such mutant to appear is zero. That is why we will consider a slightly modified definition
of hazard function, where it represents the probability for the instantaneous appearance of
the first ”successful” mutant, provided it has not appeared yet and there is still a positive
chance for it to appear. We define the hazard function as g(t)dt = P(T € [t,t + dt||T >
t, Z*(t) > 0), which can be written in the form

Fr(t)
P(T >t, Z'(t) > 0)’

(K.22) g(t) =

where F.(t) is the probability density function of 7. The denominator P(T > ¢, Z'(t) > 0)
in equation (K.22) satisfies

(K.23) T > .20 > 0) =BT > ) - BT > 620 =0)

=1-Fp(t) —P(T > t,Z'(t) = 0).

In Subsection 11.4.1 we have calculated the function Fr(t), from which we can also
calculate the derivative F7(t). By applying the numerical method we have calculated the
values Frp(h), Fr(2h), ..., Fp(t) from which we can approximate the derivative F'(kh) ~
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(Fr((k + 1)h) — Fr(kh))/h. In Subsection 11.4.2 we have calculated the probability
P(T > t, Z'(t) = 0). Substituting them in equation (K.22) and applying (K.23) gives us
the approximation for the function g(t).

Remark K.4 Notice that we do not require explicit form for the offspring p.g.f. of type 0
cells. All p.g.f. that correspond to the same probability for extinction gy produce the same
distribution of T and the same hazard function g(t). This follows from equations (K.5)
and (K.22), which show the distribution of T depends on qo, but not on the particular
form of fo(s). Notice also that equations (K.5) and (K.16) do not require to have explicit
form for Go(t), i.e. the appearance of "successful” mutants does not depend on the life
length of the mutant (type 0).

11.5 Application. Two interesting examples

We consider two examples of BHBP, both starting with a single cell of type 1, having the
same p.g.f. of the offspring distribution for type 1 cells, the same mutation probability
and the same extinction probability for type 0 cells. The only difference between the
two examples will be the choice of different life length distribution. This will allow us to
investigate the effect of choosing different life length models on the shape of the hazard
function g(t).

We will first define the parameters of the BP that will be kept the same for both
examples. The type 1 cells represent subcritical BP but they have a probability u = 0.20
for mutation to type 0, which has supercritical reproduction. Let the offspring p.g.f.
for type 1 cells be fi(s) = 0.625 + 0.375s%, which means that type 1 cell could either
have 0 offspring with probability 0.625 or 2 descendants with probability 0.375. Let the
extinction probability of BP, starting with a type 0 cell, be gy = 0.30.

As Example 1 we will consider a BP with exponential distribution for the life length
of cells of type 1 - G1(t) ~ Exp(10), i.e. exponential distribution with mean 10. As
Example 2 we will consider a BP with truncated normal distribution for the life length,
G1(t) ~ N,(10,2.5), i.e. normal distribution, conditional on [0, +00), that has mean
10 and standard deviation of 2.5. The use of truncated normal distribution is strictly
necessary because otherwise the life length could become negative. Although truncating
is theoretically required, the choice of small standard deviation makes the truncated
normal distribution very similar to the original one. With expected life length of 10 time
units and standard deviation of 2.5 time units, the probability for a negative realization
is less than 10~* . Thus the expected life length of the truncated normal distribution is
very close to 10 time units.

In Figures 11.1 and 11.2 are presented the results from applying the numerical method
in Example 1. In Figures 11.3 and 11.4 are presented the results of Example 2. The two
examples have the same parameters, the same expected life length of 10 time units, but
they have very different functional forms for the life length distribution.

In Figure 11.1 we can see that P(T" > t) is decreasing with time toward a constant
value P(T = o0). The probability that ”successful” mutant never occurs in the population
is P(T = oo) = 0.82. The probability P(T" > t, Z'(t) = 0) that "successful” mutant is
not born yet and we no longer have any cells of type 1 left in the population is increasing
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with time toward the same constant value P(T" = oco) = 0.82. This is a quite intuitive and
expected result, taking into account that type 1 BP is subcritical and P(Z'(t) = 0) — 1
a.s. as t — 00.

In Figure 11.2 is presented F}.(t), the probability density function of the waiting time
until "successful” mutant is born. We can see it is around 0.01 in the beginning and
gradually decreases toward 0, in such a way that the area below it is around 0.18, i.e. the
probability ”successful” mutant exists. We could conclude then the most probable time
for the first ”successful” mutant to be born is in the beginning. The hazard function g(t)
represents the conditional probability density for ”successful” mutant to be born at time
t, if it is not born yet and we still have cells of type 1 alive. Because of the fact that
P(T > 0,2*(0) > 0) =1 we have ¢g(0) = F’(0).

If we now compare the two examples we see some similarities. For example, changing
the life length distribution to normal does not change P(T' = oo). In fact, if we consider a
Galton—Watson process where the distribution of life length is non-stochastic, a unit time,
then we will arrive at the same P(T" = oo) = 0.82. This is because the Galton—Watson
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process is embedded in the BHBP. Thus the limits of P(T > t), P(T > t, Z'(¢t) = 0) and
P(T > t, Z'(t) > 0) are exactly the same as in the two examples and they do not depend
on the life length distribution.

In case of trimmed normally distributed life length (see Figures 11.3 and 11.4) with
average 10 and standard deviation 2.5 the probability to have a ”successful” mutant is
close to 0 when t € [0,4]. The reason is that such cell has a chance of being born only
when the initial cell of type 1 dies, which is less than 0.01 for ¢ € [0,4]. When time
approaching 10, the probability for the initial cell to die is at its peak, so the probability
to produce a "successful” mutant while dying is also climbing. If the initial cell is not
successful in producing a mutant while dying, then this could happen during the life
period of its offspring, which will die around 20" time unit. But because the process is
subcritical, the expected number of descendants is declining with time and these ”peaks”
in F7.(t) are subsiding, tending to zero. This ”wave-like” behaviour is also evident in the
hazard function ¢(t) and it is caused again by the peak in probability of dying at age 10,
which causes peak in the probability of ”successful” mutant being produced.

Another use of the numerical approach is to investigate how the hazard function g(t)
and the distribution of T' change when we choose different model parameters. For example,
if we increase the mutation probability u from 0.20 to 0.50, then P(7" = oo) decreases
from 0.82 to 0.72. If we increase the probability for extinction go to 0.90 (from 0.30) then
P(T = oo) increases to 0.96. If we decrease the expected number of offspring for type
1 cells, making the probability for 2 offspring only 0.10 (from 0.375), then P(T" = o)
increases to 0.97. Changing these parameters and the lifespan distribution of type 1 cells
also significantly affects the shape of the functions presented in Figures 11.1-11.4 and
the speed at which they converge, i.e. their asymptotic behaviour. The theoretical and
numerical results allow us to study how different model parameters affect the properties
of the branching process.

11.6 On the attaining of high levels

11.6.1 Simulation studies and an algorithm

The task to simulate a two-type BP in continuous time is very similar to that of simulating
it in discrete time settings (two-type GWBP). Here, the goal of the simulation will be
to obtain some empirical results concerning the amount of time T, = sup,~,{t : Z°(t) <
x| Z°(0) = 0, Z*(t) = 1}, before the number of alive type 0 cells becomes z or more.
Having either continuous or discrete time, one would need to traverse over all of the
birth moments in the process sequentially and to count the number of type 0 cells born
among them. The algorithm must stop at the first such moment where the predetermined
level z of type 0 cells is reached (or stop in case of extinction). While in discrete time we
can only traverse through the integer time moments since the possible moments of birth
of cells are integers, this is not the case in continuous time. Indeed, in the case of BHBP,
the cells can have non-integer life length and as a result, we do not have a set of possible
birth moments known in advance. Every positive real number could be a moment of birth
for a cell. A natural solution to this problem is to keep an array of the birth-death times
for the cells in the population, sorted in ascending order and to traverse only through
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Figure 11.5: Example of a two-type BHBP. The algorithm traverses through the birth-
death moments, denoted with "X’, consecutively

the moments in it. The size of the array will be finite, since T, < oo with probability
1, given the non-extinction of the population, and the total number of generated cells in
a bounded time interval is finite. An example is shown in Figure 11.5. The birth-death
times are marked with a cross over the time line.

Counting the number of type 0 cells in discrete settings is relatively easy. When we
have a two-type GWBP each cell has lifespan of length 1. Therefore, when a new type 0
cell is born at a certain time moment 4, we have to increase the number of alive type 0
cells by 1 only for that integer time moment i, because the cell dies at the next moment
1+ 1 and there are no cell born between these two moments. However, in continuous time,
the latter is quite possible. We could have such cells having times of birth during the
lifespan of the considered type 0 cell. Thus, every time when a type 0 cell is generated in
continuous settings, we have to perform additional computational procedure which lists
all of the birth-death moments lying in the interval of living for the newly born type 0
cell.

It is worth noting that this affects the time efficiency of the algorithm, making it
significantly slower then its analogue in discrete time. This is supported by the results of
our simulation. Running the algorithm in continuous time and for the same levels 10* and
10°, as those used in Serra and Haccou [117] for the discrete case, required impractically
big amount of time.

We provide simulation results concerning the r.v. T, in continuous time settings.
Recall that with T, we denote the r.v. representing the time for the number of escape
type cells to cross level x in the two-type BHBP. It is possible that T, might be infinite,
hence we considered T}, conditioned on T, < o0, i.e. the realizations when the population
goes extinct before the number of type 0 cells to reach level x are neglected. The results
would be the same if we considered T}, conditioned on non-extinction, because if the popu-
lation does not extinct, the probability of reaching level x is 1, for arbitrary big values of x.
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11.6.2 Estimation results for E[T, | T, < o]

Using the described approach in Subsection 11.6.1, in particular, we evaluated E[T, | T, <
oo] by using the crude Monte Carlo approach. The values of this expectation are plotted
in Figure 11.6 for two high levels of x, 1000 and 2000, and processes with Poisson and
binary splitting reproduction laws for the offspring of type 0 cells. The latter distribution
is over the values 0 and 2 only, which means that type 0 cell could either has 0 or 2
descendants. We considered different values in the interval [1.1,2] for the reproduction
mean myg of the type 0 cells. The type 1 cells have exponential distribution for the offspring
with parameter m, fixed to 0.95. The mutation probability u equals to 0.05. Further, we
assumed that the life length of every cell is exponentially distributed with mean 1 time
unit. As in the previous section we consider a BHBP starting with a single-type 1 cell.
We simulated 200 processes for each value of my.

From Figure 11.6 we can see that, as expected, the time to cross level x increases with
x and decreases as the reproduction mean mg increases. We also observe that, as in the
discrete settings, for such different reproduction laws, like Poisson and binary splitting,
the E[T, | T, < oo has quite similar behaviour regarding this problem.

Level = 1000, my =0.95, u=0.05 Level = 2000, my = 0.95,u=0.05

—— Poisson - —— Poisson

-~ Binary splitting LESil Binary splitting
\
\

Ee]
1

E[T,T,
E[TTe =

Figure 11.6: Simulation results for the time T}, elapsing until a level x of "mutants” is
attained.

11.6.3 On the distribution of T,

Another question of interest is the distribution of T),, conditioned on T}, < oo, for the case
where the expected numbers of offspring of the supercritical mutant cells are close to 1
(see Serra and Haccou [117]). We obtain the empirical distribution of the latter r. v.,
from 100 samples, for my = 1.1 and when z has values 200,500 and 1000, respectively.
The other parameters were the same as those described in the previous subsection. The
cumulative distribution functions and the corresponding histograms in these three cases
are shown in Figure 11.7. An object of future work could be the investigation of an
appropriate distribution law for T, (conditioned on T, < oo) with parameters depending
on the level x.
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Figure 11.7: Histograms and empirical cumulative distribution functions of 7, | T,, < oo
for x = 200, 500, 1000.

11.7 Concluding remarks

We are tackling the common event of metastasis of cancer after local elimination followed
possibly by proper treatment (independently of the type of cancer). In this case, another
therapy might be needed. First, one of the questions that naturally arises is what is
the waiting time to next treatment. If we know the distribution of the time 7" until the
first ”successful” mutant occurs, then we could determine how long we could wait before
performing another chemotherapy. The results have shown that the distribution of T
depends on the lifespan distribution of type 1 cells and the results vary significantly on
the choice of distribution (which could depend on the type of cancer and the type of
treatment). In Figures 11.2 and 11.4 we have shown that the p.d.f. of 7" could have
several peaks and troughs and knowing the particular form of the p.d.f. and the hazard
function ¢(t) will give us knowledge on the most appropriate time to perform another
chemotherapy.

Secondly, the hazard function g(t) represents the probability density for the first ”suc-
cessful” mutant appearance, given that it has not appeared yet, but we still have cells of
type 1 left in the organism. From the particular distribution of T we can also calculate
the conditional probability that a person will not develop aggressive cancer if he has not
developed it yet P(T' = oo | T' > ).

Third, the model also allows to find the probability a person who decided not to
be treated again will not develop cancer (P(T" = o0)), which does not depend on the
particular lifespan distribution. In addition, we are interested in the waiting time it takes
to reach a certain level of cancer cells, so they can be medically detected.

Finally, the presented theoretical results provide a continuous time branching model
for studying the dynamics of cancer development, the factors affecting the process and
their influence and importance. Choosing different parameters in the model allows us to
investigate their effect on the properties of the branching process. Moreover, the numerical
approach and simulations allow the model to be tailored to the real data available for the
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particular kind of cancer and chemotherapy which will be our next goal.

Remark K.5 We have used Matlab for implementing the numerical methods and the R
programming language for performing the simulations (see [112]).

The results from this chapter are published by Slavtchova-Bojkova, Trayanov and
Dimitrov in [132].
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