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1 Introduction

The concept of a primal lower nice function was introduced by Poliquin
in [29] where it was proved that Clarke and proximal subdifferentials of a
primal lower nice function on finite-dimensional space coincide. In particular
this means that if the definition of primal lower nice property, see (6), is
taken with respect to the Clarke subdifferential, this will produce the same
class of functions. In [29] Poliquin proved that these functions in Rn are
completely characterized by their Clarke subdifferential. This was the first
large class of non-convex lower semicontinuous functions with this property.

The coincidence of proximal and Clarke subdifferentials of a primal lower
nice function defined on Hilbert space was proved by Levy, Poliquin and
Thibault in [26]. Later Ivanov and Zlateva in [22] showed that Clarke and
proximal subdifferential of a primal lower nice function defined on a β smooth
Banach space coincide. The result obtained in [22] shows that the class of
primal lower nice functions does not depend on what reasonable subdifferen-
tial is used in defining the class. Ivanov and Zlateva in [22] suggested ”that
it is possible to characterize primal lower nice property in terms not involv-
ing subdifferentials”. As a step in this direction we prove that continuous
primal lower nice functions on Hilbert space satisfy a property which does
not involve subdifferentials, see Theorem 5.1(i) and Corollary 5.2.

Since the pioneering work of Poliquin [29], primal lower nice functions are
studied in a series of publications, see e.g. [30, 31, 21, 8, 35, 27]. These func-
tions are closely related to prox-regular sets, a term due to Poliquin, Rockafel-
lar and Thibault [32]. Indeed, a set in a Hilbert space is prox-regular exactly
when its indicator function is primal lower nice, see [32, Proposition 2.1].
The study of prox-regular sets can be traced back to the pioneering work of
Federer [17] who introduced them as positively reached sets in Rn. During
the years, various names of such sets have been introduced: weakly con-
vex [36] or proximally smooth sets [13] are commonly used in Hilbert spaces;
for other names see the survey [14]. Prox-regular sets in Banach spaces are
studied in [9, 10, 18, 20, 6, 7, 25] and many others.

Along with the study of prox-regular sets from theoretical point of view,
they are intensively studied as involved in the famous Moreau’s sweeping
processes, see e.g. [2], the survey [28] and the references therein. Various
properties of prox-regular sets are established in [1, 3, 4, 5]. More details
one can find in the paper [32], the survey [14], the forthcoming book of
Thibault [34], as well as, the bibliography therein.
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Prox-regularity has been introduced as an important new regularity prop-
erty in Variational Analysis by Poliquin and Rockafellar in [31], see also
Chapter 13F in the monograph of Rockafellar and Wets [33]. They defined
the concept for functions and sets and developed the subject in Rn. Numer-
ous significant characterizations of prox-regularity of a closed set C in Hilbert
space at point x ∈ C were obtained by Poliquin, Rockafellar and Thibault in
[32] in terms of the distance function dC and metric projection mapping PC ,
e.g. dC being continuously differentiable outside of C on a neighbourhood
of x, or PC being single-valued and norm-to-weak continuous on this same
neighbourhood. On global level, in [32] the authors showed that uniformly
prox-regular sets are proximally smooth sets providing new insights on them.

To prove our main result, we introduce and study the epi uniform prox-
regularity property of an epigraph set, see Definition 2.3. This notion slightly
differs from the usual uniform prox-regularity of an arbitrary set, see Defini-
tion 2.1. We choose to work on global level, i.e. with uniform properties of
functions and sets involved, but similar results easily can be obtained at lo-
cal level as well. The properties of epi uniformly prox-regular sets in Hilbert
space are also studied, see Section 4. Our main result is Theorem 5.1 where
we prove the epigraphical characterization of continuous uniformly lower reg-
ular functions on a Hilbert space. It reveals their distant resemblance to
convex functions, see Corollary 5.2.

The paper is organized as follows. In the following Section 2 we give some
notations, definitions and necessary preliminaries. In Section 3 it is proved
that continuous uniformly lower regular functions are exactly those with epi
uniformly prox-regular epigraphs, see Theorem 3.1 and Theorem 3.2. In Sec-
tion 4 are established some basic and important properties of epi uniformly
prox-regular sets in H × R. The proof of our main result, Theorem 5.1, is
given in the final Section 5.

2 Preliminaries and notations

Throughout the paper, (H, ∥ · ∥) is a real Hilbert space endowed with the
norm ∥ · ∥ :=

√
⟨·, ·⟩ associated to the inner product ⟨·, ·⟩. The open (resp.

closed) ball in H with center x and radius r will be denoted by B(x, r) (resp
B[x, r]) while the closed unit ball will be denoted by BH .

For any nonempty subset C of H the distance function dC to C is defined
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as
dC(x) := inf

y∈C
∥x− y∥, for all x ∈ H.

The projection mapping PC : H ⇒ H on C is defined by

PC(x) := {y ∈ C : dC(x) = ∥x− y∥} for all x ∈ H.

Whenever for x ∈ H the latter set is a singleton, its element is denoted by
pC(x).

The proximal normal cone of C at x ∈ C, denoted by NC(x), is defined
as, see [33],

NC(x) := {p ∈ H : ∃ σ > 0 such that x ∈ PC(x+ σp)}.

By convention, NC(x) = ∅ for all x ̸∈ C. It is easy to see that p ∈ NC(x), if
and only if, there is a real σ > 0 such that

(1) ⟨p, x′ − x⟩ ≤ σ∥x′ − x∥2, for all x′ ∈ C,

in which case one says that p is a proximal normal to C at x.
We will use also the Fréchet normal cone NF

C (x) of C at x which consists
of all x∗ ∈ H such that for any ε > 0 there exists a neighbourhood U of x
such that the inequality ⟨x∗, x′ − x⟩ ≤ ε∥x′ − x∥ holds for all x′ ∈ C ∩ U .
Since the norm in H is Fréchet differentiable away from the origin, it is not
difficult to see that

(2) NC(x) ⊆ NF
C (x), ∀x ∈ C,

see e.g. [12, Corollary 3.1].
The definition of an uniformly prox-regular set in H is well-known, see

e.g. [32, 9, 10]. A nonempty closed subset C of H is uniformly prox-regular
if there is r > 0 such that for any x ∈ C and p ∈ NC(x) ∩ BH one has

(3) ⟨p, x′ − x⟩ ≤ 1

2r
∥x′ − x∥2, ∀x′ ∈ C.

It is not difficult to see that it is equivalent to the following

Definition 2.1. A nonempty closed subset C of H is uniformly prox-regular
if there is r > 0 such that for any x ∈ C and p ∈ NC(x) ∩ BH one has

(4) ⟨p, x′ − x⟩ ≤ 1

2r
∥x′ − x∥2, ∀x′ ∈ B(x, 2r) ∩ C.
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Indeed, if C is uniformly prox-regular according to Definition 2.1 then (3)
holds for some r > 0 and any x ∈ C, p ∈ NC(x) ∩ BH for x′ ∈ B(x, 2r) ∩ C.
If x′ ∈ C is such that ∥x′ − x∥ ≥ 2r, then

⟨p, x′ − x⟩ ≤ ∥x′ − x∥ =
∥x′ − x∥2

∥x′ − x∥
≤ 1

2r
∥x′ − x∥2,

so (3) holds.
If a set C ⊂ H satisfies Definition 2.1 for some r > 0, we will say that C

is r prox-regular (omitting ”uniformly” for brevity).
For r ∈ (0,+∞] one defines the open r-tube of C as the set

TC(r) := {x ∈ H : 0 < dC(x) < r}.

A set C ⊂ H is r prox-regular exactly when the projection mapping PC is
single-valued and norm-to-weak continuous on TC(r), see [32, Theorem 4.1].

The space H := H × R we will consider with the norm |||(x, r)||| :=√
∥x∥2 + r2 for (x, r) ∈ H. Then (H, ||| · |||) is a Hilbert space.
Let f : H → R ∪ {+∞} be a function. The domain of f is the set

dom f := {x ∈ H : f(x) ∈ R} and the epigraph of f is the set epi f :=
{(x, r) ∈ H : r ≥ f(x)}. The function f is proper exactly when dom f ̸= ∅
and f is lower semicontinuous on H exactly when epi f is closed in H.

The proximal subdifferential of f at x ∈ dom f is defined as the set

∂f(x) := {p ∈ H|(p,−1) is a proximal normal to epi f at
(
x, f(x)

)
},

while ∂f(x) = ∅ for x /∈ dom f , see e.g. [10, p. 2216]. Obviously,

(5) p ∈ ∂f(x) ⇐⇒ (p,−1) ∈ Nepi f

(
x, f(x)

)
.

After that the concept for a primal lower nice function at a point of its
domain was introduced by Poliquin [29], such functions defined on Hilbert
space are intensively studied recently, see e.g. [15, 29, 30, 26, 35]. In [9, 10]
for a function on uniformly convex Banach space was introduced the J primal
lower regular (J-plr in short) concept at a point of its domain, where J stands
for the duality mapping. In [23, 24] for a function on a Banach space was
studied the s-lower regular concept. For a function on a Hilbert space both
J-plr and 1-lower regular concept at a point of its domain coincide with the
primal lower nice one.
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When the constants involved in the definition of the primal lower nice
property are uniform, one speaks about uniform lower nice property.

A proper lower semicontinuous function f : H → R is said to be uniformly
primal lower nice if there exist ρ > 0 and θ > 0 such that for any t ≥ θ, any
p ∈ ∂f(x) with ∥p∥ ≤ ρt,

(6) f(x′) ≥ f(x) + ⟨p, x′ − x⟩ − t

2
∥x′ − x∥2, for all x′ ∈ H,

see e.g. [10, p. 2226].
From the very definition, it is clear that if f is uniformly primal lower

nice with some positive constants ρ, and θ, then it is so for any ρ′ < ρ and
θ′ > θ. Hence, taking small ρ, and then θ = ρ−1 one comes to the following
equivalent definition: a proper lower semicontinuous function f : H → R is
uniformly primal lower nice if there exists ρ > 0 such that for any t ≥ ρ−1,
and any p ∈ ∂f(x) with ∥p∥ ≤ ρt, (6) holds. When the latter holds for f
for some ρ > 0 one says that the function f is ρ primal lower nice (omitting
”uniformly” for brevity).

It is easy to see that such functions are, for example, the 1-lower regular
on the whole space H functions considered in e.g. [23, 24].

We introduce a slightly more general notion named uniform epi lower
regularity of a function.

Definition 2.2. A proper lower semicontinuous function f : H → R is said
to be uniformly lower regular if there exists ρ > 0 such that for any t ≥ ρ−1,
any p ∈ ∂f(x) with ∥p∥ ≤ ρt,

α′ ≥ f(x) + ⟨p, x′ − x⟩ − t

2
∥x′ − x∥2, ∀ (x′, α′)∈B((x, f(x)), 2ρ) ∩ epi f.

If a function f satisfies Definition 2.2, we will say that f is ρ lower regular
(again omitting ”uniformly”). It is clear that any ρ primal lower nice function
is ρ lower regular.

A non-empty closed set C ⊂ H will be called epigraph set if C ≡ epi f
for a proper lower semicontinuous function f : H → R ∪ {+∞}.

For an epigraph set in H we introduce the notion of epi uniform prox-
regularity which slightly differs from the well-known uniform prox-regularity
of a set in H.
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Definition 2.3. Let C be an epigraph set in H. One says that C is uniformly
epi prox-regular if there is r > 0 such that for any (x, α) ∈ C, and (q, η) ∈
NC

(
x, α

)
∩ BH one has

(7)
〈
(q, η), (x′ − x, α′ − α)

〉
≤ 1

2r
∥x′ − x∥2, ∀(x′, α′) ∈ B((x, α), 2r) ∩ C.

If an epigraph set C satisfies Definition 2.3, we will say that C is epi r
prox-regular (omitting ”uniformly”).

From the very definitions it is clear that if an epigraph set C ⊂ H is
epi r prox-regular according to Definition 2.3, then C is r prox-regular in H
according to Definition 2.1. Indeed, if (x, α) ∈ C, and (q, η) ∈ NC

(
x, α

)
∩BH

from (7) it follows that for all (x′, α′) ∈ B((x, α), 2r) ∩ C,〈
(q, η), (x′ − x, α′ − α)

〉
≤ 1

2r
∥x′ − x∥2,

so 〈
(q, η), (x′ − x, α′ − α)

〉
≤ 1

2r
∥x,−x∥2 ≤ 1

2r
|||(x′ − x, α′ − α)|||2,

which is (4) in H = H × R.
From uniform prox-regularity of an epigraph set it does not hold in general

that it is epi uniformly prox-regular.
Before proceeding with the rest of the paper, let us note that the uniform

results obtain in the rest of the paper have their local counterparts that could
be proven in the same manner.

3 Epigraphical characterization of epi uniform-

ly lower regular functions

First we will prove that if f : H → R is a continuous uniformly lower regular
function, then epi f is an epi uniformly prox-regular set in H. The proof
follows the lines of the proofs of [10, Propositions 4.1 and 4.4] where J-plr
functions are considered.

Theorem 3.1. If f : H → R is a continuous ρ lower regular function, then
C ≡ epi f is an epi ρ prox-regular set in H.
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Proof. Let (x, α) ∈ C and (x∗,−λ) ∈ NC(x, α) ∩ BH . We will consider the
following two cases:

Case 1. λ > 0.
In this case it is clear that α = f(x).
Since NC(x, f(x)) is a cone, we have that

(
x∗

λ
,−1

)
∈ NC

(
x, f(x)

)
. From

(5) it holds that x∗

λ
∈ ∂f(x). As ∥x∗∥ ≤ 1, it follows that

∥∥x∗

λ

∥∥ ≤ 1
λ
.

Let us take t = 1
λρ
. So,

∥∥x∗

λ

∥∥ ≤ tρ.

Since f is a ρ lower regular function, x∗

λ
∈ ∂f(x), t ≥ 1

ρ
, and

∥∥x∗

λ

∥∥ ≤ tρ,

we get that for all (x′, α′)∈B((x, f(x)), 2ρ) ∩ epi f ,

α′ ≥ f(x) + ⟨x
∗

λ
, x′ − x⟩ − t

2
∥x′ − x∥2.

Multiplying by λ > 0 and using that f(x) = α we obtain,

0 ≥ λ(α− α′) + ⟨x∗, x′ − x⟩ − λt

2
∥x′ − x∥2.

Equivalently,

⟨(x∗,−λ), (x′−x, α′−α)⟩ ≤ 1

2ρ
∥x′−x∥2, ∀ (x′, α′)∈B((x, f(x)), 2ρ)∩ epi f.

Case 2. λ = 0. In this case we have that (x∗, 0) ∈ NC

(
x, f(x)

)
. By the

inclusion (2), we have that (x∗, 0) ∈ NF
C

(
x, f(x)

)
.

Using the approximation result of Ioffe [19, p. 190], we can find sequences
{λn}, {un}, {u∗

n} such that λn > 0 and as n tends to infinity, λn ↘ 0,
(u∗

n,−λn) ∈ NF
C

(
un, f(un)

)
and

(8)
(
un, f(un)

)
→

(
x, f(x)

)
;

(9) |||(u∗
n,−λn)− (x∗, 0)||| → 0.

Further, we use the approximation result in [10, Proposition 3.1] to find
sequences (xn, αn) ∈ C and (y∗n,−µn) ∈ NC

(
xn, αn

)
such that

(10) |||(xn, αn)−
(
un, f(un)

)
||| < λn

2
;

(11) |||(y∗n,−µn)− (u∗
n,−λn)||| <

λn

2
.
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From (11) it follows that |λn − µn| < λn

2
, hence λn

2
< µn < 3λn

2
, so µn > 0

and µn ↘ 0.
Since µn > 0, f(xn) = αn. So, (y

∗
n,−µn) ∈ NC

(
xn, f(xn)

)
.

Let us denote x∗
n :=

y∗n
µn

. Hence (x∗
n,−1) ∈ NC

(
xn, f(xn)

)
. Therefore,

x∗
n ∈ ∂f(xn), see (5).
We will show that

(12) xn → x, f(xn) → f(x), µnx
∗
n → x∗ as n → ∞.

From the triangle inequality,

∥xn − x∥ ≤ ∥xn − un∥+ ∥un − x∥

and xn → x from (10) and (8).
From f(xn) = αn and the triangle inequality,

|f(xn)− f(x)| = |αn − f(x)| ≤ |αn − f(un)|+ |f(un)− f(x)|,

and f(xn) → f(x) because of (10) and (8).
As µnx

∗
n = y∗n, from the triangle inequality we have

∥µnx
∗
n − x∗∥ = ∥y∗n − x∗∥ ≤ ∥y∗n − u∗

n∥+ ∥u∗
n − x∗∥

and µnx
∗
n → x∗ using (11) and (9).

Let us assume for a while that x∗ ̸= 0 and let us denote

tn := max

{
1

ρµn

,
∥x∗

n∥
ρ∥x∗∥

}
.

Obviously when n goes to infinity,

(13) µntn = max

{
1

ρ
,
µn∥x∗

n∥
ρ∥x∗∥

}
→ 1

ρ
.

Let (x′, α′)∈B((x, f(x)), 2ρ) ∩ epi f be arbitrary. Then for sufficiently
large n, (x′, α′)∈B((xn, f(xn)), 2ρ)∩ epi f , and tn ≥ ρ−1. Since f is a ρ lower
regular function and x∗

n ∈ ∂f(xn) with ∥x∗
n∥ ≤ tnρ, we have that

α′ ≥ f(xn) + ⟨x∗
n, x

′ − xn⟩ −
tn
2
∥x′ − xn∥2.

9



Multiplying by µn > 0 we get

0 ≥ µn(f(xn)− α′) + ⟨µnx
∗
n, x

′ − xn⟩ −
µntn
2

∥x′ − xn∥2.

Now letting n tend to infinity and using (12), and (13) we obtain

0 ≥ ⟨x∗, x′ − x⟩ − 1

2ρ
∥x′ − x∥2.

Since the latter obviously holds for x∗ = 0, the proof is completed.

Now we will prove the converse, i.e. that if C ≡ epi f is an epi uniformly
prox-regular set in H, then f is an uniformly lower regular function on H.

Theorem 3.2. If the epigraph set C ≡ epi f in H is epi r prox-regular,
then the corresponding f : H → R ∪ {+∞} is a ρ lower regular function for
ρ = r/

√
2.

Proof. Let p ∈ ∂f(x) be such that ∥p∥ ≤ ρt for some t ≥ ρ−1. From (5) we
have that (p,−1) ∈ NC

(
x, f(x)

)
, hence

1√
∥p∥2 + 1

(p,−1) ∈ NC

(
x, f(x)

)
∩ BH .

As the set C is epi r prox-regular and ρ < r, for all (x′, α′)∈B((x, f(x)), 2ρ)∩C,

1√
∥p∥2 + 1

〈
(p,−1),

(
x′ − x, α′ − f(x)

)〉
≤ 1

2r
∥x′ − x∥2,

hence,

⟨p, x′ − x⟩+ f(x)− α′ ≤
√

∥p∥2 + 1

2r
∥x′ − x∥2.

Therefore,

(14) α′ ≥ f(x) + ⟨p, x′ − x⟩ −
√

∥p∥2 + 1

2r
∥x′ − x∥2.

Using that ∥p∥ ≤ tρ and that 1
t
≤ ρ, we get

∥p∥2 + 1 ≤ t2ρ2 + 1 = t2
(
ρ2 +

1

t2

)
≤ 2t2ρ2 = r2t2,
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hence,

(15) −
√

∥p∥2 + 1

r
≥ −tr

r
= −t.

From (14), and (15) it follows that

α′ ≥ f(x) + ⟨p, x′ − x⟩ − t

2
∥x′ − x∥2, ∀(x′, α′) ∈ B((x, f(x)), 2ρ) ∩ C,

which means that f is a ρ lower regular function.

It is worth noticing here that for a continuous function f : H → R being
uniformly lower regular is equivalent to its epigraph being a uniformly epi
prox-regular set.

4 Properties of epi uniformly prox-regular sets

The following characteristic property of a r prox-regular set set C in a Hilbert
space H is well-known: for any a, b ∈ C with ∥a− b∥ < 2r and any λ ∈ (0, 1)
for xλ := λa+ (1− λ)b there exists uλ ∈ C such that

∥xλ − uλ∥ ≤ φ(λ),

where φ(λ) := r−
√

r2 − λ(1− λ)∥a− b∥2, see the papers of J.-P. Vial [36],
G. E. Ivanov [20, Lemma 4.2], and the book of L. Thibault [34, Proposition
15.41]. By using different arguments, we also established the latter in [25,
Theorem 1]. We will use here arguments in the line of our paper [25] to show
that epi uniformly prox regular set in H possesses a similar property as well.

Theorem 4.1. Let C ⊂ H be epi r prox-regular. Let (a, α), (b, β) ∈ C be
such that |||(a, α)− (b, β)||| < 2r.

Then for any λ ∈ [0, 1] for (xλ, γλ), where xλ := λa + (1 − λ)b, and
γλ := λα + (1− λ)β, there exists (uλ, ξλ) ∈ C such that

(16) dC(xλ, γλ) = |||(xλ, γλ)− (uλ, ξλ)||| ≤ φ(λ),

where φ(λ) = r −
√

r2 − λ(1− λ)∥a− b∥2.
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Proof. Take an arbitrary λ ∈ [0, 1] and consider the corresponding to it
(xλ, γλ). We fix λ and further we will omit it from the index. If (x, γ) ∈ C
then (16) holds for (u, ξ) = (x, γ). Now, consider the case (x, γ) /∈ C. Since
(x, γ) ∈ TC(r) and the set C is prox-regular, there is unique (u, ξ) ∈ C such
that (u, ξ) = pC(x, γ). Denote (p, η) := (x − u, γ − ξ). So, |||(p, η)||| ̸= 0,
∥p∥ ≤ |||(p, η)||| < r and

(17) u = λa+ (1− λ)b− p, ξ = γ − η.

As (u, ξ) ∈ PC(x, γ), it holds that 0 ̸= (p, η) ∈ NC(u, ξ). Hence, η ≤ 0 or,
equivalently, γ ≤ ξ.

Since
(p, η)

|||p, η)|||
∈ NC(u, ξ) ∩ BH and C is an epi r prox-regular set, we

have that for all (x′, α′) ∈ C such that |||(x′, α′)− (u, ξ)||| < 2r it holds that

(18)
1

|||(p, η)|||
⟨(p, η), (x′, α′)− (u, ξ)⟩ ≤ 1

2r
∥x′ − u∥2.

Since

|||(a, α)− (u, ξ)||| ≤ |||(a, α)− (x, γ)|||+ |||(x, γ)− (u, ξ)|||
= (1− λ)|||(a, α)− (b, β)|||+ |||(x, γ)− (u, ξ)|||
≤ (1− λ)|||(a, α)− (b, β)|||+ |||(x, γ)− (b, β)|||
= |||(a, α)− (b, β)||| < 2r

we can put (x′, α′) = (a, α) in (18) to get

⟨p, a− u⟩+ η(α− ξ) ≤ |||(p, η)|||
2r

∥a− u∥2.

Using the expressions for u and ξ from (17) in the latter, we obtain that

(19)

〈
p, p+ (1− λ)(a− b)

〉
+ η(α− γ + η) ≤

|||(p, η)|||
2r

∥p+ (1− λ)(a− b)∥2 =
|||(p, η)|||

2r
(∥p∥2 + 2(1− λ)⟨p, a− b⟩+ (1− λ)2∥a− b∥2) .

Analogously, as

|||(b, β)− (u, ξ)||| ≤ |||(b, β)− (x, γ)|||+ |||(x, γ)− (u, ξ)|||
= λ|||(a, α)− (b, β)|||+ |||(x, γ)− (u, ξ)|||
≤ λ|||(a, α)− (b, β)|||+ |||(x, γ)− (a, α)|||
= |||(a, α)− (b, β)||| < 2r
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we can put (x′, α′) = (b, β) in (18) to obtain

(20)

〈
p, p+ λ(b− a)

〉
+ η(β − γ + η) ≤

|||(p, η)|||
2r

(∥p∥2 + 2λ⟨p, b− a⟩+ λ2∥a− b∥2) .

Multiplying (19) by λ, (20) by (1− λ) and adding them we obtain

⟨p, p⟩+ η(η + (λα + (1− λ)β − γ)) ≤ |||(p, η)|||
2r

(
∥p∥2 + λ(1− λ)∥a− b∥2

)
.

Since η ≤ 0 and γ = λα+ (1− λ)β, the latter yields

∥p∥2 + η2 ≤ |||(p, η)|||
2r

(
∥p∥2 + λ(1− λ)∥a− b∥2

)
.

Hence,

(21) 2r|||(p, η)||| ≤ ∥p∥2 + λ(1− λ)∥a− b∥2.

As ∥p∥ ≤ |||(p, η)||| from the latter it holds that the quadratic inequality

(22) t2 − 2rt+ λ(1− λ)∥a− b∥2 ≥ 0.

is satisfied by |||(p, η)||| as well as by ∥p∥.
Since ∥a− b∥ < 2r, and λ ∈ [0, 1],

D := 4r2 − 4λ(1− λ)∥a− b∥2 > 0

and any t satisfying (22) should be such that t ≤ t1 or t ≥ t2, where

t1 := r −
√

r2 − λ(1− λ)∥a− b∥2, t2 := r +
√

r2 − λ(1− λ)∥a− b∥2.

Since t2 ≥ r > ∥p∥, we have that ∥p∥ ≤ t1, which reads

∥p∥ ≤ r −
√

r2 − λ(1− λ)∥a− b∥2 = φ(λ).

Using the latter in (21) we obtain that |||(p, η)||| ≤ φ(λ), which is (16) and
the proof is completed.
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Let us note here that if we have used only the prox-regularity of C, the
estimate would be

dC(xλ, γλ) = |||(xλ, γλ)− (u, ξ)||| ≤ r −
√

r2 − λ(1− λ)|||(a, α)− (b, β)|||2,

which, because of |||(a, α)−(b, β)||| ≥ ∥a−b∥, is weaker than the estimate (16)
we obtained.

Theorem 4.2. Let C ⊂ H be an epigraph set. Then the following are
equivalent:
(a) C is epi r prox-regular;
(b) For any (a, α), (b, β) ∈ C such that |||(a, α)− (b, β)||| < 2r, it holds that

dC
(
λa+ (1− λ)b, λα+ (1− λ)β

)
≤ r −

√
r2 − λ(1− λ)∥a− b∥2;

(c) For any (a, α), (b, β) ∈ C such that |||(a, α)− (b, β)||| < 2r, it holds that

(23) dC
(
λa+ (1− λ)b, λα+ (1− λ)β

)
≤ 1

2r
min{λ, 1− λ}∥a− b∥2.

Proof. The implication (a)⇒(b) is established in Theorem 4.1.
Let (b) holds. For proving (b)⇒(c) it is enough to show that if ∥a− b∥ <

2r and λ ∈ [0, 1], then

r −
√

r2 − λ(1− λ)∥a− b∥2 ≤ 1

2r
min{λ, 1− λ}∥a− b∥2.

To this end we consider two cases.
Case 1. min{λ, 1− λ} = λ.
In this case λ ≤ 1

2
and we have to show that

r −
√

r2 − λ(1− λ)∥a− b∥2 ≤ λ

2r
∥a− b∥2,

or

r − λ

2r
∥a− b∥2 ≤

√
r2 − λ(1− λ)∥a− b∥2.

As the left hand side of the inequality is greater than zero, it is equivalent to
show that (

r − λ

2r
∥a− b∥2

)2

≤ r2 − λ(1− λ)∥a− b∥2,
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or

r2 − λ∥a− b∥2 + λ2

4r2
∥a− b∥4 ≤ r2 − λ(1− λ)∥a− b∥2,

(
λ(1− λ)− λ

)
∥a− b∥2 + λ2

4r2
∥a− b∥4 ≤ 0,

λ2∥a− b∥2
(
∥a− b∥2

4r2
− 1

)
≤ 0.

The last inequality holds since ∥a− b∥ < 2r.
Case 2. min{λ, 1− λ} = 1− λ.
In this case λ ≥ 1

2
and we have to show that

r −
√

r2 − λ(1− λ)∥a− b∥2 ≤ 1− λ

2r
∥a− b∥2,

or equivalently

r − 1− λ

2r
∥a− b∥2 ≤

√
r2 − λ(1− λ)∥a− b∥2.

Since the left hand side of the inequality is positive, it is equivalent to show
that (

r − 1− λ

2r
∥a− b∥2

)2

≤ r2 − λ(1− λ)∥a− b∥2,

or

r2 − (1− λ)∥a− b∥2 + (1− λ)2

4r2
∥a− b∥4 ≤ r2 − λ(1− λ)∥a− b∥2,

(
λ(1− λ)− (1− λ)

)
∥a− b∥2 + (1− λ)2

4r2
∥a− b∥4 ≤ 0,

(1− λ)2∥a− b∥2
(
∥a− b∥2

4r2
− 1

)
≤ 0,

which holds as ∥a− b∥ < 2r. The proof of (b)⇒(c) is completed.

Let (c) holds. Let y = (a, α), x = (b, β) ∈ C be such that |||x− y||| < 2r,
and v = (q, η) ∈ NC(x) ∩ BH .

We consider (H × R) × R with the norm |||| · |||| defined as ||||(z, α)|||| :=√
|||z|||2 + |α|2. Hence, (H × R, |||| · ||||) is a Hilbert space.
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As v ∈ NC(x) ∩ BH , v ∈ ∂dC(x). Hence from (5) we have that (v,−1) ∈
Nepi dC (x, dC(x)) ⊂ H × R and then by (1) there exist some σ > 0 such that

⟨(v,−1) , (x′ − x, α′ − dC(x))⟩ ≤ σ||||(x′−x, α′−dC(x))||||2, ∀(x′, α′) ∈ epi dC .

Since x ∈ C, dC(x) = 0, and then

⟨(v,−1) , (x′ − x, α′)⟩ ≤ σ||||(x′ − x, α′)||||2, ∀(x′, α′) ∈ epi dC .

For λ ∈ [0, 1] consider the point zλ := (λa+ (1− λ)b, λα+ (1− λ)β).
For the point (x′, α′) = (zλ, dC(zλ)) the last inequality gives

⟨v, zλ − x⟩ − dC(zλ) ≤ σ
(
|||zλ − x|||2 + d2C(zλ)

)
.

Hence,

⟨v, zλ − x⟩ ≤ dC(zλ) + σ|||zλ − x|||2 + σd2C(zλ)

≤ dC(zλ) + σ|||zλ − x|||2 + σ|||zλ − x|||2(24)

= dC(zλ) + 2σ|||zλ − x|||2.

So, for λ < 1/2, we have

⟨v, λ(a− b, α− β)⟩ = ⟨v, zλ − x⟩ from (24)

≤ dC(zλ) + 2σ|||zλ − x|||2

= dC(zλ) + 2σλ2|||(b− a, β − α)|||2 from (23)

≤ λ

2r
∥a− b∥2 + 2σλ2|||(b− a, β − α)|||2.

Dividing the last inequality by λ > 0 we get

⟨v, (a− b, α− β)⟩ ≤ 1

2r
∥a− b∥2 + 2σλ|||(b− a, β − α)|||2.

Now letting λ to zero and using that v = (q, η) we obtain

⟨(q, η), (a− b, α− β)⟩ ≤ 1

2r
∥a− b∥2,

which entails (a).
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5 Main result

Theorem 5.1. Let f : H → R be a continuous function. If f is a r lower
regular function, then
(i) for any (a, α), (b, β) ∈ epi f such that |||(a, α) − (b, β)||| < 2r and any
λ ∈ [0, 1] there is (uλ, ξλ) ∈ epi f such that

(25) ∥uλ − (λa+ (1− λ)b)∥2 + |ξλ − (λα + (1− λ)β)|2 ≤ φ2(λ),

where φ(λ) := r −
√

r2 − λ(1− λ)∥a− b∥2.
Conversely, if (i) holds, then f is a ρ lower regular for ρ = r√

2
.

Proof. Let f be a r lower regular function. According to Theorem 3.1, the
set C ≡ epi f is epi r prox-regular in H. Applying Theorem 4.1 to the set
C and the points (a, α) and (b, β) in C we have that for any λ ∈ [0, 1] for
(λa + (1 − λ)b, λα + (1 − λ)β), there exists (uλ, ξλ) ∈ C such that |||(λa +
(1− λ)b, λα+ (1− λ)β)− (uλ, ξλ)||| ≤ φ(λ), which is (25) and (i) holds.

It is clear that either

f(uλ) ≤ λα + (1− λ)β,

or
λα + (1− λ)β < f(uλ) ≤ ξλ ≤ λα + (1− λ)β + φ(λ).

Let now (i) holds for f . This is equivalent to the feature that the epigraph
set C ≡ epi f satisfies the condition of Theorem 4.2(b) and, therefore, it is an
epi r prox-regular set. Then Theorem 3.2 ensures that f is a ρ lower regular
function for ρ = r√

2
.

Taking α = f(a), β = f(b) in Theorem 5.1 we obtain

Corollary 5.2. If f : H → R is a continuous ρ lower regular function, then
for any a, b ∈ dom f such that |||(a, f(a))− (b, f(b))||| < 2r and any λ ∈ [0, 1]
there is u ∈ dom f ∩B[λa+ (1− λ)b), φ(λ)] such that either

f(u) ≤ λf(a) + (1− λ)f(b),

or
λf(a) + (1− λ)f(b) < f(u) ≤ λf(a) + (1− λ)f(b) + φ(λ),

where φ(λ) := r −
√

r2 − λ(1− λ)∥a− b∥2. In particular,

inf
B[λa+(1−λ)b),φ(λ)]

f ≤ λf(a) + (1− λ)f(b) + φ(λ).
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Primal lower nice functions were introduced as generalizations of convex
functions. Since their former definition involves a subdifferential, they could
be considered as, in some sense, a dual generalization. However, a closer look
at the last result shows that primal lower nice functions are in fact a good
primal generalization of the convex functions defined on Hilbert spaces.
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