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1 Introduction

Epsilon Subdifferential Method is well known and widely used for minimizing
convex functions, see e.g. [2, 3]. In this note we develop a novel Epsilon
Subdifferential Method (ESM). Let us outline it here.

ESM applies to a given proper convex lower semicontinuous function f :
X → R∪{+∞}, defined on a Banach spaceX, such that 0 = f(0) = min

x∈X
f(x)

with fixed in advance parameters ε > 0 and δ ∈ (0, ε).

Starting at arbitrary x0 ∈ dom f , for i = 0, 1, . . .

• if 0 ∈ ∂εf(xi), then stop;

• if 0 ̸∈ ∂εf(xi), for
φxi

(K) := inf
x∈X

Fxi
(K, x),

where
Fxi

(K, x) := f(x)− f(xi) + ε+K∥x− xi∥,

find Ki > 0 such that φxi
(Ki) = 0. Take any xi+1 satisfying

0 ≤ f(xi+1)− f(xi) + ε+Ki∥xi+1 − xi∥ ≤ δ.

In the finite dimensional case δ = 0 works, and ESM is much more simple.
The immediate estimate for the number of iterations n is n ≤ const ε−1.

But when f satisfies f(x) ≥ c∥x∥ for all x ∈ X and some c > 0, the param-
eter δ is appropriately chosen, and the starting point x0 ∈ dom ∂f , then the
number of iterations n of ESM has the more precise estimate n ≤ const ε−

1
2 ,

see Lemma 3.3. The proof relies on Lemma 2.3. Note that in this case,
nε ≤ const ε

1
2 which yields that nε tends to 0 as ε tends to 0. This is the key

argument in the presented here new proof of the famous Moreau-Rockafellar
Theorem, see e.g. [10, 11]:

Theorem 1.1. Let X be a Banach space. Let g and h be proper lower
semicontinuous convex functions from X to R ∪ {+∞}. If

∂g ⊂ ∂h, (1.1)

then
h = g + const.
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This result has numerous important implications, see e.g. Section 3 of
Phelps’ book [9].

Let us make a short historical overview. The integrability of the subdif-
ferential of proper lower semicontinuous convex function on Hilbert space is
stated and proved first by Moreau in [7] by using Moreau-Yosida regularisa-
tion. The proof also works in reflexive Banach space as mentioned at p. 87
of [8]. The first complete proof in Banach space – that of Rockafellar in [11]
– uses strong duality arguments. Another approach is to approximate the
directional derivative and to reduce to the one-dimensional case. The lat-
ter was taken by Rockafellar in his original proof in [10]. Though there are
some gaps in this proof, Taylor [12] fills them and provides a different proof,
cf. [4]. The idea of directional derivative approximation/one dimensional
reduction is most clearly outlined in the proof of Thibault [13]. A different
proof using the mean-value theorem of Zagrodny is due to Thibault and Za-
grodny [14], see also [15]. In [16] the result is proved by using regularization
(and approximation) techniques which was the initial idea of Moreau.

In [6] Ivanov and Zlateva give a proof similar to the proof of the classical
calculus theorem that a monotone function is Riemann integrable which uses
neither duality nor explicit one-dimensional arguments. The main step in
their proof is to show directly that a proper lower semicontinuous convex
function on Banach space differs by a constant from the Rockafellar function
(see [1]) of its subdifferential, see [6, Theorem 1.2]. The proof relies on a
technical lemma [6, Lemma 3.3] proved by Ekeland variational principle.

Here we use the novel Epsilon Subdifferential Method (ESM) to prove in
a different way the following

Theorem 1.2 (Rockafellar [10, 11], see also [6] Theorem 1.2). Let g : X →
R∪{+∞} be a proper lower semicontinuous convex function. Let x̄ ∈ dom ∂g
and p̄ ∈ ∂g(x̄). Then for all x ∈ X

g(x) = g(x̄) +R∂g,(x̄,p̄)(x),

where

R∂g,(x̄,p̄)(x) := sup
{ n−1∑

i=0

⟨qi+1, xi − xi+1⟩ : (1.2)

x0 = x, xn = x̄, qn = p̄, qi ∈ ∂g(xi), n ∈ N
}
.
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A distinctive feature of the new proof here is that it reveals the relation-
ship between a natural optimization method and Moreau-Rockafellar Theo-
rem. By use of ESM the sequences realizing supremum in (1.2) are kind of
constructed.

Thereafter, the proof of Theorem 1.1 continues exactly as in [6]. That is
why, we only sketch it here: it readily follows that (1.1) implies

g(x)− g(x) ≤ h(x)− h(x)

for any x ∈ dom ∂g and all x ∈ X. In particular, g − h ≡ const on dom ∂g.
To conclude, we use lower semicontinuity of h and graphical density of points
of subdifferentiability to g, i.e. that for any x̄ ∈ dom g and any ε > 0 there
exists x ∈ dom ∂g such that ∥x− x̄∥+ |g(x)− g(x̄)| < ε, see [5] and [4].

Let us also note that tools used in the proof had been known by 1970.

The rest of the paper is organized as follows. After a short Section 2
on notations and preliminaries, in Section 3 we dwell on some of the basic
properties of the novel Epsilon Subdifferential Method (ESM). In the last
Section 4 we give the proof of Theorem 1.2.

2 Preliminaries and notations

The notation used throughout the paper is standard. Usually (X, ∥ · ∥) de-
notes a real Banach space, that is, complete normed space over R. The dual
space X∗ of X is the Banach space of all continuous linear functionals p from
X to R. The natural norm of X∗ is again denoted by ∥ · ∥. The value of
p ∈ X∗ at x ∈ X is denoted by ⟨p, x⟩.

The effective domain dom f of an extended real-valued function f : X →
R∪ {+∞} is the set of points x where f(x) ∈ R. The function f is proper if
dom f ̸= ∅. It is lower semicontinuous if f(x̄) ≤ lim inf

x→x̄
f(x) for all x̄ ∈ X.

Let us recall that for ε ≥ 0, the ε-subdifferential of a proper, convex and
lower semicontinuous function f : X → R ∪ {+∞} at x ∈ dom f is the set

∂εf(x) = {p ∈ X∗ : −ε+ ⟨p, y − x⟩ ≤ f(y)− f(x), ∀y ∈ X},

and ∂εf = ∅ on X \ dom f . Of course, for ε = 0, ∂0f(x) coincides with the
subdifferential of f at x in the sense of Convex Analysis ∂f(x). The domain
dom ∂εf consists of all points x ∈ X such that ∂εf(x) is non-empty. But

4



while ∂f(x) could be empty, for ε > 0, the sets ∂εf(x) are non-empty for any
x ∈ dom f . For any real numbers ε1 and ε2 such that 0 < ε1 ≤ ε2 one has

∂ε1f(x) ⊂ ∂ε2f(x) and ∂f(x) =
⋂
ε>0

∂εf(x). Moreover, if f, g : X → R∪{+∞}

are two proper lower semicontinuous convex functions with x ∈ dom f∩dom g
and one of them is continuous at x, then the following sum rule holds, see
e.g. [15, Theorem 2.8.7],

∂ε(f + g)(x) =
⋃

{∂ε1f(x) + ∂ε2g(x) : ε1 ≥ 0, ε2 ≥ 0 ε = ε1 + ε2}.

We will use it further in its weaker form

∂ε(f + g)(x) ⊂ ∂εf(x) + ∂εg(x).

Brøndsted-Rockafellar Theorem saying that the graph of ∂εf is close to
the graph of ∂f is well known:

Theorem 2.1 (Brøndsted-Rockafellar [5]). Let f : X → R ∪ {+∞}, be a
proper, convex and lower semicontinuous function, let ε > 0 and p ∈ ∂εf(x).
Then there exists q ∈ ∂f(z) such that

∥z − x∥ ≤
√
ε, and ∥q − p∥ ≤

√
ε.

Another result of Brøndsted and Rockafellar [5] will also be used:

Proposition 2.2. Let f be a proper lower semicontinuous convex function
from a Banach space X into R ∪ {+∞}. Then for all x ∈ X

f(x) = sup{f(x̄) + p̄(x− x̄); (x̄, p̄) ∈ gph ∂f}. (2.1)

To estimate the number of iteration of the novel ESM we prove the fol-
lowing lemma of its own interest.

Lemma 2.3. Let A > 0, B > 0 and ε > 0 be real numbers. If there exist
reals a1, . . . , an and b1, . . . , bn satisfying the conditions

ai > 0, bi > 0, i = 1, . . . , n, (2.2)

aibi ≥ ε, i = 1, . . . , n, (2.3)
n∑

i=1

ai ≤ A, (2.4)

n∑
i=1

bi ≤ B, (2.5)
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then the inequality n ≤
√

AB

ε
holds.

Proof. From (2.2) and (2.3) follow the inequalities

bi ≥
ε

ai
, i = 1, . . . , n. (2.6)

Summing the inequalities (2.6) for i = 1, . . . , n we get that by (2.5)

n∑
i=1

ε

ai
≤

n∑
i=1

bi ≤ B.

Hence,
n∑

i=1

1

ai
≤ B

ε
and, equivalently,

ε

B
≤ 1

n∑
i=1

1

ai

. Multiplying by n we get

nε

B
≤ n

n∑
i=1

1

ai

. (2.7)

From (2.4) it follows that

n∑
i=1

ai

n
≤ A

n
. (2.8)

By (2.7), Cauchy inequality and (2.8) we get the following chain of in-
equalities

nε

B
≤ n

n∑
i=1

1

ai

≤

n∑
i=1

ai

n
≤ A

n

which yields that n2 ≤ AB

ε
. Therefore, n ≤

√
AB

ε
.
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3 Properties of the novel ESM

We have outlined the method in the introduction. In this section we will
consider some of its properties. Throughout this section we work with a
proper lower semicontinuous convex function f : X → R ∪ {+∞}, such that
min
x∈X

f(x) = f(0) = 0, and fixed ε > 0, and ε > δ > 0. Next lemma describes

what happens at one of ESM iterations.

Lemma 3.1. Let x0 ∈ dom f . The function φx0 : R → R defined by

φx0(K) := inf
x∈X

Fx0(K, x),

where
Fx0(K, x) := f(x)− f(x0) + ε+K∥x− x0∥,

is strictly monotone increasing and locally Lipschitz on (0,∞).
Assume in addition that 0 ̸∈ ∂εf(x0). Then

(i) there exists K0 > 0 such that φx0(K0) = 0;

(ii) for any x1 ∈ X such that

0 ≤ f(x1)− f(x0) + ε+K0∥x1 − x0∥ ≤ δ, (3.1)

there is p1 ∈ ∂δf(x1) such that

K0 ≥ ∥p1∥ − δ, (3.2)

and,
⟨p1, x1 − x0⟩ ≤ f(x1)− f(x0) + ε+ δ. (3.3)

Moreover,
K0 ≤ min{∥p∥ : p ∈ ∂εf(x0)}, (3.4)

and if p0 ∈ ∂δf(x0), then

ε ≤ (∥p0∥ − ∥p1∥)∥x1 − x0∥+ δ

(
2 +

f(x0)

K0

)
. (3.5)
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Proof. It is straightforward to prove the strict monotonicity and the local
Lipschitz continuity of φx0 on (0,∞).

The existence of K ′ > 0 such that φx0(K
′) < 0 follows by 0 ̸∈ ∂εf(x0),

while the existence of K ′′ > 0 such that φx0(K
′′) > 0 is a consequence of

lower semicontinuity of f at x0. Bolzano Theorem ensures the existence of
K0 > 0 with φx0(K0) = 0 which thanks to the strict monotonicity of φx0 on
(0,∞) have to be unique.

Now, let x1 ∈ X be a point of δ-infimum of the function Fx0(K0, ·), i.e.
satisfying (3.1). Equivalently, 0 ∈ ∂δ (f(·)− f(x0) + ε+K0∥ · −x0∥) (x1).
By the weaker form of the sum rule for the δ-subdifferential, we have that
there exist p1 ∈ ∂δf(x1), and ξ1 ∈ ∂δK0∥ · −x0∥(x1) such that 0 = p1 + ξ1.
Since ξ1 ∈ ∂δK0∥ · −x0∥(x1),

⟨ξ1, x−x1⟩ ≤ K0∥x−x0∥−K0∥x1−x0∥+δ ≤ K0∥x−x1∥+δ, ∀x ∈ X. (3.6)

Hence,
|⟨ξ1, x− x1⟩| ≤ K0∥x− x1∥+ δ, ∀x ∈ X,

and (3.2) holds. From (3.6) it easily follows that

K0∥x1 − x0∥ ≤ ⟨ξ1, x1 − x0⟩+ δ = ⟨p1, x0 − x1⟩+ δ

which combined with the left inequality in (3.1) yields (3.3).
Take arbitrary p ∈ ∂εf(x0). By definition of the ε-subdifferential,

⟨p, x− x0⟩ ≤ f(x)− f(x0) + ε, ∀x ∈ X.

Hence,

⟨p, x− x0⟩+K0∥x− x0∥ ≤ f(x)− f(x0) + ε+K0∥x− x0∥, ∀x ∈ X,

⟨p, x− x0

∥x− x0∥
⟩+K0 ≤

f(x)− f(x0) + ε+K0∥x− x0∥
∥x− x0∥

, ∀x ∈ X, x ̸= x0,

K0+ inf
x∈X,x ̸=x0

⟨p, x− x0

∥x− x0∥
⟩ ≤ inf

x∈X,x ̸=x0

(
f(x)− f(x0) + ε+K0∥x− x0∥

∥x− x0∥

)
= 0.

Finally, K0 ≤ ∥p∥, and (3.4) holds.
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Take any p0 ∈ ∂δf(x0). Using (3.2), and ∥x1 − x0∥ ≤ f(x0)

K0

(which is an

easy consequence of (3.1) and δ < ε), we get that

ε ≤ f(x0)− f(x1)−K0∥x1 − x0∥+ δ

≤ ⟨p0, x0 − x1⟩ − ∥p1∥∥x1 − x0∥+ δ∥x1 − x0∥+ 2δ

≤ ∥p0∥∥x1 − x0∥ − ∥p1∥∥x1 − x0∥+ δ

(
f(x0)

K0

+ 2

)
= (∥p0∥ − ∥p1∥)∥x1 − x0∥+ δ

(
f(x0)

K0

+ 2

)
,

which is (3.5). The proof is then completed.

In the context of the ESM, Lemma 3.1 ensures the existence of Ki > 0.
As xi+1 can be taken any point of δ-minimum, i.e. such that

0 ≤ f(xi+1)− f(xi) + ε+Ki∥xi+1 − xi∥ ≤ δ. (3.7)

From the lemma we also have the existence of pi+1 ∈ ∂δf(xi+1) such that

Ki ≥ ∥pi+1∥ − δ, i ≥ 0, (3.8)

⟨pi+1, xi+1 − xi⟩ ≤ f(xi+1)− f(xi) + ε+ δ, i ≥ 0, (3.9)

as well as,

ε ≤ (∥pi∥ − ∥pi+1∥)∥xi+1 − xi∥+ δ

(
2 +

f(xi)

Ki

)
, i ≥ 1. (3.10)

The next Lemma shows that ESM is finite.

Lemma 3.2. ESM ends after a finite number of iterations n such that

n ≤ f(x0)

ε− δ
+ 1 at point xn−1 of ε-minimum of f .

Proof. Let us assume the contrary, i.e. that the number of iterations satisfy

n >
f(x0)

ε− δ
+ 1 and fix such n ∈ N. This means that ESM generates at least

xi, i = 0, . . . , n− 1 such that

0 /∈ ∂εf(xi), i = 0, . . . , n− 2.
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Then from (3.7) we will have that

f(xi)− f(xi+1) ≥ ε+Ki∥xi+1 − xi∥ − δ ≥ ε− δ > 0, i = 0, . . . , n− 2.

Summing the inequalities we obtain that

f(x0)− f(xn−1) =
n−2∑
i=0

(f(xi)− f(xi+1)) ≥ (n− 1) (ε− δ) > f(x0),

hence 0 > f(xn−1) which contradicts to f(xn−1) ≥ f(0) = 0.

It is possible to obtain a better estimate of the number of iteration for a
strictly convex function with more precise choice of the parameter δ.

Lemma 3.3. Let f : X → R∪{+∞} be proper lower semicontinuous convex
function satisfying f(x) ≥ 2c∥x∥ for all x ∈ X and some c > 0.

Applied for f with ε > 0 and δ > 0 such that

δ ≤ c

2
, δ ≤ 1, δ

(
1 +

f(x0)

c

)
≤ ε

4
, (3.11)

ESM ends after n iterations, and

n−2∑
i=0

∥xi+1 − xi∥ ≤ 2f(x0)

c
. (3.12)

Moreover, for the number of iterations n we have the estimation

n ≤ 2

√
f(x0)(∥p0∥+ 1)

cε
+ 2, (3.13)

where p0 ∈ ∂εf(x0) is arbitrary.

Proof. Since f(x) ≥ 2c∥x∥, it is easy to see that if p ∈ ∂δf(x), then

0 = f(0) ≥ f(x)− ⟨p, x⟩ − δ ≥ 2c∥x∥ − ⟨p, x⟩ − δ

yields
∥p∥∥x∥ ≥ ⟨p, x⟩ ≥ 2c∥x∥ − δ. (3.14)

We have three cases: (a) ∥p∥ ≥ 2c; (b) ∥p∥ < 2c, and ∥x∥ > δ/c, and (c)
∥p∥ < 2c, and ∥x∥ ≤ δ/c.
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In case (b), by (3.14) we have

∥p∥ ≥ 2c− δ

∥x∥
> 2c− δc

δ
= c.

In case (c),
f(x) ≤ ⟨p, x⟩+ δ ≤ ∥p∥∥x∥+ δ ≤ 3δ < ε,

and x should be a point of ε-minimum for f .
As xi, i = 0, . . . , n−2, are not ε-minimum points for f , the latter implies,

see (3.8), that

Ki ≥ ∥pi+1∥ − δ ≥ c− δ ≥ c− c

2
=

c

2
.

To establish (3.12) we sum up inequalities (3.7) from 0 to n− 2 to get that

f(xn−1)− f(x0) + (n− 1)ε+
n−2∑
i=0

Ki∥xi+1 − xi∥ ≤ (n− 1)δ.

Hence,

n−2∑
i=0

Ki∥xi+1 − xi∥+ (n− 1)(ε− δ) ≤ f(x0)− f(xn−1).

Since Ki ≥
c

2
for all i in the above sum, and δ < ε,

c

2

n−2∑
i=0

∥xi+1 − xi∥ ≤ f(x0),

and (3.12) holds.
Since f(xi+1) ≤ f(xi) for all i, see (3.7), we have that f(xi) ≤ f(x0) for

all i. Using this and Ki ≥
c

2
in (3.10) we obtain that

ε ≤ (∥pi∥ − ∥pi+1∥)∥xi+1 − xi∥+ 2δ

(
1 +

f(x0)

c

)
, i ≥ 1,

hence, having in mind the choice of δ,

ε

2
≤ (∥pi∥ − ∥pi+1∥)∥xi+1 − xi∥, i ≥ 1. (3.15)
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To apply Lemma 2.3, set

ai := ∥pi∥ − ∥pi+1∥, bi := ∥xi+1 − xi∥, i = 1, . . . , n− 2.

From (3.15) we have that aibi ≥ ε/2, hence, ai > 0, bi > 0, i = 1, . . . , n−2.
From (3.12)

n−2∑
i=1

bi ≤
2f(x0)

c
.

On the other hand,

n−2∑
i=1

ai = ∥p1∥ − ∥pn−1∥ ≤ ∥p1∥ ≤ K0 + δ ≤ ∥p0∥+ δ ≤ ∥p0∥+ 1,

where p0 ∈ ∂εf(x0) is arbitrary (see (3.4)).

Setting A := ∥p0∥ + 1 and B :=
2f(x0)

c
we have that the conditions of

Lemma 2.3 hold. Hence,

n− 2 ≤
√

2AB

ε
= 2

√
f(x0)(∥p0∥+ 1)

cε

and (3.13) holds. The proof is completed.

Let us note that p0 in (3.13) as an arbitrary element in ∂εf(x0) depends
on ε. But when x0 ∈ dom ∂f , then p0 could be taken in ∂f(x0) and in this
case, the estimation (3.13) is of the type n

√
ε ≤ const.

4 Proof of Theorem 1.2

We will establish first that g(x) = g(x̄) +R∂g,(x̄,p̄)(x) for x ∈ dom ∂g.
To prove that

g(x)− g(x̄) ≥ R∂g,(x̄,p̄)(x) (4.1)

is easy. Indeed, for any sequence {(xi, qi)}ni=1 ⊂ gph ∂g with x0 = x, xn = x̄,
and qn = p̄, by the definition of subdifferential we have that

⟨qi+1, xi − xi+1⟩ ≤ g(xi)− g(xi+1), i = 0, . . . , (n− 1).

12



After summing these inequalities we immediately get

n−1∑
i=0

⟨qi+1, xi − xi+1⟩ ≤ g(x)− g(x̄)

and (4.1) follows.
To obtain that

g(x)− g(x̄) ≤ R∂g,(x̄,p̄)(x)

it is enough for any fixed ε′ > 0 to find a sequence {(xi, qi)}ni=1 ⊂ gph ∂g
such that x0 = x, xn = x̄, qn = p̄, and

g(x)− g(x̄)−
n−1∑
i=0

⟨qi+1, xi − xi+1⟩ < ε′. (4.2)

To this end we consider the function f : X → R ∪ {+∞}, defined as

f(x) := g(x+ x̄)− ⟨p̄, x⟩ − g(x̄) + 2c∥x∥, (4.3)

where c ∈ (0, 1) is a fixed constant. It is easy to see that f is proper lower
semicontinuous and convex, f(0) = 0, 0 ∈ ∂f(0), f(x) ≥ 2c∥x∥ for all x ∈ X
and dom ∂f ≡ dom ∂g − x̄. Set x0 := x, take arbitrary p0 ∈ ∂g(x0) and set

M := 4

(√
f(x0)(∥p0∥+ 1)

c
+ 1

)
.

Take ε ∈ (0, c) such that M
√
ε < ε′ and then apply ESM for f with this ε

and δ>0 such that η(δ)<ε/3, where η(δ):=2
√
δ

(
1+2c+∥p0∥+∥p∥+f(x0)

c

)
.

It is easy to check that if δ is such that η(δ) < ε/3, then δ satisfies (3.11).
When such a δ is chosen, set η := η(δ).

Denote y0 := x− x̄. Observe that p0 ∈ ∂f(y0).
Starting at y′0 := y0 ESM generates a finite sequence pi+1 ∈ ∂δf(y

′
i+1),

i = 0, . . . , n− 2.
By the weaker version of the δ-subdifferential sum rule we have that

∂δf(·) ⊂ ∂δg(·+ x) + ∂δ⟨−p̄, ·⟩+ ∂δ2c∥ · ∥,

therefore,
pi+1 = q′i+1 − pi+1 + ξi+1, (4.4)
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for some q′i+1 ∈ ∂δg(· + x̄)(y′i+1), ξi+1 ∈ ∂δ2c∥ · ∥(y′i+1), and pi+1 such that
∥pi+1 − p∥ ≤ δ, i = 0, . . . , n− 2.

From (3.9) we have that

⟨pi+1, y
′
i+1 − y′i⟩ ≤ f(y′i+1)− f(y′i) + ε+ δ, i = 0, . . . , n− 2.

Summing these equalities and using that δ < η, we get

n−2∑
i=0

⟨pi+1, y
′
i+1 − y′i⟩ ≤ f(y′n−1)− f(y0) + (n− 1)(ε+ η),

and from (4.4) we obtain that

n−2∑
i=0

⟨q′i+1, y
′
i+1 − y′i⟩ ≤

n−2∑
i=0

⟨pi+1, y
′
i+1 − y′i⟩+

n−2∑
i=0

⟨ξi+1, y
′
i − y′i+1⟩

+ f(y′n−1)− f(y0) + (n− 1)(ε+ η). (4.5)

To estimate the right hand side of (4.5) we use, first, that

n−2∑
i=0

⟨pi+1, y
′
i+1 − y′i⟩ ≤ ⟨p, y′n−1 − y0⟩+ δ

n−2∑
i=0

∥y′i+1 − y′i∥

≤ ⟨p, y′n−1 − y0⟩+ 2δ
f(x0)

c
≤ ⟨p, y′n−1 − y0⟩+ η,

second, that ξi+1 ∈ ∂δ2c∥ · ∥(y′i+1), hence

n−2∑
i=0

⟨ξi+1, y
′
i − y′i+1⟩ ≤

n−2∑
i=0

(
2c∥y′i∥ − 2c∥y′i+1∥+ δ

)
= 2c∥y0∥ − 2c∥y′n−1∥+ (n− 1)δ ≤ 2c∥y0∥+ (n− 1)η,

and, third, that y′n−1 is an ε-minimum of f , hence f(y′n−1) ≤ ε.
Incorporating all these in (4.5) we obtain that

n−2∑
i=0

⟨q′i+1, y
′
i+1 − y′i⟩ ≤ ⟨p̄, y′n−1 − y0⟩+ 2c∥y0∥ − f(y0)+ (4.6)

(n− 1)(ε+ 2η) + ε+ η.
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By Brøndsted-Rockafellar Theorem there exist qi+1 ∈ ∂g(x+ yi+1) such that
∥qi+1 − q′i+1∥ ≤

√
δ, and ∥yi+1 − y′i+1∥ ≤

√
δ. Then

⟨qi+1, yi+1 − yi⟩ − ⟨q′i+1, y
′
i+1 − y′i⟩ =

⟨qi+1 − q′i+1, yi+1 − yi⟩+ ⟨q′i+1, yi+1 − yi − y′i+1 + y′i⟩ ≤
∥qi+1 − q′i+1∥∥yi+1 − yi∥+ ∥q′i+1∥(∥yi+1 − y′i+1∥+ ∥yi − y′i∥).

Since ∥pi+1∥ ≤ ∥p1∥, ∀i, which follows from (3.10), and since ∥p1∥ ≤ ∥p0∥,
see (3.5), we easily derive that ∥q′i+1∥ ≤ 2δ + 2c+ ∥p∥+ ∥p0∥, ∀i. Using the

latter and ∥yi+1 − yi∥ ≤ 2
√
δ + ∥y′i+1 − y′i∥ we obtain that

⟨qi+1, yi+1 − yi⟩ − ⟨q′i+1, y
′
i+1 − y′i⟩ ≤

√
δ(2

√
δ + ∥y′i+1 − y′i∥) + 2

√
δ(2δ + 2c+ ∥p∥+ ∥p0∥) ≤ η +

√
δ∥y′i+1 − y′i∥.

Hence,
n−2∑
i=0

⟨qi+1, yi+1 − yi⟩ −
n−2∑
i=0

⟨q′i+1, y
′
i+1 − y′i⟩ ≤

(n− 1)η +
√
δ

n−2∑
i=0

∥y′i+1 − y′i∥ ≤ (n− 1)η + 2
√
δ
f(x0)

c
≤ (n− 1)η + η.

Using this in (4.6), as well as
√
δ∥p∥ ≤ η, and η ≤ ε/3, we get

n−2∑
i=0

⟨qi+1, yi+1 − yi⟩ ≤ ⟨p̄, yn−1 − y0⟩+ 2c∥y0∥ − f(y0)

+(n− 1)(ε+ 3η) + ε+ 2η +
√
δ∥p∥

≤ ⟨p̄, yn−1 − y0⟩+ 2c∥y0∥ − f(y0) + 2nε. (4.7)

But
f(y0) = f(x− x̄) = g(x)− ⟨p̄, y0⟩ − g(x̄) + 2c∥y0∥,

see (4.3), which combined with (4.7) yields

n−2∑
i=0

⟨qi+1, yi+1 − yi⟩ ≤ ⟨p̄, yn−1⟩+ g(x)− g(x) + 2nε. (4.8)

Now, let us denote xi+1 := yi+1+x̄, i = 0, . . . , n−2. Then qi+1 ∈ ∂g(xi+1),
and xi − xi+1 = yi − yi+1, i = 0, . . . , n− 2.
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Setting xn = x̄ yn = 0, and qn = p̄ from (4.8) we obtain that

g(x)−g(x̄)−
n−1∑
i=0

⟨qi+1, xi−xi+1⟩ = g(x)− g(x̄)−
n−1∑
i=0

⟨qi+1, yi − yi+1⟩

≤ ⟨qn, yn − yn−1⟩+ ⟨p̄, yn−1⟩+ 2nε

= 2nε (since yn = 0 and qn = p̄)

≤ 4

(√
f(x0)(∥p0∥+1)

cε
+1

)
ε (by (3.13))

≤ 4

(√
f(x0)(∥p0∥+1)

c
+1

)
√
ε = M

√
ε

< ε′,

and (4.2) follows.

So far we have shown that g(x) = g(x̄) +R∂g,(x̄,p̄)(x) for x ∈ dom ∂g.
Now, fix any x ∈ X and a real number r such that r < g(x). By Propo-

sition 2.2 we can find (y, p) ∈ gph ∂g such that r < g(y) + ⟨p, x− y⟩.
Since y ∈ dom ∂g for a fixed ε > 0 we find a sequence {(xi, qi)}ni=2 ∈

gph ∂g with x1 = y, xn = x̄ and qn = p̄ such that

g(y)− g(x̄)−
n−1∑
i=1

⟨qi+1, xi − xi+1⟩ < ε.

Then,

r < g(x)+ ⟨p, x−y⟩+
n−1∑
i=1

⟨qi+1, xi−xi+1⟩+ε = g(x)+
n−1∑
i=0

⟨qi+1, xi−xi+1⟩+ε,

where q1 := p.
Since r < g(x) and ε > 0 were arbitrary, the proof is completed.
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