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Preface

The need for studying non-smooth functions, non-smooth optimization problems and sets
with a non-smooth boundary has emerge quite natural with the development of modern
mathematics.Operations Research and Variational Analysis are good examples of fields of
research that study these objects. Concepts like distance functions, solution-sets, projection-
sets, indicator functions, normal cones, tangent cones and subdifferentials are in the heart
of the development of this fields, but all of them generally are unavoidably non-smooth. As
an example consider the real valued function f : R → R

f(x) := |x| = max{x,−x}.

This function f is the maximum of two differentiable functions but it is non-differentiable
at x = 0. Nonetheless it’s graph does not have a unique tangent line at (0, 0), but a whole
family of tangent lines. The concept of subdifferentials comes quite in handy to characterize
this family of tangent lines. In the sense of Convex Analysis the convex subdifferential ∂f(x)
for this function f at x is the set

∂f(x) := {p ∈ R : f(x) + p(y − x) ≤ f(y), ∀y ∈ R}.

One can interpret the latter as the set of all of the gradients of liner functions which are
tangent to the point (x, f(x)) of the graph of the function f and are always under it. It
can be shown that

∂f(x) =


{−1}, x < 0,

[−1, 1], x = 0,

{1}, x > 0.

and that if p0 ∈ ∂f(0), then the vector (p0,−1) is normal to one of the tangent lines to the
graph of the function f at (0, 0).

This example is not an artificial one. The maximum of two linear functions appears
in some types of Cutting Stock Problems, which are widely used in optimization problems
coming from the manufacturing industry.
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For a Banach space X the convex subdifferential of a function f : X → R ∪ {+∞} at
x ∈ dom f = {x ∈ X : f(x) ∈ R} is the set

∂f(x) := {p ∈ X∗ : ⟨p, y − x⟩ ≤ f(y)− f(x), ∀y ∈ X}.

Convex subdifferentials have many properties which resembles classical properties of deriva-
tives. One can say that they are a continuation and generalization of derivatives. For ex-
ample, one has that if 0 ∈ ∂f(x) then the point x is a minimzer of the function f , the set
∂f(x) is reduced to the singleton {f ′(x)} when f is differentiable at the point x, sum rules
of the forme

∂(f + g)(x) ⊂ ∂f(x) + ∂g(x)

for appropriately chosen function f and g and many more.

Of course there are other subdifferentials except the convex subdifferential. For exam-
ple the Dini subdifferential, the Clarke subdifferential and the Michel-Penot subdifferential
which definitions relay respectively on the corresponding generalized derivatives of Dini,
Clarke and Michel-Penot, see [16, Chapter 6]. One can also define a subdifferential ax-
iomatically as an abstract subdifferential, see [50].

Let C be a convex subset of a real valued vector space. The function f : C → R∪{+∞}
is said to be convex if the following inequality

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

holds for all x, y ∈ C and λ ∈ [0, 1].
The function f is said to be strictly convex if the latter inequality is strict for all x, y ∈ C

and λ ∈ (0, 1).
The geometric interpretation of this definition is that for fixed x and y in C the graph

of the function f on the segment [x, y] lies below the segment between the point on the
graph (x, f(x)) and (y, f(y)).

Notice that this definition does not rely on derivatives, although there are classical result
of necessary and sufficient conditions for a differentiable function to be convex which include
derivatives. One example is that a differentiable function f : R → R is convex if and only
if its derivative f ′ is monotone increasing.

Another way to characterise a convex function f : C → R, where the set C is a convex
subset of some real valued vector space, is by its epigraph which is the set

epi f := {(x, r) ∈ C × R : f(x) ≤ r}.

One has that f is convex if and only if it’s epigraph epi f is a convex set in C × R, i.e.

λ(x1, r1) + (1− λ)(x2, r2) ∈ epi f
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for all (x1, r1), (x2, r2) ∈ epi f and λ ∈ [0, 1].
This necessary and sufficient conditions gives us an important connection between con-

vex functions and their epigraphs and gives us yet another good geometric intuition.

There is no debate that convex functions play a key role in many optimization problems
due to their wide range of convenient properties. For example if a strictly convex functions
has a minimizer it is unique. However, finding new results for convex-like function is
essential. By convex-like we mean functions which have properties similar to those of
convex functions but are not necessarily convex. One such class of functions is the class
of primal lower-nice functions which was introduced by Poliquin in 1991, see [41] and has
been extensively studied ever since, see [42, 43, 27, 9, 52, 36]. In his work [41] Poliquin
shows that primal lower-nice functions considered on a finite dimensional space can be fully
characterized by their Clarke subdifferential. But there is not only one way to define primal
lower-nice functions. For example Ivanov and Zlateva in [27] show that the following two
definitions are equivalent:

Definition 1 Let f : X ∈ R ∪ {+∞} be a lower semicontinuous function. Function f
is said to be primal lower nice at x̄ ∈ dom f if there exist λ > 0, c > 0 and T > 0 such that

f(y) ≥ f(x) + ⟨p, y − x⟩ − t

2
∥y − x∥2,

where t ≥ T , x ∈ x̄+ λB, y ∈ x+ λB, p ∈ ∂f(x) and ∥p∥ ≤ ct.

Definition 2 Let f : X ∈ R ∪ {+∞} be a lower semicontinuous function. Function f
is said to be primal lower nice at x̄ ∈ dom f if there exist λ > 0, c > 0 and T > 0 such that

⟨p− q, x− y⟩ ≥ −t∥x− y∥2,

where t ≥ T , x, y ∈ x̄+ λB, p ∈ ∂f(x), q ∈ ∂f(y) and max{∥p∥, ∥q∥} ≤ ct.

Afterwards Ivanov and Zlateva showed in [28] that the proximal subdifferential and the
Clarke subdifferential of a primal lower nice function defined on a β smooth Banach space
coincide. This result suggests that the class of primal lower nice functions does not depend
on the subdifferential involved in their definition. After these results a very interesting
question arises: Is it possible to characterize primal lower nice functions without using
subdifferentials?

In Chapter 2 we show that primal lower nice functions defined on a Hilbert space satisfy
the following property: For any a, b ∈ dom f such that√

∥a− b∥2 + (f(a)− f(b))2 < 2r

and any λ ∈ [0, 1] there is u ∈ dom f ∩B[λa+ (1− λ)b), φ(λ)] such that either

f(u) ≤ λf(a) + (1− λ)f(b),



Preface 8

or
λf(a) + (1− λ)f(b) < f(u) ≤ λf(a) + (1− λ)f(b) + φ(λ),

where
φ(λ) := r −

√
r2 − λ(1− λ)∥a− b∥2.

In particular,
inf

B[λa+(1−λ)b),φ(λ)]
f ≤ λf(a) + (1− λ)f(b) + φ(λ).

Note that this property does not use subdifferential in any way. To achieve it we
introduce and study a property we call epi prox-regularity of an epigraph set which slightly
differs from the well-known prox-regularity property of a set. We take this approach because
primal lower nice functions are strongly related to prox-regular sets. Indeed in a Hilbert
space a set is prox-regular if and only if it’s indicator function is primal lower nice, see [44,
Proposition 2.1].

The study of prox-regular sets takes root in the pioneering work of Federer who gave an
extension of the Steiner polynomial formula for convex set by introducing positively reached
sets, see [23]. During the years different authors have given different names for such sets.
For example weakly convex [53] and proximally smooth sets [19]. Other names can be found
in the survey [20].

It is key to point out that prox-regular sets and convex sets have some common prop-
erties. For example the distance function is differentiable and Lipschitz continuity on some
appropriately chosen tube both for prox-regular and convex sets. But it is not true that
the intersection of two prox-regular sets is prox-regular.

In Chapter 1 we provide a new proof of an intrinsic property of prox-regular sets in
Hilbert spaces. The term prox-regularity was given by Poliquin and Rockafellar in [43].
They defined the term for sets and functions and unfold their properties first in Rn. In
[44, Theorem 4.1] Poliquin, Rockafellar and Thibault achieved various characterizations of
a prox-regular set C defined on a Hilbert space. Note that all of this characterizations use
the distance function, the projection set or the proximal normal cone in some way. The
characterization which we prove does not use them and is the following:

For any a, b ∈ C such that ∥a− b∥ < 2r and any λ ∈ (0, 1) for

xλ := λa+ (1− λ)b

there exists uλ ∈ C such that

(1) ∥xλ − uλ∥ ≤ r −
√

r2 − λ(1− λ)∥a− b∥2.

This characterization is well know, but the methods used in our proof help us to achieve
the results in Chapter 2. This is because of the relationship between a prox-regular function
and its epigraphs.
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In Chapter 3 we give new proof of the Moreau-Rockafellar theorem which states that
a proper, lower semicontinuous and convex function on a Banach space is determined up
to a constant by its subdifferential. To this end we develop a novel Epsilon Subdifferential
Method (ESM) which is similar to the classical Epsilon Subdifferential Method, see e.g. [12,
13]. For convenience of the reader we layout the novel ESM here:

It applies to a given proper, convex and lower semicontinuous function f : X → R ∪
{+∞}, defined on a Banach space X, such that

0 = f(0) = min
x∈X

f(x)

with fixed in advance parameters ε > 0 and δ ∈ (0, ε).

Starting at arbitrary x0 ∈ dom f , for i = 0, 1, . . .

� if 0 ∈ ∂εf(xi), then stop;

� if 0 ̸∈ ∂εf(xi), for

φxi
(K) := inf

x∈X
Fxi

(K, x),

where

Fxi
(K, x) := f(x)− f(xi) + ε+K∥x− xi∥,

find Ki > 0 such that φi(Ki) = 0.

Take any xi+1 satisfying

0 ≤ f(xi+1)− f(xi) + ε+Ki∥xi+1 − xi∥ ≤ δ.

Although in the classical Epsilon Subdifferential Method the function under considera-
tion is defined on Rn there is no issue to continue the method to the infinite dimensional
case. A key difference between the novel and the classical ESM is that the classical ap-
proximates a minimum of the function under consideration by making the epsilon in the
method smaller and smaller every time when 0 ∈ ∂εf(xi), where xi has been generated in
the previous iteration of the method, while our novel ESM finds an ε-minimum for a fixed
in advance positive ε, i.e. it stops when 0 ∈ ∂εf(xi) and xi is the last point found by it.
The latter is not a disadvantage of the novel EMS, because finding a ε minimum is more
than enough to prove in a new way the famous Rockafellar-formula, (see [45],[46] and [29,
Theorem 1.2]):

Rockafellar-formula Let

g : X → R ∪ {+∞}
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be a proper, lower semicontinuous and convex function defined on a Banach space X. Let
x̄ ∈ dom ∂g and p̄ ∈ ∂g(x̄). Then for all x ∈ X

g(x) = g(x̄) +R∂g,(x̄,p̄)(x),

where

R∂g,(x̄,p̄)(x) := sup
{ n−1∑

i=0

⟨qi+1, xi − xi+1⟩ :

x0 = x, xn = x̄, qn = p̄, qi ∈ ∂g(xi), n ∈ N
}
.

By proving in a new way the famous Rockafellar-formula we give a new prove of the
Moreau-Rockafellar Theorem, (see [45, 46]):

Moreau-Rockafellar Theorem Let X be a Banach space. Let g and h be proper, lower
semicontinuous and convex functions from X to R∪{+∞}. If ∂g ⊂ ∂h, then h = g+const.

Historically the first complete proof of the famous Moreau-Rockafellar theorem in a
Banach space is due to Rockafellar, see [46]. However this proof depends on duality argu-
ments. A simpler proof which does not use any duality was done by Ivanov and Zlateva in
[29] which resembles the proof that a monotone function is Riemann integrable (a classical
result in Calculus). To this end they prove the Rockafellar-formula by using in [29] the
following Lemma 3.3 proved by Ekeland variational principle.

Lemma 3.3 Let f be a proper lower semicontinuous convex function from a Banach space
X into R∪{+∞}. Let (yi)ki=1 ⊂ dom f . The for each ε > 0 there are (xi, pi) ∈ gph ∂f such
that

∥xi − yi∥ ≤ ε and ∥pj∥ ∥xi − yi∥ ≤ ε, ∀i, j = 1, . . . , k.

Since the proof of Lemma 3.3 relays on Ekeland variational principle the relationship
between xi and pi is not clear. One of the main features and merits of the novel ESM is
to partially clarify and reveal the relationship between them. This is done without using a
Variational principle.

With a pinch of optimism we expect our novel ESM to be useful for proving the integra-
bility for the class of uniformly lower regular functions defined on a Hilbert space considered
in Chapter 2.

For the convenience of the reader proofs of some of the routine results and well known
facts are given in the Appendix.



Chapter 1

An intrinsic property of prox-regular
sets in Hilbert space

The study of prox-regular sets, a term due to Poliquin, Rockafellar and Thibault [44], can be
traced back to the pioneering work [23] of Federer who introduced them as positively reached
sets in Rn. During the years, various names of such sets have been introduced: weakly
convex [53] or proximally smooth sets [19] are commonly used in Hilbert spaces; for other
names see the survey [20]. Prox-regular sets in Banach spaces are studied in [10, 11, 6, 8].

Along with the study of prox-regular sets from a theoretical point of view, they are
intensively studied and involved in the famous Moreau’s sweeping processes, see the survey
[39] and the references therein. Various stability and separation properties of prox-regular
sets are established in [1, 3, 4]. More details one can find in the paper [44], the survey [20],
the forthcoming book [51] and their bibliography.

Prox-regularity has been introduced as an important new regularity property in Varia-
tional Analysis by Poliquin and Rockafellar in [43]. They defined the concept for functions
and sets and developed the subject in Rn. Numerous significant characterizations of prox-
regularity of a closed set C in Hilbert space at point x ∈ C were obtained by Poliquin,
Rockafellar and Thibault in [44] in terms of the distance function dC and metric projection
mapping PC , e.g. dC being continuously differentiable outside of C on a neighbourhood
of x, or PC being single-valued and norm-to-weak continuous on this same neighbourhood.
On global level, in [44] the authors showed that uniformly prox-regular sets are proximally
smooth sets providing new insights on them.

In this chapter we will prove the following intrinsic characteristic properties of a r-
prox-regular set.

Theorem 1.1.1. Given a real r > 0, a non-empty closed set C in a Hilbert space H. The
following are equivalent:

(a) C is r-prox-regular.
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(b) For any a, b ∈ C such that ∥a− b∥ < 2r and any λ ∈ (0, 1) for

xλ := λa+ (1− λ)b

there exists uλ ∈ C such that

(1.1) ∥xλ − uλ∥ ≤ r −
√

r2 − λ(1− λ)∥a− b∥2.

(c) For any a, b ∈ C with ∥a− b∥ < 2r there is some z ∈ C such that

(1.2)

∥∥∥∥a+ b

2
− z

∥∥∥∥ ≤ r −
√

r2 − ∥a− b∥2
4

.

The equivalence (a) ⇔ (c) is established by G. E. Ivanov, see [26, Lemma 4.2] by using

the properties of the sets ∆r(a, b) :=
⋂

d:{a,b}∈B[d,r]

B[d, r], first considered by J.-P. Vial, see

[53]. In our proof we use a different approach which does not rely on these sets.
In finite dimensional settings, J.-P. Vial, see [53, Proposition 3.4], proved the implication

(a) ⇒ (b) with right hand side of (1.1) equal to θλ :=
λ(1− λ)

r
∥a−b∥2, and the implication

(b) ⇒ (a) with right hand side of (1.1) equal to δλ :=
λ(1− λ)

2r
∥a − b∥2. As δλ < r −√

r2 − λ(1− λ)∥a− b∥2 < θλ, the condition (1.1) is slightly weaker than both conditions
of Vial. The equivalence (a) ⇔ (b) is proved in Hilbert settings in [51, Proposition 15.41],
by using different arguments.

The results in this chapter are published in [33].

1.1 Notations

Throughout this chapter H stands for a real Hilbert space endowed with the inner product

⟨·, ·⟩ : H ×H → R,

and with the associated with it norm

∥ · ∥ :=
√

⟨·, ·⟩.

The open (resp. closed) ball of H centered at x ∈ H with radius t > 0 is denoted by

B(x, t) := {y ∈ H : ∥y − x∥ < t} (resp. B[x, t] := {y ∈ H : ∥y − x∥ ≤ t}).
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In the particular case of the closed unit ball we use the notation

B := B[0; 1].

In the following notations we consider C to be a nonempty subset of H.
The distance function

dC : H → R+,

which measures the distance of a point x ∈ H to the set C is defined as

dC(x) := inf
y∈C

∥x− y∥, for all x ∈ H.

For ε ≥ 0 the ε−argmin set of the distance function is defined as

ε−argmin dC(x) := {y ∈ C : ∥x− y∥ ≤ dC(x) + ε}.

For an extended real r ∈ (0,+∞] through the distance function, one defines the (open)
r-tube of C as the set

TC(r) := UC(r) \ C,
where UC(r) is the (open) r-enlargement of C

UC(r) := {x ∈ H : dC(x) < r}.

In Figure 1.1 are shown examples of r-tubes of sets in R2.

Figure 1.1: Examples of two (open) r-tubes in R2.

The multi-valued mapping PC : H ⇒ H which gives the set of all nearest points in C
to a point x ∈ H is defined by

PC(x) := {y ∈ C : dC(x) = ∥x− y∥}, for all x ∈ H.
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Figure 1.2: Examples of projection sets in R2.

The set PC(x) is called the projection set of the point x to the set C.
Whenever for some x ∈ H the latter set is reduced to a singleton, i.e.

PC(x) = {y},

the vector y ∈ H is denoted by pC(x).
In Figure 1.2 are shown examples of multi-valued and single valued projection sets in

R2.
The proximal normal cone of C at x ∈ H, denoted by NC(x), is defined as,(see [47])

NC(x) := {p ∈ H : there exist r > 0 such that x ∈ PC(x+ rp)}.

By convention, NC(x
′) = ∅ for all x′ ̸∈ C. The elements of the proximal normal cone NC(x)

are called proximal normals to the set C at x.
It is easy to see that p ∈ NC(x) if and only if there is a real σ > 0 such that

(1.3) ⟨p, x′ − x⟩ ≤ σ∥x′ − x∥2, for all x′ ∈ C.

The proof of the latter is given in Proposition A.1.1 in the Appendix.

It is key to point out that the σ > 0 in (1.3) depends on x as well as on p.
The following definition considers such nonempty closed subset of H for which the σ > 0

in (1.3) stays the same for all proximal normals taken at x ∈ C.

Definition 1.1.2. Let C be a nonempty closed subset of H and r ∈ (0,+∞]. One says that
C is r-prox-regular (or uniformly prox-regular with constant r) whenever, for every x ∈ C
and p ∈ NC(x) ∩ B one has that x = pC(x + rp), i.e. x is the unique nearest point from
x+ rp to C.
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Figure 1.3: Example of two r-prox-regular sets in R2.

The geometric interpretation of Definition 1.1.2 is that on such a set we can roll a ball
with a fixed radius r > 0 over its entire boundary (see Figure 1.3).

In the following theorem are collected some of the characterizations of uniformly prox-
regular sets for which we refer to [44, Theorem 4.1].

Theorem 1.1.3. Let C be a nonempty closed subset of H and let r > 0. The following
assertions are equivalent:
(a) The set C is r-prox-regular.
(b) For all x, x′ ∈ C, for all p ∈ NC(x), one has

⟨p, x′ − x⟩ ≤ 1

2r
∥p∥∥x′ − x∥2.

(c) PC is single-valued and norm-to-weak continuous on TC(r).

1.2 Proof of the intrinsic property

We will prove Theorem 1.1.1 by establishing the relations

(a) ⇒ (b) ⇒ (c) ⇒ (a).

(a) ⇒ (b) Let C be r-prox-regular and a, b ∈ C be such that ∥a−b∥ < 2r. Fix λ ∈ (0, 1)
and denote

xλ := λa+ (1− λ)b.

First we will show that xλ ∈ UC(r). Since a, b ∈ C by the definition of the distance
function we have that

dC(xλ) = inf
y∈C

∥xλ − y∥ ≤ ∥xλ − a∥ = (1− λ)∥a− b∥
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and
dC(xλ) = inf

y∈C
∥xλ − y∥ ≤ ∥xλ − b∥ = λ∥a− b∥.

Hence we get that

dC(xλ) ≤ min (1− λ, λ) ∥a− b∥ ≤ 1

2
∥a− b∥ < r,

which shows that xλ ∈ UC(r).If xλ ∈ C we can just take uλ = xλ and the proof will be
complete. So we will consider only the case xλ ∈ TC(r). From Theorem 1.1.3 (c) there
exists a unique uλ ∈ C such that

uλ := pC(xλ).

In Figure 1.4 is given some sketch in R2.

Figure 1.4: Geometric idea for the prove of (a) ⇒ (b)

Since λ is fixed, further we will omit it from the index and will work with x := xλ,
and u := uλ instead. Set p := x − u and observe that p ̸= 0 and that p ∈ NC(u).From
Theorem 1.1.3 (b) it holds that

(1.4) ⟨p, x′ − u⟩ ≤ 1

2r
∥p∥∥x′ − u∥2, ∀x′ ∈ C.

It is clear that

(1.5) u = x− p = λa+ (1− λ)b− p.

Substituting x′ = a in (1.4) and using the expression (1.5) for u, we get

⟨p, (1− λ)(a− b) + p⟩ ≤ 1

2r
∥p∥∥(1− λ)(a− b) + p∥2 =

=
1

2r
∥p∥
(
(1− λ)2∥a− b∥2 + 2(1− λ)⟨a− b, p⟩+ ∥p∥2

)
(1.6)
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Analogously, substituting x′ = b in (1.4) we have

(1.7) ⟨p, λ(b− a) + p⟩ ≤ 1

2r
∥p∥
(
λ2∥b− a∥2 + 2λ⟨b− a, p⟩+ ∥p∥2

)
.

Multiplying inequality (1.6) by λ, inequality (1.7) by (1− λ) and adding them, we obtain

⟨p, p⟩ ≤ 1

2r
∥p∥

(
λ(1− λ)∥a− b∥2 + ∥p∥2

)
.

Rearranging the latter, we have that ∥p∥ satisfies the following quadratic inequality

(1.8) t2 − 2rt+ λ(1− λ)∥a− b∥2 ≥ 0.

Since ∥a−b∥ < 2r, and λ ∈ (0, 1) for the discriminant of the left-hand side of this quadratic
inequality we have

D := 4r2 − 4λ(1− λ)∥a− b∥2 > 4r2 − 4λ(1− λ)4r2(1.9)

= 4r2
(
1− 4λ(1− λ)

)
= 4r2(1− 4λ+ 4λ2)

= 4r2(1− 2λ)2 ≥ 0.

Hence any t satisfying (1.8) is such that t ≤ t1 or t ≥ t2, where

t1 := r −
√

r2 − λ(1− λ)∥a− b∥2,

and
t2 := r +

√
r2 − λ(1− λ)∥a− b∥2.

Having in mind that u = pC(x), we have

∥p∥ = ∥x− u∥ ≤ ∥x− a∥ = ∥λa+ (1− λ)b− a∥ = (1− λ)∥b− a∥,

and
∥p∥ = ∥x− u∥ ≤ ∥x− b∥ = ∥λa+ (1− λ)b− b∥ = λ∥b− a∥.

Hence

∥p∥ ≤ min(1− λ, λ)∥b− a∥ ≤ ∥b− a∥
2

<
2r

2
= r.

As t2 ≥ r, we obviously get that ∥p∥ ≤ t1, which reads

∥p∥ ≤ r −
√

r2 − λ(1− λ)∥a− b∥2,

and the proof of (a) ⇒ (b) is completed.

Remark 1.2.1. For any λ ∈ (0, 1) we have that uλ ̸∈ {a, b}.
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The proof is given in Proposition A.1.3 in the Appendix.

(b) ⇒ (c) The proof is obvious, just take λ =
1

2
in (1.1).

(c) ⇒ (a) Let x0 be any point in TC(r), i.e. 0 < dC(x0) < r and denote

∆ :=
1

2
min {dC(x0), r − dC(x0)} .

Take an arbitrary x ∈ B(x0,∆). Note that by the choice of ∆ we have that

dC(x) = inf
y∈C

∥x− y∥ ≤ inf
y∈C

(∥x− x0∥+ ∥x0 − y∥) =

= ∥x− x0∥+ inf
y∈C

∥x0 − y∥ = ∥x− x0∥+ dC(x0) <

< ∆+ r − 2∆ = r −∆.

Analogously
dC(x) = inf

y∈C
∥x− y∥ ≥ inf

y∈C
(∥x0 − y∥ − ∥x− x0∥) =

= dC(x0)− ∥x− x0∥ > 2∆−∆ = ∆.

Denoting d := dC(x), we have

(1.10) ∆ < d < r −∆.

Take any ε ∈ (0,∆). Let a, b ∈ C, a ̸= b be such that a, b ∈ ε−argmin dC(x), and ∥a−b∥ > ε
(if any). Since ∥a− x∥ ≤ d+ ε and ∥b− x∥ ≤ d+ ε we have that

∥a− b∥ ≤ ∥a− x∥+ ∥b− x∥ ≤ 2d+ 2ε < 2(r −∆) + 2∆ = 2r.

From (1.2) there exists z ∈ C such that

(1.11)

∥∥∥∥a+ b

2
− z

∥∥∥∥ ≤ r −
√

r2 − ∥a− b∥2
4

.

Setting

a := x+ d
a− x

∥a− x∥
we have a point a such that

∥a− x∥ =
∥∥∥d a− x

∥a− x∥

∥∥∥ = d
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and since ∥a− x∥ ≤ d+ ε

∥a− a∥ =
∥∥∥x− a+ d

a− x

∥a− x∥

∥∥∥ =
(
1− d

∥a− x∥

)
∥a− x∥ =

= ∥a− x∥ − d ≤ d+ ε− d = ε,

i.e.

∥a− x∥ = d and ∥a− a∥ ≤ ε.

Analogously, setting

b := x+ d
b− x

∥b− x∥

we obtain a point b such that

∥b− x∥ = d and ∥b− b∥ ≤ ε.

A sketch in R2 is given in Figure 1.5.

Figure 1.5: Geometric idea for the prove of (c) ⇒ (a)

Moreover, a ̸= b (otherwise one gets a contradiction with ∥a− b∥ > ε.)
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We will show that

∥a− b∥ ≤ 2r

√
2c(∆)

∆

√
ε

and use it to give the upper bound

∥a− b∥ ≤

(
2r

√
2c(∆)

∆
+ 2

√
∆

)
√
ε.

To this end from the parallelogram law we have that

2

∥∥∥∥a− x

2

∥∥∥∥2 + 2

∥∥∥∥b− x

2

∥∥∥∥2 = ∥∥∥∥a+ b

2
− x

∥∥∥∥2 + ∥∥∥∥a− b

2

∥∥∥∥2 .
Hence ∥∥∥∥a+ b

2
− x

∥∥∥∥2 = 2

∥∥∥∥a− x

2

∥∥∥∥2 + 2

∥∥∥∥b− x

2

∥∥∥∥2 − ∥∥∥∥a− b

2

∥∥∥∥2
=

1

2
d2 +

1

2
d2 − ∥a− b∥2

4
= d2 − ∥a− b∥2

4
,

which yields that

(1.12)

∥∥∥∥a+ b

2
− x

∥∥∥∥ =

√
d2 − 1

4
∥a− b∥2.

Now we will show that any ball centered at
a+ b

2
with radius ρ0 such than

0 < ρ0 < d−
√

d2 − 1

4
∥a− b∥2

does not contain any point of the set C. Suppose that z0 ∈ C ∩B

(
a+ b

2
, ρ0

)
.

From (1.12), the choice of ρ0 and since d = dC(x) we get that

d = dC(x) = inf
y∈C

∥x− y∥ ≤ ∥x− z0∥ ≤

≤
∥∥∥a+ b

2
− x
∥∥∥+ ∥∥∥a+ b

2
− z0

∥∥∥ <

<

√
d2 − 1

4
∥a− b∥2 + ρ0 < d.



Chapter 1. An intrinsic property of prox-regular sets in Hilbert space 21

which yields a contradiction.
But z ∈ C, hence it holds that

(1.13)

∥∥∥∥a+ b

2
− z

∥∥∥∥ ≥ d−
√

d2 − 1

4
∥a− b∥2.

Combining (1.13) with (1.11) and using the triangle inequality we get

d−
√

d2 − 1

4
∥a− b∥2 ≤

∥∥∥∥a+ b

2
− z

∥∥∥∥ =

∥∥∥∥a+ b

2
− z +

(
a+ b

2
− a+ b

2

)∥∥∥∥
≤

∥∥∥∥a+ b

2
− z

∥∥∥∥+ 1

2
∥a− a+ b− b∥

≤
∥∥∥∥a+ b

2
− z

∥∥∥∥+ 1

2

(
∥a− a∥+ ∥b− b∥

)
≤

∥∥∥∥a+ b

2
− z

∥∥∥∥+ ε

≤ r −
√
r2 − 1

4
∥a− b∥2 + ε.(1.14)

Again from the triangle inequality we have

∥a− b∥ ≤ ∥a− a∥+ ∥a− b∥+ ∥b− b∥ ≤ ∥a− b∥+ 2ε,

which yields that
∥a− b∥2

4
≤ (∥a− b∥+ 2ε)2

4
and

(1.15) r2 − ∥a− b∥2

4
≥ r2 − (∥a− b∥+ 2ε)2

4
> 0,

where the strict inequality in the latter holds since by (1.10) and ε < ∆ we have

∥a− b∥+ 2ε ≤ ∥a− x∥+ ∥b− x∥+ 2ε = 2d+ 2ε < 2(r −∆) + 2∆ = 2r.

From (1.15) we get that

r −
√

r2 − ∥a− b∥2
4

≤ r −

√
r2 − (∥a− b∥+ 2ε)2

4

which combined with (1.14) gives

d−
√
d2 − 1

4
∥a− b∥2 ≤ r −

√
r2 − 1

4
(∥a− b∥+ 2ε)2 + ε =
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= r −
√

r2 − 1

4
∥a− b∥2 +

√
r2 − 1

4
∥a− b∥2 −

√
r2 − 1

4
(∥a− b∥+ 2ε)2 + ε.

To estimate the difference of the last two square roots we multiply and divide it by their
sum to obtain √

r2 − 1

4
∥a− b∥2 −

√
r2 − 1

4
(∥a− b∥+ 2ε)2 =

r2 − 1
4
∥a− b∥2 − r2 + 1

4
(∥a− b∥+ 2ε)2√

r2 − 1
4
∥a− b∥2 +

√
r2 − 1

4
(∥a− b∥+ 2ε)2

=

=
∥a− b∥ε+ ε2√

r2 − 1
4
∥a− b∥2 +

√
r2 − 1

4
(∥a− b∥+ 2ε)2

≤ ∥a− b∥ε+ ε2√
r2 − 1

4
∥a− b∥2

.

Since ∥a− b∥ ≤ ∥a− x∥+ ∥b− x∥ = d+ d = 2d, ε < δ and (1.10) we have that

∥a− b∥ε+ ε2 ≤ 2dε+ ε2 = ε(2d+ ε) ≤ ε(2(r −∆) +∆) < 2rε,

and √
r2 − 1

4
∥a− b∥2 ≥

√
r2 − d2 =

√
(r − d)(r + d) ≥

√
∆(r +∆). ≥

√
r∆

Hence we finally get the estimation√
r2 − 1

4
∥a− b∥2 −

√
r2 − 1

4
(∥a− b∥+ 2ε)2 ≤

(
2

√
r

∆

)
ε,

which yields

d−
√

d2 − 1

4
∥a− b∥2 ≤ r −

√
r2 − 1

4
∥a− b∥2 +

(
2

√
r

∆
+ 1

)
ε,

and setting c(∆) :=

(
2

√
r

∆
+ 1

)
we have that

(1.16) d−
√

d2 − 1

4
∥a− b∥2 ≤ r −

√
r2 − 1

4
∥a− b∥2 + c(∆)ε.

Now for a fixed t ≥ 0 we consider the function

f : [
√
t,∞) → R+

defined as
f(r) := r −

√
r2 − t.



Chapter 1. An intrinsic property of prox-regular sets in Hilbert space 23

It is a convex decreasing function whose derivative at r >
√
t is

f ′(r) = 1− r√
r2 − t

.

Moreover, for r ≥
√
t we have that

(1.17) f(r) ≥ t

2r
.

The latter is proved in Proposition A.1.4 in the Appendix.

Taking t :=
1

4
∥a− b∥2, in the definition of f , the inequality (1.16) can be written as

f(d) ≤ f(r) + c(∆)ε,

or
f(d)− f(r) ≤ c(∆)ε.

Note that since ∥a − b∥ < 2r we have that r ≥
√
t which assures that this choice of t is

compatible with the function f .
The convexity and differentiability of f yield that

f ′(r)(d− r) ≤ f(d)− f(r) ≤ c(∆)ε.

The latter reads (
1− r√

r2 − t

)
(d− r) ≤ c(∆)ε.

Hence

(1.18) (r − d)

r −

√
r2 − ∥a− b∥2

4

 ≤ c(∆)ε

√
r2 − ∥a− b∥2

4
.

Using that r −

√
r2 − ∥a− b∥2

4

 ≥ ∥a− b∥2

8r
,

see (1.17) and that √
r2 − ∥a− b∥2

4
≤ r,

from (1.18) we obtain

(r − d)
∥a− b∥2

8r
≤ rc(∆)ε.
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As r − d > ∆, see (1.10),

∥a− b∥2 ≤ 8r2

∆
c(∆)ε,

hence

∥a− b∥ ≤ 2r

√
2c(∆)

∆

√
ε.

From the latter and ε < ∆ we get

∥a− b∥ ≤ ∥a− b∥+ 2ε ≤

(
2r

√
2c(∆)

∆
+ 2

√
ε

)
√
ε ≤

(
2r

√
2c(∆)

∆
+ 2

√
∆

)
√
ε.

And finally denoting

k = k(∆) := 2r

√
2c(∆)

∆
+ 2

√
∆,

we have that for a, b ∈ ε−argmin dC(x) such that ∥a− b∥ > ε we have

∥a− b∥ ≤ k
√
ε.

If we consider a, b ∈ ε−argmin dC(x) such that ∥a− b∥ ≤ ε, then since clearly k >
√
ε,

we will also have ∥a− b∥ ≤ k
√
ε.

Therefore,

(1.19) diam (ε−argmin dC(x)) ≤ k
√
ε.

This means that the projection mapping is single-valued on B(x0,∆), i.e. for x ∈ B(x0,∆)
there exists unique point pC(x) ∈ C such that

dC(x) = ∥x− pC(x)∥.

As x0 ∈ TC(r) was arbitrary, the projection mapping PC is single-valued on TC(r).

It is routine to establish the continuity of the metric projection mapping PC at x0.
Take x, y ∈ B(x0,∆/4). For their projections we have that ∥x − pC(x)∥ = dC(x) and

∥y − pC(y)∥ = dC(y).
Since the distance function dC is Lipschitz continuous with constant 1 (see Proposi-

tion A.1.5 in the Appendix), i.e.

|dC(x)− dC(y)| ≤ ∥x− y∥, for all x, y ∈ H,

we have that

∥pC(y)− x∥ ≤ ∥pC(y)− y∥+ ∥y − x∥
= dC(y) + ∥y − x∥
≤ dC(x) + 2∥y − x∥.
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Hence we get
pC(y) ∈ (2∥y − x∥)− argmin dC(x).

Obviously pC(x) ∈ (2∥y − x∥)− argmin dC(x).

Note that for ε := 2∥y − x∥ we have that

ε = 2∥y − x∥ ≤ 2 (∥y − x0∥+ ∥x− x0∥) < 2

(
∆

4
+

∆

4

)
= ∆.

And finally from (1.19) we get that

∥pC(y)− pC(x)∥ ≤
√
2k
√

∥y − x∥.

The latter yields that PC is norm-to-norm continuous at x0, and as x0 was arbitrary in
TC(r), on TC(r). From Theorem 1.1.3 (c) it holds that C is r-prox-regular, thus completing
the proof of (c) ⇒ (a).

From the proof of Theorem 1.1.1 it is clear that the property: the projection mapping
PC is single-valued and norm-to-norm continuous on TC(r) also characterizes r-prox-regular
closed set C, but it is an external characterization.
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Chapter 2

Epigraphical characterization of
uniformly lower regular functions

The concept of a primal lower nice function was introduced by Poliquin in [41] where it was
proved that Clarke and proximal subdifferentials of a primal lower nice function defined on
finite-dimensional space coincide. In particular this means that if the definition of primal
lower nice property, see (2.5), is taken with respect to the Clarke subdifferential, this will
produce the same class of functions. In [41] Poliquin proved that these functions in Rn are
completely characterized by their Clarke subdifferential. This was the first large class of
non-convex lower semicontinuous functions with this property.

The coincidence of proximal and Clarke subdifferentials of a primal lower nice function
defined on Hilbert space was proved by Levy, Poliquin and Thibault in [35]. Later Ivanov
and Zlateva in [28] showed that Clarke and proximal subdifferential of a primal lower
nice function defined on a β smooth Banach space coincide. The result obtained in [28]
shows that the class of primal lower nice functions does not depend on what reasonable
subdifferential is used in defining the class. Ivanov and Zlateva in [28] suggested ”that it is
possible to characterize primal lower nice property in terms not involving subdifferentials”.
As a step in this direction we prove that primal lower nice functions on Hilbert space satisfy
a property which does not involve subdifferentials, see Theorem 2.4.1(i) and Corollary 2.4.2.

Since the pioneering work of Poliquin [41], primal lower nice functions are studied in a
series of publications, see e.g. [42, 43, 27, 9, 52, 36]. These functions are closely related to
prox-regular sets, a term due to Poliquin, Rockafellar and Thibault [44]. Indeed, a set in
a Hilbert space is prox-regular exactly when its indicator function is primal lower nice, see
[44, Proposition 2.1]. The study of prox-regular sets can be traced back to the pioneering
work of Federer [23] who introduced them as positively reached sets in Rn. During the
years, various names of such sets have been introduced: weakly convex [53] or proximally
smooth sets [19] are commonly used in Hilbert spaces; for other names see the survey [20].
Prox-regular sets in Banach spaces are studied in [10, 11, 24, 26, 6, 8, 33] and many others.
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Along with the study of prox-regular sets from a theoretical point of view, they are
intensively studied and involved in the famous Moreau’s sweeping processes, see e.g. [2], the
survey [39] and the references therein. Various properties of prox-regular sets are established
in [1, 3, 4, 5]. More details one can find in the paper [44], the survey [20], the forthcoming
book of Thibault [51], as well as, the bibliography therein.

Prox-regularity has been introduced as an important new regularity property in Varia-
tional Analysis by Poliquin and Rockafellar in [43], see also Chapter 13F in the monograph
of Rockafellar and Wets [47]. They defined the concept for functions and sets and developed
the subject in Rn. Numerous significant characterizations of prox-regularity of a closed set
C in Hilbert space at point x ∈ C were obtained by Poliquin, Rockafellar and Thibault in
[44] in terms of the distance function dC and metric projection mapping PC , e.g. dC being
continuously differentiable outside of C on a neighbourhood of x, or PC being single-valued
and norm-to-weak continuous on this same neighbourhood. On global level, in [44] the
authors showed that uniformly prox-regular sets are proximally smooth sets providing new
insights on them.

To prove our main result, we introduce and study the epi uniform prox-regularity of
an epigraph set, see Definition 2.1.3. This notion slightly differs from the usual uniform
prox-regularity of an arbitrary set, see Definition 2.1.1. We choose to work on global level,
i.e. with uniform properties of functions and sets involved, but similar results easily can be
obtained at local level as well. The properties of epi uniformly prox-regular sets in Hilbert
space are also studied, see Section 2.3. Our main result is Theorem 2.4.1 where we prove
the epigraphical characterization of uniformly lower regular functions on a Hilbert space – a
class of functions containing uniformly primal lower nice functions. It reveals their distant
resemblance to convex functions, see Corollary 2.4.2.

In the following Section 2.1 we give some notations, definitions and necessary prelimi-
naries. In Section 2.2 it is proved that uniformly lower regular functions are exactly those
with epi uniformly prox-regular epigraphs, see Theorem 2.2.1 and Theorem 2.2.2. In Sec-
tion 2.3 are established some basic and important properties of epi uniformly prox-regular
sets in H×R. The proof of our main result, Theorem 2.4.1, is given in the final Section 2.4.

The results in this chapter are published in [34].

2.1 Preliminaries

Together with the proximal normal comeNC we will use also the Fréchet normal cone NF
C (x)

of C at x which consists of all x∗ ∈ H such that for any ε > 0 there exists a neighbourhood
U of x such that the inequality ⟨x∗, x′ − x⟩ ≤ ε∥x′ − x∥ holds for all x′ ∈ C ∩ U .

It is not difficult to achieve that (see Proposition A.1.6 in the Appendix.)

(2.1) NC(x) ⊆ NF
C (x), ∀x ∈ C.
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The definition of an uniformly prox-regular set in H is well-known, see e.g. [44, 10, 11].
A nonempty closed subset C of H is uniformly prox-regular if there is some r > 0 such that
for any x ∈ C and p ∈ NC(x) ∩ B one has

(2.2) ⟨p, x′ − x⟩ ≤ 1

2r
∥x′ − x∥2, ∀x′ ∈ C.

It is not difficult to see that it is equivalent to the following

Definition 2.1.1. A nonempty closed subset C of H is uniformly prox-regular if there is
r > 0 such that for any x ∈ C and p ∈ NC(x) ∩ BH one has

(2.3) ⟨p, x′ − x⟩ ≤ 1

2r
∥x′ − x∥2, ∀x′ ∈ B(x, 2r) ∩ C.

Indeed, if C is uniformly prox-regular according to Definition 2.1.1 then (2.2) holds for
some r > 0 and any x ∈ C, p ∈ NC(x) ∩ BH .

If x′ ∈ C is such that ∥x′ − x∥ ≥ 2r, then

⟨p, x′ − x⟩ ≤ ∥x′ − x∥ =
∥x′ − x∥2

∥x′ − x∥
≤ 1

2r
∥x′ − x∥2,

so (2.2) holds.
If a set C ⊂ H satisfies Definition 2.1.1, we will say that C is r prox-regular (omitting

”uniformly” for brevity).
We will consider the space

H := H × R

with the norm
|||(x, r)||| :=

√
∥x∥2 + r2,

for (x, r) ∈ H. Then (H, ||| · |||) is a Hilbert space.

Let f : H → R ∪ {+∞} be a function. The domain of f is the set

dom f := {x ∈ H : f(x) ∈ R}

and the epigraph of f is the set

epi f := {(x, r) ∈ H : r ≥ f(x)}.

The function f is proper exactly when dom f ̸= ∅ and f is lower semicontinuous on H
exactly when epi f is closed in H.

The proximal subdifferential of f at x ∈ dom f is defined as the set

∂pf(x) := {p ∈ H|(p,−1) is a proximal normal to epi f at
(
x, f(x)

)
},
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while ∂pf(x) = ∅ for x /∈ dom f , see e.g. [11, p. 2216].
Thus, by definition,

(2.4) p ∈ ∂pf(x) ⇐⇒ (p,−1) ∈ Nepi f

(
x, f(x)

)
.

Since the concept for a primal lower nice function at a point of its domain was introduced
by Poliquin [41], such functions defined on Hilbert space have been extensively studied ever
since, see e.g. [21, 41, 42, 35, 52]. In [10, 11] for a function defined on a uniformly convex
Banach space the J primal lower regular (J-plr in short) concept at a point of its domain
was introduced, where J stands for the duality mapping. In [30, 31] for a function on a
Banach space was studied the s-lower regular concept. For a function on a Hilbert space
both J-plr and 1-lower regular concept at a point of its domain coincide with the primal
lower nice one.

When the constants involved in the definition of the primal lower nice property are
uniform, one speaks about uniform lower nice property.

A proper lower semicontinuous function f : H → R is said to be uniformly primal lower
nice if there exist ρ > 0 and θ > 0 such that for any t ≥ θ, any p ∈ ∂pf(x) with ∥p∥ ≤ ρt,

(2.5) f(x′) ≥ f(x) + ⟨p, x′ − x⟩ − t

2
∥x′ − x∥2, for all x′ ∈ H,

see [11, p. 2226].
From the very definition, it is clear that if f is uniformly primal lower nice with some

positive constants ρ, and θ, then it is so for any ρ′ < ρ and θ′ > θ. Hence, taking small
ρ, and then θ = ρ−1 one comes to the following equivalent definition: a proper lower
semicontinuous function f : H → R is uniformly primal lower nice if there exists ρ > 0
such that for any t ≥ ρ−1, and any p ∈ ∂f(x) with ∥p∥ ≤ ρt, (2.5) holds. When the latter
holds for f for some ρ > 0 one says that the function f is ρ primal lower nice (omitting
”uniformly” for brevity).

It is easy to see that such functions are, for example, the 1-lower regular on the whole
space H functions [30, 31].

Further we will consider a slightly more general definition for uniform epi lower regularity
of a function.

Definition 2.1.2. A proper lower semicontinuous function f : H → R∪{+∞} is said to be
epi uniformly lower regular if there exists ρ > 0 such that for any t ≥ ρ−1, any p ∈ ∂pf(x)
with ∥p∥ ≤ ρt, it is true that

(2.6) α′ ≥ f(x) + ⟨p, x′ − x⟩ − t

2
∥x′ − x∥2,

for all (x′, α′)∈B((x, f(x)), 2ρ) ∩ epi f.
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If a function f satisfies Definition 2.1.2 for some ρ > 0, we will say that f is epi ρ lower
regular (again omitting ”uniformly”). It is clear that any ρ primal lower-nice function is
epi ρ lower regular.

A non-empty closed set C ⊂ H will be called an epigraph set if C ≡ epi f for a proper
lower semicontinuous function f : H → R ∪ {+∞}.

For an epigraph set in H we will introduce the notion of epi uniform prox-regularity
which slightly differs from well-known uniform prox-regularity of a set in H.

Definition 2.1.3. Let C be an epigraph set in H. One says that C is uniformly epi prox-
regular if there is r > 0 such that for any (x, α) ∈ C, and (q, η) ∈ NC

(
x, α

)
∩ BH one

has

(2.7)
〈
(q, η), (x′ − x, α′ − α)

〉
≤ 1

2r
∥x′ − x∥2,

for all (x′, α′) ∈ B((x, α), 2r) ∩ C.

If an epigraph set C satisfies Definition 2.1.3 for some r > 0, we will say that C is epi r
prox-regular (omitting ”uniformly”).

From the very definitions it is clear that if an epigraph set C ⊂ H is epi r prox-regular
according to Definition 2.1.3, then C is r prox-regular set in H according to Definition 2.1.1.

Indeed, if (x, α) ∈ C, and (q, η) ∈ NC

(
x, α

)
∩ BH from (2.7) it follows that for all

(x′, α′) ∈ B((x, α), 2r) ∩ C,

〈
(q, η), (x′ − x, α′ − α)

〉
≤ 1

2r
∥x′ − x∥2,

so 〈
(q, η), (x′ − x, α′ − α)

〉
≤ 1

2r
∥x,−x∥2 ≤ 1

2r
|||(x′ − x, α′ − α)|||2,

which is (2.3) in H = H × R.
From uniform prox-regularity of an epigraph set it does not hold in general that it is an

epi uniformly prox-regular set. Before proceeding with the rest of this chapter, let us note
that the uniform results obtained in the rest of this chapter have their local counterparts
proven in the same manner.

2.2 Epi uniformly lower regular functions

First we will prove that if f : H → R ∪ {+∞} is an epi uniformly lower regular function,
then epi f is an epi uniformly prox-regular set in H. The proof follows the lines of the
proofs of [11, Propositions 4.1 and 4.4] where J-plr functions are considered.
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Theorem 2.2.1. If f : H → R ∪ {+∞} is epi ρ lower regular function, then C ≡ epi f is
epi ρ prox-regular set in H.

Proof. Let (x, α) ∈ C and (x∗,−λ) ∈ NC(x, α) ∩ BH . It is routine to show that since
(x∗,−λ) ∈ NC(x, α)∩BH we have that −λ ≤ 0, or equivalently λ ≥ 0 (see Proposition A.1.7
in the Appendix). So will consider the following two cases:

Case 1. λ > 0. In this case we have that f(x) = α (see Proposition A.1.8 in the
Appendix). Since NC

(
x, f(x)

)
is a cone (see Corollary A.1.2 in the Appendix)(
λ−1x∗,−1

)
∈ NC

(
x, f(x)

)
.

From (2.4) it holds that
λ−1x∗ ∈ ∂pf(x).

Since (x∗,−λ) ∈ BH we have that ∥x∗∥ ≤ 1, hence∥∥λ−1x∗∥∥ ≤ 1

λ
.

Let us take t = 1
λρ
. So, ∥∥λ−1x∗∥∥ ≤ tρ.

Since f is epi ρ lower regular function, λ−1x∗ ∈ ∂pf(x), and ∥λ−1x∗∥ ≤ tρ we get that for
all (x′, α′)∈B

((
x, f(x)

)
, 2ρ
)
∩ epi f ,

α′ ≥ f(x) + ⟨λ−1x∗, x′ − x⟩ − t

2
∥x′ − x∥2,

Multiplying by λ > 0 in the latter and using that f(x) = α we obtain,

0 ≥ λ(α− α′) + ⟨x∗, x′ − x⟩ − λt

2
∥x′ − x∥2,

and by the choice of t we get

⟨(x∗,−λ), (x′ − x, α′ − α)⟩ ≤ 1

2ρ
∥x′ − x∥2, ∀ (x′, α′)∈B

((
x, f(x)

)
, 2ρ
)
∩ C.

Which means that for λ > 0 the set C is epi ρ prox-regular in H. The proof of this case is
complete.

Case 2. λ = 0. In this case we have that (x∗, 0) ∈ NC(x, α). From [11, Lemma 4.2] it
holds that

(x∗, 0) ∈ NC

(
x, f(x)

)
,

hence by inclusion (2.1) we achieve

(x∗, 0) ∈ NF
C

(
x, f(x)

)
.
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Using the approximation result of Ioffe [25, p. 190], we can find sequences

{λn}, {un}, {u∗
n}

such that

λn ↘ 0, as n → ∞,

(u∗
n,−λn) ∈ NF

C

(
un, f(un)

)
, for all n ∈ N,(2.8) (

un, f(un)
)
→
(
x, f(x)

)
, as n → ∞,

and

(2.9) |||(u∗
n,−λn)− (x∗, 0)||| → 0 as n → ∞.

Further, we use the approximation result in [11, Proposition 3.1] to find sequences{
(xn, αn)

}
and

{
(y∗n,−µn)

}
such that

(xn, αn) ∈ C for all n ∈ N,

(2.10) (y∗n,−µn) ∈ NC

(
xn, αn

)
, for all n ∈ N,

(2.11) |||(xn, αn)−
(
un, f(un)

)
||| < λn

2
, for all n ∈ N,

and

(2.12) |||(y∗n,−µn)− (u∗
n,−λn)||| <

λn

2
, for all n ∈ N,

From (2.12) it follows that |λn − µn| < λn

2
, hence λn

2
< µn < 3λn

2
, so µn ↘ 0. Let us denote

x∗
n := µ−1

n y∗n.

From (2.10) and since µn > 0 we have that

f(xn) = αn for all n ∈ N

(see Proposition A.1.8 in the Appendix). The latter yields that

(y∗n,−µn) ∈ NC

(
xn, f(xn)

)
, for all n ∈ N.
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Hence

(x∗
n,−1) ∈ NC

(
xn, f(xn)

)
and therefore, x∗

n ∈ ∂pf(xn), (see (2.4)). We will show that

(2.13) xn → x, f(xn) → f(x), µnx
∗
n → x∗, as n → ∞.

Form (2.11) we have that

∥xn − un∥ ≤ |||(xn, αn)−
(
un, f(un)

)
||| < λn

2

hence ∥xn − un∥ tends to zero as n → ∞. Analogously form (2.2) ∥un − x∥ tends to zero
as n → ∞. Using the inequality we have that

∥xn − x∥ ≤ ∥xn − un∥+ ∥un − x∥

therefore xn → x, as n → ∞. From f(xn) = αn and the triangle inequality we have

|f(xn)− f(x)| = |αn − f(x)| ≤ |αn − f(un)|+ |f(un)− f(x)|,

and because of (2.11) and (2.2) we can achieve that f(xn) → f(x), as n → ∞. As µnx
∗
n = y∗n

again form the triangle inequality one has

∥µnx
∗
n − x∗∥ = ∥y∗n − x∗∥ ≤ ∥y∗n − u∗

n∥+ ∥u∗
n − x∗∥,

hence µnx
∗
n → x∗ can be shown using (2.12) and (2.9). Assume for a while that x∗ ̸= 0 and

let us denote

tn := max

(
1

ρµn

,
∥x∗

n∥
ρ∥x∗∥

)
.

Obviously when n goes to infinity,

(2.14) µntn = max

(
1

ρ
,
µn∥x∗

n∥
ρ∥x∗∥

)
→ 1

ρ
.

Now let (x′, α′)∈B
((
x, f(x)

)
, 2ρ
)
∩epi f be arbitrary. For a sufficiently large n we would

have that

(x′, α′)∈B
((
xn, f(xn

))
, 2ρ) ∩ epi f and tn ≥ 1

ρ

Hence since f is an epi ρ lower regular function and x∗
n ∈ ∂pf(xn) with ∥x∗

n∥ ≤ tnρ, we have
that

α′ ≥ f(xn) + ⟨x∗
n, x

′ − xn⟩ −
tn
2
∥x′ − xn∥2.
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Multiplying by µn > 0 in the latter we get

0 ≥ µn(f(xn)− α′) + ⟨µnx
∗
n, x

′ − xn⟩ −
µntn
2

∥x′ − xn∥2.

Now letting n tend to infinity and using (2.13), and (3.16) we obtain

0 ≥ ⟨x∗, x′ − x⟩ − 1

2ρ
∥x′ − x∥2.

Since the latter obviously holds for x∗ = 0, the proof in this case and hence as a whole is
complete.

Now we will prove the converse, i.e. that if C ≡ epi f is an epi uniformly prox-regular
set in H, then f is an epi uniformly lower regular function on H.

Theorem 2.2.2. If the epigraph set C ≡ epi f in H is epi r prox-regular, then the corre-
sponding f : H → R ∪ {+∞} is epi ρ lower regular function for

ρ =
r√
2
.

Proof. Let p ∈ ∂pf(x) be such that ∥p∥ ≤ ρt for some t ≥ ρ−1.
From (2.4) we have that

(p,−1) ∈ NC

(
x, f(x)

)
,

hence
1√

∥p∥2 + 1
(p,−1) ∈ NC

(
x, f(x)

)
∩ BH .

As the set C is epi r prox-regular and ρ < r, for all (x′, α′)∈B((x, f(x)), 2ρ)∩C,

1√
∥p∥2 + 1

〈
(p,−1),

(
x′ − x, α′ − f(x)

)〉
≤ 1

2r
∥x′ − x∥2,

hence,

⟨p, x′ − x⟩+ f(x)− α′ ≤
√

∥p∥2 + 1

2r
∥x′ − x∥2.

Therefore,

(2.15) α′ ≥ f(x) + ⟨p, x′ − x⟩ −
√

∥p∥2 + 1

2r
∥x′ − x∥2.
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Using that ∥p∥ ≤ tρ,
1

t
≤ ρ and ρ =

r√
2
, we get

∥p∥2 + 1 ≤ t2ρ2 + 1 = t2
(
ρ2 +

1

t2

)
≤ 2t2ρ2 = r2t2,

hence,

(2.16) −
√

∥p∥2 + 1

r
≥ −tr

r
= −t.

From (2.15) and (2.16) it follows that

α′ ≥ f(x) + ⟨p, x′ − x⟩ − t

2
∥x′ − x∥2, ∀(x′, α′) ∈ B((x, f(x)), 2ρ) ∩ C,

which means that f is epi ρ lower regular.

It is worth to note here that using the same technique one can prove that f is ρ primal
lower-nice function exactly when C ≡ epi f is such that for any (x, α) ∈ C, and (q, η) ∈
NC

(
x, α

)
with q ∈ BH one has

〈
(q, η), (x′ − x, α′ − α)

〉
≤ 1

2r
∥x′ − x∥2, ∀(x′, α′) ∈ B((x, α), 2r) ∩ C.

2.3 Properties of epi uniformly prox-regular sets

Recall that in Chapter 1 we examined the well-known characteristic property for a r prox-
regular set set C in a Hilbert space H: for any a, b ∈ C with ∥a−b∥ < 2r and any λ ∈ (0, 1)
for

xλ := λa+ (1− λ)b

there exists uλ ∈ C such that

∥xλ − uλ∥ ≤ φ(λ),

where

φ(λ) := r −
√
r2 − λ(1− λ)∥a− b∥2.

Now we will use arguments in the line of the proof of Theorem 1.1.1) to show that epi
uniformly prox regular set in H possesses the following similar property as well.

Theorem 2.3.1. Let C ⊂ H be an epi r prox-regular set in H. Let (a, α), (b, β) ∈ C be
such that

|||(a, α)− (b, β)||| < 2r.
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Then for any λ ∈ [0, 1] and (xλ, γλ), where

xλ := λa+ (1− λ)b and γλ := λα + (1− λ)β

there exists (uλ, ξλ) ∈ C such that

(2.17) dC(xλ, γλ) = |||(xλ, γλ)− (uλ, ξλ)||| ≤ φ(λ),

where

φ(λ) := r −
√

r2 − λ(1− λ)∥a− b∥2.

Note that φ(λ) doesn’t depend on α and β, i.e. thanks to Theorem 2.3.1 if |||(a, α) −
(b, β)||| < 2r we can give a upper estimate of dC(xλ, γλ) using only λ, r and ∥a − b∥. In
Figure 2.1 is given a sketch in R2.

Figure 2.1: Geometric interpretation of Theorem 2.3.1 in R2

Proof. Take an arbitrary λ ∈ [0, 1] and consider the corresponding to it (xλ, γλ). We fix λ
and further we will omit it from the index. First we will show that (x, γ) ∈ UC(r). Since
(a, α), (b, β) ∈ C by the definition of the distance function we have that

dC(x, γ) ≤ |||(x, γ)− (a, α)||| = (1− λ)|||(a, α)− (b, β)|||

and

dC(x, γ) ≤ |||(x, γ)− (b, β)||| = λ|||(a, α)− (b, β)|||.
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Hance we get that

dC(x, γ) ≤ min (1− λ, λ) |||(a, α)− (b, β)||| ≤ 1

2
|||(a, α)− (b, β)||| < r,

which means that (x, γ) ∈ UC(r). If (x, γ) ∈ C then (2.17) holds for (u, ξ) = (x, γ). Now,
consider the case (x, γ) /∈ C. Since (x, γ) ∈ TC(r) and the set C is prox-regular, there exist
a unique (u, ξ) ∈ C such that

(u, ξ) = pC(x, γ).

Denote
(p, η) := (x− u, γ − ξ).

So, |||(p, η)||| ̸= 0, ∥p∥ ≤ |||(p, η)||| < r and

(2.18) u = λa+ (1− λ)b− p, ξ = γ − η.

As (u, ξ) ∈ PC(x, γ), it holds that 0 ̸= (p, η) ∈ NC(u, ξ). Hence, η ≤ 0 or, equivalently,

γ ≤ ξ (see Proposition A.1.7 in the Appendix). Since
(p, η)

|||p, η)|||
∈ NC(u, ξ) ∩ BH and C is

epi r prox-regular set, we have that for all (x′, α′) ∈ C such that |||(x′, α′)− (u, ξ)||| < 2r it
holds that

(2.19)
1

|||(p, η)|||
⟨(p, η), (x′, α′)− (u, ξ)⟩ ≤ 1

2r
∥x′ − u∥2.

Since
|||(a, α)− (u, ξ)||| ≤ |||(a, α)− (x, γ)|||+ |||(x, γ)− (u, ξ)||| =

= (1− λ)|||(a, α)− (b, β)|||+ |||(x, γ)− (u, ξ)||| ≤
≤ (1− λ)|||(a, α)− (b, β)|||+ |||(x, γ)− (b, β)||| =
= (1− λ)|||(a, α)− (b, β)|||+ λ|||(a, α)− (b, β)||| =

= |||(a, α)− (b, β)||| < 2r,

we can put (x′, α′) = (a, α) in (2.19) to get

⟨p, a− u⟩+ η(α− ξ) ≤ |||(p, η)|||
2r

∥a− u∥2.

Using the expressions for u and ξ from (2.18) in the latter, we obtain that〈
p, p+ (1− λ)(a− b)

〉
+ η(α− γ + η) ≤

(2.20)
|||(p, η)|||

2r
∥p+ (1− λ)(a− b)∥2 =
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|||(p, η)|||
2r

(
∥p∥2 + 2(1− λ)⟨p, a− b⟩+ (1− λ)2∥a− b∥2

)
.

Analogously, as

|||(b, β)− (u, ξ)||| ≤ |||(b, β)− (x, γ)|||+ |||(x, γ)− (u, ξ)||| =

= λ|||(a, α)− (b, β)|||+ |||(x, γ)− (u, ξ)||| ≤
≤ λ|||(a, α)− (b, β)|||+ |||(x, γ)− (a, α)||| =

≤ λ|||(a, α)− (b, β)|||+ (1− λ)|||(a, α)− (b, β)||| =
= |||(a, α)− (b, β)||| < 2r,

we can put (x′, α′) = (b, β) in (2.19) to obtain〈
p, p+ λ(b− a)

〉
+ η(β − γ + η) ≤

(2.21)
|||(p, η)|||

2r

(
∥p∥2 + 2λ⟨p, b− a⟩+ λ2∥a− b∥2

)
.

Multiplying (2.20) by λ, (2.21) by (1− λ) and adding them we obtain

⟨p, p⟩+ η(η + (λα + (1− λ)β − γ)) ≤ |||(p, η)|||
2r

(
∥p∥2 + λ(1− λ)∥a− b∥2

)
.

Since γ = λα + (1− λ)β, the latter yields

|||(p, η)|||2 = ∥p∥2 + η2 ≤ |||(p, η)|||
2r

(
∥p∥2 + λ(1− λ)∥a− b∥2

)
.

Hence,

(2.22) 2r|||(p, η)||| ≤ ∥p∥2 + λ(1− λ)∥a− b∥2.

As ∥p∥ ≤ |||(p, η)||| from the latter it holds that the quadratic inequality

(2.23) t2 − 2rt+ λ(1− λ)∥a− b∥2 ≥ 0.

is satisfied by |||(p, η)||| as well as by ∥p∥. Since ∥a − b∥ ≤ |||(a, α) − (b, β)||| < 2r, and
λ ∈ [0, 1], for the discriminant of the left-hand side of this quadratic inequality we have

D := 4r2 − 4λ(1− λ)∥a− b∥2 > 0(see (1.9))).

So any t satisfying (2.23) should be such that t ≤ t1 or t ≥ t2, where

t1 := r −
√

r2 − λ(1− λ)∥a− b∥2, t2 := r +
√

r2 − λ(1− λ)∥a− b∥2.
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Since t2 ≥ r > |||p, η||| ≥ ∥p∥, we have that ∥p∥ ≤ t1, which reads

∥p∥ ≤ r −
√
r2 − λ(1− λ)∥a− b∥2 = φ(λ).

Using the latter in (2.22) we obtain the following

2r|||(p, η)||| ≤
(
r −

√
r2 − λ(1− λ)∥a− b∥2

)2
+ λ(1− λ)∥a− b∥2 =

= r2 − 2r
√

r2 − λ(1− λ)∥a− b∥2 + r2 − λ(1− λ)∥a− b∥2 + λ(1− λ)∥a− b∥2 =

2r2 − 2r
√

r2 − λ(1− λ)∥a− b∥2,
or finally

|||(p, η)||| ≤ r −
√

r2 − λ(1− λ)∥a− b∥2 = φ(λ),

which is (2.17) and the proof is completed.

Let us note here that if we had used only the prox-regularity of C, the estimate would
be

dC(xλ, γλ) = |||(xλ, γλ)− (u, ξ)||| ≤ r −
√

r2 − λ(1− λ)|||(a, α)− (b, β)|||2,
which because of |||(a, α)−(b, β)||| ≥ ∥a−b∥ is weaker than the estimate (2.17) we obtained.

With the following Theorem 2.3.2 we show that the converse is also true.

Theorem 2.3.2. Let C ⊂ H be an epigraph set. Then the following are equivalent:
(a) C is epi r prox-regular;
(b) For any (a, α), (b, β) ∈ C such that |||(a, α)− (b, β)||| < 2r, it holds that

dC
(
λa+ (1− λ)b, λα+ (1− λ)β

)
≤ r −

√
r2 − λ(1− λ)∥a− b∥2;

(c) For any (a, α), (b, β) ∈ C such that |||(a, α)− (b, β)||| < 2r, it holds that

(2.24) dC
(
λa+ (1− λ)b, λα+ (1− λ)β

)
≤ 1

2r
min{λ, 1− λ}∥a− b∥2.

Proof. The statements will be proved in the following order

(a) ⇒ (b) ⇒ (c) ⇒ (a).

(a) ⇒ (b) The implication (a)⇒(b) is established in Theorem 2.3.1.
(b) ⇒ (c) Let (b) holds. To prove (b)⇒(c) it is enough to show that if ∥a− b∥ < 2r and

λ ∈ [0, 1], then

r −
√

r2 − λ(1− λ)∥a− b∥2 ≤ 1

2r
min{λ, 1− λ}∥a− b∥2.
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To this end we consider the following two cases.

Case 1. min{λ, 1− λ} = λ. In this case we have to show that

r −
√

r2 − λ(1− λ)∥a− b∥2 ≤ λ

2r
∥a− b∥2,

or

r − λ

2r
∥a− b∥2 ≤

√
r2 − λ(1− λ)∥a− b∥2.

Since λ ≤ 1
2
the left hand side of the inequality is greater than zero, so it is equivalent to

show that (
r − λ

2r
∥a− b∥2

)2

≤ r2 − λ(1− λ)∥a− b∥2,

or

r2 − λ∥a− b∥2 + λ2

4r2
∥a− b∥4 ≤ r2 − λ(1− λ)∥a− b∥2,

or (
λ(1− λ)− λ

)
∥a− b∥2 + λ2

4r2
∥a− b∥4 ≤ 0,

or finally

λ2∥a− b∥2
(
∥a− b∥2

4r2
− 1

)
≤ 0.

The last inequality holds since ∥a− b∥ < 2r.

Case 2. min{λ, 1− λ} = 1− λ. In this case and we have to show that

r −
√

r2 − λ(1− λ)∥a− b∥2 ≤ 1− λ

2r
∥a− b∥2,

or equivalently

r − 1− λ

2r
∥a− b∥2 ≤

√
r2 − λ(1− λ)∥a− b∥2.

Since 1 − λ ≤ 1
2
the left hand side of the inequality is positive, so it is equivalent to show

that (
r − 1− λ

2r
∥a− b∥2

)2

≤ r2 − λ(1− λ)∥a− b∥2,

or

r2 − (1− λ)∥a− b∥2 + (1− λ)2

4r2
∥a− b∥4 ≤ r2 − λ(1− λ)∥a− b∥2,

or (
λ(1− λ)− (1− λ)

)
∥a− b∥2 + (1− λ)2

4r2
∥a− b∥4 ≤ 0,
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or finally

(1− λ)2∥a− b∥2
(
∥a− b∥2

4r2
− 1

)
≤ 0,

which holds as ∥a− b∥ < 2r. The proof of (b)⇒(c) is completed.

(c) ⇒ (a) Let (c) holds and y = (a, α), x = (b, β) ∈ C be such that |||x− y||| < 2r, and
v = (q, η) ∈ NC(x) ∩ BH .

We consider (H × R)× R with the norm |||| · |||| defined as

||||(z, α)|||| :=
√

|||z|||2 + |α|2.

Hence, (H × R, |||| · ||||) is a Hilbert space.
Since v ∈ NC(x) ∩ BH we have that (v,−1) ∈ Nepi dC (x, dC(x)) ⊂ H × R (see Proposi-

tion A.1.9 in the Appendix) and then by (1.3) there exist some σ > 0 such that

⟨(v,−1) , (x′ − x, α′ − dC(x))⟩ ≤ σ||||(x′ − x, α′ − dC(x))||||2, ∀(x′, α′) ∈ epi dC .

Since x ∈ C, we have that dC(x) = 0 and

⟨(v,−1) , (x′ − x, α′)⟩ ≤ σ||||(x′ − x, α′)||||2, ∀(x′, α′) ∈ epi dC .

For λ ∈ [0, 1] consider the point

zλ := λx+ (1− λ)y.

For the point (x′, α′) = (zλ, dC(zλ)) the last inequality gives

⟨v, zλ − x⟩ − dC(zλ) ≤ σ
(
|||zλ − x|||2 + d2C(zλ)

)
.

Hence,

⟨v, zλ − x⟩ ≤ dC(zλ) + σ|||zλ − x|||2 + σd2C(zλ)

≤ dC(zλ) + σ|||zλ − x|||2 + σ|||zλ − x|||2(2.25)

= dC(zλ) + 2σ|||zλ − x|||2.

So, for λ < 1/2, we have

⟨v, λ(a− b, α− β)⟩ = ⟨v, zλ − x⟩ from (2.25)

≤ dC(zλ) + 2σ|||zλ − x|||2

= dC(zλ) + 2σλ2|||(b− a, β − α)|||2 from (2.24)

≤ λ

2r
∥a− b∥2 + 2σλ2|||(b− a, β − α)|||2.
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Dividing the last inequality by λ > 0 we get

⟨v, (a− b, α− β)⟩ ≤ 1

2r
∥a− b∥2 + 2σλ|||(b− a, β − α)|||2.

Now letting λ to zero and using that v = (q, η) we obtain

⟨(q, η), (a− b, α− β)⟩ ≤ 1

2r
∥a− b∥2,

which entails (a). The proof is complete.

2.4 Epigraphical characterization

Theorem 2.4.1. Let f : H → R ∪ {+∞} be a proper lower semicontinuous function. If f
is epi r lower regular, then
(i) for any (a, α), (b, β) ∈ epi f such that

|||(a, α)− (b, β)||| < 2r

and any λ ∈ [0, 1] there is (uλ, ξλ) ∈ epi f such that

(2.26) ∥uλ − (λa+ (1− λ)b)∥2 + |ξλ − (λα + (1− λ)β)|2 ≤ φ2(λ),

where
φ(λ) := r −

√
r2 − λ(1− λ)∥a− b∥2.

Conversely, if (i) holds, then f is epi ρ lower regular for ρ = r√
2
.

Proof. Let f be an r lower regular function. According to Theorem 2.2.1, the set C ≡ epi f
is epi r prox-regular in H. Applying Theorem 2.3.1 to the set C and the points (a, α) and
(b, β) in C we have that for any λ ∈ [0, 1] for (λa + (1 − λ)b, λα + (1 − λ)β), there exists
(uλ, ξλ) ∈ C such that |||(λa+ (1− λ)b, λα + (1− λ)β)− (uλ, ξλ)||| ≤ φ(λ), which is (2.26)
and (i) holds.

It is clear that either f(uλ) ≤ λf(a) + (1− λ)f(b), or

λf(a) + (1− λ)f(b) < f(uλ) ≤ ξλ ≤ λα + (1− λ)β + φ(λ).

Let now (i) holds for f . This is equivalent to the feature that the epigraph set C ≡ epi f
satisfies the condition of Theorem 2.3.2(b) and, therefore, it is an epi r prox-regular set.
Then Theorem 2.2.2 ensures that f is an epi ρ lower regular function for ρ = r√

2
.

Taking α = f(a), β = f(b) in Theorem 2.4.1 we obtain
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Corollary 2.4.2. If f : H → R ∪ {+∞} is ρ primal lower regular function, then for
any a, b ∈ dom f such that |||(a, f(a)) − (b, f(b))||| < 2r and any λ ∈ [0, 1] there is u ∈
dom f ∩B[λa+ (1− λ)b), φ(λ)] such that either

f(u) ≤ λf(a) + (1− λ)f(b),

or
λf(a) + (1− λ)f(b) < f(u) ≤ λf(a) + (1− λ)f(b) + φ(λ),

where φ(λ) := r −
√

r2 − λ(1− λ)∥a− b∥2. In particular,

inf
B[λa+(1−λ)b),φ(λ)]

f ≤ λf(a) + (1− λ)f(b) + φ(λ).

Theorem2.4.1 says that Convex-like functions f such that for some r > 0 it holds
that for any (a, α), (b, β) ∈ epi f with ||||(a, α) − (b, β)|||| < 2r and λ ∈ (0, 1) there exist
(uλ, ξλ) ∈ epi f such that

∥uλ − (λa+ (1− λ)b)∥2 + |ξλ − (λα + (1− λ)β)|2 ≤ φ2(λ)

with
φ(λ) = r −

√
r2 − λ(1− λ)∥a− b∥2

are exactly the functions which proximal subdifferential for some r > 0 has the property

α′ ≥ f(x) + ⟨p, x′ − x⟩ − t

2
∥x′ − x∥2

for all (x′, α′) ∈ B((x, f(x)), 2ρ) ∩ epi f where t ≥ r−1 and p ∈ ∂pf(x).



Chapter 3

Epsilon Subdifferential Method and
Integrability

The Epsilon Subdifferential Method is well known and widely used for minimizing convex
functions, see e.g. [12, 13]. In this chapter we develop a novel Epsilon Subdifferential Method
(ESM).

We will outline it here:

ESM applies to a given proper, convex and lower semicontinuous function f : X →
R ∪ {+∞}, defined on a Banach space X, such that

0 = f(0) = min
x∈X

f(x)

with fixed in advance parameters ε > 0 and δ ∈ (0, ε).

Starting at an arbitrary x0 ∈ dom f , for i = 0, 1, . . .

� if 0 ∈ ∂εf(xi), then stop;

� if 0 ̸∈ ∂εf(xi), for

φxi
(K) := inf

x∈X
Fxi

(K, x),

where

Fxi
(K, x) := f(x)− f(xi) + ε+K∥x− xi∥,

find Ki > 0 such that φi(Ki) = 0.

Take any xi+1 satisfying

0 ≤ f(xi+1)− f(xi) + ε+Ki∥xi+1 − xi∥ ≤ δ.
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Figure 3.1: Visualization of the Novel ESM in the one dimensional case

In the finite dimensional case δ = 0 works and our novel ESM is much more simple, i.e.
xi+1 is the unique solution to the equation

f(xi+1)− f(xi) + ε+Ki∥xi+1 − xi∥ = 0.

For the one dimensional case see the illustration in Figure 3.1.
Returning to the Banach space case if for some c > 0 the function f satisfies

f(x) ≥ c∥x∥ for all x ∈ X,

the parameter δ is appropriately chosen, and the starting point x0 ∈ dom ∂f , then the
number of iterations n of our novel ESM can be estimated by

n
√
ε ≤ const,

(see Lemma 3.2.3). The proof of this estimate relies on Lemma 3.1.5.
Note that the immediate estimate provided by the classical method is

nε ≤ const.

So, in our case nε tends to 0 as ε tends to 0, which allows us to present a new prove of
the Moreau-Rockafellar Theorem, see e.g. [45, 46]:
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Theorem 3.1.1. Let X be a Banach space. Let g and h be proper, lower semicontinuous
and convex functions from X to R ∪ {+∞}. If

(3.1) ∂g ⊂ ∂h,

then
h = g + const.

This result has numerous important implications, see e.g. Section 3 of Phelps’ book
[40].

Let us make a short historical overview. The integrability of the subdifferential of
proper lower semicontinuous convex function on Hilbert space is stated and proved first by
Moreau in [37] by using Moreau-Yosida regularisation. The proof also works in reflexive
Banach space as mentioned at p. 87 of [38]. The first complete proof in Banach space
– that of Rockafellar in [46] – uses strong duality arguments. Another approach is to
approximate the directional derivative and to reduce to the one-dimensional case. The
latter was taken by Rockafellar in his original proof in [45]. Though there are some gaps
in this proof, Taylor [48] fills them and provides a different proof, cf. [14]. The idea of
directional derivative approximation/one dimensional reduction is most clearly outlined in
the proof of Thibault [49]. A different proof using the mean-value theorem of Zagrodny
is due to Thibault and Zagrodny [50], see also [54]. In [55] the result is proved by using
regularization (and approximation) techniques which was the initial idea of Moreau.

In [29] Ivanov and Zlateva give a proof similar to the proof of the classical calculus
theorem that a monotone function is Riemann integrable which uses neither duality nor
explicit one-dimensional arguments. The main step in their proof is to show directly that
a proper lower semicontinuous convex function on Banach space differs by a constant from
the Rockafellar function (see [7]) of its subdifferential, see [29, Theorem 1.2]. The proof
relies on a technical [29, Lemma 3.3] proved by Ekeland variational principle.

Here we use the novel ESM to prove in a different way the following

Theorem 3.1.2 (Rockafellar [45, 46], see also [29] Theorem 1.2). Let

g : X → R ∪ {+∞}

be a proper, lower semicontinuous and convex function. Let x̄ ∈ dom ∂g and p̄ ∈ ∂g(x̄).
Then for all x ∈ X

g(x) = g(x̄) +R∂g,(x̄,p̄)(x),

where

(3.2) R∂g,(x̄,p̄)(x) := sup
{ n−1∑

i=0

⟨qi+1, xi − xi+1⟩ :

x0 = x, xn = x̄, qn = p̄, qi ∈ ∂g(xi), n ∈ N
}
.
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A distinctive feature of the new proof here is that it reveals the relationship between
a natural optimization method and the Moreau-Rockafellar Theorem. By use of ESM the
sequences realizing supremum in (3.2) are kind of constructed.

Thereafter, the proof of Theorem 3.1.1 continues exactly as in [29]. That is why, we
only sketch it here: it readily follows that (3.1) implies

g(x)− g(x) ≤ h(x)− h(x)

for any x ∈ dom ∂g and all x ∈ X. In particular, g − h ≡ const on dom ∂g. To conclude,
we use lower semicontinuity of h and graphical density of points of subdifferentiability
to g, i.e. that for any x̄ ∈ dom g and any ε > 0 there exists x ∈ dom ∂g such that
∥x− x̄∥+ |g(x)− g(x̄)| < ε, see [18] and [14].

Let us also note that tools used in the proof had been known by 1970.

After a short Section 3.1 on notations and preliminaries, in Section 3.2 we dwell on some
of the basic properties of our novel Epsilon Subdifferential Method. In the last Section 3.3
we give the proof of Theorem 3.1.2.

The results in this chapter are published in [32].

3.1 Introductory notations

The notations used throughout the chapter are standard. (X, ∥ · ∥) denotes a real Banach
space, that is, a complete normed space over R. The dual space X∗ of X is the Banach
space of all continuous linear functionals p from X to R. The natural norm of X∗ is again
denoted by ∥ · ∥.

The value of p ∈ X∗ at x ∈ X is denoted by ⟨p, x⟩.
Let us recall that for ε ≥ 0, the ε-subdifferential of a proper, lower semicontinuous and

convex function f : X → R ∪ {+∞} at x ∈ dom f is the set

∂εf(x) := {p ∈ X∗ : −ε+ ⟨p, y − x⟩ ≤ f(y)− f(x), ∀y ∈ X},

and ∂εf = ∅ on X \ dom f . Of course, for ε = 0, ∂0f(x) coincides with the subdifferential
of f at x in the sense of Convex Analysis ∂f(x).

The domain dom ∂εf consists of all points x ∈ X such that ∂εf(x) is non-empty. But
while ∂f(x) could be empty, for ε > 0, the sets ∂εf(x) are non-empty for any x ∈ dom f .

For any real numbers ε1and ε2 such that 0 < ε1 ≤ ε2 one has

∂ε1f(x) ⊂ ∂ε2f(x) and ∂f(x) =
⋂
ε>0

∂εf(x).

Moreover, if f, g : X → R ∪ {+∞} are two proper lower semicontinuous convex functions
with x ∈ dom f ∩ dom g and one of them is continuous at x, then the following sum rule
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holds, see e.g. [54, Theorem 2.8.7],

∂ε(f + g)(x) =
⋃

{∂ε1f(x) + ∂ε2g(x) : ε1 ≥ 0, ε2 ≥ 0 ε = ε1 + ε2}.

We will use it further in its weaker form

∂ε(f + g)(x) ⊂ ∂εf(x) + ∂εg(x).

The result of Brøndsted and Rockafellar saying that the graph of ∂εf is close to the
graph of ∂f is well known:

Theorem 3.1.3 (Brøndsted-Rockafellar [18]). Let f : X → R∪{+∞}, be a proper, convex
and lower semicontinuous function, let ε > 0 and p ∈ ∂εf(x). Then there exists q ∈ ∂f(z)
such that

∥z − x∥ ≤
√
ε, and ∥q − p∥ ≤

√
ε.

Another result of Brøndsted and Rockafellar [18] also will be used:

Proposition 3.1.4. Let f be a proper lower semicontinuous convex function from a Banach
space X into R ∪ {+∞}. Then for all x ∈ X

(3.3) f(x) = sup{f(x̄) + p̄(x− x̄); (x̄, p̄) ∈ gph ∂f}.

To estimate the number of iteration of the novel ESM we prove the following result of
its own interest.

Lemma 3.1.5. Let n ∈ N and A > 0, B > 0, ε > 0 be real numbers. If there exist reals
a1, . . . , an and b1, . . . , bn which satisfy the following conditions

(3.4) ai > 0 and bi > 0 for all i ∈ {1, . . . , n},

(3.5) ai bi ≥ ε for all i ∈ {1, . . . , n},

(3.6)
n∑

i=1

ai ≤ A,

(3.7)
n∑

i=1

bi ≤ B,

then the inequality

n ≤
√

AB

ε

holds.
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Figure 3.2: Geometric interpretation of Lemma 3.1.5

Proof. From (3.4) and (3.5) follow the inequalities

(3.8) bi ≥
ε

ai
for all i ∈ {1, . . . , n}.

Summing the inequalities (3.8) for all i ∈ {1, . . . , n} we get by (3.7) that

n∑
i=1

ε

ai
≤

n∑
i=1

bi ≤ B.

This means that
n∑

i=1

1

ai
≤ B

ε
and, equivalently,

ε

B
≤

(
n∑

i=1

1

ai

)−1

.

Multiplying by n in the later we get

(3.9)
nε

B
≤ n

(
n∑

i=1

1

ai

)−1

.

From (3.6) it follows that

(3.10)

n∑
i=1

ai

n
≤ A

n
.
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By (3.9), the Cauchy inequality between the harmonic mean and arithmetic mean and
(3.10) we get the following chain of inequalities

nε

B
≤ n

n∑
i=1

1

ai

≤

n∑
i=1

ai

n
≤ A

n
.

which yields that n2 ≤ AB

ε
. Therefore, n ≤

√
AB

ε
.

Note that the expression
√

AB
ε

can be interpreted as an upper bound of the number n

of rectangles with face at least ε and sides respectively (a1, b1), (a2, b2) . . . (an, bn) which
can be placed next to each other without intersection on the diagonal of fixed rectangles
with sides (A,B), see Figure 3.2.

3.2 Novel Epsilon Subdifferential Method

We have outlined the method in the beginning of the chapter. In this section we will
consider some of its properties. Throughout this section we work with a proper, lower
semicontinuous and convex function f : X → R ∪ {+∞}, such that

min
x∈X

f(x) = f(0) = 0,

and fixed ε > 0, and ε > δ > 0.

The next result describes what happens at one of our Novel ESM iterations.

Lemma 3.2.1. Let x0 ∈ dom f . The function φx0 : R → R defined by

φx0(K) := inf
x∈X

Fx0(K, x),

where

Fx0(K, x) := f(x)− f(x0) + ε+K∥x− x0∥,

is strictly monotone increasing and locally Lipschitz on (0,∞).

Assume in addition that 0 ̸∈ ∂εf(x0). Then

(i) there exists K0 > 0 such that φx0(K0) = 0;
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(ii) for any x1 ∈ X such that

(3.11) 0 ≤ f(x1)− f(x0) + ε+K0∥x1 − x0∥ ≤ δ,

there is p1 ∈ ∂δf(x1) such that

(3.12) K0 ≥ ∥p1∥ − δ,

and,

(3.13) ⟨p1, x1 − x0⟩ ≤ f(x1)− f(x0) + ε+ δ.

Moreover,

(3.14) K0 ≤ min{∥p∥ : p ∈ ∂εf(x0)},

and if p0 ∈ ∂δf(x0), then

(3.15) ε ≤ (∥p0∥ − ∥p1∥)∥x1 − x0∥+ δ

(
2 +

f(x0)

K0

)
.

Proof. It is straightforward to see that the function φx0 is strictly monotonic on (0,∞). For
the proof of the local Lipschitz continuity of φx0 on (0,∞) we refer to Proposition A.1.10

in the Appendix. To establish (i), it is enough to show that there are K̃0, K̂0 > 0 such that

φx0(K̃0) < 0 and φx0(K̂0) > 0 and then apply the Theorem of Bolzano. For the proof of
the latter we refer to Proposition A.1.11 in the Appendix.

Now, let x1 ∈ X be a point of δ-infimum of the function Fx0(K0, ·), i.e. satisfying (3.11).
Equivalently,

0 ∈ ∂δ (f(·)− f(x0) + ε+K0∥ · −x0∥) (x1).

By the weaker form of the sum rule for the δ-subdifferential, we have that there exist
p1 ∈ ∂δf(x1), and ξ1 ∈ ∂δK0∥ ·−x0∥(x1) such that 0 = p1+ ξ1. Since ξ1 ∈ ∂δK0∥ ·−x0∥(x1),

(3.16) ⟨ξ1, x− x1⟩ ≤ K0∥x− x0∥ −K0∥x1 − x0∥+ δ ≤ K0∥x− x1∥+ δ, ∀x ∈ X.

Hence,
|⟨ξ1, x− x1⟩| ≤ K0∥x− x1∥+ δ, ∀x ∈ X,

and (3.12) holds. From (3.16) easily follows that

K0∥x1 − x0∥ ≤ ⟨ξ1, x1 − x0⟩+ δ = ⟨p1, x0 − x1⟩+ δ

which combined with the left inequality in (3.11) yields (3.13). Take arbitrary p ∈ ∂εf(x0).
By definition of the ε-subdifferential,

⟨p, x− x0⟩ ≤ f(x)− f(x0) + ε, ∀x ∈ X.
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Hence,

⟨p, x− x0⟩+K0∥x− x0∥ ≤ f(x)− f(x0) + ε+K0∥x− x0∥, ∀x ∈ X,

⟨p, x− x0

∥x− x0∥
⟩+K0 ≤

f(x)− f(x0) + ε+K0∥x− x0∥
∥x− x0∥

, ∀x ∈ X, x ̸= x0,

K0 + inf
x∈X,x ̸=x0

⟨p, x− x0

∥x− x0∥
⟩ ≤ inf

x∈X,x ̸=x0

(
f(x)− f(x0) + ε+K0∥x− x0∥

∥x− x0∥

)
= 0.

Finally, K0 ≤ ∥p∥, and (3.14) holds. Take any p0 ∈ ∂δf(x0). Using (3.12), and ∥x1 − x0∥ ≤
f(x0)

K0

(which is an easy consequence of (3.11) and δ < ε), we get that

ε ≤ f(x0)− f(x1)−K0∥x1 − x0∥+ δ

≤ ⟨p0, x0 − x1⟩ − ∥p1∥∥x1 − x0∥+ δ∥x1 − x0∥+ 2δ

≤ ∥p0∥∥x1 − x0∥ − ∥p1∥∥x1 − x0∥+ δ

(
f(x0)

K0

+ 2

)
= (∥p0∥ − ∥p1∥)∥x1 − x0∥+ δ

(
f(x0)

K0

+ 2

)
,

which is (3.15). The proof is then completed.

In the context of the ESM, Lemma 3.2.1 ensures the existence of Ki > 0. As xi+1 can
be taken any point of δ-minimum, i.e. such that

(3.17) 0 ≤ f(xi+1)− f(xi) + ε+Ki∥xi+1 − xi∥ ≤ δ.

From the lemma we also have the existence of pi+1 ∈ ∂δf(xi+1) such that

(3.18) Ki ≥ ∥pi+1∥ − δ, i ≥ 0,

(3.19) ⟨pi+1, xi+1 − xi⟩ ≤ f(xi+1)− f(xi) + ε+ δ, i ≥ 0,

as well as,

(3.20) ε ≤ (∥pi∥ − ∥pi+1∥)∥xi+1 − xi∥+ δ

(
2 +

f(xi)

Ki

)
, i ≥ 1.

The next Lemma shows that our Novel ESM is finite.

Lemma 3.2.2. The novel ESM ends after a finite number of iterations n such that

n ≤ f(x0)

ε− δ
+ 1 at point xn−1 of ε-minimum of f .
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Proof. Let us assume the contrary, i.e. that the number of iterations satisfy n >
f(x0)

ε− δ
+ 1

and fix such n ∈ N. This means that ESM generates at least xi, i = 0, . . . , n− 1 such that

0 /∈ ∂εf(xi), i = 0, . . . , n− 2.

Then from (3.17) we will have that

f(xi)− f(xi+1) ≥ ε+Ki∥xi+1 − xi∥ − δ ≥ ε− δ > 0, i = 0, . . . , n− 2.

Summing the inequalities we obtain that

f(x0)− f(xn−1) =
n−2∑
i=0

(f(xi)− f(xi+1)) ≥ (n− 1) (ε− δ) > f(x0),

hence 0 > f(xn−1) which contradicts to f(xn−1) ≥ f(0) = 0.

It is possible to obtain a better estimate of the number of iteration for a strictly convex
function with more precise choice of the parameter δ.

Lemma 3.2.3. Let f : X → R ∪ {+∞} be a proper lower semicontinuous convex function
satisfying f(x) ≥ 2c∥x∥ for all x ∈ X and some c > 0.

Applied for f with ε > 0 and δ > 0 such that

(3.21) δ ≤ c

2
, δ ≤ 1, δ

(
1 +

f(x0)

c

)
≤ ε

4
,

ESM ends after n iterations, and

(3.22)
n−2∑
i=0

∥xi+1 − xi∥ ≤ 2f(x0)

c
.

Moreover, for the number of iterations n we have the estimation

(3.23) n ≤ 2

√
f(x0)(∥p0∥+ 1)

cε
+ 2,

where p0 ∈ ∂εf(x0) is arbitrary.

Proof. Since f(x) ≥ 2c∥x∥, it is easy to see that if p ∈ ∂δf(x), then

0 = f(0) ≥ f(x)− ⟨p, x⟩ − δ ≥ 2c∥x∥ − ⟨p, x⟩ − δ

yields

(3.24) ∥p∥∥x∥ ≥ ⟨p, x⟩ ≥ 2c∥x∥ − δ.
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We have three cases: (a) ∥p∥ ≥ 2c; (b) ∥p∥ < 2c, and ∥x∥ > δ/c, and (c) ∥p∥ < 2c, and
∥x∥ ≤ δ/c.

In case (b), by (3.24) we have

∥p∥ ≥ 2c− δ

∥x∥
> 2c− δc

δ
= c.

In case (c),
f(x) ≤ ⟨p, x⟩+ δ ≤ ∥p∥∥x∥+ δ ≤ 3δ < ε,

and x should be a point of ε-minimum for f .
As xi, i = 0, . . . , n − 2, are not ε-minimum points for f , the latter implies, see (3.18),

that
Ki ≥ ∥pi+1∥ − δ ≥ c− δ ≥ c− c

2
=

c

2
.

To establish (3.22) we sum up inequalities (3.17) from 0 to n− 2 to get that

f(xn−1)− f(x0) + (n− 1)ε+
n−2∑
i=0

Ki∥xi+1 − xi∥ ≤ (n− 1)δ.

Hence,
n−2∑
i=0

Ki∥xi+1 − xi∥+ (n− 1)(ε− δ) ≤ f(x0)− f(xn−1).

Since Ki ≥
c

2
for all i in the above sum, and δ < ε,

c

2

n−2∑
i=0

∥xi+1 − xi∥ ≤ f(x0),

and (3.22) holds.
Since f(xi+1) ≤ f(xi) for all i, see (3.17), we have that f(xi) ≤ f(x0) for all i. Using

this and Ki ≥
c

2
in (3.20) we obtain that

ε ≤ (∥pi∥ − ∥pi+1∥)∥xi+1 − xi∥+ 2δ

(
1 +

f(x0)

c

)
, i ≥ 1,

hence, having in mind the choice of δ,

(3.25)
ε

2
≤ (∥pi∥ − ∥pi+1∥)∥xi+1 − xi∥, i ≥ 1.

To apply Lemma 3.1.5, set

ai := ∥pi∥ − ∥pi+1∥, bi := ∥xi+1 − xi∥, i = 1, . . . , n− 2.
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From (3.25) we have that aibi ≥ ε/2, hence, ai > 0, bi > 0, i = 1, . . . , n−2. From (3.22)

n−2∑
i=1

bi ≤
2f(x0)

c
.

On the other hand,

n−2∑
i=1

ai = ∥p1∥ − ∥pn−1∥ ≤ ∥p1∥ ≤ K0 + δ ≤ ∥p0∥+ δ ≤ ∥p0∥+ 1,

where p0 ∈ ∂εf(x0) is arbitrary (see (3.14)).

Setting A := ∥p0∥ + 1 and B :=
2f(x0)

c
we have that the conditions of Lemma 3.1.5

hold. Hence,

n− 2 ≤
√

2AB

ε
= 2

√
f(x0)(∥p0∥+ 1)

cε

and (3.23) holds. The proof is completed.

Let us note that p0 in (3.23) as an arbitrary element in ∂εf(x0) depends on ε. But when
x0 ∈ dom ∂f , then p0 could be taken in ∂f(x0) and in this case, the estimation (3.23) is of
the type n

√
ε ≤ const.

3.3 New proof of Moreau-Rockafellar Theorem

In this section we present our novel proof of Theorem 3.1.2.

First we will establish

g(x) = g(x̄) +R∂g,(x̄,p̄)(x) for all x ∈ dom ∂g.

It is easy to prove that

(3.26) g(x)− g(x̄) ≥ R∂g,(x̄,p̄)(x).

Indeed, for any sequence {(xi, qi)}ni=1 ⊂ gph ∂g with x0 = x, xn = x̄, and qn = p̄, by the
definition of subdifferential we have that

⟨qi+1, xi − xi+1⟩ ≤ g(xi)− g(xi+1), i = 0, . . . , (n− 1).

After summing these we immediately get

n−1∑
i=0

⟨qi+1, xi − xi+1⟩ ≤ g(x)− g(x̄)
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and (3.26) follows.
To obtain that

g(x)− g(x̄) ≤ R∂g,(x̄,p̄)(x)

it is enough for any fixed ε′ > 0 to find a sequence {(xi, qi)}ni=1 ⊂ gph ∂g such that x0 = x,
xn = x̄, qn = p̄, and

(3.27) g(x)− g(x̄)−
n−1∑
i=0

⟨qi+1, xi − xi+1⟩ < ε′.

To this end we consider the function f : X → R ∪ {+∞}, defined as

(3.28) f(x) := g(x+ x̄)− ⟨p̄, x⟩ − g(x̄) + 2c∥x∥,

where c > 0. It is easy to see that f is proper lower semicontinuous and convex, f(0) = 0,
0 ∈ ∂f(0), f(x) ≥ 2c∥x∥ for all x ∈ X and dom ∂f ≡ dom ∂g − x̄.

Take an arbitrary p0 ∈ ∂f(x0) and set

M := 4

(√
f(x0)(∥p0∥+ 1)

c
+ 1

)
.

Take ε ∈ (0, 1) such that M
√
ε < ε′ and then apply ESM for f with this ε and δ > 0 such

that η(δ) < ε/3, where

η(δ) := 2
√
δ

(
1 + 2c+ ∥p0∥+ ∥p∥+ f(x0)

c

)
.

It is easy to check that if δ is such that η(δ) < ε/3, then δ satisfies (3.21). When such a δ is
chosen, denote η := η(δ). Denote y0 := x−x̄. Observe that y0 ∈ dom ∂f , hence p0 ∈ ∂f(y0).
Starting at y′0 = y0 ESM generates a finite sequence pi+1 ∈ ∂δf(y

′
i+1), i = 0, . . . , n− 2. By

the weaker version of the δ-subdifferential sum rule we have that

∂δf(·) ⊂ ∂δg(·+ x) + ∂δ⟨−p̄, ·⟩+ ∂δ2c∥ · ∥,

therefore,

(3.29) pi+1 = q′i+1 − pi+1 + ξi+1,

for some q′i+1 ∈ ∂δg(· + x̄)(y′i+1), ξi+1 ∈ ∂δ2c∥ · ∥(y′i+1), and pi+1 such that ∥pi+1 − p∥ ≤ δ,
i = 0, . . . , n− 2. From (3.19) we have that

⟨pi+1, y
′
i+1 − y′i⟩ ≤ f(y′i+1)− f(y′i) + ε+ δ, i = 0, . . . , n− 2.
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Summing these equalities and using that δ < η, we get

n−2∑
i=0

⟨pi+1, y
′
i+1 − y′i⟩ ≤ f(y′n−1)− f(y0) + (n− 1)(ε+ η),

and from (3.29) we obtain that

n−2∑
i=0

⟨q′i+1, y
′
i+1 − y′i⟩ ≤

n−2∑
i=0

⟨pi+1, y
′
i+1 − y′i⟩+

n−2∑
i=0

⟨ξi+1, y
′
i − y′i+1⟩

+ f(y′n−1)− f(y0) + (n− 1)(ε+ η).(3.30)

To estimate the right hand side of (3.30) we use, first, that

n−2∑
i=0

⟨pi+1, y
′
i+1 − y′i⟩ ≤ ⟨p, y′n−1 − y0⟩+ δ

n−2∑
i=0

∥y′i+1 − y′i∥

≤ ⟨p, y′n−1 − y0⟩+ 2δ
f(x0)

c
≤ ⟨p, y′n−1 − y0⟩+ η,

second, that ξi+1 ∈ ∂δ2c∥ · ∥(y′i+1), hence

n−2∑
i=0

⟨ξi+1, y
′
i − y′i+1⟩ ≤

n−2∑
i=0

(
2c∥y′i∥ − 2c∥y′i+1∥+ δ

)
= 2c∥y0∥ − 2c∥y′n−1∥+ (n− 1)δ ≤ 2c∥y0∥+ (n− 1)η,

and, third, that y′n−1 is an ε-minimum of f , hence f(y′n−1) ≤ ε. Incorporating all these in
(3.30) we obtain that

(3.31)
n−2∑
i=0

⟨q′i+1, y
′
i+1 − y′i⟩ ≤ ⟨p̄, y′n−1 − y0⟩+ 2c∥y0∥ − f(y0)+

(n− 1)(ε+ 2η) + ε+ η.

By Brøndsted-Rockafellar Theorem there exist qi+1 ∈ ∂g(x+yi+1) such that ∥qi+1−q′i+1∥ ≤√
δ, and ∥yi+1 − y′i+1∥ ≤

√
δ. Then

⟨qi+1, yi+1 − yi⟩ − ⟨q′i+1, y
′
i+1 − y′i⟩ =

⟨qi+1 − q′i+1, yi+1 − yi⟩+ ⟨q′i+1, yi+1 − yi − y′i+1 + y′i⟩ ≤

∥qi+1 − q′i+1∥∥yi+1 − yi∥+ ∥q′i+1∥(∥yi+1 − y′i+1∥+ ∥yi − y′i∥).
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Since ∥pi+1∥ ≤ ∥p′1∥, ∀i, which follows from (3.20), and since ∥p1∥ ≤ ∥p0∥ from (3.15), we
easily derive that ∥q′i+1∥ ≤ 2δ + 2c + ∥p∥ + ∥p0∥, ∀i. Using the latter and ∥yi+1 − yi∥ ≤
2
√
δ + ∥y′i+1 − y′i∥ we obtain that

⟨qi+1, yi+1 − yi⟩ − ⟨q′i+1, y
′
i+1 − y′i⟩ ≤

√
δ(2

√
δ + ∥y′i+1 − y′i∥) + 2

√
δ(2δ + 2c+ ∥p∥+ ∥p0∥) ≤ η +

√
δ∥y′i+1 − y′i∥.

Hence,

n−2∑
i=0

⟨qi+1, yi+1 − yi⟩ −
n−2∑
i=0

⟨q′i+1, y
′
i+1 − y′i⟩ ≤

(n− 1)η +
√
δ

n−2∑
i=0

∥y′i+1 − y′i∥ ≤ (n− 1)η + 2
√
δ
f(x0)

c
≤ (n− 1)η + η.

Using the latter in (3.31), as well as
√
δ∥p∥ ≤ η, and η ≤ ε/3, we get

n−2∑
i=0

⟨qi+1, yi+1 − yi⟩ ≤ ⟨p̄, yn−1 − y0⟩+ 2c∥y0∥ − f(y0)

+(n− 1)(ε+ 3η) + ε+ 2η +
√
δ∥p∥

≤ ⟨p̄, yn−1 − y0⟩+ 2c∥y0∥ − f(y0) + 2nε.(3.32)

But

f(y0) = f(x− x̄) = g(x)− ⟨p̄, y0⟩ − g(x̄) + 2c∥y0∥,

see (3.28), which combined with (3.32) yields

(3.33)
n−2∑
i=0

⟨qi+1, yi+1 − yi⟩ ≤ ⟨p̄, yn−1⟩+ g(x)− g(x) + 2nε.

Now, let us denote xi+1 := yi+1 + x̄, i = 0, . . . , n − 2. Then qi+1 ∈ ∂g(xi+1), and
xi − xi+1 = yi − yi+1, i = 0, . . . , n− 2.
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Setting xn = x̄ yn = 0, and qn = p̄ from (3.33) we obtain that

g(x)−g(x̄)−
n−1∑
i=0

⟨qi+1, xi−xi+1⟩ = g(x)− g(x̄)−
n−1∑
i=0

⟨qi+1, yi − yi+1⟩

≤ ⟨qn, yn − yn−1⟩+ ⟨p̄, yn−1⟩+ 2nε

= 2nε (since yn = 0 and qn = p̄)

≤ 4

(√
f(x0)(∥p0∥+ 1)

cε
+ 1

)
ε (by (3.23))

≤ 4

(√
f(x0)(∥p0∥+ 1)

c
+ 1

)
√
ε = M

√
ε

< ε′,

and (3.27) follows.

So far we have shown that g(x) = g(x̄)+R∂g,(x̄,p̄)(x) for x ∈ dom ∂g. Now, fix any x ∈ X
and a real number r such that r < g(x). By Proposition 3.1.4 we can find (y, p) ∈ gph ∂g
such that

r < g(y) + ⟨p, x− y⟩.

Since y ∈ dom ∂g for a fixed ε > 0 we find a sequence {(xi, qi)}n−1
i=1 ∈ gph ∂g with x0 = y,

xn = x̄ and qn = p̄ such that

g(y)− g(x̄)−
n−1∑
i=1

⟨qi+1, xi − xi+1⟩ < ε.

Then,

r < g(x) + ⟨p, x− y⟩+
n−1∑
i=1

⟨qi+1, xi − xi+1⟩+ ε = g(x) +
n−1∑
i=0

⟨qi+1, xi − xi+1⟩+ ε,

where q1 := p. Since r < g(x) and ε > 0 were arbitrary, the proof is complete.
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Main contributions

In Chapter 1 we give a new proof of an intrinsic characterization of prox-regular sets in
Hilbert spaces. Our prove avoids the use of properties of weakly convex sets and relies only
on methods of classical analysis.
In Chapter 2 we provide a characterization of uniformly lower regular functions defined on
a Hilbert space. To this end we introduce and study a property of epi prox-regularity of the
epigraph set which slightly differs from the well known prox-regularity property of a set.
This characterization is not a subdifferential one, but uses the properties of the epigraph.
In Chapter 3 we develop a novel variant of the classical epsilon subdifferential method in
which the epsilon is fixed. We use our method to give a new prove of Moreau-Rockafellar
theorem which states that a proper, lower semicontinuous and convex function defined on
a Banach space is determined up to a constant by its subdifferential.
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Appendix

All notations come from the body of the thesis.

Proposition A.1.1. Let C be a nonempty subset of H.Then p ∈ NC(x) if and only if there
is a real σ > 0 such that

⟨p, x′ − x⟩ ≤ σ∥x′ − x∥2, for all x′ ∈ C.

Proof. Let p ∈ NC(x), i.e. there exist r > 0 such that x ∈ PC(x+r p). The latter equivalent
to

∥rp∥ = ∥x+ rp− x∥ = dC(x+ rp),

which is equivalent to

∥rp∥2 ≤ ∥x+ rp− x′∥2, for all x′ ∈ C,

which is equivalent to

∥rp∥2 ≤ ⟨x− x′ + rp, x− x′ + rp⟩, for all x′ ∈ C,

which is equivalent to

∥rp∥2 ≤ ∥x′ − x∥2 + 2⟨x− x′, rp⟩+ ∥rp∥2, for all x′ ∈ C,

which is finally equivalent to

⟨p, x′ − x⟩ ≤ 1

2r
∥x′ − x∥2, for all x′ ∈ C.

and for σ = 1
2r

the proof is complete.

Corollary A.1.2. For any x ∈ C the set NC(x) is a cone.

Proof. Let x ∈ C, p ∈ NC(x) and t ≥ 0.
We will show that tp ∈ NC(x).
If t = 0, then it is clear that tp = 0 ∈ NC(x), since x ∈ PC(x).
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Assume that t > 0. Since p ∈ NC(x) from Proposition A.1.1 we have that

⟨p, x′ − x⟩ ≤ 1

2r
∥x′ − x∥2, for all x′ ∈ C.

Hence

⟨tp, x′ − x⟩ ≤ 1

2rt
∥x′ − x∥2, for all x′ ∈ C,

where
rt :=

r

t
> 0.

The latter and Proposition A.1.1 yield that tp ∈ NC(x). The proof is complete.

Proposition A.1.3. The statement of Remark 1.2.1 holds, i.e. for any λ ∈ (0, 1) we have
that uλ ̸∈ {a, b}.

Proof. Suppose uλ = a.
Hence,

∥xλ − a∥ ≤ r −
√

r2 − λ(1− λ)∥a− b∥2,

or
(1− λ)∥a− b∥ ≤ r −

√
r2 − λ(1− λ)∥a− b∥2,

or

(A.1)
√

r2 − λ(1− λ)∥a− b∥2 ≤ r − (1− λ)∥a− b∥.

Recall that a = uλ = pC(xλ), which means that

∥x− a∥ ≤ ∥x− x′∥, for all x′ ∈ C.
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Substituting x′ = b in the latter gives

(1− λ)∥a− b∥ ≤ λ∥a− b∥,

which yields that

(1− λ) ≤ 1

2
.

From the latter and since ∥a−b∥ < 2r the right-hands side of inequality (A.1) is nonnegative.
Hence raising (A.1) to the power of two gives

r2 − λ(1− λ)∥a− b∥2 ≤ r2 − 2r(1− λ)∥a− b∥+ (1− λ)2∥a− b∥2,

or
2r(1− λ)∥a− b∥ ≤

(
λ(1− λ) + (1− λ)2

)
∥a− b∥2,

or
2r(1− λ)∥a− b∥ ≤ (1− λ)∥a− b∥2,

or finally
2r ≤ ∥a− b∥,

which is a contradiction with ∥a− b∥ < 2r. The case uλ = b can be proven analogously.

Proposition A.1.4. For a fixed t ≥ 0 the function

f : [
√
t,∞) → R+

defined as
f(r) := r −

√
r2 − t,

is convex decreasing and for any r ≥
√
t satisfies

f(r) ≥ t

2r
.

Proof. For r >
√
t we have that

f ′(r) = 1− r√
r2 − t

=

√
r2 − t− r√
r2 − t

< 0,

and

f ′′(r) =
t

(r2 − t)
3
2

> 0.

Using classical results in Calculus we have that since f ′(r) < 0 and f ′′(r) > 0 the function

f is convex decreasing. Also since
t2

4r2
≥ 0 we have that

r2 − t+
t2

4r2
≥ r2 − t,
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or equivalently (
r − t

2r

)2

≥ r2 − t.

Note that the right side of the latter is nonnegative by the choice of r. Hance by taking the
square root we get

r − t

2r
≥

√
r2 − t,

or equivalently

r −
√
r2 − t ≥ t

2r
.

Proposition A.1.5. The distance function dC is Lipschitz continuous with constant 1, i.e.

|dC(x)− dC(y)| ≤ ∥x− y∥, for all x, y ∈ H.

Proof. Let x, y ∈ C and ε > 0 be fixed. From the definition of the distance function there
exist z0 ∈ C such that

∥y − z0∥ < dC(y) + ε,

and

dC(x) = inf
u∈C

∥x− u∥ ≤ ∥x− z0∥

≤ ∥x− y∥+ ∥y − z0∥ ≤ |x− y∥+ dC(y) + ε.

Hence,
dC(x)− dC(y) < ∥x− y∥+ ε.

Letting ε tend to zero in the latter we achieve

dC(x)− dC(y) ≤ ∥x− y∥,

and by replacing x and y and repeating the same reasoning we get

dC(y)− dC(x) ≤ ∥y − x∥.

Hence
max (dC(x)− dC(y), dC(y)− dC(x)) = |dC(x)− dC(y)| ≤ ∥x− y∥.

The proof is complete.

Proposition A.1.6. The following inclusion holds

NC(x) ⊆ NF
C (x), for all x ∈ C.
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Proof. Let x ∈ C and x∗ ∈ NC(x). From Proposition A.1.1 there exist r > 0 such that

⟨x∗, x′ − x⟩ ≤ 1

2r
∥x′ − x∥2, for all x′ ∈ C.

Let us fix ε > 0 and denote U := B (x, 2rε). Then for any x′ ∈ C ∩ U we have that

⟨x∗, x′ − x⟩ ≤ 1

2r
∥x′ − x∥∥x′ − x∥ ≤ 1

2r
2rε∥x′ − x∥ = ε∥x′ − x∥.

Hence x∗ ∈ NF
C (x). The proof is complete.

Note: One can prove the latter considering that the norm in H is Fréchet differentiable
away from the origin (see [17, Corollary 3.1]).

Proposition A.1.7. If we have that for (x, α) ∈ epi f

(p, β) ∈ Nepi f (x, α),

then

β ≤ 0.

Proof. Assume that β > 0. Since (p, β) ∈ Nepi f (x, α) there exists r > 0 such that

(A.2)
〈
(p, β), (x′, α′)− (x, α)

〉
≤ 1

2r
|||(x′, α′)′ − (x, α)|||2,

for all (x′, α′) ∈ Nepi f (x, α).

Since (x, α) ∈ epi f we have f(x) ≤ α. Let ε be such that

0 < ε < 2rβ.

We have that

f(x) ≤ α < α+ ε,

hence

(x, α+ ε) ∈ epi f.

So if we substitute (x′, α′) = (x, α+ ε) in (A.2) we get

〈
(p, β), (x, α+ ε)− (x, α)

〉
≤ 1

2r
|||(x, α+ ε)− (x, α)|||2,

or 〈
(p, β), (0, ε)

〉
≤ 1

2r
|||(0, ε)|||2,
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The latter yields the following contradiction

βε ≤ 1

2r
ε2,

or by the choice of ε

β ≤ ε

2r
<

2rβ

2r
= β.

Hence β ≤ 0.

Proposition A.1.8. If (x, α) ∈ epi f and (x∗,−λ) ∈ Nepi f(x, α) for λ > 0, then

f(x) = α.

Proof. Since (x, α) ∈ epi f we have that f(x) ≤ α. Let us assume that f(x) < α. From
Proposition A.1.1 there exist r > 0 such that

(A.3)
〈
(x∗,−λ), (x′ − x, α′ − α)

〉
≤ 1

2r
∥(x′ − x, α′ − α)∥2,

for all (x′, α′) ∈ epi f.

Let γ be such that

0 < γ < min (2rλ, α− f(x)) .

From the latter we have that f(x) < α−γ, hence (x, α−γ) ∈ epi f . Substituting (x′, α′) =(
x, α− γ

)
in (A.3) we get that

〈
(x∗,−λ), (0, α− γ − α)

〉
≤ 1

2r
∥(x∗,−λ), (0, α− γ − α)∥2,

or

λγ ≤ 1

2r
γ2,

which from the choice of γ gives the following contradiction

2rλ ≤ γ < 2rλ.

Hence f(x) = α. The proof is complete.

Proposition A.1.9. Let x ∈ C ⊂ H and v ∈ NC(x). Then one has

(v,−1) ∈ Nepi dC

(
x, dC(x)

)
.
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Proof. From (1.3) we have that there exist σ > 0 such that

⟨v, x′ − x⟩ ≤ σ|||x′ − x|||2, for all x′ ∈ C.

Since dC(x) = 0, we have that for all (x′, α′) ∈ epi dC〈
(v,−1), (x′, α′)− (x, dC(x))

〉
= ⟨v, x′ − x⟩ − α′ ≤ ⟨v, x′ − x⟩

The last inequality above holds because α′ ≥ dC(x
′) ≥ 0. Hence we have that〈

(v,−1), (x′, α′)− (x, dC(x))
〉
≤ ⟨v, x′ − x⟩ ≤ σ|||x′ − x|||2 ≤

≤ σ
(
∥x′ − x∥2 + (α′ − dC(x))

2
)
= σ||||(x′, α′)− (x, dC(x))||||2,

for all (x′, α′) ∈ epi dC .

The proof is complete.

Proposition A.1.10. The function

φx0(K) := inf
x∈Rn

Fx0(K, x),

where
Fx0(K, x) := f(x)− f(x0) + ε+K∥x− x0∥,

is locally Lipschitz in (0,∞).

Proof. Let K > 0 be fixed and K ′, K ′′ be such that

(A.4) |K ′ −K| < K

2
and |K ′′ −K| < K

2
.

Let δ > 0 be fixed and x′
δ ∈ Rn be a δ-minimum point for the function

Fx0( . , K
′) = f(.)− f(x0) + ε+K ′∥ . −x0∥,

i.e. for all x ∈ Rn,

(A.5) f(x′
δ)− f(x0) + ε+K ′∥x′

δ − x0∥ ≤ f(x)− f(x0) + ε+K ′∥x− x0∥+ δ.

After substituting x = x0 in (A.5) we get

f(xδ′)− f(x0) + ε+K ′∥xδ′ − x0∥ ≤ f(x0)− f(x0) + ε+K ′∥x0 − x0∥+ δ

= ε+ δ,

or

(A.6) f(xδ′)− f(x0) +K ′∥xδ′ − x0∥ ≤ δ.
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Denotingm :=
2 ( f(x0) + δ)

K
> 0 and using (A.6) we have the following chain of inequalities

∥x′
δ − x0∥ ≤ f(x0)− f(x′

δ) + δ

K ′ since K ′ >
K

2
> 0

≤ f(x0) + δ

K ′ since f(x′
δ) ≥ 0

≤ 2(f(x0) + δ)

K
= m since

1

K ′ <
2

K
.

Finally,

(A.7) ∥x′
δ − x0∥ ≤ m.

Analogously, for x′′
δ ∈ Rn which is a δ-minimum point for the function

Fx0( . , K
′′) = f(.)− f(x0) + ε+K ′′∥ . −x0∥,

we obtain that

(A.8) ∥x′′
δ − x0∥ ≤ m.

Now, since φx0(K
′) := inf

x∈Rn
Fx0(K

′, x) ≤ f(x′′
δ)−f(x0)+ε+K ′∥x′′

δ−x0∥ and x′′
δ is δ-minimum

of Fx0( . , K
′′) we have that

φx0(K
′)− φx0(K

′′) ≤ f(x′′
δ)− f(x0) + ε+K ′∥x′′

δ − x0∥
−f(x′′

δ) + f(x0)− ε−K ′′∥x′′
δ − x0∥+ δ

= (K ′ −K ′′) ∥x′′
δ − x0∥+ δ

≤ |K ′ −K ′′|∥x′′
δ − x0∥+ δ

≤ m|K ′ −K ′′|+ δ by (A.8),

or

(A.9) φx0(K
′)− φx0(K

′′) ≤ m|K ′ −K ′′|+ δ.

Analogously, using x′
δ instead of x′′

δ , we get that

(A.10) φx0(K
′′)− φx0(K

′) ≤ m|K ′ −K ′′|+ δ.

Combining (A.9) and (A.10) and letting δ tend to zero we obtain that for all K ′, K ′′ satis-
fying (A.4),

(A.11) |φx0(K
′)− φx0(K

′′)| ≤ m|K ′ −K ′′|

which yields that φx0 is locally Lipschitz on (0,∞).



Appendix 73

Proposition A.1.11. Assume that 0 ̸∈ ∂εf(x0). Then for the function φx0(K) there exist

K̃0, K̂0 > 0 such that φx0(K̃0) < 0 and φx0(K̂0) > 0.

Proof. Since 0 ̸∈ ∂εf(x0) there exist x′ ∈ Rn such that f(x′) < f(x0)− ε.
Let δ > 0 be such that

(A.12) f(x′) = f(x0)− ε− δ.

Take K̃0 ∈ R satisfying

(A.13) 0 < K̃0 <
δ

∥x′ − x0∥
.

The following chain of equalities and inequalities that φx0(K̃0) < 0.

φx0(K̃0) = inf
x∈Rn

(
f(x)− f(x0) + ε+ K̃0∥x− x0∥

)
≤ f(x′)− f(x0) + ε+ K̃0∥x′ − x0∥
= f(x0)− ε− δ − f(x0) + ε+ K̃0∥x′ − x0∥ from (A.12)

= K̃0∥x′ − x0∥ − δ

<
δ

∥x′ − x0∥
∥x′ − x0∥ − δ from (A.13)

= 0.

To show that there exist K̂0 > 0 such that φx0(K̂0) > 0, assume that contrary, i.e. that for
any K > 0 there exists xk such that

f(xk)− f(x0) + ε+K∥xk − x0∥ ≤ 0,

i.e.

(A.14) ∥xk − x0∥ ≤ f(x0)− f(xk)− ε

K
.

Note that since φx0 is strictly monotone increasing on (0,∞) if for some K ′ > 0 we have
φx0(K

′) = 0 then for some K ′′ > K ′ we will have that φx0(K
′′) > 0 which will contradict

with the assumtions. Hence can assume that for all K > 0 we have that φx0(K) < 0 which
gives (A.14).

Now take δ ∈ R such that

(A.15) 0 < δ < ε.
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Since f is lower semicontinuous at x0 there exists δ̃ > 0 such that for all x such that
∥x− x0∥ < δ̃ it holds that

(A.16) f(x0) ≤ f(x) + δ.

Let K > 0 be large enough that

(A.17)
f(x0)− ε

K
< δ̃.

Let xk correspond to K > 0 in our assumption.

Using (A.14) and (A.17) it is easy to show that ∥xk − x0∥ ≤ δ̃.
Hence for xk we have that

∥xk − x0∥ ≤ f(x0)− f(xk)− ε

K
from (A.14)

≤ f(xk) + δ − f(xk)− ε

K
from (A.16), (A.17) and f(xk) ≥ 0

=
δ − ε

K
< 0, from (A.15)

which yields to a contradiction. Hence, the proof is complete.
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