Direct proofs of intrinsic properties of prox-regular sets in Hilbert spaces

Matey Konstantinov^{*}

Faculty of Mathematics and Informatics Sofia University 5, James Bourchier Blvd. 1164 Sofia, Bulgaria e-mail: mbkonstant@fmi.uni-sofia.bg

Nadia Zlateva[†]

Faculty of Mathematics and Informatics Sofia University 5, James Bourchier Blvd. 1164 Sofia, Bulgaria e-mail: zlateva@fmi.uni-sofia.bg November 17, 2021

)

Abstract

We provide new proofs of two intrinsic properties of prox-regular sets in Hilbert spaces.

Key words: prox-regular set, uniformly prox-regular set, proximally smooth set, proximal normal, distance function, metric projection mapping, Hilbert space

AMS Subject Classification: 49J52, 49J53

[†]Supported by the National Scientific Fund under Grant KP-06-H22/4.

^{*}Supported by the Bulgarian Ministry of Education and Science under the National Research Programme "Young scientists and postdoctoral students" approved by DCM #577/17.08.2018.

1 Introduction

The study of prox-regular sets, a term due to Poliquin, Rockafellar and Thibault [15], can be traced back to the pioneering work [12] of Federer who introduced them as positively reached sets in \mathbb{R}^n . During the years, various names of such sets have been introduced: weakly convex ([18]) or proximally smooth sets ([8]) are commonly used in Hilbert spaces; for other names see the survey [9]. Prox-regular sets in Banach spaces are studied in [6, 7, 4, 5].

Along with the study of prox-regular sets from theoretical point of view, they are intensively studied as involved in the famous Moreau's sweeping processes, see the survey [13] and the references therein. Various stability and separation properties of prox-regular sets are established in [1, 2, 3]. More details one can find in the paper [15], the survey [9], the forthcoming book [17] and their bibliography.

Prox-regularity has been introduced as an important new regularity property in Variational Analysis by Poliquin and Rockafellar in [14]. They defined the concept for functions and sets and developed the subject in \mathbb{R}^n . Numerous significant characterizations of prox-regularity of a closed set C in Hilbert space at point $\overline{x} \in C$ were obtained by Poliquin, Rockafellar and Thibault in [15] in terms of the distance function d_C and metric projection mapping P_C , e.g. d_C being continuously differentiable outside of C on a neighbourhood of \overline{x} , or P_C being single-valued and norm-to-weak continuous on this same neighbourhood. On global level, there the authors showed that uniformly prox-regular sets are proximally smooth sets provided new insights on them.

In this note we prove the following intrinsic characteristic properties of a r-prox-regular set.

Theorem 1.1. Given a real r > 0, a non-empty closed set C in a Hilbert space H. The following are equivalent:

(a) C is r-prox-regular.

(b) For any $a, b \in C$ with ||a - b|| < 2r and any $\lambda \in (0, 1)$ for $x_{\lambda} := \lambda a + (1 - \lambda)b$ there exists $u_{\lambda} \in C$ such that

$$||x_{\lambda} - u_{\lambda}|| \le r - \sqrt{r^2 - \lambda(1 - \lambda)} ||a - b||^2.$$
 (1.1)

(c) For any $a, b \in C$ with ||a - b|| < 2r there is some $z \in C$ such that

$$\left\|\frac{a+b}{2} - z\right\| \le r - \sqrt{r^2 - \frac{\|a-b\|^2}{4}}.$$
(1.2)

The equivalence (a) \Leftrightarrow (c) is established by G. E. Ivanov, see [11, Lemma 4.2] by using the properties of the sets $\Delta_r(a, b) := \bigcap_{d:\{a,b\}\in B[d,r]}$, first con-

sidered by J.-P. Vial, see [18]. In our proof we use a different approach which does not rely on these sets.

In finite dimensional settings, J.-P. Vial, see [18, Proposition 3.4], proved the implication (a) \Rightarrow (b) with right hand side of (1.1) equal to $\theta_{\lambda} := \frac{\lambda(1-\lambda)}{r} ||a-b||^2$, and the implication (b) \Rightarrow (a) with right hand side of (1.1) equal to $\delta_{\lambda} := \frac{\lambda(1-\lambda)}{2r} ||a-b||^2$ As $\delta_{\lambda} < r - \sqrt{r^2 - \lambda(1-\lambda)} ||a-b||^2 < \theta_{\lambda}$, the condition (1.1) is slightly weaker than both conditions of Vial. The equivalence (a) \Leftrightarrow (b) is proved in Hilbert settings in [17, Proposition 15.41], by using different arguments.

The characteristic properties (1.1) and (1.2) of *r*-prox-regular set will be studied in forthcoming paper of the authors, in the context of epigraphs of functions.

2 Preliminaries and notations

Throughout the paper, H stands for a (real) Hilbert space endowed with the inner product $\langle \cdot, \cdot \rangle$, and with the associated with it norm $\|\cdot\| := \sqrt{\langle \cdot, \cdot \rangle}$. The open (resp. closed) ball and the sphere of H centered at $x \in H$ with radius t > 0 is denoted by B(x,t) (resp. B[x,t]). In the particular case of the closed unit ball we use the notation $\mathbb{B} := B[0; 1]$.

For any nonempty subset C of H the distance function d_C from C is defined as

$$d_C(x) := \inf_{y \in C} ||x - y||, \quad \text{ for all } x \in H.$$

For an extended real $r \in (0, +\infty]$ through the distance function, one defines the (open) *r*-tube of *C* as the set $T_C(r) := U_C(r) \setminus C$, where $U_C(r)$ is the (open) *r*-enlargement of *C*

$$U_C(r) := \{ x \in H : d_C(x) < r \}.$$

The multi-valued mapping $P_C: H \rightrightarrows H$ of nearest points in C is defined by

$$P_C(x) := \{ y \in C : d_C(x) = ||x - y|| \} \text{ for all } x \in H.$$

Whenever for some $\overline{x} \in H$ the latter set is reduced to a singleton, i.e. $P_C(\overline{x}) = \{\overline{y}\}$, the vector $\overline{y} \in H$ is denoted by $p_C(\overline{x})$.

The proximal normal cone of C at $x \in H$, denoted by $N_C(x)$, is defined as, see [16],

$$N_C(x) := \{ p \in H : \exists r > 0 \text{ such that } x \in P_C(x + rp) \}.$$

By convention, $N_C(x') = \emptyset$ for all $x' \notin C$. It is easy to see that $p \in N_C(x)$ if and only if there is a real r > 0 such that

$$\langle p, x' - x \rangle \le \frac{1}{2r} \|x' - x\|, \quad \text{for all } x' \in C$$

$$(2.1)$$

in which case one says that p is a proximal normal to C at x with constant r > 0.

Definition 2.1. Let C be a nonempty closed subset of H and $r \in (0, +\infty]$. One says that C is r-prox-regular (or uniformly prox-regular with constant r) whenever, for every $x \in C$, for every $p \in N_C(x) \cap \mathbb{B}$ and for every real $t \in (0, r]$, one has

$$x \in P_C(x+tp).$$

Given a closed subset $C \in H$, $x \in C$ and $p \in N_C(x)$ with ||p|| = 1, it is known that for every real t > 0 one has

$$x \in P_C(x+tp) \Leftrightarrow C \cap B(x+tp,t) = \emptyset.$$

In such a case, one says that the unit normal proximal vector p to C at x is realized by the t-ball B(x + tv, t).

In the following theorem are collected some of the characterizations of uniformly prox-regular sets for which we refer to [15].

Theorem 2.2. Let C be a nonempty closed subset of H and let r > 0. The following assertions are equivalent:

(a) The set C is r-prox-regular.

(b) For all $x, x' \in C$, for all $p \in N_C(x)$, one has

$$\langle p, x' - x \rangle \le \frac{1}{2r} ||p|| ||x' - x||.$$
 (2.2)

(c) P_C is single-valued and norm-to-weak continuous on $T_C(r)$.

3 Proof of Theorem 1.1

The statements will be proved in the order $(a) \Rightarrow (b) \Rightarrow (c) \Rightarrow (a)$.

(a) \Rightarrow (b). Let C be r-prox-regular. Let $a, b \in C$ with ||a - b|| < 2r and $\lambda \in (0, 1)$ be fixed, and let $x_{\lambda} = \lambda a + (1 - \lambda)b$.

It is obvious that $x_{\lambda} \in U_C(r)$. If $x_{\lambda} \in C$, we just take $u_{\lambda} = x_{\lambda}$. Otherwise, $x_{\lambda} \in T_C(r)$. From Theorem 2.2(c) there exists unique $u_{\lambda} \in C$ such that $u_{\lambda} := p_C(x_{\lambda})$.

Since λ is fixed, further we will omit it from the index and will work with $x := x_{\lambda}$, and $u := u_{\lambda}$ instead. Set p := x - u and observe that $p \neq 0$ and that $p \in N_C(u)$. From Theorem 2.2(b) it holds that

$$\langle p, x' - u \rangle \le \frac{1}{2r} \|p\| \|x' - u\|, \quad \forall x' \in C.$$
 (3.1)

It is clear that

$$u = \lambda a + (1 - \lambda)b - p. \tag{3.2}$$

Substituting x' = a in (3.1) and using the expression (3.2) for u, we get

$$\langle p, (1-\lambda)(a-b) + p \rangle \leq \frac{1}{2r} \|p\| \| (1-\lambda)(a-b) + p\|^2 =$$

= $\frac{1}{2r} \|p\| \left((1-\lambda)^2 \|a-b\|^2 + 2(1-\lambda)\langle a-b,p \rangle + \|p\|^2 \right).$ (3.3)

Analogously, substituting x' = b in (3.1) we have

$$\langle p, \lambda(b-a) + p \rangle \le \frac{1}{2r} ||p|| \left(\lambda^2 ||b-a||^2 + 2\lambda \langle b-a, p \rangle + ||p||^2\right).$$
 (3.4)

Multiplying inequality (3.3) by λ , inequality (3.4) by $(1 - \lambda)$ and adding them, we obtain

$$\langle p, p \rangle \le \frac{1}{2r} \|p\| \left(\lambda (1-\lambda) \|a-b\|^2 + \|p\|^2 \right).$$

Rearranging the latter, we have that ||p|| satisfies the following quadratic inequality

$$t^{2} - 2rt + \lambda(1 - \lambda) \|a - b\|^{2} \ge 0.$$
(3.5)

Since ||a - b|| < 2r, and $\lambda \in (0, 1)$,

$$D := 4r^2 - 4\lambda(1 - \lambda) ||a - b||^2 > 0$$

and any t satisfying (3.5) should satisfy $t \leq t_1$ or $t \geq t_2$, where

$$t_1 := r - \sqrt{r^2 - \lambda(1 - \lambda) \|a - b\|^2}, \quad t_2 := r + \sqrt{r^2 - \lambda(1 - \lambda) \|a - b\|^2}.$$

Having in mind that $u = p_C(x)$, we have

$$||p|| = ||x - u|| \le ||x - a|| = ||\lambda a + (1 - \lambda)b - a|| = (1 - \lambda)||b - a||,$$

and

$$||p|| = ||x - u|| \le ||x - b|| = ||\lambda a + (1 - \lambda)b - b|| = \lambda ||b - a||.$$

Hence

$$||p|| \le \frac{||b-a||}{2} < \frac{2r}{2} = r.$$

As $t_2 \ge r$, we obviously get that $||p|| \le t_1$, which reads

$$||p|| \le r - \sqrt{r^2 - \lambda(1 - \lambda)||a - b||^2},$$

and the proof of (a) \Rightarrow (b) is completed. It is straightforward to check that u_{λ} for any $\lambda \in (0, 1)$ is such that $u_{\lambda} \notin \{a, b\}$.

(b)
$$\Rightarrow$$
 (c) is obvious, just take $\lambda = \frac{1}{2}$ in (1.1).
(c) \Rightarrow (a). Let x_0 be any point in $T_C(r)$, i.e. $0 < d_C(x_0) < r$. Set
 $\Delta := \frac{1}{2} \min\{d_C(x_0), r - d_C(x_0)\}.$

Take arbitrary $x \in B(x_0, \Delta)$. Note that by the choice of Δ ,

$$d_C(x) \le d_C(x_0) + ||x - x_0|| < r - 2\Delta + \Delta = r - \Delta$$

and

$$d_C(x) \ge d_C(x_0) - \|x - x_0\| > 2\Delta - \Delta = \Delta.$$

Setting $d := d_C(x)$, we have

$$\Delta < d < r - \Delta. \tag{3.6}$$

Take any $\varepsilon \in (0, \Delta)$.

Take $a, b \in C$, $a \neq b$ such that $a, b \in \varepsilon$ – argmin $d_C(x)$, and $||a - b|| > \varepsilon$ (if any).

Since $||a - x|| \le d + \varepsilon$, and $||b - x|| \le d + \varepsilon$,

$$||a - b|| \le ||a - x|| + ||b - x|| \le 2d + 2\varepsilon < 2(r - \Delta) + 2\Delta = 2r.$$

From (1.2) there exists $z \in C$ such that

$$\left\|\frac{a+b}{2} - z\right\| \le r - \sqrt{r^2 - \frac{\|a-b\|^2}{4}}.$$
(3.7)

Setting $\overline{a} := x + d \frac{a-x}{\|a-x\|}$ we have a point \overline{a} such that $\|\overline{a}-x\| = d$ and $\|\overline{a}-a\| \le \varepsilon$. Analogously, we obtain a point \overline{b} such that $\|\overline{b}-x\| = d$ and $\|\overline{b}-b\| \le \varepsilon$. Moreover, $\overline{a} \ne \overline{b}$ (otherwise one gets a contradiction with $\|a-b\| > \varepsilon$.)

Since

$$\begin{aligned} \left\|\frac{\overline{a}+\overline{b}}{2}-x\right\|^2 &= 2\left\|\frac{\overline{a}-x}{2}\right\|^2 + 2\left\|\frac{\overline{b}-x}{2}\right\|^2 - \left\|\frac{\overline{a}-\overline{b}}{2}\right\|^2 \\ &= \frac{1}{2}d^2 + \frac{1}{2}d^2 - \frac{\|\overline{a}-\overline{b}\|^2}{4} = d^2 - \frac{\|\overline{a}-\overline{b}\|^2}{4}, \end{aligned}$$

one has

$$\left\|\frac{\overline{a} + \overline{b}}{2} - x\right\| = \sqrt{d^2 - \frac{1}{4} \|\overline{a} - \overline{b}\|^2}.$$
(3.8)

Since $d_C(x) = d$, any ball centered at $\frac{\overline{a} + \overline{b}}{2}$ with radius smaller than $d - \sqrt{d^2 - \frac{1}{4} \|\overline{a} - \overline{b}\|^2}$ does not contain any point of the set C. But $z \in C$, hence it holds that

$$\left\|\frac{\overline{a}+\overline{b}}{2}-z\right\| \ge d-\sqrt{d^2-\frac{1}{4}\|\overline{a}-\overline{b}\|^2}.$$
(3.9)

Combining (3.9) with (3.7), we get

$$d - \sqrt{d^2 - \frac{1}{4} \|\overline{a} - \overline{b}\|^2} \leq \left\| \frac{\overline{a} + \overline{b}}{2} - z \right\|$$

$$\leq \left\| \frac{a + b}{2} - z \right\| + \frac{1}{2} \|\overline{a} - a + \overline{b} - b\|$$

$$\leq \left\| \frac{a + b}{2} - z \right\| + \varepsilon$$

$$\leq r - \sqrt{r^2 - \frac{1}{4} \|a - b\|^2} + \varepsilon.$$
(3.10)

Since $||a - b|| \le ||\overline{a} - \overline{b}|| + 2\varepsilon$, it holds that $\frac{||a - b||^2}{4} \le \frac{(||\overline{a} - \overline{b}|| + 2\varepsilon)^2}{4}$ and

$$r^{2} - \frac{\|a - b\|^{2}}{4} \ge r^{2} - \frac{(\|\overline{a} - \overline{b}\| + 2\varepsilon)^{2}}{4} > 0.$$
(3.11)

where the strict inequality holds since by (3.6) and $\varepsilon < \Delta$ we have

 $\|\overline{a} - \overline{b}\| + 2\varepsilon \leq 2d + 2\varepsilon < 2(r - \Delta) + 2\Delta = 2r.$

From (3.11) we get that

$$r - \sqrt{r^2 - \frac{\|a - b\|^2}{4}} \le r - \sqrt{r^2 - \frac{(\|\overline{a} - \overline{b}\| + 2\varepsilon)^2}{4}}$$

which combined with (3.10) gives

$$d - \sqrt{d^2 - \frac{1}{4} \|\overline{a} - \overline{b}\|^2} \le r - \sqrt{r^2 - \frac{1}{4} (\|\overline{a} - \overline{b}\| + 2\varepsilon)^2} + \varepsilon =$$

$$r - \sqrt{r^2 - \frac{1}{4} \|\overline{a} - \overline{b}\|^2} + \sqrt{r^2 - \frac{1}{4} \|\overline{a} - \overline{b}\|^2} - \sqrt{r^2 - \frac{1}{4} (\|\overline{a} - \overline{b}\| + 2\varepsilon)^2} + \varepsilon.$$
is straightforward to obtain the estimation

It is straightforward to obtain the estimation

$$\sqrt{r^2 - \frac{1}{4} \|\overline{a} - \overline{b}\|^2} - \sqrt{r^2 - \frac{1}{4} (\|\overline{a} - \overline{b}\| + 2\varepsilon)^2} \le \left(2\sqrt{\frac{r}{\Delta}}\right)\varepsilon.$$

Hence,

$$d - \sqrt{d^2 - \frac{1}{4} \|\overline{a} - \overline{b}\|^2} \le r - \sqrt{r^2 - \frac{1}{4} \|\overline{a} - \overline{b}\|^2} + \left(2\sqrt{\frac{r}{\Delta}} + 1\right)\varepsilon,$$

and setting $c(\Delta) := \left(2\sqrt{\frac{r}{\Delta}} + 1\right)$ we have

$$d - \sqrt{d^2 - \frac{1}{4} \|\overline{a} - \overline{b}\|^2} \le r - \sqrt{r^2 - \frac{1}{4} \|\overline{a} - \overline{b}\|^2} + c(\Delta)\varepsilon.$$
(3.12)

For fixed t > 0 consider the function $f : [t, \infty) \to \mathbb{R}$ defined as

$$f(r) := r - \sqrt{r^2 - t}.$$

It is easy to check that it is a convex decreasing function which derivative at r > t is $f'(r) = 1 - \frac{r}{\sqrt{r^2 - t}}$. Moreover,

$$f(t) \ge \frac{t}{2r}.\tag{3.13}$$

Taking $t := \frac{1}{4} \|\overline{a} - \overline{b}\|^2$, in the definition of f, the inequality (3.12) can be written as

$$f(d) \le f(r) + c(\Delta)\varepsilon,$$

or

$$f(d) - f(r) \le c(\Delta)\varepsilon.$$

The convexity and differentiability of f yield that

$$f'(r)(d-r) \le c(\Delta)\varepsilon.$$

The latter reads

$$(r-d)\left(r-\sqrt{r^2-\frac{\|\overline{a}-\overline{b}\|^2}{4}}\right) \le c(\Delta)\varepsilon\sqrt{r^2-\frac{\|\overline{a}-\overline{b}\|^2}{4}}.$$
(3.14)

Using that $\left(r - \sqrt{r^2 - \frac{\|\overline{a} - \overline{b}\|^2}{4}}\right) \ge \frac{\|\overline{a} - \overline{b}\|^2}{8r}$, see (3.13), and that

 $\sqrt{r^2 - \frac{\|\overline{a} - \overline{b}\|^2}{4}} \le r$, from (3.14) we obtain

$$(r-d)\frac{\|\overline{a}-\overline{b}\|^2}{8r} \le rc(\Delta)\varepsilon.$$

As $r - d > \Delta$, see (3.6),

$$\|\overline{a} - \overline{b}\|^2 \le \frac{8r^2}{\Delta}c(\Delta)\varepsilon,$$

hence

$$\|\overline{a} - \overline{b}\| \le 2r\sqrt{\frac{2c(\Delta)}{\Delta}}\sqrt{\varepsilon}.$$

From the latter and $\varepsilon < \Delta$ we get

$$\|a-b\| \le \|\overline{a}-\overline{b}\| + 2\varepsilon \le \left(2r\sqrt{\frac{2c(\Delta)}{\Delta}} + 2\sqrt{\varepsilon}\right)\sqrt{\varepsilon} \le \left(2r\sqrt{\frac{2c(\Delta)}{\Delta}} + 2\sqrt{\Delta}\right)\sqrt{\varepsilon}.$$

Setting $k = k(\Delta) := 2r\sqrt{\frac{2c(\Delta)}{\Delta}} + 2\sqrt{\Delta}$, we obtain for $a, b \in \varepsilon$ – argmin $d_C(x)$ with $||a - b|| > \varepsilon$ that

$$\|a - b\| \le k\sqrt{\varepsilon}$$

As $k > \sqrt{\varepsilon}$, for $a, b \in C$, such that $a, b \in \varepsilon$ -argmin $d_C(x)$ with $||a-b|| \le \varepsilon$, obviously $||a-b|| \le k\sqrt{\varepsilon}$.

Therefore,

$$\operatorname{diam}\left(\varepsilon-\operatorname{argmin} d_C(x)\right) \le k\sqrt{\varepsilon}.\tag{3.15}$$

This means that the projection mapping is single-valued on $B(x_0, \Delta)$, i.e. for $x \in B(x_0, \Delta)$ there exists unique point $p_C(x) \in C$ such that $d_C(x) = ||x - p_C(x)||$. As $x_0 \in T_C(r)$ was arbitrary, the projection mapping P_C is single-valued on $T_C(r)$.

It is routine to establish the continuity of the metric projection mapping P_C at x_0 . Take $x, y \in B(x_0, \Delta/4)$. For their projections we have that $||x - p_C(x)|| = d_C(x), ||y - p_C(y)|| = d_C(y)$. Since

$$||p_C(y) - x|| \le ||p_C(y) - y|| + ||y - x|| = d_C(y) + ||y - x|| \le d_C(x) + 2||y - x||,$$

we have that $p_C(y) \in (2||y-x||)$ -argmin $d_C(x)$. Obviously $p_C(x) \in (2||y-x||)$ -argmin $d_C(x)$. For $\varepsilon := 2||y-x||$ we have that $\varepsilon < \Delta$. So, we can apply (3.15) to get that

$$||p_C(y) - p_C(x)|| \le \sqrt{2k}\sqrt{||y - x||}.$$
(3.16)

The latter yields that P_C is norm-to-norm continuous at x_0 , and as x_0 was arbitrary in $T_C(r)$, on $T_C(r)$. From Theorem 2.2(c) it holds that C is r-prox-regular, thus completing the proof of (c) \Rightarrow (a).

From the proof of Theorem 1.1 it is clear that the property: the projection mapping P_C is single-valued and norm-to-norm continuous on $T_C(r)$ also characterizes r-prox-regular closed set C, but it is an external characterization.

References

- S. Adly, F. Nacry and L. Thibault, Preservation of Prox-Regularity of Sets with Applications to Constrained Optimization, SIAM J. Optim., 26 (2016), 448–473.
- [2] S. Adly, F. Nacry and L. Thibault, Prox-regularity approach to generalized equations and image projection, ESAIM: COCV, 24 (2018), 677– 708.
- S. Adly, F. Nacry and Lionel Thibault, Prox-regular sets and Legendre-Fenchel transform related to separation properties, Optimization, 2020, DOI: 10.1080/02331934.2020.1852404
- [4] M. V. Balashov and G. E. Ivanov, Weakly convex and proximally smooth sets in Banach spaces, Izv. Math., 73 (2009), 455–499.
- [5] F. Bernard and L. Thibault, Prox-regular functions and sets in Banach spaces, Set-Valued Analysis, 12 (2004), 25–47.
- [6] F. Bernard, L. Thibault and N. Zlateva, Characterizations of proxregular sets in uniformly convex Banach spaces, J. Convex Anal., 13 (2006), 525–559.
- [7] F. Bernard, L. Thibault and N. Zlateva, Prox-regular sets and epigraphs in uniformly convex Banach spaces: various regularities and other properties, Trans. Amer. Math. Soc., 363 (2011), 2211-2247.
- [8] F. H. Clarke, R. J. Stern and P. R. Wolenski, Proximal smoothness and the lower- C^2 property, J. Convex Anal., (1995), 117–144.

- [9] G. Colombo and L. Thibault, Prox-regular sets and applications, In: Handbook of nonconvex analysis and applications, 99–182 (2010), Int. Press, Somerville, MA.
- [10] R. Correa, A. Jofré and L. Thibault, Characterization of lower semicontinuoud convex fuctions, Proc. Amer. Math. Soc., 116 (1992), 61–72.
- [11] G. E. Ivanov, Weak convexity in the sense of Vial and Efimov-Stechkin, Izv. Ross. Akad. Nauk Ser. Mat. 69 (2005), 35–60 (in Russian); English tanslation in Izv. Math. (2005), 1113–1135.
- [12] H. Federer, Curvature measures, Trans. Amer. Math. Soc., 93 (1959), 418-491.
- [13] F. Nacry and L. Thibault, Regularization of sweeping process: old and new, Pure and Applied Functional Analysis, 4 (2019), 59–117.
- [14] R. A. Poliquin and R. T. Rockafellar, Prox-regular functions in variational analysis, Trans. Amer. Math. Soc., 348 (1996), 1805–1838.
- [15] R. A. Poliquin, R. T. Rockafellar and L. Thibault, *Local differentiability* of distance functions, Trans. Amer. Math. Soc., 352 (2000), No. 11, 5231–5249.
- [16] R. T. Rockafellar and R.J.-B. Wets, Variational Analysis, Grundlehren der Mathematischen Wissenschaften, vol. 317. Springer, New York, 1998.
- [17] L. Thibault, Unilateral Variational Analysis in Banach Spaces, to appear.
- [18] J.-P. Vial, Strong and weak convexity of sets and functions, Math. Oper. Res., 8 (1983), 231–259.