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1 Introduction

The study of prox-regular sets, a term due to Poliquin, Rockafellar and
Thibault [15], can be traced back to the pioneering work [12] of Federer
who introduced them as positively reached sets in R™. During the years,
various names of such sets have been introduced: weakly convex ([18]) or
proximally smooth sets ([8]) are commonly used in Hilbert spaces; for other
names see the survey [9]. Prox-regular sets in Banach spaces are studied
in [6, 7, 4, 5].

Along with the study of prox-regular sets from theoretical point of view,
they are intensively studied as involved in the famous Moreau’s sweeping
processes, see the survey [13] and the references therein. Various stability
and separation properties of prox-regular sets are established in [1, 2, 3].
More details one can find in the paper [15], the survey [9], the forthcoming
book [17] and their bibliography.

Prox-regularity has been introduced as an important new regularity prop-
erty in Variational Analysis by Poliquin and Rockafellar in [14]. They defined
the concept for functions and sets and developed the subject in R™. Numer-
ous significant characterizations of prox-regularity of a closed set C' in Hilbert
space at point T € C were obtained by Poliquin, Rockafellar and Thibault in
[15] in terms of the distance function d¢ and metric projection mapping Pc,
e.g. d¢ being continuously differentiable outside of C' on a neighbourhood
of &, or Py being single-valued and norm-to-weak continuous on this same
neighbourhood. On global level, there the authors showed that uniformly
prox-regular sets are proximally smooth sets provided new insights on them.

In this note we prove the following intrinsic characteristic properties of a
r-prox-regular set.

Theorem 1.1. Given a real r > 0, a non-empty closed set C in a Hilbert
space H. The following are equivalent:

(a) C is r-proz-regular.

(b) For any a,b € C with ||la — b|]| < 2r and any A € (0,1) for x) =
Aa + (1 = \)b there exists uy € C' such that

|2y —unr|| <7 — /12 = A1 = \)|la — b2 (1.1)

(¢) For any a,b € C with |ja — b|| < 2r there is some z € C' such that

b — bl|?
a; —ZHST—\/?Q—M. (1.2)
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The equivalence (a) < (c) is established by G. E. Ivanov, see [11, Lem-

ma 4.2] by using the properties of the sets A, (a,b) := ﬂ , first con-
d:{a,b}eB[d,r]

sidered by J.-P. Vial, see [18]. In our proof we use a different approach which
does not rely on these sets.

In finite dimensional settings, J.-P. Vial, see [18, Proposition 3.4], proved
the implication (a) = (b) with right hand side of (1.1) equal to 6, :=
—/\<1 A la—b||?, and the implication (b) = (a) with right hand side of (1.1)

,
1—
equal to Jy = ¥Ha —b|P As 6y <7 — /12— A1 = N)a—Db|2 < 6y,
r
the condition (1.1) is slightly weaker than both conditions of Vial. The equiv-
(

alence (a) < (b) is proved in Hilbert settings in [17, Proposition 15.41], by
using different arguments.

The characteristic properties (1.1) and (1.2) of r-prox-regular set will be
studied in forthcoming paper of the authors, in the context of epigraphs of
functions.

2 Preliminaries and notations

Throughout the paper, H stands for a (real) Hilbert space endowed with the
inner product (-,-), and with the associated with it norm || - || := +/(:, ).
The open (resp. closed) ball and the sphere of H centered at z € H with
radius ¢ > 0 is denoted by B(z,t) (resp. Blz,t]). In the particular case of
the closed unit ball we use the notation B := B[0; 1].

For any nonempty subset C' of H the distance function d¢ from C' is
defined as

de(x) := inf ||z —y|, forall z € H.
yelC

For an extended real r € (0,4o00] through the distance function, one
defines the (open) r-tube of C' as the set T (r) := Uc(r) \ C, where Ux(r) is
the (open) r-enlargement of C'

Uc(r) :={z € H :do(z) <r}.
The multi-valued mapping Po : H = H of nearest points in C' is defined by

Po(z) ={y € C:de(x) = ||z —vy||} forallze H.



Whenever for some T € H the latter set is reduced to a singleton, i.e. Po(T) =
{7}, the vector § € H is denoted by pc(T).

The proximal normal cone of C' at © € H, denoted by N¢(z), is defined
as, see [16],

Ne(z) :={p € H : Ir > 0 such that z € Po(x +rp)}.

By convention, N¢(2') = @ for all 2’ ¢ C. It is easy to see that p € Ng(x)
if and only if there is a real » > 0 such that

1
(p,a’ —x) < ng’ —z|, forallz'eC (2.1)

in which case one says that p is a proximal normal to C' at = with constant
r > 0.

Definition 2.1. Let C be a nonempty closed subset of H and r € (0, +o<].
One says that C is r-proz-regular (or uniformly proz-regular with constant r)
whenever, for every x € C, for every p € Ne(x) N B and for every real
t € (0,r], one has

x € Po(x + tp).

Given a closed subset C € H, x € C' and p € N¢(x) with ||p|| = 1, it is
known that for every real ¢ > 0 one has

r € Po(x+1tp) < CNBx+ip,t) =2.

In such a case, one says that the unit normal proximal vector p to C' at z is
realized by the t-ball B(x + tv,t).

In the following theorem are collected some of the characterizations of
uniformly prox-regular sets for which we refer to [15].

Theorem 2.2. Let C' be a nonempty closed subset of H and let r > 0. The
following assertions are equivalent:
(a) The set C' is r-prox-regular.

(b) For all z,2" € C, for all p € No(z), one has

1
(2’ =) < o plllla” = z]- (2.2)
(¢) Pe is single-valued and norm-to-weak continuous on Te(r).
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3 Proof of Theorem 1.1

The statements will be proved in the order (a) = (b) = (¢) = (a).

(a) = (b). Let C be r-prox-regular. Let a,b € C with [ja —b|| < 2r and
A € (0,1) be fixed, and let xy = Aa + (1 — A)b.

It is obvious that z) € Ux(r). If 2\ € C, we just take uy = x,. Otherwise,
xx € Te(r). From Theorem 2.2(c) there exists unique uy € C' such that

Uy ‘= pc(ac,\).

Since A is fixed, further we will omit it from the index and will work with
x = xy, and u := uy instead. Set p := z — u and observe that p # 0 and
that p € No(u). From Theorem 2.2(b) it holds that

1
' = w) < pllle’ —ull, va'eC. (3.1)

It is clear that
u=2Aa+ (1 —=XN)b—p. (3.2)

Substituting 2’ = a in (3.1) and using the expression (3.2) for u, we get
1
(p, (1 =N(a=0)+p) < lIpllll(1 = N(a =) +pl* =

1
= 5-IIpll (1 - N la=b1* +2(1 = \{a—b,p) +IpI*) . (33)
Analogously, substituting ' = b in (3.1) we have
1
(P A0 —a)+p) < llpll (V10 = all® + 20 —a,p) + [IpIF) - (34)

Multiplying inequality (3.3) by A, inequality (3.4) by (1 — \) and adding
them, we obtain

(0.8} < oIl (AL = Wlla = b7 + 1)

Rearranging the latter, we have that ||p|| satisfies the following quadratic
inequality
t2 —2rt + A(1 — \)|la — b||* > 0. (3.5)

Since |la — b]| < 2r, and A € (0,1),

D :=4r* —4X1 = N)|la —b||* >0
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and any ¢ satisfying (3.5) should satisfy ¢ < ¢; or ¢ > t5, where

tii=r—r2=A1=MN|a—0|2, ty:=r—+r2—A1—N\|a—D0|>2
Having in mind that u = pc(z), we have

Il = llz = ull < llz = all = Aa+ (1 = A)p = all = (1= N)]}p —al]

and
Ipl| = ||z —ul| < ||z —=b] = |[Aa+ (1 = A)b—b]| = A||b—al.
Hence
ol < 222l 2
PIl="5 9 — "

As ty > 7, we obviously get that ||p|| < ¢;, which reads

lpll <7 = /r? = AL = Nla = b2,

and the proof of (a) = (b) is completed. It is straightforward to check that
uy for any A\ € (0,1) is such that uy & {a,b}.

1
(b) = (c) is obvious, just take A = 5 in (1.1).

(c) = (a). Let xy be any point in T (1), i.e. 0 < de(xg) < r. Set
L.
A= 5 min{dc(zo),r — do(z0)}-
Take arbitrary x € B(zo,A). Note that by the choice of A,

do(z) < dc(zo) + ||z —xo|| <r—2A4+A=r—A

and
de(x) > do(xg) — ||z — xo|| > 2A — A = A.

Setting d := d¢(x), we have
A<d<r—A. (3.6)

Take any € € (0, A).
Take a,b € C, a # b such that a,b € ¢ — argmindc(x), and |ja — b|| > ¢
(if any).



Since |ja —z|| < d+¢, and ||b—z|| < d + ¢,
la =] < |la—xz|+||b—z|| <2d+ 2 < 2(r — A) + 2A = 2r.

From (1.2) there exists z € C' such that

a+b / la — 0|2
5 ZH r r 1 (3.7)

Setting @ := x + dH we have a point @ such that ||[@a — z| = d
a—x
and ||@ — al| < . Analogously, we obtain a point b such that ||b — z| = d

and ||b — b|| < e. Moreover, @ # b (otherwise one gets a contradiction with

Ja—b] > <)
Since
ath ? _ fa-e 2 N * o lla-b|
2 2 2
1 1 [a —b]? [a — bl?
= PP = - —
2 +2 4 4 ’
one has 3
a+b

— X

1 _
— 2 _ g — 2
. \/d Jlla = (3.8)

a+b
Since do(z) = d, any ball centered at axo with radius smaller than

1 -
d—/d?>— ZHG — b||? does not contain any point of the set C. But z € C,
hence it holds that

a+b

—Z

1 _
> d— \/d2—1|]a—b||2. (3.9)




Combining (3.9) with (3.7), we get

1 - a+b
d‘Vﬁ——w—bw A
4 2
b 1 _
< a; -z +§||E—a+b—b||
< a—i—b_z i
2
1
< T—\/T2—1|\a—b!\2+5. (3.10)
_ —}b 2 —_5 2 2
Since [|a — b|| < ||@ — b|| + 2, it holds that la — bl < ( 4|1|+ )
and , ~ ;
—b a—bll+2
S L ; L JLH 2} (3.11)

where the strict inequality holds since by (3.6) and e < A we have
1@ — b +2e < 2d + 2 < 2(r — A) +2A = 2r.
From (3.11) we get that

Y P e vﬁx_ma—5w+%v
4

which combined with (3.10) gives

1 - 1 _
d—\/dQ—Z—lHa—bH?gr—\/r2—1(|\d—b]\+2€)2+5:

1 = 1 - 1 _
YL Iy R B PR e

It is straightforward to obtain the estimation

1 — 1 -
\/1"2 — gl =l - \/7“2 — (a7l +22)2 < (2, /%) €.
Hence,
1 - 1 -
d— \/d2 — Z||a—b||2 <r-— \/7’2 — Z||a—b|y2+ (2,/£+1> £
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and setting c(A) = <2~ / % + 1) we have

d— \/d2 _ iua _BP<r— \/7’2 _ }lna—BH? +e(Ae. (3.12)
For fixed t > 0 consider the function f : [t,00) — R defined as
f(r)y=r—+vr2—t
It is easy to check that %1; is a convex decreasing function which derivative at
r>tis f'(r)y=1- N Moreover,
t
f(t) > o (3.13)

Taking t := EHE —b||, in the definition of f, the inequality (3.12) can be
written as
f(d) < fr) + c(A)e,
or
f(d) = f(r) <c(Ae.
The convexity and differentiability of f yield that

F)(d—7) < (D).

The latter reads

(r—d) [ r—yfre = 1220 - PP < cqayeyfre - N2 0P - E (s

[ T

Using that —\/r?—
sing that | r r 1 > 37

, see (3.13), and that

_—Z_) 2
9 a H_ <r, from (3.14) we obtain

la — b])”

(r—d) % < re(A)e.
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Asr—d> A, see (3.6),

a3 < Se(a)e,
hence
2¢(A
a8 <2n />3 2

From the latter and ¢ < A we get

2¢(A)
A

—b|| < |la—=b||+2e < |2
la—0b]| < ||a |I+6_<T A

+ 2\/5) VE< <2r 244) | 2\/5) VE.

Setting k& = k(A) = 2r 2(8)

argmin do(z) with ||a — b|| > € that
la — bl < kv

Ask > /e, for a,b € C, such that a,b € e—argmin dg(x) with |ja—b|| < e,
obviously ||la — b|| < k/e.
Therefore,

+ 2V/A, we obtain for a,b € ¢ —

diam (e—argmin do (7)) < kv/e. (3.15)

This means that the projection mapping is single-valued on B(xg, A), i.e.
for x € B(xg,A) there exists unique point pc(x) € C such that do(z) =
|z — po(z)||. As zo € Te(r) was arbitrary, the projection mapping Pg is
single-valued on T (r).

It is routine to establish the continuity of the metric projection mapping
Po at xy. Take x,y € B(xg,A/4). For their projections we have that ||z —

pe(@)|| = de(x), ly — pe(y)|| = de(y). Since
Ipc(y) —zll < llpc(y) =yl +ly — 2|l = de(y) + ly — z|| < do(z) + 2|y — 2,

we have that pc(y) € (2||y — z||)—argmin de(x). Obviously pe(x) € (2||ly —
z||)—argmin dc(z). For € := 2|y — z|| we have that ¢ < A. So, we can apply
(3.15) to get that

Ipe(y) = pe(@)]| < V2Ey/ly — 2. (3.16)
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The latter yields that Pg is norm-to-norm continuous at xg, and as xy was
arbitrary in T¢(r), on To(r). From Theorem 2.2(c) it holds that C' is r-prox-
regular, thus completing the proof of (c) = (a). O

From the proof of Theorem 1.1 it is clear that the property: the projec-

tion mapping Pc is single-valued and norm-to-norm continuous on 7¢(r) also
characterizes r-prox-regular closed set C, but it is an external characteriza-

tion.
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