Direct proofs of intrinsic properties of prox-regular sets in Hilbert spaces

Matey Konstantinov*
Faculty of Mathematics and Informatics
Sofia University
5, James Bourchier Blvd.
1164 Sofia, Bulgaria
e-mail: mbkonstant@fmi.uni-sofia.bg
Nadia Zlateva ${ }^{\dagger}$
Faculty of Mathematics and Informatics
Sofia University
5, James Bourchier Blvd.
1164 Sofia, Bulgaria
e-mail: zlateva@fmi.uni-sofia.bg

November 17, 2021

Abstract

We provide new proofs of two intrinsic properties of prox-regular sets in Hilbert spaces.

Key words: prox-regular set, uniformly prox-regular set, proximally smooth set, proximal normal, distance function, metric projection mapping, Hilbert space

AMS Subject Classification: 49J52, 49J53

[^0]
1 Introduction

The study of prox-regular sets, a term due to Poliquin, Rockafellar and Thibault [15], can be traced back to the pioneering work [12] of Federer who introduced them as positively reached sets in \mathbb{R}^{n}. During the years, various names of such sets have been introduced: weakly convex ([18]) or proximally smooth sets ([8]) are commonly used in Hilbert spaces; for other names see the survey [9]. Prox-regular sets in Banach spaces are studied in $[6,7,4,5]$.

Along with the study of prox-regular sets from theoretical point of view, they are intensively studied as involved in the famous Moreau's sweeping processes, see the survey [13] and the references therein. Various stability and separation properties of prox-regular sets are established in $[1,2,3]$. More details one can find in the paper [15], the survey [9], the forthcoming book [17] and their bibliography.

Prox-regularity has been introduced as an important new regularity property in Variational Analysis by Poliquin and Rockafellar in [14]. They defined the concept for functions and sets and developed the subject in \mathbb{R}^{n}. Numerous significant characterizations of prox-regularity of a closed set C in Hilbert space at point $\bar{x} \in C$ were obtained by Poliquin, Rockafellar and Thibault in [15] in terms of the distance function d_{C} and metric projection mapping P_{C}, e.g. d_{C} being continuously differentiable outside of C on a neighbourhood of \bar{x}, or P_{C} being single-valued and norm-to-weak continuous on this same neighbourhood. On global level, there the authors showed that uniformly prox-regular sets are proximally smooth sets provided new insights on them.

In this note we prove the following intrinsic characteristic properties of a r-prox-regular set.
Theorem 1.1. Given a real $r>0$, a non-empty closed set C in a Hilbert space H. The following are equivalent:
(a) C is r-prox-regular.
(b) For any $a, b \in C$ with $\|a-b\|<2 r$ and any $\lambda \in(0,1)$ for $x_{\lambda}:=$ $\lambda a+(1-\lambda) b$ there exists $u_{\lambda} \in C$ such that

$$
\begin{equation*}
\left\|x_{\lambda}-u_{\lambda}\right\| \leq r-\sqrt{r^{2}-\lambda(1-\lambda)\|a-b\|^{2}} \tag{1.1}
\end{equation*}
$$

(c) For any $a, b \in C$ with $\|a-b\|<2 r$ there is some $z \in C$ such that

$$
\begin{equation*}
\left\|\frac{a+b}{2}-z\right\| \leq r-\sqrt{r^{2}-\frac{\|a-b\|^{2}}{4}} . \tag{1.2}
\end{equation*}
$$

The equivalence (a) $\Leftrightarrow(\mathrm{c})$ is established by G. E. Ivanov, see [11, Lemma 4.2] by using the properties of the sets $\Delta_{r}(a, b):=\bigcap_{d:\{a, b\} \in B[d, r]}$, first considered by J.-P. Vial, see [18]. In our proof we use a different approach which does not rely on these sets.

In finite dimensional settings, J.-P. Vial, see [18, Proposition 3.4], proved the implication (a) $\Rightarrow(\mathrm{b})$ with right hand side of (1.1) equal to $\theta_{\lambda}:=$ $\frac{\lambda(1-\lambda)}{r}\|a-b\|^{2}$, and the implication $(\mathrm{b}) \Rightarrow$ (a) with right hand side of (1.1) equal to $\delta_{\lambda}:=\frac{\lambda(1-\lambda)}{2 r}\|a-b\|^{2}$ As $\delta_{\lambda}<r-\sqrt{r^{2}-\lambda(1-\lambda)\|a-b\|^{2}}<\theta_{\lambda}$, the condition (1.1) is slightly weaker than both conditions of Vial. The equivalence $(\mathrm{a}) \Leftrightarrow(\mathrm{b})$ is proved in Hilbert settings in [17, Proposition 15.41], by using different arguments.

The characteristic properties (1.1) and (1.2) of r-prox-regular set will be studied in forthcoming paper of the authors, in the context of epigraphs of functions.

2 Preliminaries and notations

Throughout the paper, H stands for a (real) Hilbert space endowed with the inner product $\langle\cdot, \cdot\rangle$, and with the associated with it norm $\|\cdot\|:=\sqrt{\langle\cdot, \cdot\rangle}$. The open (resp. closed) ball and the sphere of H centered at $x \in H$ with radius $t>0$ is denoted by $B(x, t)$ (resp. $B[x, t]$). In the particular case of the closed unit ball we use the notation $\mathbb{B}:=B[0 ; 1]$.

For any nonempty subset C of H the distance function d_{C} from C is defined as

$$
d_{C}(x):=\inf _{y \in C}\|x-y\|, \quad \text { for all } x \in H
$$

For an extended real $r \in(0,+\infty]$ through the distance function, one defines the (open) r-tube of C as the set $T_{C}(r):=U_{C}(r) \backslash C$, where $U_{C}(r)$ is the (open) r-enlargement of C

$$
U_{C}(r):=\left\{x \in H: d_{C}(x)<r\right\} .
$$

The multi-valued mapping $P_{C}: H \rightrightarrows H$ of nearest points in C is defined by

$$
P_{C}(x):=\left\{y \in C: d_{C}(x)=\|x-y\|\right\} \quad \text { for all } x \in H .
$$

Whenever for some $\bar{x} \in H$ the latter set is reduced to a singleton, i.e. $P_{C}(\bar{x})=$ $\{\bar{y}\}$, the vector $\bar{y} \in H$ is denoted by $p_{C}(\bar{x})$.

The proximal normal cone of C at $x \in H$, denoted by $N_{C}(x)$, is defined as, see [16],

$$
N_{C}(x):=\left\{p \in H: \exists r>0 \text { such that } x \in P_{C}(x+r p)\right\} .
$$

By convention, $N_{C}\left(x^{\prime}\right)=\varnothing$ for all $x^{\prime} \notin C$. It is easy to see that $p \in N_{C}(x)$ if and only if there is a real $r>0$ such that

$$
\begin{equation*}
\left\langle p, x^{\prime}-x\right\rangle \leq \frac{1}{2 r}\left\|x^{\prime}-x\right\|, \quad \text { for all } x^{\prime} \in C \tag{2.1}
\end{equation*}
$$

in which case one says that p is a proximal normal to C at x with constant $r>0$.

Definition 2.1. Let C be a nonempty closed subset of H and $r \in(0,+\infty]$. One says that C is r-prox-regular (or uniformly prox-regular with constant r) whenever, for every $x \in C$, for every $p \in N_{C}(x) \cap \mathbb{B}$ and for every real $t \in(0, r]$, one has

$$
x \in P_{C}(x+t p) .
$$

Given a closed subset $C \in H, x \in C$ and $p \in N_{C}(x)$ with $\|p\|=1$, it is known that for every real $t>0$ one has

$$
x \in P_{C}(x+t p) \Leftrightarrow C \cap B(x+t p, t)=\varnothing .
$$

In such a case, one says that the unit normal proximal vector p to C at x is realized by the t-ball $B(x+t v, t)$.

In the following theorem are collected some of the characterizations of uniformly prox-regular sets for which we refer to [15].

Theorem 2.2. Let C be a nonempty closed subset of H and let $r>0$. The following assertions are equivalent:
(a) The set C is r-prox-regular.
(b) For all $x, x^{\prime} \in C$, for all $p \in N_{C}(x)$, one has

$$
\begin{equation*}
\left\langle p, x^{\prime}-x\right\rangle \leq \frac{1}{2 r}\|p\|\left\|x^{\prime}-x\right\| \tag{2.2}
\end{equation*}
$$

(c) P_{C} is single-valued and norm-to-weak continuous on $T_{C}(r)$.

3 Proof of Theorem 1.1

The statements will be proved in the order $(\mathrm{a}) \Rightarrow(\mathrm{b}) \Rightarrow(\mathrm{c}) \Rightarrow(\mathrm{a})$.
(a) \Rightarrow (b). Let C be r-prox-regular. Let $a, b \in C$ with $\|a-b\|<2 r$ and $\lambda \in(0,1)$ be fixed, and let $x_{\lambda}=\lambda a+(1-\lambda) b$.

It is obvious that $x_{\lambda} \in U_{C}(r)$. If $x_{\lambda} \in C$, we just take $u_{\lambda}=x_{\lambda}$. Otherwise, $x_{\lambda} \in T_{C}(r)$. From Theorem 2.2(c) there exists unique $u_{\lambda} \in C$ such that $u_{\lambda}:=p_{C}\left(x_{\lambda}\right)$.

Since λ is fixed, further we will omit it from the index and will work with $x:=x_{\lambda}$, and $u:=u_{\lambda}$ instead. Set $p:=x-u$ and observe that $p \neq 0$ and that $p \in N_{C}(u)$. From Theorem 2.2(b) it holds that

$$
\begin{equation*}
\left\langle p, x^{\prime}-u\right\rangle \leq \frac{1}{2 r}\|p\|\left\|x^{\prime}-u\right\|, \quad \forall x^{\prime} \in C \tag{3.1}
\end{equation*}
$$

It is clear that

$$
\begin{equation*}
u=\lambda a+(1-\lambda) b-p \tag{3.2}
\end{equation*}
$$

Substituting $x^{\prime}=a$ in (3.1) and using the expression (3.2) for u, we get

$$
\begin{align*}
& \langle p,(1-\lambda)(a-b)+p\rangle \leq \frac{1}{2 r}\|p\|\|(1-\lambda)(a-b)+p\|^{2}= \\
& =\frac{1}{2 r}\|p\|\left((1-\lambda)^{2}\|a-b\|^{2}+2(1-\lambda)\langle a-b, p\rangle+\|p\|^{2}\right) \tag{3.3}
\end{align*}
$$

Analogously, substituting $x^{\prime}=b$ in (3.1) we have

$$
\begin{equation*}
\langle p, \lambda(b-a)+p\rangle \leq \frac{1}{2 r}\|p\|\left(\lambda^{2}\|b-a\|^{2}+2 \lambda\langle b-a, p\rangle+\|p\|^{2}\right) . \tag{3.4}
\end{equation*}
$$

Multiplying inequality (3.3) by λ, inequality (3.4) by $(1-\lambda)$ and adding them, we obtain

$$
\langle p, p\rangle \leq \frac{1}{2 r}\|p\|\left(\lambda(1-\lambda)\|a-b\|^{2}+\|p\|^{2}\right) .
$$

Rearranging the latter, we have that $\|p\|$ satisfies the following quadratic inequality

$$
\begin{equation*}
t^{2}-2 r t+\lambda(1-\lambda)\|a-b\|^{2} \geq 0 \tag{3.5}
\end{equation*}
$$

Since $\|a-b\|<2 r$, and $\lambda \in(0,1)$,

$$
D:=4 r^{2}-4 \lambda(1-\lambda)\|a-b\|^{2}>0
$$

and any t satisfying (3.5) should satisfy $t \leq t_{1}$ or $t \geq t_{2}$, where

$$
t_{1}:=r-\sqrt{r^{2}-\lambda(1-\lambda)\|a-b\|^{2}}, \quad t_{2}:=r+\sqrt{r^{2}-\lambda(1-\lambda)\|a-b\|^{2}} .
$$

Having in mind that $u=p_{C}(x)$, we have

$$
\|p\|=\|x-u\| \leq\|x-a\|=\|\lambda a+(1-\lambda) b-a\|=(1-\lambda)\|b-a\|,
$$

and

$$
\|p\|=\|x-u\| \leq\|x-b\|=\|\lambda a+(1-\lambda) b-b\|=\lambda\|b-a\| .
$$

Hence

$$
\|p\| \leq \frac{\|b-a\|}{2}<\frac{2 r}{2}=r .
$$

As $t_{2} \geq r$, we obviously get that $\|p\| \leq t_{1}$, which reads

$$
\|p\| \leq r-\sqrt{r^{2}-\lambda(1-\lambda)\|a-b\|^{2}}
$$

and the proof of $(\mathrm{a}) \Rightarrow(\mathrm{b})$ is completed. It is straightforward to check that u_{λ} for any $\lambda \in(0,1)$ is such that $u_{\lambda} \notin\{a, b\}$.
(b) \Rightarrow (c) is obvious, just take $\lambda=\frac{1}{2}$ in (1.1).
(c) \Rightarrow (a). Let x_{0} be any point in $T_{C}(r)$, i.e. $0<d_{C}\left(x_{0}\right)<r$. Set

$$
\Delta:=\frac{1}{2} \min \left\{d_{C}\left(x_{0}\right), r-d_{C}\left(x_{0}\right)\right\} .
$$

Take arbitrary $x \in B\left(x_{0}, \Delta\right)$. Note that by the choice of Δ,

$$
d_{C}(x) \leq d_{C}\left(x_{0}\right)+\left\|x-x_{0}\right\|<r-2 \Delta+\Delta=r-\Delta
$$

and

$$
d_{C}(x) \geq d_{C}\left(x_{0}\right)-\left\|x-x_{0}\right\|>2 \Delta-\Delta=\Delta .
$$

Setting $d:=d_{C}(x)$, we have

$$
\begin{equation*}
\Delta<d<r-\Delta \tag{3.6}
\end{equation*}
$$

Take any $\varepsilon \in(0, \Delta)$.
Take $a, b \in C, a \neq b$ such that $a, b \in \varepsilon-\operatorname{argmin} d_{C}(x)$, and $\|a-b\|>\varepsilon$ (if any).

Since $\|a-x\| \leq d+\varepsilon$, and $\|b-x\| \leq d+\varepsilon$,

$$
\|a-b\| \leq\|a-x\|+\|b-x\| \leq 2 d+2 \varepsilon<2(r-\Delta)+2 \Delta=2 r .
$$

From (1.2) there exists $z \in C$ such that

$$
\begin{equation*}
\left\|\frac{a+b}{2}-z\right\| \leq r-\sqrt{r^{2}-\frac{\|a-b\|^{2}}{4}} \tag{3.7}
\end{equation*}
$$

Setting $\bar{a}:=x+d \frac{a-x}{\|a-x\|}$ we have a point \bar{a} such that $\|\bar{a}-x\|=d$ and $\|\bar{a}-a\| \leq \varepsilon$. Analogously, we obtain a point \bar{b} such that $\|\bar{b}-x\|=d$ and $\|\bar{b}-b\| \leq \varepsilon$. Moreover, $\bar{a} \neq \bar{b}$ (otherwise one gets a contradiction with $\|a-b\|>\varepsilon$.)

Since

$$
\begin{aligned}
\left\|\frac{\bar{a}+\bar{b}}{2}-x\right\|^{2} & =2\left\|\frac{\bar{a}-x}{2}\right\|^{2}+2\left\|\frac{\bar{b}-x}{2}\right\|^{2}-\left\|\frac{\bar{a}-\bar{b}}{2}\right\|^{2} \\
& =\frac{1}{2} d^{2}+\frac{1}{2} d^{2}-\frac{\|\bar{a}-\bar{b}\|^{2}}{4}=d^{2}-\frac{\|\bar{a}-\bar{b}\|^{2}}{4}
\end{aligned}
$$

one has

$$
\begin{equation*}
\left\|\frac{\bar{a}+\bar{b}}{2}-x\right\|=\sqrt{d^{2}-\frac{1}{4}\|\bar{a}-\bar{b}\|^{2}} \tag{3.8}
\end{equation*}
$$

Since $d_{C}(x)=d$, any ball centered at $\frac{\bar{a}+\bar{b}}{2}$ with radius smaller than $d-\sqrt{d^{2}-\frac{1}{4}\|\bar{a}-\bar{b}\|^{2}}$ does not contain any point of the set C. But $z \in C$, hence it holds that

$$
\begin{equation*}
\left\|\frac{\bar{a}+\bar{b}}{2}-z\right\| \geq d-\sqrt{d^{2}-\frac{1}{4}\|\bar{a}-\bar{b}\|^{2}} . \tag{3.9}
\end{equation*}
$$

Combining (3.9) with (3.7), we get

$$
\begin{align*}
d-\sqrt{d^{2}-\frac{1}{4}\|\bar{a}-\bar{b}\|^{2}} & \leq\left\|\frac{\bar{a}+\bar{b}}{2}-z\right\| \\
& \leq\left\|\frac{a+b}{2}-z\right\|+\frac{1}{2}\|\bar{a}-a+\bar{b}-b\| \\
& \leq\left\|\frac{a+b}{2}-z\right\|+\varepsilon \\
& \leq r-\sqrt{r^{2}-\frac{1}{4}\|a-b\|^{2}}+\varepsilon . \tag{3.10}
\end{align*}
$$

Since $\|a-b\| \leq\|\bar{a}-\bar{b}\|+2 \varepsilon$, it holds that $\frac{\|a-b\|^{2}}{4} \leq \frac{(\|\bar{a}-\bar{b}\|+2 \varepsilon)^{2}}{4}$ and

$$
\begin{equation*}
r^{2}-\frac{\|a-b\|^{2}}{4} \geq r^{2}-\frac{(\|\bar{a}-\bar{b}\|+2 \varepsilon)^{2}}{4}>0 . \tag{3.11}
\end{equation*}
$$

where the strict inequality holds since by (3.6) and $\varepsilon<\Delta$ we have

$$
\|\bar{a}-\bar{b}\|+2 \varepsilon \leq 2 d+2 \varepsilon<2(r-\Delta)+2 \Delta=2 r .
$$

From (3.11) we get that

$$
r-\sqrt{r^{2}-\frac{\|a-b\|^{2}}{4}} \leq r-\sqrt{r^{2}-\frac{(\|\bar{a}-\bar{b}\|+2 \varepsilon)^{2}}{4}}
$$

which combined with (3.10) gives

$$
\begin{gathered}
d-\sqrt{d^{2}-\frac{1}{4}\|\bar{a}-\bar{b}\|^{2}} \leq r-\sqrt{r^{2}-\frac{1}{4}(\|\bar{a}-\bar{b}\|+2 \varepsilon)^{2}}+\varepsilon= \\
r-\sqrt{r^{2}-\frac{1}{4}\|\bar{a}-\bar{b}\|^{2}}+\sqrt{r^{2}-\frac{1}{4}\|\bar{a}-\bar{b}\|^{2}}-\sqrt{r^{2}-\frac{1}{4}(\|\bar{a}-\bar{b}\|+2 \varepsilon)^{2}}+\varepsilon
\end{gathered}
$$

It is straightforward to obtain the estimation

$$
\sqrt{r^{2}-\frac{1}{4}\|\bar{a}-\bar{b}\|^{2}}-\sqrt{r^{2}-\frac{1}{4}(\|\bar{a}-\bar{b}\|+2 \varepsilon)^{2}} \leq\left(2 \sqrt{\frac{r}{\Delta}}\right) \varepsilon .
$$

Hence,

$$
d-\sqrt{d^{2}-\frac{1}{4}\|\bar{a}-\bar{b}\|^{2}} \leq r-\sqrt{r^{2}-\frac{1}{4}\|\bar{a}-\bar{b}\|^{2}}+\left(2 \sqrt{\frac{r}{\Delta}}+1\right) \varepsilon
$$

and setting $c(\Delta):=\left(2 \sqrt{\frac{r}{\Delta}}+1\right)$ we have

$$
\begin{equation*}
d-\sqrt{d^{2}-\frac{1}{4}\|\bar{a}-\bar{b}\|^{2}} \leq r-\sqrt{r^{2}-\frac{1}{4}\|\bar{a}-\bar{b}\|^{2}}+c(\Delta) \varepsilon \tag{3.12}
\end{equation*}
$$

For fixed $t>0$ consider the function $f:[t, \infty) \rightarrow \mathbb{R}$ defined as

$$
f(r):=r-\sqrt{r^{2}-t}
$$

It is easy to check that it is a convex decreasing function which derivative at $r>t$ is $f^{\prime}(r)=1-\frac{r}{\sqrt{r^{2}-t}}$. Moreover,

$$
\begin{equation*}
f(t) \geq \frac{t}{2 r} . \tag{3.13}
\end{equation*}
$$

Taking $t:=\frac{1}{4}\|\bar{a}-\bar{b}\|^{2}$, in the definition of f, the inequality (3.12) can be written as

$$
f(d) \leq f(r)+c(\Delta) \varepsilon
$$

or

$$
f(d)-f(r) \leq c(\Delta) \varepsilon
$$

The convexity and differentiability of f yield that

$$
f^{\prime}(r)(d-r) \leq c(\Delta) \varepsilon
$$

The latter reads

$$
\begin{equation*}
(r-d)\left(r-\sqrt{r^{2}-\frac{\|\bar{a}-\bar{b}\|^{2}}{4}}\right) \leq c(\Delta) \varepsilon \sqrt{r^{2}-\frac{\|\bar{a}-\bar{b}\|^{2}}{4}} \tag{3.14}
\end{equation*}
$$

Using that $\left(r-\sqrt{r^{2}-\frac{\|\bar{a}-\bar{b}\|^{2}}{4}}\right) \geq \frac{\|\bar{a}-\bar{b}\|^{2}}{8 r}$, see (3.13), and that $\sqrt{r^{2}-\frac{\|\bar{a}-\bar{b}\|^{2}}{4}} \leq r$, from (3.14) we obtain

$$
(r-d) \frac{\|\bar{a}-\bar{b}\|^{2}}{8 r} \leq r c(\Delta) \varepsilon
$$

As $r-d>\Delta$, see (3.6),

$$
\|\bar{a}-\bar{b}\|^{2} \leq \frac{8 r^{2}}{\Delta} c(\Delta) \varepsilon,
$$

hence

$$
\|\bar{a}-\bar{b}\| \leq 2 r \sqrt{\frac{2 c(\Delta)}{\Delta}} \sqrt{\varepsilon} .
$$

From the latter and $\varepsilon<\Delta$ we get

$$
\|a-b\| \leq\|\bar{a}-\bar{b}\|+2 \varepsilon \leq\left(2 r \sqrt{\frac{2 c(\Delta)}{\Delta}}+2 \sqrt{\varepsilon}\right) \sqrt{\varepsilon} \leq\left(2 r \sqrt{\frac{2 c(\Delta)}{\Delta}}+2 \sqrt{\Delta}\right) \sqrt{\varepsilon}
$$

Setting $k=k(\Delta):=2 r \sqrt{\frac{2 c(\Delta)}{\Delta}}+2 \sqrt{\Delta}$, we obtain for $a, b \in \varepsilon-$ $\operatorname{argmin} d_{C}(x)$ with $\|a-b\|>\varepsilon$ that

$$
\|a-b\| \leq k \sqrt{\varepsilon}
$$

As $k>\sqrt{\varepsilon}$, for $a, b \in C$, such that $a, b \in \varepsilon-\operatorname{argmin} d_{C}(x)$ with $\|a-b\| \leq \varepsilon$, obviously $\|a-b\| \leq k \sqrt{\varepsilon}$.

Therefore,

$$
\begin{equation*}
\operatorname{diam}\left(\varepsilon-\operatorname{argmin} d_{C}(x)\right) \leq k \sqrt{\varepsilon} \tag{3.15}
\end{equation*}
$$

This means that the projection mapping is single-valued on $B\left(x_{0}, \Delta\right)$, i.e. for $x \in B\left(x_{0}, \Delta\right)$ there exists unique point $p_{C}(x) \in C$ such that $d_{C}(x)=$ $\left\|x-p_{C}(x)\right\|$. As $x_{0} \in T_{C}(r)$ was arbitrary, the projection mapping P_{C} is single-valued on $T_{C}(r)$.

It is routine to establish the continuity of the metric projection mapping P_{C} at x_{0}. Take $x, y \in B\left(x_{0}, \Delta / 4\right)$. For their projections we have that $\| x-$ $p_{C}(x)\left\|=d_{C}(x),\right\| y-p_{C}(y) \|=d_{C}(y)$. Since
$\left\|p_{C}(y)-x\right\| \leq\left\|p_{C}(y)-y\right\|+\|y-x\|=d_{C}(y)+\|y-x\| \leq d_{C}(x)+2\|y-x\|$, we have that $p_{C}(y) \in(2\|y-x\|)-\operatorname{argmin} d_{C}(x)$. Obviously $p_{C}(x) \in(2 \| y-$ $x \|)-\operatorname{argmin} d_{C}(x)$. For $\varepsilon:=2\|y-x\|$ we have that $\varepsilon<\Delta$. So, we can apply (3.15) to get that

$$
\begin{equation*}
\left\|p_{C}(y)-p_{C}(x)\right\| \leq \sqrt{2} k \sqrt{\|y-x\|} . \tag{3.16}
\end{equation*}
$$

The latter yields that P_{C} is norm-to-norm continuous at x_{0}, and as x_{0} was arbitrary in $T_{C}(r)$, on $T_{C}(r)$. From Theorem 2.2(c) it holds that C is r-proxregular, thus completing the proof of $(\mathrm{c}) \Rightarrow(\mathrm{a})$.

From the proof of Theorem 1.1 it is clear that the property: the projection mapping P_{C} is single-valued and norm-to-norm continuous on $T_{C}(r)$ also characterizes r-prox-regular closed set C, but it is an external characterization.

References

[1] S. Adly, F. Nacry and L. Thibault, Preservation of Prox-Regularity of Sets with Applications to Constrained Optimization, SIAM J. Optim., 26 (2016), 448-473.
[2] S. Adly, F. Nacry and L. Thibault, Prox-regularity approach to generalized equations and image projection, ESAIM: COCV, 24 (2018), 677708.
[3] S. Adly, F. Nacry and Lionel Thibault, Prox-regular sets and LegendreFenchel transform related to separation properties, Optimization, 2020, DOI: 10.1080/02331934.2020.1852404
[4] M. V. Balashov and G. E. Ivanov, Weakly convex and proximally smooth sets in Banach spaces, Izv. Math., 73 (2009), 455-499.
[5] F. Bernard and L. Thibault, Prox-regular functions and sets in Banach spaces, Set-Valued Analysis, 12 (2004), 25-47.
[6] F. Bernard, L. Thibault and N. Zlateva, Characterizations of proxregular sets in uniformly convex Banach spaces, J. Convex Anal., 13 (2006), 525-559.
[7] F. Bernard, L. Thibault and N. Zlateva, Prox-regular sets and epigraphs in uniformly convex Banach spaces: various regularities and other properties, Trans. Amer. Math. Soc., 363 (2011), 2211-2247.
[8] F. H. Clarke, R. J. Stern and P. R. Wolenski, Proximal smoothness and the lower- C^{2} property, J. Convex Anal., (1995), 117-144.
[9] G. Colombo and L. Thibault, Prox-regular sets and applications, In: Handbook of nonconvex analysis and applications, 99-182 (2010), Int. Press, Somerville, MA.
[10] R. Correa, A. Jofré and L. Thibault, Characterization of lower semicontinuoud convex fuctions, Proc. Amer. Math. Soc., 116 (1992), 61-72.
[11] G. E. Ivanov, Weak convexity in the sense of Vial and Efimov-Stechkin, Izv. Ross. Akad. Nauk Ser. Mat. 69 (2005), 35-60 (in Russian); English tanslation in Izv. Math. (2005), 1113-1135.
[12] H. Federer, Curvature measures, Trans. Amer. Math. Soc., 93 (1959), 418-491.
[13] F. Nacry and L. Thibault, Regularization of sweeping process: old and new, Pure and Applied Functional Analysis, 4 (2019), 59-117.
[14] R. A. Poliquin and R. T. Rockafellar, Prox-regular functions in variational analysis, Trans. Amer. Math. Soc., 348 (1996), 1805-1838.
[15] R. A. Poliquin, R. T. Rockafellar and L. Thibault, Local differentiability of distance functions, Trans. Amer. Math. Soc., 352 (2000), No. 11, 5231-5249.
[16] R. T. Rockafellar and R.J.-B. Wets, Variational Analysis, Grundlehren der Mathematischen Wissenschaften, vol. 317. Springer, New York, 1998.
[17] L. Thibault, Unilateral Variational Analysis in Banach Spaces, to appear.
[18] J.-P. Vial, Strong and weak convexity of sets and functions, Math. Oper. Res., 8 (1983), 231-259.

[^0]: *Supported by the Bulgarian Ministry of Education and Science under the National Research Programme "Young scientists and postdoctoral students" approved by DCM \#577/17.08.2018.
 ${ }^{\dagger}$ Supported by the National Scientific Fund under Grant KP-06-H22/4.

