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УВОД

Практическата оптимизация е изкуство и наука за разпределяне на ограничен ре-
сурс по най-добър начин. Чрез тази често използвана дефиниция, почти безпроблемно
могат да се идентифицират като практически различните оптимизационни техники,
използвани в индустриалното планиране, разпределение на ресурси, разписания, взи-
мане на решения и т. н. Например, как петролна компания решава откъде да купува
петрол, къде да го рафинира, какви продукти да произвежда и на какви цени ? От-
говорът е в използване на оптимизационен модел за максимална печалба. От друга
страна, оптимизационен модел за минимален разход е удачно да се използва за пла-
ниране на полети и разписание за екипажите в практиката на самолетни компании.
Понятието ресурс в тези модели може да бъде: пари, работни часове, гориво и пр.
Как обаче можем да класифицираме, например, задачите разглеждани в тази рабо-
та, които формално са за намиране на оптимално (в определен смисъл) сдвояване в
двуделен граф? За какъв ресурс може да става дума в такъв контекст? Една възмож-
ност е ребрата на двуделния граф да бъдат съпоставени на върхове в друг граф, път
в който съответства на сдвояване. Въпрос на не толкова богата фантазия е задачата
за намиране на път да се имитира като задача за разпределение на ресурс. Не толкова
лесно е използването на тази дефиниция за класифициране на другите, разгледани
тук, задачи, но в тези случаи просто ще приемем, че става въпрос за оптимизационни
задачи с реален практически ефект.

По-долу ще се спрем на основните оптимизационни техники за решаване на реални
задачи с големи размери. Като начало ще отбележим, че цялата история на практичес-
ката оптимизация(тук и по-нататък акцентът е само върху задачи с големи размери,
или по-удачния английски термин large-scale optimization) е много кратка. Открива-
телят на симплекс-метода, Джордж Данциг почина през 2005 г. Самият метод е все
още в основата на най-ефективните алгоритми за решаване на задачите на линей-
ното оптимиране и в зората на елкетронното смятане огромния дял на смятанията
с компютри се пада именно на такива задачи. Сега, благодарение на значителните
инвестиции в създаване на мощен софтуер (напр. CPLEX на фирмата ILOG) задачи с
милиони променливи и стотици хиляди ограничения се решават за приемливо време
и в редица случаи (при отсъствие на специализирани алгоритми) позволяват реша-
ването на важни задачи да става още преди важността на самата задача да привлече
вниманието на съответни специалисти (математици,информатици, оптимизатори) .

Поучителен пример за това е демонстриран в първа глава, където се разглежда
изключително актуалната за биолозите задача за свиване на протеини. ( Един попу-
лярен in silico подход, наречен Protein threading problem (PTP) се разглежда в Глава
1. ) Благодарение на предложения математически модел на задачата, стана възможно
решаването на огромни по размери задачи със не специализиран софтуер (CPLEX )
да става за приемливо време и като резултат да се повиши прогностичната възмож-
ност на използващата го система. Като страничен (но не маловажен ) резултат се
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откриха неочаквани връзки между целевата функция и многостена на ограниченията
на линейната задача, които стимулираха създаването на алгоритъм за решаване на
същата задача със невероятно (за размерите на задачите) бързодействие. Осветяване-
то на тази връзка, обаче, е тясно свързано с оптимизационни техники, принадлежащи
на целочислената оптимизация.

Докато в линейното оптимиране, променливите имат реални стойности (напр. 3. 7
или 101. 1123 ) в целочислените оптимизационни задачи те могат да имат само цело-
числени стойности и в много случаи само 0 или 1. Много от практическите задачи са
целочислени по своята природа и въпреки че изглеждат лесно решими ( 0/1 задача с n
променливи може да се реши с 2n пресмятания на целевата функция) в общия случай
е невъзможно да се генерира всяка допустима точка и да се избере най-добрата. Много
лесно е да се конструират скромни по размер целочислени задачи, чието множество
от допустими решения е по-голямо от броя на атомите във вселената. Имено тази
"комбинаторна експлозия "е причината за възникване на специфична теория и тех-
ники обединени под името целочислено линейно оптимиране ( накратко целочислено
оптимиране) . Целочислената оптимизация е най-успешния подход за точно решава-
не на трудни оптимизационни задачи, възникващи в стотици реални ситуации. Този
подход се състои в формулиране на проблема като максимизация (минимизация) на
линейна функция на целочислени променливи и решаването му чрез метода "ограни-
чаване и граници където границите идват от линейната релаксация на задачата (ЛО
релаксация) .

В ЛО релаксацията се оптимизира същата функция, но без ограничение за цело-
численост на променливите. Колкото по-добри са границите, толкова по-успешна е
формулировката на задачата. Казано иначе, колкото по-близко е стойността на целе-
вата функция върху разширената област до стойността и върху целочислените точки,
толкова по-ефективно е редуцирането на допустимото множество. Много често по-
добра формулировка се постига чрез добавяне на "отсичания"(линейни неравенства)
, което резултатира в подхода известен като "разклонение и отсичания". Отсичанията
са ограничения, които не елиминират допустими точки, но намаляват обема на мно-
жеството от нецелочислени точки и като резултат подобряват границите, получавани
от ЛО решението. Линейното оптимиране е важен инградиент на целочислената оп-
тимизация и за някои задачи (PTP е интересен пример за това ) е успешен заместител
на специфични други техники за решаване на целочислени оптимизационни задачи.
Формално, класът задачи, в които изискването за целочисленост на променливите е
излишно, е нетрудно да бъде специфизиран благодарение на основната теорема на
линейното оптимиране, която гласи че: решимите линейни задачи достигат оптимума
си във връх на многостена на ограниченията. От тук следва, че ако този многостен е
целочислен (върховете му са целочислени вектори) , то за произволна линейна целе-
ва функция, решението получено с използване на симплексно-подобни алгоритми ще
бъде целочислено.

Един богат клас задачи с подобно свойство на ограничителния многостен са за-
дачите за оптимизация в мрежи. Мрежите са графи с тегла на върховете и (или)
ребрата и като такива са естествени модели на много реални ситуации. Това разбира
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се не означава, че всяка задача, чиито математически модел е на мрежова основа, е
лесно (полиномиално) решима. Класически пример за това е прочутата задача за тър-
говския пътник и не толкова прочутите задачи разглеждани в този труд, които обаче
са поне толкова трудни колкото и първата задача. Затова, в повечето случаи, твърде-
ния от рода "предложен е ефективен алгоритъм за решаване на . . . . "се отнасят до
емпиричен анализ на ефективността, чрез сравнение с други алгоритми, решаващи
същата задача и не на последно място използваемостта му в конкретна практика.

Друга често използвана оптимизационна техника е динамичното опимиране,
което обикновено се представя като подход за взимане на решения, свързани върху
последователни моменти от времето. Понятието "време"е само исторически обусло-
вено и в многобройните съвременни използвания на тази техника "етапната "опти-
мизация се замества с попълване на 2-мерна таблица с използване на рекурсивни
връзки. Много убедителна демонстрация за ефективността на алгоритми, базирани
върху динамичното оптимиране, са непрекъснато решаваните задачи за сравнение на
нуклеотидни редици като разбира се не може да се пропусне сензационното секвени-
ране на човешкия геном. Динамичното оптимиране е често използвана техника и в
настоящия труд в два основни аспекта.

Първият е във всички алгоритми, базирани върху Лагранжевата релаксация и
двойственост. Лагранжевата релаксация е средство за генериране на по-добри грани-
ци от ЛО релаксацията и поне за разглежданите тук практически задачи е свързано
със създаване и използване на алгоритми на динамичното оптимиране. Същността
на Лагранжевия подход е следната: част от ограниченията на задачата се дуализират
(прибавят се към целевата функция със тегла, зададени от стойността на двойстве-
ни променливи, съответстващи на дуализираните ограничения) . За всяка стойност
на двойствените променливи, релаксираната задача се решава върху множеството на
оригиналните променливи, което съответства на пресмятане на стойността на Лагран-
жевата функция (дефинирана върху двойствените променливи. Имено тук е изпол-
зването на динамичното оптимиране в описаните в Глава 1 алгоритми. ) Минимума
(максимума) на тази функция е границата, която се търси. Некласическият момент е
в пресмятането на стойността на Лагранжевата функция (алгоритъмът зависи от за-
дачата и от дуализираните ограничения) , а класическият е в намирането на оптимума
на същата функция и в повечето случаи е т. н. субградиентна оптимизация.

Вторият аспект, свързан с динамичното оптимиране е разгледан в Глава 3, където
известната задача за раницата се решава чрез хибридизация на динамичното опти-
миране с "разклоняване и граници".

Относно съдържанието на този труд

Глава 1 е посветена изцяло на известни биоинформатични задачи и по-скоро на
тяхното решаване. Първата задача е от класа "сравнение от тип редица-структура а
втората от класа "сравнение от тип структура-структура". В секция 1 е предста-
вен мрежов подход за първата задача, позволяващ създаването на различни линейно
целочислени модели. Тези модели дават възможност за прилагане на стратегия "раз-
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клоняване и отсичане чиято ефективност е демонстрирана върху широк клас реални
задачи. В секция 2 е разгледан нов подход за решаване на същата задача, основан
на Лагранжева релаксация от тип "разделяне на разходите (cost-splitting) ". Този
алгоритъм има стотици пъти по-голямо бързодействие от най-качествения пакет за
решаване на линейни (целочислени линейни) задачи (става въпрос за задачи на ли-
нейното оптимиране с милиони променливи и стотици хиляди ограничения) . Това
бързодействие, комбинирано с нулевата двойствена дупка (duality gap) в случай на
реални задачи, превръща най-тежката операция в системи за предсказване свиването
на протеини в рутинна операция. В секция 3 е представен още един точен алгоритъм с
използване на двойственост по Лагранж, като цялата проблематика е разгледана вър-
ху обща платформа- сдвояване в двуделни графи. Доказани са интересни свойства на
многостена на допустимите сдвоявания. В секция 4 се разглежда задача за оптимал-
но сравнение на тримерни структури на протеини, известна като СМО (contact map
overlap) . Задачата, която възниква при този подход е еквивалентна (в общия случай)
на задача за намиране на максимална по мощност клика в произволен граф, а в ре-
алния случай това е задача за намиране на максимален общ подграф на два графа
(описващи структурите на два протеина чрез релацията "близо-далече") . Описан е
алгоритъм, с използване на двойственост по Лагранж и е показано неговото тотално
доминиране над най-ефективния ( публикуван в 2004 г. ) известен алгоритъм.

Секция 5 е посветена на задача за сегментиране на бактериален геном (този път не
NP-трудна ) , свеждаща се до две нови задачи за най-къс път в ацикличен ориентиран
граф. В първата задача (и по-лесната) се търси път минимизиращ отклонението на
дължините на ребрата от зададена "идеална"дължина. Във втората задача послед-
ната дължина е неизвестна. В приложение А се разглеждат проблемите, възникващи
при създаване на системи за автоматично предсказване свиването на протеини. Разг-
ледана е реално действаща система FROST, в която са интегрирани споменатите по-
горе алгоритми. Описан е и алгоритъм за нормализиране на целевата функция (виж
описанието на score function) и неговата реализация върху многопроцесорна система
( става въпрос за решаване на милион NP-трудни задчи с използване на т. н. grid
computing) .

Разглежданията в Глава 2 са върху незатихващата тематика, свързана с разпара-
лелване на перфектни вмъкнати цикли, пресмятащи регулярни изрази, срещащи се в
почти всяка компютърна програма за научни или инженерни смятания. Използвана-
та техника известна като "павиране"(tiling) е основана на покриване на индексното
пространство на индексите на цикъла с "плочки"(tiles) , позволяващи на процесора,
работещ с плочката да извършва пресмятането на израза, при положение, че са му
известни стойностите по границата (границите) . При зададен модел на паралелната
архитектура (в повечето изследвания това са архитектури с разпределена памет) се
търси формата (хипер правоъгълник или паралелепипед) и неговия обем, а също и
разпределението на плочките по процесорите, така че сумарното време за изпълне-
ние на цикъла да е минимално. Основна особеност на възникващите оптимизационни
модели е тяхната нелинейност и целочисленост, а основният проблем при тяхното
решаване е необходимостта от намиране на оптималното решение в затворена фор-
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ма (аналитично) . В първата секция на тази глава, формата е фиксирана на хипер
правоъгълник, а дълбочината на цикъла е произволна. Във втората секция, форма-
та е паралелепипед (oblique tiling) , като това разбира се е определено от векторите
на зависимост, участващи в регулярния израз. И в двете секции са получени точни
решения на съответните оптимизационни задачи, като в случая на паралелепипед е
получен и страничен резултат върху тематиката на първа глава. За една от най-често
решаваните задачи за оптимално сравнение на редици е получено разпаралелване на
съответен алгоритъм (динамично оптимиране) с доказани оптимални свойства.

Глава 3 е посветена на два класа класически оптимизационни задачи: многомерна
0/1 задача за раницата и задача за раницата. И двете задачи са NP-трудни, но докато
за първата, примери с 100 променливи и 5 ограничения могат да затруднят произволен
съществуващ алгоритъм, то за втората намирането на трудни примери вече е проблем.
За многомерната задача е описана процедура, позволяваща фиксиране на променли-
вите в началната фаза на алгоритъма. Процедурата е основана на построяване на
намаляваща редица от горни граници и растяща редица от долни граници (задачата
е за максимум) . Сравняването на двете редици позволява или доказване на оптимал-
ността на най-доброто получено допустимо решение или фиксиране на променливи.
Процедурата е и основа на евристика, качеството, на която е демонстрирано върху
известни тестови примери с неизвестно оптимално решение. "По-лесната"задача за
раницата е разгледана във втората секция на тази глава, където акцентите са вър-
ху: представяне на хибриден алгоритъм за тази задача, който е по-добра версия на
най-бързия в момента алгоритъм, основан на техниката на динамичното оптимиране.
Получена е интересна нова горна граница на оптималното решение и е въведен нов
клас задачи за раницата, разширяващ известния клас (трудни) на силно корелираните
задачи. Преимуществото на новият алгоритъм е демонстрирано върху най-различни
класове от примери, като едновременно са демонстрирани нови тестови примери на
все още трудни задачи.

В последната глава е разгледан проблема за намиране на линеен класификатор
(сепаратор) на две групи от точки в n-мерното пространство. Критерият за намиране
на оптималната разделяща хиперравнина е минимума на броя на грешно класифи-
цираните точки. Представен е подходящ математически модел на оптимизационната
задача с използване на класическата теорема на Фаркаш. На базата на този модел
е създаден алгоритъм с добри възможности за реално използване. Развитата теория
по-късно е използвана в редица мета-евристики за атакуване на същата задача, но те
не са дискутирани в тази глава.

В този хабилитационен труд са разгледани резултати, получени след 1998 г. , ко-
ято (поне за нас) бележи началото на активното използване на интернет и за бързо
разпространение на научни резултати. Все по-далече остава времето, когато се губеше
много енергия за запознаване със състоянието на нещата в дадена област, особено ако
си новодошъл. Сега, с популярни търсачки, това става бързо и лесно. Обичайната
практика в момента е докато чакаш ред в някое списание да качиш т. н. technical
report в интернет (в много научни институции това се прави автоматично ) и сравни-
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телно спокойно да чакаш овъзмездяването на своя труд с появата му в списание (за
предпочитане с висок импакт фактор. Това понякога може да създаде проблеми от
друго естество, какъвто е случаят с резултатите в Глава 3. За по-малко от половин
година от качването на съответните препринти в интернет, с изненада ги срещнахме
в новопубликувана монография на известни специалисти по задачи за раницата (със
съответните цитирания разбира се) . Това приятно на пръв поглед признание, по-
късно създаваше проблеми с публикуването на същите резултати в специализирани
списания.

Преди да пожелаем приятно четене трябва да отбележим следното: Невключването
в този труд на резултатите получени в прединтернетската епоха, в никой случай не
означава омаловажаване. Много от тях се отнасят до задачи, чиято актуалност ще
продължава докато P 6= NP ? Попитайте, например, Google за lot-size problem, bin-
packing problem. Една от причините за тяхното оставяне "извън борда"е отекчението
от четене на дебели книги, за което допринася и този дълъг предговор.

vi
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Chapter 1

Models and Algorithms for Computational
Biology Problems

The comparison of protein structures is a problem of paramount importance in structural ge-
nomics, with applications to drug design, fold prediction, protein clustering, and evolutionary
studies. An increasing number of approaches for its solution were proposed over the past years,
but despite the extraordinary international research effort, progress is slow. A fundamental di-
mension of this bottleneck is the absence of rigorous algorithmic methods.The situation is due to
several reasons, which include the following.

1. By their nature, three-dimensional computational problems are inherently more complex
than the similar one-dimensional ones for which we have effective solutions. The mathe-
matics that can provide rigorous support in understanding models for structure prediction
and analysis is almost nonexistent, as the problems are blend of continuous, geometric and
combinatorial, discrete mathematics.

2. Various simplified versions of the problems were shown NP-hard.

3. There is a dramatic difference between sequence alignment and structure alignment. As
opposed to the protein sequence alignment, where we are certain that there is unique align-
ment to a common ancestor sequence, in structure comparison the notion of a common
ancestor does not exist. Similarity in folding structure is due to a different balance in fold-
ing forces, and there is not necessarily a one-to-one correspondence between positions in
both proteins.

In this chapter, we describe our work on two major problems, namely the protein folding pre-
diction, based on a sequence-to-structure alignment and the structure-to-structure comparison,
based on Contact Map Overlap scoring scheme. The remainder of the chapter is organized as
follows. In Section 1, we present a new network flow formulation of the problem of predicting
3D protein structures using threading. Several integer programming models based on this formu-
lation are proposed and compared. These models allow for an efficient decomposition and for the
application of a parallel branch-and-cut algorithm, significantly reducing the running time. The
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efficiency of the approach has been confirmed by extensive computational experiments.In Section
2, we use integer programming approach for solving a hard combinatorial optimization problem,
namely protein threading problem. For this sequence-to-structure alignment problem we apply
cost-splitting technique to derive a new Lagrangian dual formulation. The optimal solution of
the dual is sought by an algorithm of a polynomial complexity. For most of the instances the
dual solution provides an optimal or near-optimal (with negligible duality gap) alignment. The
speed-up with respect to the broadly advertised approach for solving the same problem in [37]
is from 100 to 250 on computationally interesting instances. Such a performance turns comput-
ing score distributions, the heaviest task when solving PTP, into a routine operation. In Section
3, we present efficient algorithms for solving the PTP, by considering the problem as a special
case of graph matching problem. We give formal graph and integer programming models of the
problem. After studying the properties of these models, two kinds of Lagrangian relaxation for
solving them are proposed. We present experimental results on real life instances showing the
efficiency of our approaches. In Section 4, we present an algorithm for exact solving the contact
map overlap problem. This problem has been found to be very useful for measuring protein sim-
ilarity,i.e. for structure-to-structure alignment. Section 5 is devoted to the studying of Bacterium
genome plasticity by Long-Range PCR: genomes of different strains are split into hundreds of
short segments which, after LR-PCR amplification, are used to sketch profiles. The segments
have: (1) to cover the entire genome, (2) to overlap each other, and (3) to be of nearly identical
size. Here, we address the problem of finding a list of segments satisfying these constraints “as
much as possible”. Two algorithms based on dynamic programming approach are presented.
They differ on the optimization criteria for measuring the quality of the covering. The first one
considers the maximal deviation of the segment lengths relatively to an ideal length. The second
one automatically finds a segment length which minimizes the maximal deviation.
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1.1 High Performance Alignment Methods
for Protein Threading

Recombinant DNA techniques have provided tools for the rapid determination of DNA sequences and,
by inference, the amino acid sequences of proteins from structural genes. The number of such se-
quences is now increasing almost exponentially, but by themselves these sequences tell little more
about the biology of the system than a New York City telephone directory tells about the function and
marvels of that city.

—C. Branden and J. Tooze, [7]

1.1.1 Introduction
Genome sequencing projects generate an ever increasing number of protein sequences. For ex-
ample, the Human Genome Project has identified over 30,000 genes which may encode about
100,000 proteins. One of the first tasks when annotating a new genome, is to assign functions to
the proteins produced by the genes. To fully understand the biological functions of proteins, the
knowledge of their structure is essential.

Unlike other biological macromolecules (e.g., DNA), proteins have complex, irregular struc-
tures. They are built up by amino acids that are linked by peptide bonds to form a . The amino
acid sequence of a protein’s polypeptide chain is called its primary or one-dimensional (1D)
structure. Different elements of the sequence form local regular secondary (2D) structures, such
as α-helices or β-strands. The tertiary (3D) structure is formed by packing such structural ele-
ments into one or several compact globular units called domains. The final protein may contain
several polypeptide chains arranged in a quaternary structure. By formation of such tertiary and
quaternary structure, amino acids far apart in the sequence are brought close together to form
functional regions (active sites). The interested reader can find more on protein structure in [7].

Protein structures can be solved by experimental (in vitro) methods, such as or nuclear mag-
netic resonance (NMR) spectroscopy. Despite the recent advances in these techniques, they are
still expensive and slow, and cannot cope with the explosion of sequences becoming available.
That is why molecular biology resorts to computational (in silico) methods of structure deter-
mining.

The protein folding problem can be simply stated in the following way. Given a protein 1D
sequence, which is a string over the 20-letter amino acid alphabet, determine the coordinates
of each amino acid in the protein’s 3D folded shape. Surprisingly, in many cases the input
information is completely sufficient to produce the desired output.

Although simply stated, the protein folding problem is quite difficult. The natural folding
mechanism is complicated and poorly understood. Most likely, it is a global result of many
local, weak interactions. The protein folding problem is widely recognized as one of the most
important challenges in computational biology today [7, 13, 14, 17, 20, 32]. Sometimes it is
referred as the “holly grail of molecular biology.” The progress of molecular biology depends on
the existence of reliable and fast computational structure prediction methods.

The computational methods of structure prediction fall roughly into two categories. The
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direct methods [8] use the principles of quantum mechanics. They seek a fold conformation
minimizing the free energy. The main obstacles to these methods are the large number of in-
teracting atoms, as well as many technical complications related to cumulative approximation
errors, modeling surrounding water, etc.

An important alternative to the direct techniques are the methods using information about
proteins of already known structure, stored in databases. These methods are based on the concept
of homology, which plays a central role in biology. Two proteins are homologous if they are
related by descent from a common ancestor. Homologous proteins have similar 3D structures
and often, similar functions.

The easiest way to detect homology between two proteins is to compare their amino acid
sequences. If the sequences are “sufficiently” similar then the two proteins are homologous.
A number of sequence comparison methods (e.g., BLAST [2], FASTA [26], PSI-BLAST [3])
are available and can be used to detect homology. But if two amino acid sequences are not
sufficiently similar, can we conclude that the corresponding proteins are not homologous? In
the case of remote homologs, the amino acid sequences have had a plenty of time to diverge.
They are no longer similar and lie beyond the sequence comparison recognition threshold, in the
so-called twilight zone. Nevertheless, their 3D structures are still similar. In such a case, one of
the most promising approaches to the protein folding problem is protein threading. This method
relies on three basic facts:

• The 3D structures of homologous proteins are much better conserved than their 1D amino
acid sequences. Indeed, many cases of proteins with similar folds are known, though
having less than 15% sequence identity.

• There is a limited, relatively small number of protein structural families (between 1,000
and 10,000 according to different estimations [9, 25]). Each structural family defines an
equivalence class and the problem reduces to classifying the query sequence into one of
these classes. According to the statistics of Protein Data Bank (PDB) [6], 90% of the new
proteins submitted in the last three years belong to already known structural families1.

• Different types of amino acids have different preferences for occupying a given (for ex-
ample, being in α-helix or β-sheet, being buried in the protein interior of exposed on the
surface). In addition, there are different preferences for , or more generally, for spatial
proximity, as a function of those environments. These preferences have been estimated
statistically and used to produce score functions distinguishing between native and non-
native folds.

The process of aligning a sequence to a structure, thereby guiding the spatial placement of
sequence amino acids, is known as threading. The term “threading” is used to specialize the
more general term “alignment” of a and a structure template.

The fold recognition methods based on threading are complex and time consuming compu-
tational techniques consisting of the following main components:

1http://www.rcsb.org/pdb/holdings.html

10



1. a database of potential core folds or structural templates;

2. an objective function () which evaluates any alignment of a sequence to a structure tem-
plate;

3. a method of finding the best (with respect to the score function) possible alignment of a
sequence and a structure template;

4. a method to select the most appropriate among the best alignments of a query sequence
and each template from the database.

Components 1, 2 and 4 use mainly statistical methods incorporating the biological and physical
knowledge on the problem. These methods are beyond the scope of the present chapter. Compo-
nent 3 is the most time consuming part of the threading methods. It is the most challenging and
the most interesting one from computer scientist’s point of view. The problem of finding the op-
timal sequence-to-structure alignment is referred as protein threading problem (PTP) throughout
this chapter. PTP is solved many times in the threading process. The query sequence is threaded
to all (or at least to a part of) templates in the database. Component 4 of some methods uses a
score normalization procedure which involves threading a large set of queries against each tem-
plate [22]. The designers of score functions make experiments involving milions of threadings
in order to tune their parameters. That is why a really efficient threading algorithms are needed.

As we will see in the next sections, PTP is a hard combinatorial optimization problem. Till
recently, it was the main obstacle to the development of efficient and reliable fold recognition
methods. In the general case, when variable-length alignment gaps are allowed and pairwise
amino acid interactions are considered in the score function, PTP is NP-hard [16]. Moreover,
it is MAX-SNP-hard [1], which means that there is no arbitrary close polynomial approxima-
tion algorithm, unless P = NP. These complexity results have guided the research of threading
methods to three different directions.

The first approach consists of simplifying the problem by ignoring the pairwise amino acid
interactions. In this case the optimal alignment can be found by polynomial dynamic program-
ming algorithms [30, 31]. The methods based on this approach ignore potentially rich source of
structural information and, consequently, cannot recognize distant structural homologies.

The second direction is to use approximate algorithms which are relatively fast and capable
of finding a good but not necessarily the optimal alignment. These methods include several
algorithms based on dynamic programming [11, 24, 34], statistical sampling [19], and genetic
algorithms [15, 29, 33]. Since these methods do not guarantee optimality, their use risks to
worsen the fold recognition sensitivity and quality.

The third way to attack PTP is to develop dedicated exact methods which are exponential
in the worst case, but efficient on most of the real-life instances. This chapter traces the later
direction of research and presents recently developed high performance exact algorithms for
solving PTP, which use advanced mathematical programming techniques, as well as parallel and
distributed computing methods. Below we summarize what we feel to be the most important
steps in this direction.
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Lathrop and Smith [18] designed the first practical branch-and-bound (B&B) algorithm for
PTP. This algorithm became the kernel of several structure prediction software packages [21, 22].
Lathrop and Smith’s work has shown that the problem is easier in practice than in theory and that
it is possible to solve real-life (biological) instances in a reasonable amount of time. However,
practical applications of this B&B algorithm remained limited to moderate-size instances. These
results have drawn the attention of many researchers to the problem, the authors included.

The second main step involves using mathematical programming techniques to solve PTP.
Two teams have been working independently in this direction and their results were published
almost simultaneously. Andonov et al. [41, 42, 4] proposed different mixed integer program-
ming (MIP) models for PTP. The content of this chapter is based essentially on the results from
[4]. Xu et al. [36, 37] also reported successful use of a MIP model in their protein threading
package RAPTOR. The main drawback of mathematical programming approaches is that the
corresponding models are often very large (over 106 variables). Even the most advanced MIP
solvers cannot solve instances of such size in reasonable time and, in some cases, even to stock
them in computer memory. Different divide-and-conquer methods and parallel algorithms are
used to overcome this drawback.

Xu et al. [39, 38] were the first to use divide-and-conquer in their package PROSPECT-I.
Their algorithm performs well on simple template interaction topologies, but is inefficient for
protein templates with dense pairwise amino acid interactions. The ideas from PROSPECT-I
were used in the latest version of RAPTOR [35]. Andonov et al. [42, 4] proposed a different
divide-and-conquer strategy. While the splits in [39] occur along the interactions between tem-
plate blocks, the splits in [42, 4] are along the possible positions of a given template block. In
addition, in the latter works, the solutions of already solved subproblems are used as “cuts” for
the following subproblems. Andonov et al. [42, 4] also proposed an efficient parallel algorithm
which solves simultaneously the subproblems generated by their divide-and-conquer technique.

The rest of this chapter is organized as follows. In Section 1.1.2 we give a formal definition of
PTP and introduce some existing terminology. Section 1.1.3 introduces a network formulation
of PTP. Based on this formulation, we present the existing MIP models for PTP in a unified
framework and compare them. We show that choosing an appropriate MIP model can lead to
considerable decrease in solution time for PTP. We demonstrate that PTP is easier in practice
than in theory because the linear programming (LP) relaxation of the MIP models provides the
optimal solution for most real-life instances of PTP. Section 1.1.7 presents and analyzes two
divide-and-conquer strategies for solving the MIP models. We show that these strategies are a
way to overcome the main drawback of the MIP models, their huge size, and lead to significant
reduction of the solution time. These strategies are used in Section 1.1.8 to design an efficient
parallel algorithm for PTP. The performance of this algorithm is experimentally evaluated and
the question of choosing a good granularity (number of subproblems) for a given number of
processors is discussed. In Section 1.1.9 we discuss some open questions and future research
directions and in Section 1.1.10 we conclude.
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1.1.2 Formal definition

In this section we give a more formal definition of PTP and simultaneously introduce some
existing terminology. Our definition is very close to the one given in [1, 17]. It follows a few
basic assumptions widely adopted by the protein threading community [4, 17, 18, 32, 37, 39].
Consequently, the algorithms presented in the next sections can be easily plugged in most of the
existing fold recognition methods based on threading.

Query sequence A query sequence is a string of length N over the 20-letter amino acid alpha-
bet. This is the amino acid sequence of a protein of unknown structure which must be aligned to
structure templates from the database.

Structure template All current threading methods replace the 3D coordinates of the known
structure by an abstract template description in terms of core blocks or segments, neighbor re-
lationships, distances, environments, etc. This avoids the computational cost of atomic-level
mechanics in favor of more abstract, discrete alignment between sequence and structure.

We consider that a structure template is an ordered set of m segments or blocks. Segment i
has a fixed length of li amino acids. Adjacent segments are connected by variable length regions,
called loops (see Fig. 1.1(a)).

Segments usually correspond to the most conserved parts of secondary structure elements (α-
helices and β-strands). They trace the backbone of the conserved fold. Loops are not considered
as part of the conserved fold and consequently, the pairwise interactions between amino acids
belonging to loops are ignored. It is generally believed that the contribution of such interactions
is relatively insignificant. The pairwise interactions between amino acids belonging to segments
are represented by the so-called contact map graph (see Fig. 1.1(b)). It is common to assume that
two amino acids interact if the distance between their Cβ atoms is within p Å and they are at least
q positions apart along the template sequence (for example p = 7 and q = 4 in [37]). However,
arbitrary contact map graphs can be considered. We say that there is an interaction between two
segments, i and j, if there is at least one pairwise interaction between amino acid belonging to
i and amino acid belonging to j. Let L ⊆ {(i, j) | 1 ≤ i < j ≤ m} be the set of segment
interactions. The graph with vertices {1, . . . , m} and edges L is called generalized contact map
graph (see Fig. 1.1(c)).
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(a)

(b)

(c)

Figure 1.1: (a) 3D structure backbone showing α-helices, β-strands and loops. (b) The corre-
sponding contact map graph. (c) The corresponding generalized contact map graph.

Threading An alignment or threading of a query sequence and a structure template is covering
of contiguous query areas by the template segments. A threading is called feasible if the segments
preserve their original order and do not overlap (see Fig 1.2(a)).
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(a)

abs. position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
rel. position block 1 1 2 3 4 5 6 7 8 9
rel. position block 2 1 2 3 4 5 6 7 8 9
rel. position block 3 1 2 3 4 5 6 7 8 9

(b)

Figure 1.2: (a) Example of alignment of query sequence of length 20 and template containing 3
segments of lengths 3, 5 and 4. (b) Correspondence between absolute and relative block posi-
tions.

A threading is completely determined by the starting positions of all segments. For the sake of
simplicity we will use relative positions. If segment i starts at the kth query character, its relative
position is ri = k − ∑i−1

j=1 lj . In this way the possible (relative) positions of each segment are
between 1 and n = N + 1−∑m

i=1 li (see Fig. 1.2(b)). The set of feasible threadings is

T = {(r1, . . . , rm) | 1 ≤ r1 ≤ · · · ≤ rm ≤ n}.

It is easy to see that the number of possible threadings (the search space size of PTP) is |T | =(
m+n−1

m

)
, which is a huge number even for small instances (for example, if m = 20 and n = 100

then |T | ≈ 2.5× 1022).
Most of the threading methods impose an additional feasibility condition, upper and lower

bounds on the lengths of the uncovered query areas (loops). This condition can be easily incor-
porated by a slight modification in the definition of relative segment position.

In the above definition, alignment gaps are not allowed within segments. They are confined
only to loops. The biological justification is that segments are conserved so that the chance of
insertion or deletion within them is very small.

Score function The score function is used to evaluate the degree of compatibility between the
sequence amino acids and their positions in the template in a given threading. This evaluation
is based on statistically estimated amino acid preferences for occupying different environments.
The choice of an adequate score function is essential for the quality of the threading method.
The form of the score function varies from method to method. Here we give a general definition,
compatible to most of the threading methods. We only assume that the score function is additive
and can be computed considering interactions between at most two amino acids at a time. These
assumptions allow to represent the score function by two groups of coefficients:

• cik, i = 1, . . . ,m, k = 1, . . . , n, the score for placing segment i on position k;
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• cikjl, (i, j) ∈ L, 1 ≤ k ≤ l ≤ n, the score induced by the pairwise interaction between
segments i and j when segment i is on position k and segment j is on position l.

The coefficients cik are some function (usually sum) of the preferences of each query amino
acid placed in segment i for occupying its assigned position, as well as the scores of pairwise
interactions between amino acids belonging to segment i. The coefficients cikjl include the scores
of interactions between pairs of amino acids belonging to segments i and j. Loops may also have
sequence specific scores, included in the coefficients ci,k,i+1,l.

Alternatively, we can represent the score function only by the second set of coefficients. To
do this, it is sufficient to add cik to all coefficients ci,k,i+1,l, l = k, . . . , n. In the next sections we
will use one of these representations, depending on which one is more convenient.

Protein threading problem Using the above definitions, PTP is simply to find the feasible
threading of minimum score, or formally,

min





m∑
i=1

ciri
+

∑

(i,j)∈L

cirijrj
| (r1, . . . , rm) ∈ T



 .

1.1.3 Mixed integer programming models

In this section we restate PTP as a network optimization problem. Based on this reformula-
tion, we present different mixed integer programming programming models for PTP in a unified
framework. At the end of the section we compare the efficiency of these models by experimental
results. Below we make a brief introduction to mixed integer programming and linear program-
ming, necessary to understand the rest of this section. The reader familiar with these topics
can skip directly to Section 1.1.3. For a more detailed and consistent introduction, the reader is
referred to any good integer programming textbook, for example [23].

Mixed integer programming (MIP) deals with problems of optimizing (maximizing or mini-
mizing) a linear function of many variables subject to linear equality and inequality constraints
and integrality restrictions on some or all of the variables. Because of the robustness of the
general MIP model, a remarkably reach variety of optimization problems can be represented by
mixed integer programs. The general form of MIP is

zMIP = min
{
cx + dy | Ax + By ≤ b, x ∈ Zn

+, y ∈ Rp
+

}
,

where Zn
+ is the set of nonnegative integral n-dimensional vectors, Rp

+ is the set of nonnegative
real p-dimensional vectors, x = (x1, . . . , xn) and y = (y1, . . . , yp) are variables, c is an n-vector,
d is a p-vector, A is an m× n matrix, B is an m× p matrix, and b is an m-vector. The function
z = cx+dy is called objective function and the set {(x, y) | Ax+By ≤ b, x ∈ Zn

+, y ∈ Rp
+} is

called feasible region. In many models, the integer variables are constrained to equal 0 or 1. Thus
we obtain 0-1 MIP, where x ∈ Zn

+ is replaced by x ∈ Bn, where Bn is the set of n-dimensional
binary vectors.
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Although the general MIP problem is NP-hard, it can be solved efficiently in many particular
cases. Even in the general case, there exist different efficient solution techniques. Most of them
use the linear programming (LP) relaxation of MIP

zLP = min
{
cx + dy | Ax + By ≤ b, x ∈ Rn

+, y ∈ Rp
+

}
,

where the integrality constraints are relaxed. LP is much easier than MIP. It can be solved in
polynomial time. The most commonly used method to solve LP is the simplex method which,
although exponential in the worst case, performs well in practice.

The most important relations between MIP and LP are: (a) zLP ≤ zMIP, i.e. the optimal
objective value of LP is a lower bound on the optimal objective value of MIP, and (b) if (x∗, y∗)
is an optimal solution of LP and x∗ ∈ Zn

+ then (x∗, y∗) is an optimal solution of MIP. The branch-
and-bound algorithms for MIP are based on these relations. They partition MIP into subproblems
by fixing some of the x-variables to integer values until either (1) the optimal solution of the LP
relaxation of a subproblem becomes feasible for MIP, or (2) the optimal objective value of the LP
relaxation of a subproblem becomes greater than the objective value of the best known solution
of MIP.

Most optimization problems can be formulated as MIP in several different ways. Choosing a
“good” model is of crucial importance to solving the model. The pruning conditions (1) and (2)
will work earlier for a model with “tighter” LP relaxation.

Network flow formulation

In order to find the most appropriate MIP model for PTP, we start by restating it as a network
optimization problem. Let A = {(i, j) ∈ L | j − i = 1} be the set of interactions between
adjacent segments and let R = L \A be the set of remote links. We introduce a digraph G(V, E)
with vertex set V = {(i, k) | i = 1, . . . , m, k = 1, . . . , n} and arc set E = EL ∪ Ex, where

EL = {((i, k), (j, l)) | (i, j) ∈ L, 1 ≤ k ≤ l ≤ n},
Ex = {((i, k), (i + 1, l)) | i = 1, . . . , m− 1, 1 ≤ k ≤ l ≤ n}.

A vertex (i, k) ∈ V corresponds to segment i placed on its kth relative position. The set EL

corresponds to the set of links L between the segments. The arcs from Ex \ EL are added to
ensure the order of the segments. Depending on the situation, a set of arcs Ez is defined as either
EL \ Ex, corresponding in this case to the links from R, or as EL. The default value is the first
definition, but in either case, E = Ex ∪ Ez. The arcs from Ex are referred to as x-arcs, and the
arcs from Ez as z-arcs.

By adding two extra vertices, S and T , and arcs (S, (1, k)), k = 1, . . . , n and ((m, l), T ),
l = 1, . . . , n, (considered as x-arcs), it is easy to see the one-to-one correspondence between the
set of the feasible threadings and the set of the S-T paths in (V,Ex). A threading (r1, . . . , rm)
corresponds to the S-T path S − (1, r1)− · · · − (m, rm)− T , and vice versa. Fig. 1.3 illustates
this correspondence.
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position
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i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

j = 1

j = 2

j = 3

j = 4

Figure 1.3: Example of the graph (V, Ex). The path in thick lines corresponds to the threading
(1, 2, 2, 3, 4, 4).

To each arc e = ((i, k), (j, l)) ∈ E we associate a cost denoted by cikjl, or simply ce. The
costs of the arcs are related to the score coefficients introduced in the previous section. The
cost of each x-arc is sum of three components: (1) the head of the arc (segment-to-position
score), (2) the score of the loop between the adjacent segments (if any), and (3) the score of the
interaction between the adjacent segments (if any). If the leading/trailing gaps are scored then
their scores are associated to the outgoing/incoming arcs from/to the vertex S/T . The costs of
z-arcs correspond to the pairwise segment interaction scores. In some of the models, the cost for
placing the segment i on position k will be associated to the vertex (i, k) and denoted by cik.

An S-T path is said to activate the z-arcs that have both ends on this path. Each S-T path
activates exactly |R| z-arcs, one for each pair of segments in R. The subgraph induced by the
x-arcs of an S-T path and the activated z-arcs is called an augmented path. Thus, solving PTP
is equivalent to finding the shortest augmented path in G (as usual, the length of an augmented
path is defined as the sum of the costs of its arcs). Fig. 1.4 provides an example of augmented
path.
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j = 2

j = 3

j = 4

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

j = 1

block

position

TS

c
1122

c
2232

c
3243

c
4354

c
5464

1132
c
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Figure 1.4: Example of augmented path. The generalized contact map graph is given in the
bottom. The x arcs of the S-T path are in solid lines. The activated z-arcs are in dashed lines.
The length of the augmented path is equal to the score of the threading (1, 2, 2, 3, 4, 4).

Let us introduce the variables xe, e ∈ Ex, ze, e ∈ Ez, and yv, v ∈ V . These variables will
sometimes be denoted by xi,k,i+1,l, zikjl, and yik. By interpreting xe as a flow on the arc e, the
problem of finding an S-T path in G becomes a problem of sending unit flow from S to T . In
other words, there is one-to-one correspondence between the S-T paths and the vertices of the
network-flow polytope X , defined by the constraints

∑

e∈Γ(S)

xe = 1 (1.1)

∑

e∈Γ−1(T )

xe = 1 (1.2)

∑

e∈Γ(v)

xe −
∑

e∈Γ−1(v)

xe = 0 v ∈ V (1.3)

xe ≥ 0 e ∈ Ex (1.4)

where Γ(v) (respectively Γ−1(v)) denotes the set of the x-arcs with tail (respectively head) v.
Constraint (1.1) (respectively (1.2)) corresponds to unit flow from S (respectively to T ), and
constraints (1.3) refer to flow conservation for each vertex. The well known properties of the
network polytope X make it possible to replace the integrality requirements xe ∈ {0, 1} by
xe ≥ 0.

The set of feasible threadings can also be expressed in the space of y-variables as a set Y ,
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defined by the constraints

n∑

k=1

yik = 1 i = 1, . . . , m (1.5)

k∑

l=1

yil −
k∑

l=1

yi+1,l ≥ 0 i = 1, . . . , m− 1, k = 1, . . . , n− 1 (1.6)

yik ∈ {0, 1} i = 1, . . . , m, k = 1, . . . , n (1.7)

The binary variable yik is 1 if and only if segment i is placed on position k. Constraints (1.5)
assign each segment to exactly one position and (1.6) ensure the order of segments (if segment i
is placed after the kth position, then i + 1 must also be placed after the kth position).

Starting from the S-T path defining sets X or Y , an augmented path defining set Z can be
constructed by introducing the z-variables and adding appropriate connecting constraints. In
this way, different MIP models for PTP can be obtained. Although equivalent, these models
will either be easier, or more difficult, to solve using a given MIP solver, depending on their
formulation. The strategy for deriving such models is: while keeping the vertices of the convex
hull of the Z projection on X (or Y ) invariant, either improve the LP bounds by tightening the
linear relaxation Z of Z, or restate the model (maybe by chance) in a way that makes its LP
relaxation easier for the chosen solver.

In the rest of this section we derive five MIP models for PTP. F (M) and F (M) denote the
feasible sets of a model M and its LP relaxation. v(M) and v(M) refer respectively to the optimal
objective values of a model and to its LP relaxation. The models from Sections 1.1.3-1.1.4 are
first proposed in [41, 42], the model in Section 1.1.4 is from [4], and the one in Section 1.1.5 is
introduced in [37]. Before describing the models, two easily verifiable observations that will be
useful to remember when reading the model descriptions are:

Observation 1.1. Note that adding a constant to all arc costs does not change the set of optimal
solutions. The same holds even if different constants dij are added to the costs cikjl, 1 ≤ k ≤ l ≤
n. This allows the objective function to be rotated in order to minimize the number of iterations
of the simplex algorithm.

Observation 1.2. Let C be the set of segments participating in remote interactions, i.e. C =
{i | (i, j) ∈ R or (j, i) ∈ R for some j}. It is easy to see that the number of S-T paths (which
is also the number of feasible threadings) is Nx =

(
m+n−1

m

)
, and the number of the different

z-components of all augmented paths is Nz =
(|C|+n−1

|C|
)
.

For the example shown in Fig. 1.4, C = {1, 3, 4, 6}. The number of S-T paths (the number
of possible fixations of the x-variables) is Nx =

(
6+4−1

6

)
= 84, and the number of possible

fixations of the z-variables is Nz =
(
4+4−1

4

)
= 35. For fixed values of the z variables (in our case

z1132 = z3264 = z4364 = 1, and all others equal to zero), the problem becomes simply a matter of
finding the shortest S-T path passing through (1, 1), (3, 2), (4, 3) and (6, 4).
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A nonlinear model using vertices

The most straightforward presentation of PTP as a mathematical programming problem is:

min





m∑
i=1

n∑

k=1

cikyik +
∑

(i,j)∈L

n∑

k=1

n∑

l=k

cikjlyikyjl | y ∈ Y



 .

Despite the simplicity of this nonlinear 0-1 programming model, there are currently no algo-
rithms or software able to solve efficiently such non-convex quadratic problems with thousands
of binary variables. It is possible to linearize the model by introducing the z-variables. The
products yikyjl = min{yik, yjl} can be replaced by zikjl in the objective function if the following
tightest connecting constraints are added to the model [27]:

zikjl ≤ yik, zikjl ≤ yjl, yik + yjl − zikjl ≤ 1, 0 ≤ zijkl ≤ 1, (i, j) ∈ L, 1 ≤ k ≤ l ≤ n.

Note that the integrality of z is implied by the integrality of y. Although linear, the obtained
model cannot be efficiently solved, mainly because of the weakness of its LP-bounds [41].

A model using x-arcs and z-arcs

The following model, later referred to as MXZ, is a restatement of the previous one in terms of
network flow:

Minimize
∑
e∈Ex

cexe +
∑
e∈Ez

ceze (1.8)

subject to: zikjl ≤
∑

e∈Γ(i,k)

xe ((i, k), (j, l)) ∈ Ez (1.9)

zikjl ≤
∑

e∈Γ−1(j,l)

xe ((i, k), (j, l)) ∈ Ez (1.10)

∑

1≤k≤l≤n

zikjl = 1 (i, j) ∈ R (1.11)

x ∈ X (1.12)
ze ∈ {0, 1} e ∈ Ez (1.13)

The z-arcs are activated by a nonzero out-flow from their tail vertex (constraints (1.9)) and a
nonzero in-flow into their head vertex (constraints (1.10)). The special ordered set (SOS) con-
straints (1.11) follow from the rest of the constraints, but even though they are redundant, they
are included in the model primarily to control the branching strategy of the MIP solver.

For MXZ we can choose either x or z as the integer variables, as the integrality of x follows
from the integrality of z, and vice versa. However, the better choice is z because, as mentioned
in Observation 1.2, the space of z-variables is smaller than the space of x-variables.
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1.1.4 A model using vertices, x-arcs, and z-arcs

In order to improve the LP-bounds and the branching strategy by imposing branching on SOS
constraints (despite the expense of adding extra constraints), we modify the model MXZ by in-
troducing the y-variables, associated to the vertices of the graph G. Thus we obtain the following
model, denoted here by MXYZ:

Minimize
∑
e∈Ex

cexe +
∑
e∈Ez

ceze (1.14)

subject to: yik =
n∑

l=k

zikjl (i, j) ∈ R, k = 1, . . . , n (1.15)

yjl =
l∑

k=1

zikjl (i, j) ∈ R, l = 1, . . . , n (1.16)

yik =
∑

e∈Γ(i,k)

xe i ∈ C, k = 1, . . . , n (1.17)

n∑

k=1

yik = 1 i ∈ C (1.18)

yik ∈ {0, 1} i ∈ C, k = 1, . . . , n (1.19)
x ∈ X (1.20)
ze ≥ 0 e ∈ Ez (1.21)

The y-variables control the activation of z-arcs (constraints (1.15) and (1.16)), as well as the flow
on x-arcs (constraints (1.17)). Constraints (1.18) and (1.19) correspond to (1.5) and (1.7) from
the previous definition of the set Y . This model has no constraints corresponding to (1.6) in the
set Y , because the order of the segments is imposed in X . From a computational point of view,
even at the expense of adding new variables and constraints, MXYZ is preferable mainly for
the following two reasons: (1) F (MXYZ) ⊂ F (MXZ) (see Proposition 1), which means that
v(MXYZ) is a better bound on the optimal objective value than v(MXZ); and (2) given that the
y-variables are defined only for the segments in C, the size of the search space for this model is
the same as in MXZ (see Observation 1.2), while the number of binary variables is |C|n, which
is much less than |R|n(n+1)

2
, the corresponding number in MXZ.

Proposition 1. F (MXYZ) ⊂ F (MXZ).

Proof. It is easy to verify that constraints (1.15) and (1.17) imply (1.9); (1.16) and (1.17) imply
(1.10); (1.15) and (1.18) imply (1.11). Therefore, F (MXYZ) ⊆ F (MXZ). To prove that the
inclusion is strict, consider the values of x and z shown in Fig. 1.5.
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Figure 1.5: An instance of a network flow graph with m = 3, n = 3, and L = {(1, 3)}. The
x-arcs are represented by solid lines and the z-arcs by dashed lines. Only the arcs with nonzero
flow are given.The number associated to each arc is the value of the corresponding variable.

It is easy to see that these values satisfy (1.9)-(1.12). On the other hand, from (1.17) it follows
that y33 = 0.25, while according to (1.16), y33 = 0.5.

A model using vertices and z-arcs

The only combination left involves excluding the x-variables and testing the impact on the LP
solver’s efficiency of the possible reduction in the number of variables versus some increase in
the number of constraints. Toward this end, the arcs in Ex \EL are excluded from G and the arcs
from Ex ∩ EL are considered to be z-arcs. More precisely, in this model, Ez = EL. The model
MYZ obtained in this way is:

Minimize
m∑

i=1

n∑

k=1

cikyik +
∑
e∈Ez

ceze (1.22)

subject to: yik =
n∑

l=k

zikjl (i, j) ∈ L, k = 1, . . . , n (1.23)

yjl =
l∑

k=1

zikjl (i, j) ∈ L, l = 1, . . . , n (1.24)

y ∈ Y (1.25)
ze ≥ 0 e ∈ Ez (1.26)

In this model, as in the previous one, the z-arcs are activated by the y-variables (constraints
(1.23) and (1.24)). The gain with respect to MXYZ is about a 10% reduction in the number
of variables, due to exclusion of non-duplicated x variables. Almost the same increase in the
number of constraints due to (1.23) and (1.24) for (i, j) ∈ A is observed for real-life instances.
However, these modifications have a significant impact on the performance of the LP solver as
we will see later.
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1.1.5 The RAPTOR Model
Although derived differently, this model is very similar to the previous two. Let us make the
following modifications in the model MXYZ: replace i ∈ C by i = 1, . . . ,m in constraints
(1.17)-(1.19); replace the flow-tracing constraints (1.20) by the constraints

yjl =
∑

e∈Γ−1(j,l)

xe, j = 1, . . . , m, l = 1, . . . , n

connecting the y-variables and the tails of the x-arcs. In this way we obtain the RAPTOR
model. It can also be derived from MYZ by replacing Ez with E, L with L ∪ {(i, i + 1) | i =
1, . . . , m− 1}, and removing constraints (1.6) (contained in (1.25)). Although seemingly minor,
these modifications have a significant effect on the performance of the LP solver.

The LS algorithm and the self-threading case

Lathrop and Smith’s B&B algorithm [18] uses lower bounds, which can be easily explained in
terms of our network model. Consider a vertex (i, k) ∈ V , where i ∈ C. Let P = S − (1, r1)−
· · · − (i, k)− · · · − (m, rm)− T be an S-T path in G. Let

b(i, k, P ) =
∑

(i,j)∈R

cikjrj
+

∑

(j,i)∈R

cjrjik

be the sum of the costs of the z-arcs with head or tail (i, k), activated by P . Let b∗(i, k) =
minP b(i, k, P ), where the minimum is over all S-T paths passing through (i, k). If the costs
of the x-arcs in Γ(i, k) are updated by adding 1

2
b∗(i, k), then the cost of the shortest S-T path

in G is a lower bound on the optimal objective value (b∗(i, k) is multiplied by 1
2

because each
arc is counted twice, once for its head and once for its tail). The O(m2n2) complexity of this
procedure could be derived from the complexity of the shortest-path problem and the complexity
of the algorithm for computing b∗. Lathrop and Smith provide a list of impressive computational
results for a reach set of the so-called self-threading instances (the protein sequence is aligned
to its own structure template). Andonov et al.[41, 42, 4] tested the MIP models on a large set
of self-threading instances, and the results were always the same: the LP relaxation attains its
minimum at a feasible (hence optimal) 0-1 vertex. The relaxation used in the LS algorithm is
based on minimizing a function f(x), which is inferior to the objective function f(x), over the
set of feasible threadings. For such a relaxation, an optimal solution x∗ to the relaxed problem
is optimal for the original problem if f(x∗) = f(x∗). For the LS model, this is a kind of self-
threading subclass defining property, and in most of the cases the optimal solution is found at the
root of the B&B tree. This is the reason for the efficiency of the LS algorithm on instances in
this subclass.

1.1.6 Experimental comparison of the MIP models
Extensive computational experiments in [41, 42] showed that MXYZ significantly outperforms
the LS algorithm and the MXZ model. Here we present results from [4] which compare the mod-
els MXYZ, MYZ and RAPTOR. The models were solved using CPLEX 7.1 on a Pentium 2.40
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Table 1.1: A set of instances where the LP solution is integer.
query space MXYZ RAPTOR MYZ
length size iter. time iter. time iter. time

491 2.9e21 13624 25 13864 26 7907 13
491 2.5e25 22878 83 25747 118 10566 29
522 1.8e26 20627 111 15723 94 7920 22
491 1.1e27 41234 276 47082 347 16094 58
455 1.5e29 30828 390 36150 596 25046 241
522 1.8e29 18949 161 18598 169 12307 77
491 1.1e30 28968 365 40616 604 13870 68
491 1.4e30 58602 1303 66816 2083 29221 401
491 3.2e30 34074 572 41646 659 22516 186
522 5.3e31 26778 334 33395 468 13752 64
294 4.1e38 43694 619 52312 749 36539 314
583 1.3e39 124321 6084 147828 8019 57912 1120
757 9.9e45 121048 4761 166067 7902 92834 3117

Times are in seconds. For all instances, the MYZ model provides the best time.

GHz Linux PC with 4GB of RAM. The models are compared on real-life instances generated by
FROST (Fold Recognition Oriented Search Tool) software [21].

The most important observation is that for almost all (about 95%) of the instances, the LP
relaxation of all three models is integer-valued, thus providing optimal threading. This is true
even for polytopes with more than 1046 vertices. Table 1.1 shows the number of simplex iterations
and the time for each model on a sample from these instances. More precisely, of the 3600
instances solved by the MYZ model, the LP solution is non-integer in only 182 cases (about
5%). In all these cases, the solution contains mainly zeros and ones, and several 0.5 values.
The largest number of nodes in the B&B tree for the 182 non-integer instances is 11; only 17
instances have a tree with six or more nodes (these instances are shown in Table 1.2). In most
instances, only two nodes are sufficient for attaining optimality. The behavior of the other two
models is similar. The number of nodes is slightly different from one model to another, and from
CPLEX 7.1 to 8.0, but always stays in the same range of values. Table 1.2 shows that most of
the solution time is usually spent in solving the LP relaxation. In addition, the gap between the
LP score and the MIP score is so small that the LP relaxation could very well predict the closest
template when comparing a query to multiple templates. There are, in fact, many similarities
with the classic uncapacitated plant-location problem, in which most of the instances are easy to
solve [10, 40]. The good behavior of the LP relaxation is definitely lost when using randomly
generated score coefficients, but we believe that the behavior will stay good for each reasonable
additive scoring scheme. In complexity-theory parlance, these observations can be summarized
as: the subset of real-life instances of PTP is polynomially solvable.

These results show that all practical instances of PTP could be solved in affordable time using
only a general-purpose LP solver and one of the MIP models described above. The problems
with non-integer LP solutions could be driven to feasibility by using a simple ad-hoc procedure
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Table 1.2: A set of instances with a non-integer LP Solution.
MXYZ RAPTOR MYZ

query space LP MIP LP MIP LP MIP LP MIP
length size score score time time time time time time

300 3.8e20 57.5 60.8 230 468 338 832 207 320
344 5.2e23 152.1 156.2 125 260 196 368 79 319
364 1.1e23 185.5 188.0 466 562 576 1642 262 635
416 4.1e26 314.8 318.8 219 523 357 552 91 168
394 1.9e28 214.2 217.1 425 599 692 1167 117 273
394 2.1e28 201.4 202.9 458 599 834 1140 208 421
427 1.6e29 256.3 261.6 1308 1692 2025 3109 304 653
508 1.3e30 316.2 317.5 195 281 339 447 72 126
491 1.8e30 97.4 98.1 245 262 427 545 70 87
511 1.9e31 415.7 420.1 1908 3893 3129 4053 1012 1773
508 3.9e32 180.3 181.9 841 1008 1389 1666 293 422
508 1.7e33 370.2 370.2 1292 1356 1706 2117 908 1182
491 1.2e33 90.2 90.8 542 927 737 827 202 218
522 6.6e34 -12.4 -11.8 1678 1723 1928 2119 258 293
583 1.3e36 -297.5 -296.6 1900 2533 4372 4648 773 910
508 1.23e38 347.8 354.5 4711 9349 6346 17903 1657 3949
508 1.66e40 201.1 210.4 8031 13449 10588 27055 2504 9631

Times are in seconds. The LP Relaxation value is the same for all models, and the gap between this value and the
optimal solution is relatively small. MYZ is significantly faster than the other models.

instead of a MIP solver. As for the minimality of the polytope-describing constraints of the
proposed MIP models, we must note that any attempt of aggregation (for example (1.15), (1.16),
and (1.18) in MXYZ) spoils the integrality of the LP solution.

All numerical experiments show that the constraints (1.6) influence CPLEX solution times
very favorably. Consequently, the MYZ model significantly outperforms MXYZ and RAPTOR
for all large instances (see the corresponding columns in Tables 1.1 and 1.2).

1.1.7 Divide and conquer
The main drawback of the MIP models presented in the previous section is their huge number
of variables and constraints. Although their LP relaxations yield optimal solutions for most real-
life instances, solving these relaxations is still computationally expensive, and sometimes even
impossible due to memory requirements. A possible approach to increasing efficiency is to split
the problem into subproblems and to solve them separately. In this section we present such
divide-and-conquer technique for the MYZ model.

Let 1 ≤ L1 ≤ · · · ≤ Lm ≤ n, 1 ≤ U1 ≤ · · · ≤ Um ≤ n, Li ≤ Ui, i = 1, . . . , m be lower
and upper bounds of the segment positions. These bounds can be imposed by setting to zero
(removing) the variables yik, i = 1, . . . , m, k 6∈ Li, Ui and zikjl, (i, j) ∈ R, k 6∈ Li, Ui, l 6∈ Lj, Uj
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in the MYZ model. The resulting model is called MYZ(L,U) and its optimal objective value is
denoted v(L,U). Now if {(Ls, U s) | s ∈ S} is a set of bounds partitioning the space of feasible
threadings, then v(MYZ) = min{v(Ls, U s) | s ∈ S}. In other words, the solution to the original
problem is the best of the subproblem solutions.

Splitting the problem into subproblems is useful for two reasons.First, each subproblem has
a smaller number of variables and is thus easier to solve than the original problem. Second, and
more important, information from the previously solved subproblems can be used when solving
the next subproblem. Suppose that the first s subproblems have already been solved, and let
v∗ be the best of their objective values. Then v∗ can be used as a cutoff value when solving
subproblem s+1. If the LP relaxation of this subproblem is solved using a dual simplex method,
the optimization can be stopped prematurely if the objective function exceeds v∗. The same cut
can be applied not only at the root, but in any node of the B&B tree.

There are many ways to split the space of feasible threadings. Andonov et al. [4] have tested
two natural, easy-to-implement, and efficient possibilities. Let us fix a segment i and partition
the interval 1, n of its possible positions into q subintervals Ls

i , U
s
i , s = 1, . . . , q of lengths

approximately n
q

each. In this way, a partition of the feasible threadings space (Ls, U s), s =
1, . . . , q, is obtained, where

Ls
i = 1 + (s− 1)

⌊
n
q

⌋
+ min(s− 1, n mod q), U s

i = s
⌊

n
q

⌋
+ min(s, n mod q)

Ls
j = 1, U s

j = U s
i , j = 1, . . . i− 1

Ls
j = Ls

i , U s
j = n, j = i + 1, . . . m

Intuitively, the feasible space of subproblem s is composed of the S-T paths in the network that
pass through the vertices (i, k), k ∈ Ls

i , U
s
i (see Fig. 1.6(a)).

i

k

(b)(a)

Figure 1.6: Instance with five segments and six free positions. (a) The problem is split on segment
3 into 3 subproblems. The easible set of the second subproblem is defined by L2 = (1, 1, 3, 3, 3)
and U2 = (4, 4, 4, 6, 6). (b) The problem is split on segments 2 and 4 into 6 subproblems. The
feasible set of the second subproblem is defined by L2 = (1, 1, 1, 3, 3) and U2 = (2, 2, 4, 4, 6).

Above, we defined a splitting for a fixed segment i and a fixed number of subproblems q. A
natural question is how to choose good values for these parameters. For a fixed q, a good strategy
is to choose the segment i in such a way that the most difficult of the resulting subproblems
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become easier to solve. Formally, if the number of variables is considered as an approximate
measure of subproblem’s difficulty, a good choice would be:

i = argmin
1≤j≤m

{
max
1≤s≤q

νjs

}
,

where νjs is the number of variables of subproblem s, split on the jth segment. The choice of the
number of subproblems q is not obvious and will be discussed later.

The order in which the subproblems are solved is very important to the efficiency of this
approach. A better record v∗ allows earlier cuts in the subproblems that follow. Statistically, the
chance of finding the global optimum in a subproblem is proportional to the size of its search
space. It is not difficult to see that the number of S-T paths passing through a vertex (i, k) is(

i+k−2
i−1

)(
m+n−i−k

m−i

)
. From this, it is easy to compute the search space size of each subproblem and

to sort the subproblems in decreasing order according to their size.
This splitting technique can be generalized for two (or more) segments. Consider two seg-

ments i and j (see Fig. 1.6(b)). As before, the possible positions for each segment are partitioned
into q subintervals, yielding q(q+1)

2
subproblems. Segments i and j can be chosen to minimize the

maximal number of variables in the resulting subproblems, and the subproblems can be solved
in decreasing order on their search space size. In the following paragraphs, SPLIT1 and SPLIT2
denote partitioning based on one and two segments. Finding the best splitting segment(s) in
SPLIT1 requires considering each of the m segments, while in SPLIT2 m(m−1)

2
pairs of seg-

ments must be enumerated. In both cases, the time needed to choose the splitting segments is
negligible with respect to the time needed to solve the resulting subproblems.

Andonov et al. [4] have tested these splitting techniques on a large set of threading instances.
Table 1.3 presents the running times for SPLIT1 and SPLIT2 on a representative subset of these
instances. The experiment shows that:

• Splitting reduces the running time by a factor of more than two for bigger instances when
an appropriate number of subproblems is chosen.

• Running time decreases up to certain number of subproblems, and and then begins to
increase again. The best number of subproblems is relatively small (no more than 15 for
all solved instances). This phenomenon is due not only to the increased overhead for the
initialization of the subproblems, but also to the smaller chance of finding the globally
optimal solution in one of the first subproblems (see also Table 1.4).

• It is difficult to determine the optimal number of subproblems before solving them. This
number is different for each instance and depends on the structure of the subproblems.

• SPLIT2 is more robust, in that its running time increases more slowly with the number of
subproblems. Although SPLIT1 is clearly the winner for three subproblems, in the case
of ten or more subproblems, SPLIT2 is the better choice. This observation is illustrated
by rows “# instances where SPLIT1(SPLIT2) is better” in Table 1.3. Using SPLIT2 is
preferable, because even when the number of subproblems is chosen randomly, there is a
smaller chance of making a serious “mistake.”
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Table 1.3: Running times for SPLIT1 and SPLIT2 with different number of subproblems.
number of subproblems 1 3 6 10 15 21 28 36
space split

2.80e+19 1 13 9 11 13 19 24 31 32
2 13 10 10 13 14 17 20 25

2.94e+21 1 33 16 17 22 27 35 45 55
2 33 21 22 21 26 28 37 38

2.47e+25 1 80 39 40 57 76 102 123 154
2 80 40 40 40 47 57 68 79

1.75e+26 1 99 72 101 142 191 257 335 421
2 99 77 101 111 141 179 212 247

1.10e+27 1 308 95 92 115 153 189 251 292
2 308 102 92 102 108 122 148 171

1.53e+29 1 1115 329 392 491 645 788 993 1163
2 1115 392 604 369 441 635 662 744

1.78e+29 1 364 144 192 291 390 528 677 818
2 364 163 175 195 243 312 381 478

1.09e+30 1 292 134 181 216 303 388 501 612
2 292 167 158 225 276 273 342 419

1.44e+30 1 1117 482 463 512 676 840 1094 1314
2 1117 511 457 464 534 660 768 800

3.20e+30 1 802 314 405 515 719 903 1216 1484
2 802 322 366 318 396 525 665 763

5.34e+31 1 524 277 352 531 728 908 1020 1308
2 524 329 409 405 475 496 561 701

# instances where SPLIT1 is better 11 3 1 0 0 0 0
# instances where SPLIT2 is better 0 5 9 11 11 11 11
average speedup SPLIT1 2.3 2.0 1.5 1.1 0.9 0.7 0.6
average speedup SPLIT2 2.0 1.9 1.9 1.6 1.3 1.1 1.0

The running times are in seconds. The best running time in each row is bold.

Table 1.4 presents the subproblem in which the global optimum was found. It shows that
solving the subproblems in decreasing order on their search-space size yields good results. In
many cases, the optimal solution is found when solving the first subproblem, and the rest of
the subproblems are quickly abandoned using the obtained cutoff value. Even when the first
subproblem does not contain the global optimum, it provides a good record that allows many of
the following subproblems to be cut.
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Table 1.4: Subproblem where the optimal solution is found

number of subproblems 3 6 10 15 21 28 36
space split

2.80e+19 1 1 2 3 2 2 5 5
2 1 1 2 1 4 2 9

2.94e+21 1 1 1 1 2 1 2 1
2 1 4 1 8 4 19 12

2.47e+25 1 1 1 1 2 2 3 3
2 1 1 1 1 3 1 2

1.75e+26 1 1 2 2 3 5 6 7
2 1 3 1 3 3 6 6

1.10e+27 1 1 1 1 2 2 5 4
2 1 2 1 1 2 4 2

1.53e+29 1 1 2 3 4 5 7 9
2 1 2 1 3 2 7 3

1.78e+29 1 1 1 2 3 4 6 5
2 1 2 1 2 2 4 3

1.09e+30 1 1 2 1 2 3 4 5
2 1 3 5 6 2 5 9

1.44e+30 1 1 1 1 1 1 1 1
2 1 1 1 1 2 3 1

3.20e+30 1 1 2 2 4 6 7 11
2 3 2 8 3 5 5 12

5.34e+31 1 3 4 6 8 12 15 18
2 3 6 7 10 16 8 13

1.1.8 Parallelization

In the previous sections we have shown that an appropriate MIP model combined with divide-
and-conquer strategy can significantly decrease the time for solving PTP. The application of
these techniques allows to increase the size of practically solvable instances from 1018 − 1020

to 1035 − 1038. However, given that PTP is NP-hard, it is not surprising that solving instances
of bigger size is still slow. A natural way to accelerate the algorithms for solving PTP is to use
parallel computing. There are two possible approaches to parallelization.

The high-level parallelization considers each PTP as a single task. Recall that the query
sequence must be aligned to each template (or a filtered subset of templates) from the database.
These alignments are independent tasks and can be executed in parallel. Pley et al. [28] propose
such parallelization. Since the tasks are irregular, dynamic load balance is used.

In this section we present a lower level parallelization proposed by Andonov et al. [42, 4].
This approach uses the divide-and-conquer strategy from the previous section. The subproblems
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are considered as tasks to be executed on p processors. The best objective value known by a given
processor is called local record, and the global record is the best among the local records. The
efficiency of the parallel algorithm depends essentially on propagating the global record quickly
among the processors in order to use it as a cut.

Parallel Algorithm

The parallel algorithm proposed by Andonov et al. [4] is based on centralized dynamic load
balancing: tasks are dispatched from a centralized location (pool) in a dynamic way. The work
pool is managed by a “master” who gives work on demand to idle “slaves.” The master is also
responsible for communicating new records to the slaves. Each slave solves the subproblem
assigned to it, using the model MYZ. Note that dynamic load balancing is the only reasonable
task allocation method when dealing with irregular tasks for which the amount of work is not
known prior to execution.

To propagate the global record quickly, the CPLEX callback functions are used. These are
user functions called at each simplex iteration (LP callback) and at each node of the B&B tree
(MIP callback). The slaves use the MIP callback to communicate the local record to the master
(if this record is improved at the current node). The LP callback is used to probe for new records
coming from outside and to stop the optimization if the LP objective value becomes greater
than the record. In the experiments, the local record was hardly ever updated—about once for
every thousand simplex iterations. Furthermore, the only information exchanged between the
master and a slave when a new task is transmitted is the number of this task. This information
is sufficient for the slave to instantiate the CPLEX problem object directly in its own memory.
This, together with the reduced number of record exchanges, makes this parallel implementation
very efficient.

Computational Experiments

The numerical results presented in this section were obtained by using the CPLEX 7.1 callable
library and the MPI communication library on a cluster of 16, 2 × Pentium III 1GHz 512MB
Linux PCs connected by a Myrinet network. As in Section 1.1.6, the PTP instances are generated
by FROST [21]. As discussed in Section 1.1.7, it is extremely difficult to predict the number of
subproblems that will minimize running time. The problem becomes even more complicated
when there are multiple processors. For these reasons, the algorithm was run on a large set of
various instances and its behavior was observed, with both varying the problem granularity and
the number of processors. Based on the resulting statistics, Andonov et al. [4] derive empiri-
cally a range of values for the observed parameters for which the program has close-to-optimal
behavior.

Tables 1.5 and 1.6 summarize the execution times of the parallel code on a set of represen-
tative instances, using SPLIT1 and SPLIT2 respectively. The pth row gives the running times
using p processors, p = 1, . . . , 12. Columns 2-9 correspond to the different granularities (the
number of subproblems is shown in the header). ∞ denotes cases in which the problem was not
solved due to insufficient memory. This happened only for the original (non split) problem. The
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Table 1.5: Running times for SPLIT1
p 1 3 6 10 15 21 28 36 avg stddev s_up eff

m = 33, n = 172, |R| = 84, |T | = 1.23e38
1 17673 8647 2517 2431 2656 2309 2756 2809 4531 2910 1.0 1.0
2 2972 1915 1341 1736 1664 239 2.7 1.4
4 839 864 1051 1145 1020 116 4.4 1.1
6 810 503 778 857 712 151 6.4 1.1
8 482 632 708 716 685 37 6.6 0.8

10 481 525 644 564 577 49 7.8 0.8
12 523 595 507 567 556 36 8.1 0.7

m = 31, n = 212, |R| = 81, |T | = 1.29e39
1 3036 2450 1126 1520 868 1137 1381 1257 1698 555 1.0 1.0
2 824 421 796 1141 786 294 2.2 1.1
4 277 351 500 469 440 64 3.9 1.0
6 276 279 338 346 321 29 5.3 0.9
8 279 310 232 325 289 40 5.9 0.7

10 278 309 203 285 265 45 6.4 0.6
12 311 189 188 237 204 22 8.3 0.7

m = 27, n = 225, |R| = 71, |T | = 1.33e36
1 ∞ 712 497 664 472 557 613 704 624 92 1.0 1.0
2 654 376 438 485 433 44 1.4 0.7
4 296 311 319 346 325 15 1.9 0.5
6 294 312 253 261 275 26 2.3 0.4
8 312 254 260 279 264 10 2.4 0.3

10 310 252 260 280 264 11 2.4 0.2
12 252 260 278 230 256 19 2.4 0.2

m = 30, n = 219, |R| = 90, |T | = 4.13e + 38
1 ∞ 680 699 441 523 693 1719 796 606 117 1.0 1.0
2 1245 321 522 980 607 275 1.0 0.5
4 135 165 276 340 260 72 2.3 0.6
6 92 124 154 242 173 50 3.5 0.6
8 114 111 233 233 192 57 3.2 0.4

10 78 109 127 203 146 40 4.1 0.4
12 109 106 138 200 148 39 4.1 0.3

m = 32, n = 123, |R| = 86, |T | = 1.19e33
1 443 208 245 139 179 240 287 290 197 43 1.0 1.0
2 150 120 139 148 135 11 1.5 0.7
4 82 88 84 95 89 4 2.2 0.6
6 82 67 63 69 66 2 3.0 0.5
8 63 59 55 67 60 5 3.3 0.4

10 63 59 52 56 55 2 3.5 0.4
12 59 45 52 56 51 4 3.9 0.3
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Table 1.6: Running times for SPLIT2
p 1 3 6 10 15 21 28 36 avg stddev s_up eff

m = 33, n = 172, |R| = 84, |T | = 1.23e38
1 17673 8647 2517 2431 2656 2309 2756 2809 4531 2910 1.0 1.0
2 3878 1173 1400 1419 1105 1562 1467 1330 111 3.4 1.7
4 703 714 677 576 700 719 655 58 6.9 1.7
6 657 606 500 397 510 515 501 85 9.0 1.5
8 614 421 374 401 431 398 19 11.4 1.4

10 374 324 313 349 394 328 15 13.8 1.4
12 243 246 336 351 311 46 14.6 1.2

m = 31, n = 212, |R| = 81, |T | = 1.29e39
1 3036 2450 1126 1520 868 1137 1381 1257 1698 555 1.0 1.0
2 983 693 771 466 592 663 656 643 129 2.6 1.3
4 342 504 298 336 354 329 379 89 4.5 1.1
6 343 309 230 277 185 222 272 32 6.2 1.0
8 259 228 232 150 179 203 37 8.4 1.0

10 258 185 189 136 154 170 24 10.0 1.0
12 185 190 130 152 157 24 10.8 0.9

m = 27, n = 225, |R| = 71, |T | = 1.33e36
1 ∞ 712 497 664 472 557 613 704 624 92 1.0 1.0
2 904 383 393 316 343 373 364 34 1.7 0.9
4 232 159 173 140 158 182 157 13 4.0 1.0
6 185 123 113 106 116 146 114 7 5.5 0.9
8 119 109 120 90 95 106 12 5.9 0.7

10 119 109 109 89 85 102 9 6.1 0.6
12 146 112 68 70 83 20 7.5 0.6

m = 30, n = 219, |R| = 90, |T | = 4.13e38
1 ∞ 680 699 441 523 693 1719 796 606 117 1.0 1.0
2 591 187 261 318 289 522 417 255 53 2.4 1.2
4 160 146 153 166 192 216 155 8 3.9 1.0
6 104 115 126 115 125 159 118 5 5.1 0.9
8 81 107 89 99 123 98 7 6.2 0.8

10 59 107 93 89 105 96 7 6.3 0.6
12 94 67 78 83 76 6 8.0 0.7

m = 32, n = 123, |R| = 86, |T | = 1.19e33
1 443 208 245 139 179 240 287 290 197 43 1.0 1.0
2 127 103 80 102 115 145 159 95 10 2.1 1.0
4 71 51 63 62 75 83 58 5 3.4 0.8
6 54 39 46 48 56 57 44 3 4.5 0.7
8 38 40 39 46 45 41 3 4.7 0.6

10 33 36 35 39 38 36 1 5.4 0.5
12 37 29 34 36 33 2 6.0 0.5
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“avg” column contains the arithmetic mean of the values in bold from the corresponding row,
while the “stddev” column gives the standard deviation of the same values. The column “s_up”
contains the speedup, computed using the values from the column “avg” (avg1/avgp), and the
last column shows the corresponding efficiency (s_upp/p).

The last two columns characterize the average performance of the algorithm when the pair
(processors, subproblems) belongs to the bold area in the corresponding row of the table. The
bold area itself was determined by statistical analysis. For each row, the bold area consists of
consecutive cells that optimize the average values of the last two columns over the set of instances
considered in the experiment. Thus, when a pair (processors, granularity) is located in the bold
area, the behavior of the algorithm is expected to be close to the data from the last two columns.
The performed analysis makes an automatic choice of granularity possible, and transparent to
the user.

The data presented in Tables 1.5 and 1.6 show that the SPLIT2 strategy is significantly better
than SPLIT1. For SPLIT2, the mean running time decreases much faster than for SPLIT1, which
naturally yields more attractive values in the last two columns. SPLIT2 is also more robust, as
demonstrated by the standard deviations, which decrease faster with an increasing number of
processors. In both cases, parallelism gives robustness to the algorithms: increasing the number
of processors lessens the impact of granularity on execution time.

Table 1.7: Running times for instance with m = 41, n = 194, |R| = 112, |T | = 9.89e45
p 1 3 6 10 15 21 28 36 45 55 66 avg stddev s_up eff
1 ∞ 4412 4726 3385 2903 3638 3595 3931 3958 4174 572 1.0 1.0
2 3039 1841 1755 1441 1838 1870 2017 1980 1679 171 2.5 1.2
4 990 1239 858 1010 943 1019 1010 1035 156 4.0 1.0
6 955 998 614 710 673 680 692 774 163 5.4 0.9
8 686 543 599 536 519 535 559 28 7.5 0.9

10 681 416 478 476 425 440 456 28 9.1 0.9
12 415 449 440 367 387 418 36 10.0 0.8
16 464 387 356 333 352 358 22 11.6 0.7
18 383 351 372 326 313 359 349 18 11.9 0.7
24 343 308 294 282 307 294 10 14.2 0.6
26 373 320 334 299 296 317 14 13.1 0.5

Table 1.7 contains the running time for the biggest instance that was solved. The SPLIT2
strategy was used in this example. Up to 26 processors were used in order to observe the algo-
rithm’s efficiency. Although efficiency decreases below 0.8 when more than 12 processors are
used, it remains above 0.5 even with 26 processors. The parallel algorithm is reasonably efficient
up to about 10 processors. But this is not a serious drawback, because the query sequence is
usually aligned to multiple templates. If there are more processors available, they can be used
efficiently by separating them into groups and assigning a different query-to-template threading
to each group.
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1.1.9 Future research directions
In this section we discuss several possible extensions, improvements and open questions related
to the algorithms presented in this chapter.

Properties of the PTP polytope It is well known that the network flow polytope defined by
constraints (1.1)-(1.4) has only integral vertices. Unfortunately, it is not the case for the polytopes
of the LP relaxations of the MIP models for PTP. It can be shown that even a single pairwise
interaction between non-adjacent segments introduces non-integral vertices. However, as we
have seen in Section 1.1.6, the optimum of the LP relaxations is attained in integral vertices for
95% of the real-life instances. Surprisingly, even small perturbations of the score coefficients
move the optimum to non-integral vertex. This phenomenon is still unexplained. It would be
interesting to study the structure of the PTP polytope and the relations between the properties of
the score coefficients and the integrality of the LP solution. A study in this direction can also
help to formulate tighter LP models.

Solving the MIP models by special-purpose methods. The advantage of MIP models pre-
sented in this chapter is that their LP relaxations give the optimal solution for most of the real-
life instances. Their drawback is their huge size (both number of variables and number of con-
straints) which makes even solving the LP relaxation slow. The MIP models have very sparse
and structured constraint matrix. Instead of solving them by general-purpose branch-and-bound
algorithms using LP relaxation, one can try to design more efficient special-purpose algorithms.
The first encouraging results in this direction are reported by Balev [5]. He proposes a MIP model
similar to the ones discussed in Section 1.1.3 and solves it by branch-and-bound algorithm using
Lagrangian relaxation. This algorithm is much faster than the general purpose methods. An-
other, still not investigated possibility is to take advantage of the network flow constraints and
to design a decomposition network-simplex-like algorithm for solving the LP relaxations of the
MIP models.

Variable segment lengths The definition of PTP given in Section 1.1.2 assumes that the length
of each segment is fixed. This assumption is common for many threading methods but is some-
how restrictive, since two proteins belonging to the same structural family may have a couple of
amino acids attached to or detached from the endpoints of the corresponding secondary struc-
ture element. Taking into account this particularity could improve the quality of the threading
method. It should be not very difficult to design MIP models with variable segment lengths, but
this question is still open.

Semi-global threading The 3D structure of more complex proteins is formed of several com-
pact structural units, called domains. While each database template describes a single domain,
the query sequence can be a multi-domain protein. In this case the template must be aligned only
to a (unknown) part of the query. We call this kind of alignment semi-global threading. The MIP
models described in this chapter are flexible enough and can be easily adapted to semi-global
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threading. This could be done by introducing extra constraints restricting either the length of
each loop, or the sum of all loop lengths. The main difficulty will be to avoid the increase of the
size and the complexity of the obtained models.

1.1.10 Conclusion
The protein threading problem is a challenging combinatorial optimization problem with very
important practical applications and impressive computational complexity. Mathematical pro-
gramming techniques, still not very popular in computational biology, can be a valuable tool for
attacking problems that arise in this domain. The MIP models confirm that real-life instances are
much easier to solve than artificial ones. The complexity of PTP is such that only an appropri-
ate combination of different techniques can yield an efficient solution. By combining a careful
choice of MIP formulation, a divide-and-conquer technique, and a parallel implementation, one
can solve real-life instances of tremendous size in a reasonable amount of time.

The algorithms described in this chapter are already integrated in FROST [21] fold recogni-
tion software tool. They are general and flexible enough and can be readily plugged in (or easily
adapted to) other threading-based fold recognition tools in order to improve their performance.
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1.2 Optimal protein threading by cost-splitting

1.2.1 Motivation
Fold recognition methods based on threading are complex and time consuming computational
techniques due to the still non-efficiently solved problems:

1. finding the best (with respect to the score function) possible sequence-3D structure align-
ment;

2. a statistical analysis of the raw scores allowing the detection of the significant sequence-
structure alignments.

The first point above is related to the problem of finding the optimal sequence-to-structure align-
ment and is referred to as protein threading problem (PTP). From a computer scientist’s view-
point this is the most challenging part of the threading methods. Until recently, it was the main
obstacle to the development of efficient and reliable fold recognition methods. In the general
case, when variable-length alignment gaps are allowed and pairwise amino acid interactions are
considered in the score function, PTP is NP-hard [48]. Moreover, it is MAX-SNP-hard [1], which
means that there is no arbitrary close polynomial approximation algorithm, unless P = NP. In this
context the progress done by the computational biology community in solving PTP during the
last few years is really remarkable [18, 54, 43, 37, 38, 44]. The empirical results clearly illustrate
that PTP is easier in practice than in theory and that it is possible to solve real-life (biological)
instances in a reasonable amount of time. These results also show that one of the most promis-
ing approaches in solving this problem is using advanced mathematical programming (Mixed
Integer Programming, MIP) models for PTP [42, 54, 43, 37]. The most amazing observation
is that for almost all (more than 95%) of the instances, the LP relaxation of the MIP models
is integer-valued, thus providing optimal threading. This is true even for polytopes with more
than 1046 vertices. Moreover, when the LP relaxation is not integer, its value is a relatively good
approximation of the integer solution. However, to the best of our knowledge, this observation
has not been practically used before the current paper. Other successful Integer Programming
approaches for solving combinatorial optimization problems originated in molecular biology are
discussed in the recent survey [50].

The main drawback of mathematical programming approaches is that the corresponding
models are often very large (over 106 variables). Even the most advanced MIP solvers need
prohibitively large running time for solving such instances. For example, the authors in [37]
find out 30 templates for which it takes about 15 hours to thread one target onto them on a Sil-
icon Graphics Origin 3800 system, which has 40400 MHz MIPS R12000 CPUs and 20 GB of
RAM. Different divide-and-conquer methods and parallel algorithms can be used to overcome
this drawback [38, 42, 54].

A further step in solving the huge MIP models is the development of special-purpose al-
gorithms based on advanced combinatorial optimization techniques like Lagrangian relaxation.
Such an algorithm has been recently designed by S. Balev in [44] and computationally compared
with the B&B algorithm from [48] and a heuristic used in [49]. The computational results are
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very impressive and clearly show that the Lagrangian relaxation (LR) significantly outperforms
both other algorithms. However, comparisons with MIP solver are not provided in [44].

In this section we continue the same direction of research and propose a new dedicated al-
gorithm for solving protein threading MIP models. It is as well based on Lagrangian relaxation.
But, both our Lagrangian dual formulation and the optimization technique that we use for solv-
ing it (the so-called cost-splitting [23]), differentiate from those described in [44]. Extensive
computational results prove that: (i) our algorithm is in most cases faster than the one in [44]; (ii)
both Lagrangian relaxation algorithms significantly outperform solving MIP models by LP relax-
ation. To the best of our knowledge the only other impressive application of LR to an alignment
problem is discussed in [46].

Another contribution concerns the 2nd point above. When aligning a given query sequence
to a set of 3D structures it is not possible to directly use the raw scores to rank the 3D structures.
The reason is that these scores strongly depend on the query and template lengths and also,
in a complicated way, on the particular features of the 3D structures. In addition, the query
sequence may correspond to none of the existing folds. Therefore one must have means to
evaluate the significance of an alignment score. This can be done as a preprocessing stage, by
empirically calculating a distribution of scores for each template, using a set of sequences not
related to it2. The underlying score normalization procedure involves threading a large set of
queries against each template and requires solving millions of PTP. For example the package
FROST (Fold Recognition-Oriented Search Tool) [49], uses a database of about 1200 known
3D structures, each one associated with empirically determined score distributions. Computing
these distributions is extremely time consuming: it requires solving about 1200000 sequence-
to-structure alignments and takes about 40 days on a 2.4 GHz computer and about 3 days on a
cluster of 12 PCs [51]. Accelerating computations involved in this component is crucial for the
development of efficient fold recognition methods.

Based on extensive comparisons we observe that the approximated solutions obtained by any
one of the three algorithms considered here can be successfully used when computing scores
distributions. Since these approximated solutions are obtained by polynomial algorithms, we
experimentally prove that this heavy stage can be polynomially computed.

1.2.2 Protein threading problem revisited

For the sake of brevity, here we stick to the network optimization problem formulation proposed
in [42, 43].

Towards this end we recall the definition of the set of feasible threadings Y , defined by the

2More justifications for this phase the interested reader can find in [49].
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following constraints:

n∑

k=1

yik = 1 i = 1, . . . , m (1.27)

k∑

l=1

yil −
k∑

l=1

yi+1,l ≥ 0 i = 1, . . . , m− 1, k = 1, . . . , n− 1 (1.28)

yik ∈ {0, 1} i = 1, . . . , m, k = 1, . . . , n (1.29)

These constraints describe the set of feasible paths in a particular digraph (see the previous
section), with vertex set V = {(i, j) | i = 1, . . . ,m, j = 1, . . . , n}. The vertices (i, j), j =
1, . . . , n will be referred to as ith layer. Each layer corresponds to a structural element, and
each vertex in a layer corresponds to a positioning of this element on a query protein. Let
L ⊆ {(i, k) | 1 ≤ i < k ≤ m} be a given set of inter-layers links. This is the so-called contact
graph: a link between layers i and k means that the corresponding structural elements are in
contact in the 3D structure.

Let Aik be the 2n× n(n+1)
2

node-arc incidence matrix for the subgraph spanned by the layers
i and k, (i, k) ∈ L. The submatrix Ai, the first n rows of Aik, (resp. Ak, the last n rows)
corresponds to the layer i (resp. k). To avoid added notation we will use vector notation for
the variables yi = (yi1, ...yin) ∈ Bn where Bn is the set of n-dimensional binary vectors, with
assigned costs ci = (ci1, ...cin) ∈ Rn and zik = (zi1k1, . . . , zi1kn, zi2k1, . . . , zinkn) ∈ B

n(n+1)
2

for (i, k) ∈ L with assigned costs dik = (di1k1, . . . , di1kn, di2k1, . . . , dinkn) ∈ R
n(n+1)

2 . In the
sections below the vector dik will be considered as a n × n upper triangular matrix, having
arbitrarily large coefficient below the diagonal. This slight deviation from the standard definition
of an upper triangular matrix is used only for formal definition of some matrix operations.

Now the protein threading problem PTP (L) is defined as:

zL
ip = v(PTP (L)) = min{

m∑
i=1

ciyi +
∑

(i,k)∈L

dikzik} (1.30)

subject to: y = (y1, . . . , ym) ∈ Y, (1.31)
yi = Aizik, yk = Akzik (i, k) ∈ L (1.32)

zik ∈ B
n(n+1)

2 (i, k) ∈ L (1.33)

The shortcut notation v(.) will be used for the optimal objective function value of a subproblem
obtained from PTP (L) with some z variables fixed.

1.2.3 Special cases
Throughout this section, vertex costs ci are assumed to be zero. We study three sorts of contact
graph that make PTP polynomially solvable.
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Contact graph contains no crossing edges

Two links (i1, k1) and (i2, k2) such that i1 < i2 are said to be crossing when k1 is in the open
interval (i2, k2). The case when the contact graph L contains no crossing edges has been men-
tioned to be polynomially solvable for the first time in [1]. Here we present a different sketch for
O(n3) complexity of PTP in this case.

If L contains no crossing edges, then PTP (L) can be recursively divided into independent
subproblems. Each of them consists in computing all shortest paths between the vertices of two
layers i and k, discarding links that are not included in (i, k). Thus the result of this computation
is a distance matrix Dik such that Dik(j, l) is the optimal length between vertices (i, j) and (k, l).
Note that for j > l as there is no path in the graph, Dik(j, l) is an arbitrarily large coefficient.
Finally, the solution of PTP (L) is the smallest entry of D1m.

We say that an edge (i, k), i < k is included in the interval [a, b] when [i, k] ⊆ [a, b]. Let us
denote by L(ik) the set of edges of L included in [i, k]. Then, an algorithm to compute Dik can
be sketched as follows:

1. if L(ik) = {(i, k)} then the distance matrix is given by

Dik =

{
dik if (i, k) ∈ L
0̃ otherwise

(1.34)

where 0̃ is an upper triangular matrix in the previously defined sense (arbitrary large coef-
ficients below the main diagonal) and having only zeros in its upper part.

2. otherwise as L(ik) has no crossing edges, there exists some s ∈ [i, k] such that any edge of
L(ik) but (i, k) is included in [i, s] or in [s, k]. Then

Dik =

{
Dis.Dsk + dik if (i, k) ∈ L
Dis.Dsk otherwise (1.35)

where the matrix multiplication is computed by replacing (+,×) operations on reals by
(min, +).

Remark 1. If the contact graph has m vertices, and contains no crossing edges, then the problem
is decomposed into O(m) subproblems. For each of them, the computation of the corresponding
distance matrix is a O(n3) procedure (matrix multiplication with (min, +) operations). Overall
complexity is thus O(mn3). Typically, n is one or two orders of magnitude greater than m, and
in practice, this special case is already expensive to solve.

1.2.4 All edges have their left end tied to a common vertex
A set of edges L = {(i1, k1), . . . , (ir, kr)}, k1 < k2 < . . . kr is called a sheaf if it has at least two
elements and it = i1, t ≤ r. The arc costs corresponding to the link (i, ks) are given by the upper
triangular matrix diks .

The following algebra is used to prove the O(n2) complexity of the corresponding PTP.
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Definition 1. Let A,B be two matrices of size n × n. M = A ⊗ B is defined by M(i, j) =
min
i≤r≤j

A(i, r) + B(i, j)

In order to compute A⊗ B, we use the following recursion: let M ′ be the matrix defined by
M ′(i, j) = min

i≤r≤j
A(i, r), then

M ′(i, j) = min{M ′(i, j − 1), A(i, j)}, for all j ≥ i

Finally A ⊗ B = M ′ + B. From this it is clear that ⊗ multiplication for n × n matrices is of
complexity O(n2).

Theorem 1. Let L = {(i, k1), . . . , (i, kr)} be a sheaf. Then Dikr = (. . . (dik1⊗dik2)⊗ . . . )⊗dikr

Proof. The proof follows the basic dynamic programming recursion for this particular case: for
the sheaf L = {(i, k1), . . . , (i, kr)} = L′

⋃{(i, kr)}, we have v(L : zijkrl = 1) = dijkrl +
min
j≤s≤l

v(L′ : zijkr−1s = 1).

Sequence of independent subproblems

Given a contact graph L = {(i1, k1), . . . , (ir, kr)}, PTP (L) can be decomposed into two inde-
pendent subproblems when there exists an integer e ∈ (1,m) such that any edge of L is included
either in [1, e], either in [e,m]. Let I = {i1, . . . , is} be an ordered set of indices, such that any el-
ement of I allows for a decomposition of PTP (L) into two independent subproblems. Suppose
additionally that for all t ≤ s − 1, one is able to compute Ditit+1 . Then we have the following
theorem:

Theorem 2. Let p = (p1, p2, . . . , pn) be obtained by the following matrix-vector multiplication
p = Di1i2Di2i3 . . . Dis−1isp, where p = (0, 0, . . . , 0) and the scalar product in the matrix-vector
multiplication is defined by changing "+" with "min" and "." with "+". Then for all i, pi =
v(PTP (L : y1i = 1), and v(PTP (L)) = min{pi}.

Proof. Each multiplication by Dikik+1
in the definition of p is an algebraic restatement of the

main step of the algorithm for solving the shortest path problem in a graph without circuits.

Remark 2. With the notations introduced above, the complexity of PTP (L) for a sequence of
such subproblems is O(sn2) plus the cost of computing matrices Ditit+1 .

From the last two special cases, it can be seen that if the contact graph can be decomposed
into independent subsets, and if these subsets are single edges or sheaves, then there is a O(srn2)
algorithm, where s is the cardinality of the decomposition, and r the maximal cardinality of each
subset, that solves the corresponding PTP.
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1.2.5 Relaxation through decomposition
In order to apply the results from the previous section, we need to find a suitable partition of
L into L1

⋃
L2...

⋃
Lt where each Ls induces an easy solvable PTP (Ls), and to use the s.c.

cost-splitting variant of the Lagrangian duality. Now we can restate (1.30)–(1.33) equivalently
as:

vL
ip = min





t∑
s=1

(
m∑

i=1

cs
iy

s
i +

∑

(i,k)∈Ls

dikzik)



 (1.36)

subject to: y1
i = ys

i , s = 2, t (1.37)
ys = (ys

1, ..y
s
m) ∈ Y, s = 1, . . . , t (1.38)

ys
i = Aizik, ys

k = Akzik s = 1, . . . , t (i, k) ∈ Ls (1.39)

zik ∈ B
n(n+1)

2 s = 1, . . . , t (i, k) ∈ Ls (1.40)

Taking (1.37) as the complicating constraints, we obtain the Lagrangian dual of PTP (L):

vcsd = max
λ

min
y

t∑
s=1

(
m∑

i=1

cs
i (λ)ys

i +
∑

(i,k)∈Ls

dikzik) = max
λ

t∑
s=1

vLs

ip (λ) (1.41)

subject to (1.38), (1.39) and (1.40).
The Lagrangian multipliers λs are associated with the equations (1.37) and c1

i (λ) = c1
i +∑t

s=2 λs, cs
i (λ) = cs

i−λs, s = 2, . . . , t. The coefficients cs
i are arbitrary (but fixed) decomposition

(cost-split) of the coefficients ci, i.e. given by cs
i = psci with

∑
ps = 1. From the Lagrangian

duality theory follows vlp ≤ vcsd ≤ vip. This means that for each PTP instance s.t. vlp = vip

holds vcsd = vip. By applying the subgradient optimization technique ([23]) in order to obtain
vcsd, one need to solve t problems vLs

ip (λ) (see the definition of vLs

ip ) for each λ generated during
the subgradient iterations. As usual, the most time consuming step is PTP (Ls) solving, but we
have demonstrated its O(n2) complexity in the case when Ls is a union of independent sheaves
and single links. More details concerning the actual implementation are given below.

Implementation issues
In order to apply the subgradient optimization technique to solve PTP (L) one need i) to find

a suitable partitioning of L into subgraphs with a special structure, and ii) to tune appropriately
the parameters of the algorithm, used for finding vcsd.

Problem decomposition
The aim of cost-splitting techniques is to decompose a problem into subproblems of reason-

able complexity. In our case, each subproblem should be a set of independent sheaves and single
links. Several such decompositions exist, but the choice of a particular decomposition may im-
pact a lot on performance: with a lot of subproblems, each one is simpler to solve, but it takes
more subgradient iterations to reach a complete agreement between subproblems. Experimen-
tally, the following decomposition appears to be suitable and is easy to obtain.
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First all (i, i + 1) links (i ∈ [1,m]) are put in L1 subproblem (if one of them, doesn’t exist, it
is added with a corresponding null cost matrix). All vertex costs ci, i ∈ [1,m] are affected to L1

subproblem. Thus, all other subproblems have null vertex cost.
Then, given K a set of links we note by Kj a subset of K with right end of links in [1, j]. We

select the subset of K which includes all the compatible independent sheaves built from right to
left. That is, if Kj 6= ∅, let s = max{i|∃(r, i) ∈ Kj}, then let s′ = max{r|(r, s) ∈ Kj} and
Kj

rms = {(s′, r) ∈ Kj}. Kj
(s′,s) is the right most sheaf subset (see Figure (1.7)). We can now

1 2 3 4 5 6 7 8 9 13
14=S11=S’

1210

K14
rms = {(11, 13), (11, 14)}

K11
rms = {(5, 8), (5, 9)} K5

rms = {(2, 5)}
sss(K) = K5

rms ∪K11
rms ∪K14

rms

Figure 1.7: The right most sheaf of K

define formally sss(K) the subset of sheaves: sss(K) = ∅ if K = ∅ else sss(Ks′) ∪ Kj
(s′,s)

with j = max{k|∃(i, k) ∈ K}. The partition P is built applying iteratively sss. While P =
(L1 ∪ . . . Li) 6= L, define Li+1 = sss(L\(L1 ∪ . . . Li)) and add Li+1 in P .

Subgradient algorithm
The subgradient ascend is an iterative search procedure that is used to maximize a concave

function (for a comprehensive introduction, see [23]). In our case this is the function

vcsd(λ) = min
y
{

t∑
s=1

(
m∑

i=1

cs
i (λ)ys

i +
∑

(i,k)∈Ls

dikzik)} (1.42)

= min{
m∑

i=1

ciyi +
∑

(i,k)∈L

dikzik +
t∑

s=2

∑

i∈I1s

λis(y1
i − ys

i )} (1.43)

subject to maximize in (1.41). This function is obtained from (1.36) by relaxation of the com-
plicated constraints (1.37). The sets I1s are derived from the actual realization of the parti-
tion of L and by elimination from (1.37) all i not common for subproblems L1 and Ls. If
Is, s = 2, . . . , t be the set of layers covered by Ls then I1s = I1

⋂
Is. Instead (1.37) to hold for

each i ∈ {1, . . . , m} one can achieve the goals by taking I1s, s = 2, . . . , t as inclusive sets for
the respective i. Thus (1.41) is function of λ = (λ2, . . . , λt) with λs ∈ Rn|I1s|. From Lagrangian
duality theory the added term

∑t
s=2

∑
i∈I1s λis(y1

i − ys
i ) is used for approaching the optimal λ∗

from the current one by taking a small step along the subgradient. In this case (ȳ1
i − ȳs

i ), i ∈ L1s(
for each i this is a n-vector with only two non-zero coefficients equal to 1 and −1 resp.), with ȳs

being an optimal solution to PTP (cs(λ), Ls) is the part of the subgradient, corresponding to λs.
At each iteration, ȳ1 provides a feasible solution that is used to compute an upper bound ub for
the optimal value; a lower bound lb is given by the highest found value of the Lagrangian. In our
experiments the step length: θi in iteration i is controlled by θi = 1.4(ui

b − lib)ρ
iρ0/nbm where

ρ500 = 0.001, ρ0 is an initial guess for step length, and nbm is the number of violated relaxed
constraints (the length of the subgradient).
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1.2.6 Experimental results
The numerical results presented in this section were obtained on an Intel(R) Xeon(TM) CPU
2.4 GHz, 2 GB RAM, RedHat 9 Linux. The behavior of the algorithm was tested by computing
the same distributions as given in [44] (for the purpose of comparison), plus few extra-large
instances based on real-life data generated by FROST (Fold Recognition Oriented Search Tool)
software [49]. The MIP models were solved using CPLEX 7.1 solver [47].

In our first computational experiment we focus on computing score distributions phase and
we study the quality of the approximated solutions given by three PTP algorithms. Five distribu-
tions are associated to any 3D template in the FROST database. They are computed by threading
the template with sets of non related protein sequences having length respectively equal to: -
30%, -15%, 0%, +15%, +30% of the template length. Any of these sets contains approximately
200 sequences.
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Plot of time in seconds with CS-LR al-
gorithm on the x-axis and the LP algo-
rithm from [43] on the y-axis. Both algo-
rithms compute approximated solutions for
962 threading instances associated to the
template 1ASYA0 from the FROST data-
base. The linear curve in the plot is the line
y = x. What is observed is a significant
performance gap between the algorithms.
For example in a point (x, y) = (0.5, 3) CS-
LR is 102.5 times faster than LP relaxation.

Figure 1.8: Cost-Splitting Lagrangian Relaxation versus LP Relaxation

Hence, computing a score distribution in the FROST database requires solving approximately
1000 sequence-to-template alignments. Only two values will be finally used: these are the score
values obtained at the 1st and at the 3rd quartiles of the distribution (denoted respectively by q25

and q75). FROST uses the following scheme: the raw score (RS) (i.e. the score obtained when a
given query is aligned with the template) is normalized according to the formula NS = q75−RS

q75−q25
.

Only the value NS (called normalized score) is used to evaluate the relevance of the computed
raw score to the considered distribution.

We conducted the following experiment. For the purpose of this section we chose a set of 12
non-trivial templates. 60 distributions are associated to them. We first computed these distribu-
tions using an exact algorithm for solving the underlying PTP problem. The same distributions
have been afterwords computed using the approximated solutions obtained by any of the three
algorithms here considered. By approximated solution we mean respectively the following: i)
for a MIP model this is the solution given by the LP relaxation; ii) for SB-LR (Stefan Balev’s La-
grangian Relaxation) algorithm this is the solution obtained for 500 iterations (the upper bound
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used in [44]). Any exit with less than 500 iterations is a sign that the exact value has been found;
iii) for the Cost-Splitting Lagrangian Relaxation algorithm (CS-LR) this is the solution obtained
either for 300 iterations or when the relative error between upper and lower bound is less than
0.001.

We use the MYZ integer programming model introduced in [43]. It has been proved faster
than the MIP model used in the package RAPTOR [37] which was well ranked among all non-
meta servers in CAFASP3 (Third Critical Assessment of Fully Automated Structure Prediction)
and in CASP6 (Sixth Critical Assessment of Structure Prediction). Because of time limit we
present here the results from 10 distributions only. Concerning the 1st quartile the relative error
between the exact and approximated solution is 3 × 10−3 in two cases over all 2000 instances
and less than 10−6 for all other cases. Concerning the 3rd quartile, the relative error is 10−3 in
two cases and less than 10−6 for all other cases.
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Figure 1.9: Plot of time in seconds with CS-LR (Cost-Splitting Lagrangian Relaxation) algo-
rithm on the x-axis versus SB-LR (Stefan Balev’s Lagrangian Relaxation) algorithm [44] on the
y-axis concerning score distributions of two templates. Both the x-axis and y-axis are in loga-
rithmic scales. The linear curve in the plot is the line y = x. Left: The template 1ASYA (the one
referenced in [44]) has been threaded with 962 sequences. Right: 1ALO_0 is one of the tem-
plates yielding the biggest problem instances when aligned with the 704 sequences associated to
it in the database. We observe that although CS-LR is often faster than SB-LR, in general the
performance of both algorithms is very close.

All 12125 alignments for the set of 60 templates have been computed by the other two algo-
rithms. Concerning the 1st quartile, the exact and approximated solution are equal for all cases
for both (SB-LR and CS-LR) algorithms. Concerning the 3rd quartile and in case of SB-LR al-
gorithm the exact solution equals the approximated one in all but two cases in which the relative
error is respectively 10−3 and 10−5. In the same quartile and in case of CS-LR algorithm the
exact solution equals the approximated one in 12119 instances and the relative error is 7× 10−4

in only 6 cases.
Obviously, this loss of precision (due to computing the distribution by not always taking the
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optimal solution) is negligible and does not degrade the quality of the prediction. We therefore
conclude that the approximated solutions given by any of above mentioned algorithm can be
successfully used in the score distributions phase.

Our second numerical experiment concerns running time comparisons for computing approx-
imated solutions by LP, SB-LR and CS-LR algorithms. The obtained results are summarized on
figures 1.8, 1.9 and 1.10. Figure 1.8 clearly shows that CS-LR algorithm significantly outper-
forms the LP relaxation. Figures 1.9 and 1.10 illustrate that CS-LR is mostly faster than SB-LR
algorithm. Time sensitivity with respect to the size of the problem is given in Fig. 1.10.
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Figure 1.10: CS-LR versus SB-LR: recapitulation plot concerning 12125 alignments.

Additional experimental results

0 20 40 60 80

0
1

2
3

4

CS−LR running time for computing distributions

Size of solutions space (logarithmic  scale)

C
S

−
LR

 C
P

U
 ti

m
e 

in
 s

ec
on

ds
 (

lo
g1

0) Each point in this plot corresponds to the
total time required by CS-LR algorithm
to compute one distribution determined
by approximately 200 alignments of the
same size. About 60 distributions have
been computed which needed solving about
12000 alignments totally. The size of the
biggest instance is O(1077).

Figure 1.11: Evolution in time as a function of the solutions space size.

46



1.2.7 Conclusion
The results in this section confirm once more, that integer programming approach is well suited
to solve protein threading problem. Here, we proposed a cost-splitting approach, and derived a
new Lagrangian dual formulation for this problem. This approach compares favorably with the
Lagrangian relaxation proposed in [44]. It allows to solve huge instances3, with solution space
of size up to O(1077), within a few minutes.

The results lead us to think that even better performance could be obtained by relaxing addi-
tional constraints, relying on the quality of LP bounds. In this manner, the relaxed problem will
be easier to solve. This is the subject of our current work.

3Solution space size of O(1040) corresponds to a MIP model with 4×104 constraints and 2×106 variables [54].
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1.3 Lagrangian approaches for a class of matching problems
in computational biology

1.3.1 Preliminaries

Matching is important class of combinatorial optimization problems with many real-life appli-
cations. Matching problems involve choosing a subset of edges of a graph subject to degree
constraints on the vertices. Many alignment problems arising in computational biology are spe-
cial cases of matching in bipartite graphs. In these problems the vertices of the graph can be
nucleotides of a DNA sequence, aminoacids of a protein sequence or secondary structure el-
ements of a protein structure. Unlike classical matching problems, alignment problems have
intrinsic order on the graph vertices and this implies extra constraints on the edges. As an exam-
ple, Fig. 1.12 shows an alignment of two sequences as a matching in bipartite graph. We can see
that the feasible alignments are 1-matchings without crossing edges.

A C G C A A

A G T C T

ACG_CAA
A_GTC_T

Figure 1.12: Matching interpretation of sequence alignment problem

Here, we reconsider protein threading problem (PTP) as a matching problem in a bipartite
graph, recalling that the set of feasible threadings was defined as

T = {(r1, . . . , rm) | 1 ≤ r1 ≤ · · · ≤ rm ≤ n}.
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(a)

abs. position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
rel. position block 1 1 2 3 4 5 6 7 8 9
rel. position block 2 1 2 3 4 5 6 7 8 9
rel. position block 3 1 2 3 4 5 6 7 8 9

(b)

1 2 3

1 2 3 4 5 6 7 8 9
V

U

(c)

Figure 1.13: (a) Example of alignment of query sequence of length 20 and template contain-
ing 3 segments of lengths 3, 5 and 4. (b) Correspondence between absolute and relative block
positions. (c) A matching corresponding to the alignment of (a).

The Protein threading problem, now, is a matching problem in a bipartite graph (U ∪ V, U ×
V ), where U = {u1, . . . , um} is the ordered set of blocks and V = {v1, . . . , vn} is the ordered
set of relative positions. The threading feasibility conditions can be restated in terms of matching
in the following way. A matching M ⊆ U × V is feasible if:

(i) d(u) = 1, u ∈ U (where d(x) is the degree of x). This means that each block is assigned to
exactly one position). By the way this implies that the cardinality of each feasible matching
is m.

(ii) There are no crossing edges, or more precisely, if (ui, vj) ∈ M , (uk, vl) ∈ M and i < k,
then j ≤ l. This means that the blocks preserve their order and do not overlap. The last
inequality is not strict because of using relative positions.

Note that while (i) is a classical matching constraint, (ii) is specific for the alignment problems
and makes them more difficult. Fig. 1.13(c) shows a matching corresponding to a feasible thread-
ing.

Proposition 2. The number of feasible threadings is |T | = (
m+n−1

m

)
.
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Proof. We can define the relative positions as ri = j −∑i−1
k=1 lk + i− 1. In this case the relative

positions of the feasible threadings are related by

1 ≤ r1 < · · · < rm ≤ m + n− 1

and a threading is determined by choosing m out of m + n− 1 positions.

One of the possible ways to deal with alignment problems is to try to adapt the existing
matching techniques to the new edge constraints of type (ii). Instead of doing this we propose a
new graph model and we develop efficient matching algorithms based on this model.

We introduce an alignment graph G = (U × V, E). Each vertex of this graph corresponds to
an edge of the matching graph. For simplicity we will denote the vertices by vij , i = 1, . . . ,m,
j = 1, . . . , n and draw them as an n×m grid (see Fig. 1.14). The vertices vij , j = 1, . . . , n were
called called ith layer. A layer corresponds to a block and each vertex in a layer corresponds to
positioning of this block in the query sequence.

block

position

TS

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

j = 1

j = 2

j = 3

j = 4

Figure 1.14: Example of alignment graph. The path in thick lines corresponds to the threading
in which the positions of the blocks are 1,2,2,3,4,4.

One can connect by edges the pairs of vertices of G which correspond to pairs of noncross-
ing edges in the matching graph. In this case a feasible threading is an m-clique in G. A
similar approach is used in [55, 56]. We introduce only a subset of the above edges, namely
the ones that connect vertices from adjacent columns and have the following regular pattern:
E = {(vij, vi+1,l) | i = 1, . . . , m − 1, 1 ≤ j ≤ l ≤ n}. We add two more vertices S and T and
edges connecting S to all vertices from the first column and T to all vertices from the last col-
umn. Now it is easy to see the one-to-one correspondence between the set of feasible threadings
(or matchings) and the set of S-T paths in G. Fig. 1.14 illustrates this correspondence (to help
the reader, we redraw this figure once more).

Till now we gave several alternative ways to describe the feasible alignments. Alignment
problems in computational biology involve choosing the best of them based on some score func-
tion. The simplest score functions associate weights to the edges of the matching graph. For ex-
ample, this is the case of sequence alignment problems. By introducing alignment graphs similar
to the above, classical sequence alignment algorithms, such as Smith-Waterman or Needleman-
Wunch, can be viewed as finding shortest S-T paths. When the score functions use structural
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information, the problems are more difficult and the shortest path model cannot incorporate this
information.

The score functions in PTP evaluate the degree of compatibility between the sequence amino
acids and their positions in the template blocks. The interactions (or links) between the template
blocks are described by the so-called generalized contact map graph, whose vertices are the
blocks and whose edges connect pairs of interacting blocks. Let L be the set of these edges:

L = {(i, k) | i < k and blocks i and k interact}

Sometimes we need to distinguish the links between adjacent blocks and the other links. Let
R = {(i, k) | (i, k) ∈ L, k − i > 1} be the set of remote (or non-local) links. The links from
L \ R are called local links. Without loss of generality we can suppose that all pairs of adjacent
blocks interact.

The links between the blocks generate scores which depend on the block positions. In this
way a score function of PTP can be presented by the following sets of coefficients

• cij , i = 1, . . . , m, j = 1, . . . , n, the score of putting block i on position j

• dijkl, (i, k) ∈ L, 1 ≤ j ≤ l ≤ n, the score generated by the interaction between blocks i
and k when block i is on position j and block k is on position l.

The coefficients cij are some function (usually sum) of the preferences of each query amino acid
placed in block i for occupying its assigned position, as well as the scores of pairwise interactions
between amino acids belonging to block i. The coefficients dijkl include the scores of interactions
between pairs of amino acids belonging to blocks i and j. Loops (sequences between adjacent
blocks) may also have sequence specific scores, included in the coefficients di,j,i+1,l.

The score of a threading is the sum of the corresponding score coefficients and PTP is the
optimization problem of finding the threading of minimum score. If there are no remote links (if
R = ∅) we can put the score coefficients on the vertices and the edges of the alignment graph
and PTP is equivalent to the problem of finding the shortest S-T path. In order to take the remote
links into account, we add to the alignment graph the edges

{(vij, vkl) | (i, k) ∈ R, 1 ≤ j ≤ l ≤ n}

which we will refer as z-edges.
An S-T path is said to activate the z-edges that have both ends on this path. Each S-T path

activates exactly |R| z-edges, one for each link in R. The subgraph induced by the edges of an
S-T path and the activated z-edges is called augmented path. Thus PTP is equivalent to finding
the shortest augmented path in the alignment graph (see Fig. 1.15).
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j = 2

j = 3

j = 4

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

j = 1

block

position

TS

c
1122
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2232

c
3243
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4354

c
5464

1132
c

3264
c

4364
c

Figure 1.15: Example of augmented path. The generalized contact map graph is given in the
bottom. The x arcs of the S-T path are in solid lines. The activated z-arcs are in dashed lines.
The length of the augmented path is equal to the score of the threading (1, 2, 2, 3, 4, 4).

As we will see later, the main advantage of this graph is that some simple alignment problems
reduce to finding the shortest S-T path in it with some prices associated to the edges and/or
vertices. The last problem can be easily solved by a trivial dynamic programming algorithm
of complexity O(mn2). In order to address the general case we need to represent this graph
optimisation problem as an integer programming problem.

1.3.2 Integer programming formulation
In order to relate the PTP to a class of matching problems,we restate the definition of the set Y
as the polytope defined by the following constraints:

n∑
j=1

yij = 1 i = 1, . . . , m (1.44)

j∑

l=1

yil −
j∑

l=1

yi+1,l ≥ 0 i = 1, . . . , m− 1, j = 1, . . . , n− 1 (1.45)

yij ≥ 0 i = 1, . . . , m, j = 1, . . . , n (1.46)

Constraints (1.44) ensure the feasibility condition (i) and (1.45) are responsible for (ii). That is
why Y ∩Bmn is exactly the set of feasible threadings.

In order to take into account the interaction costs, we introduce a second set of binary vari-
ables zijkl, (i, k) ∈ L, 1 ≤ j ≤ l ≤ n. To avoid added notation we will use vector nota-
tion for the variables yi = (yi1, ...yin) ∈ Bn with assigned costs ci = (ci1, ...cin) ∈ Rn and
zik = (zi1k1, . . . , zi1kn, zi2k2, . . . , zi2kn, . . . , zinkn) ∈ B

n(n+1)
2 for (i, k) ∈ L with assigned costs

dik = (di1k1, . . . , di1kn, di2k2, . . . , di2kn, . . . , dinkn) ∈ R
n(n+1)

2 .

52



Consider the 2n× n(n+1)
2

node-edge incidence matrix of the subgraph spanned by two inter-
acting layers i and k. The submatrix A′ containing the first n rows (resp. A′′ containg the last n
rows) corresponds to the layer i (resp. layer k).

Now the protein threading problem can be defined as

zL
IP = v(PTP (L)) = min{

m∑
i=1

ciyi +
∑

(i,k)∈L

dikzik} (1.47)

subject to: y = (y1, . . . , ym) ∈ Y, (1.48)
yi = A′zik (i, k) ∈ L (1.49)
yk = A′′zik (i, k) ∈ L (1.50)

zik ∈ B
n(n+1)

2 (i, k) ∈ L (1.51)

The shortcut notation v(.) will be used for the optimal objective function value of a subproblem
obtained from PTP (L) with some z variables fixed.

1.3.3 Complexity results

In this section we study the structure of the polytope defined by (1.48)-(1.50) and zik ∈ R
n(n+1)

2
+ ,

as well as the impact of the set L on the complexity of the algorithms for solving the PTP
problem. Throughout this section, vertex costs ci are assumed to be zero. This assumption is not
restrictive because the costs cij can be added to di,j,i+1,l, l = j, . . . , n. We will consider the costs
dik as n×n matrices containing the coefficients dijkl above the main diagonal and arbitrary large
numbers below the main diagonal. In order to simplify the descriptions of the algorithms given
in this section we introduce the following matrix operations.

Definition 2. Let A and B be two matrices of compatible size. A · B is the matrix product of
A and B where the addition operation is replaced by “min” and the multiplication operation is
replaced by “+”.

Definition 3. Let A and B be two matrices of size n× n. M = A⊗ B is defined by M(i, j) =
mini≤r≤j A(i, r) + B(i, j)

PTP is known to be NP-complete in the general case [16]. Below we present four kinds of
contact graphs that make PTP polynomially solvable.

Contact graph contains only local edges

As mentioned above, in this case PTP reduces to finding the shortest S-T path in the alignment
graph which can be done by O(mn2) dynamic programming algorithm. An important property
of an alignment graph containing only local edges is that it has a tight LP description.

Theorem 3. The polytope Y is integral, i.e. it has only integer-valued vertices.
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Proof. Let A be the matrix of the coefficients in (1.44)-(1.45) with columns numbered by the
indices of the variables. One can prove that A is totaly unimodular (TU) by performing the
following sequence of TU preserving transformations.

for i = 1, . . . , n
delete column (i, n) (these are unit columns)

for i = 1, . . . , m
for j = n− 1, . . . , 1

pivot on aij (A is TU iff the matrix obtained by a pivot operation on A is TU
delete column (i, j) (now this is unit column)

The final matrix is an unit column that is TU. Since all the transformations are TU preserving,
A is TU and Y is integral.

One could prove the same assertion by showing that an arbitrary feasible solution to (1.44)-
(1.46) is a convex combination of some integer-valued vertices of Y . The best such vertex (in
the sense of an objective function) might be a good approximate solution to a problem whose
feasible set is an intersection of Y with additional constraints.

Let y is an arbitrary non-integer solution to (1.44)–(1.46). Because of (1.44), (1.45) an unit
flow4 f = (fsj, f(i,k)(i+1,j)), i = 1,m− 1, j = 1, n, in G exist s.t.

∑

k≤j

f(i,k)(i+1,j) = yij, i = 1,m− 1, fsj = y1j, j = 1, n.

By the well known properties of the network flow polytope, the flow f can be expressed as
a convex combination of integer-valued unit flows (paths in G). But each such flow corresponds
to an integer-valued y, i.e. yij = f(i−1,k)(ij) = 1. Thus, the convex combination of the paths that
gives f is equivalent to a convex combination of the respective vertices of Y that gives y.

The details for efficiently finding of the set of the vertices participating in the convex combi-
nation could be easily stressed by this sketch of the prove.

Contact graph contains no crossing edges

Two links (i1, k1) and (i2, k2) such that i1 < i2 are said to be crossing when k1 is in the open
interval (i2, k2). The case when the contact graph L contains no crossing edges has been men-
tioned to be polynomially solvable for the first time in [1]. Here we present a different sketch for
O(mn3) complexity of PTP in this case.

If L contains no crossing edges, then PTP (L) can be recursively divided into independent
subproblems. Each of them consists in computing all shortest paths between the vertices of two
layers i and k, discarding links that are not included in (i, k). The result of this computation is
a distance matrix Dik such that Dik(j, l) is the optimal length between vertices (i, j) and (k, l).
Note that for j > l, as there is no path in the graph, Dik(j, l) is an arbitrarily large coefficient.
Finally, the solution of PTP (L) is the smallest entry of D1m.

4The 4 indices i, k, p, j used for arcs labeling follows the convention: tail at vertex (i, k) head at vertex (p, j).
Sometimes the brackets will be dropped.
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We say that a link (i, k), i < k is included in the interval [a, b] when [i, k] ⊆ [a, b]. Let us
denote by L(ik) the set of links of L included in [i, k]. Then, an algorithm to compute Dik can be
sketched as follows:

1. If L(ik) = {(i, k)} then the distance matrix is given by

Dik =

{
dik if(i, k) ∈ L
0̃ otherwise

(1.52)

where 0̃ is an upper triangular matrix in the previously defined sense (arbitrary large coef-
ficients below the main diagonal) and having only zeros in its upper part.

2. Otherwise, as L(ik) has no crossing edges, there exists some s ∈ [i, k] such that any edge
of L(ik) except (i, k) is included either in [i, s] or in [s, k]. Then

Dik =

{
Dis ·Dsk + dik if(i, k) ∈ L
Dis ·Dsk otherwise (1.53)

If the contact graph has m vertices, and contains no crossing edges, then the problem is
decomposed into O(m) subproblems. For each of them, the computation of the corresponding
distance matrix is a O(n3) procedure (matrix multiplication with (min, +) operations). Overall
complexity is thus O(mn3). Typically, n is one or two orders of magnitude greater than m, and
in practice, this special case is already expensive to solve.

Contact graph is a single star

A set of edges L(i) = {(i, k1), . . . , (i, kr)}, k1 < k2 < . . . kr is called a star5.

Theorem 4. Let L(i) = {(i, k1), . . . , (i, kr)} be a star. Then Dikr = (. . . (dik1⊗dik2)⊗. . . )⊗dikr .

Proof. The proof follows the basic dynamic programming recursion for this particular case: for
the star L = {(i, k1), . . . , (i, kr)} = L′

⋃{(i, kr)}, we have v(L : zijkrl = 1) = dijkrl +
minj≤s≤l v(L′ : zijkr−1s = 1).

In order to compute A⊗ B, we use the following recursion: let M ′ be the matrix defined by
M ′(i, j) = mini≤r≤j A(i, r), then

M ′(i, j) = min{M ′(i, j − 1), A(i, j)}, for all j ≥ i.

Finally A ⊗ B = M ′ + B. From this it is clear that ⊗ multiplication for n × n matrices is of
complexity O(n2) and hence the complexity of PTP in this case is O(rn2).

5This definition corresponds to the case when all edges have their left end tied to a common vertex. Star can
be symmetrically defined: i.e. all edges have their right end tied to a common vertex. All proofs require minor
modification to fit this case.
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Contact graph is decomposable

Given a contact graph L = {(i1, k1), . . . , (ir, kr)}, PTP (L) can be decomposed into two inde-
pendent subproblems when there exists an integer e ∈ (1,m) such that any edge of L is included
either in [1, e], either in [e,m]. Let I = {i1, . . . , is} be an ordered set of indices, such that any el-
ement of I allows for a decomposition of PTP (L) into two independent subproblems. Suppose
additionally that for all t ≤ s − 1, one is able to compute Ditit+1 . Then we have the following
theorem:

Theorem 5. Let p = (p1, p2, . . . , pn) = Di1i2 · Di2i3 · . . . · Dis−1is · p, where p = (0, 0, . . . , 0).
Then for all i, pi = v(PTP (L : y1i = 1)), and v(PTP (L)) = min1≤i≤n{pi}.

Proof. Each multiplication by Dikik+1
in the definition of p is an algebraic restatement of the

main step of the algorithm for solving the shortest path problem in a graph without circuits.

With the notations introduced above, the complexity of PTP (L) for a sequence of such
subproblems is O(sn2) plus the cost of computing matrices Ditit+1 .

From the last two special cases, it can be seen that if the contact graph can be decomposed
into independent subsets, and if these subsets are single edges or stars, then there is a O(srn2)
algorithm, where s is the cardinality of the decomposition, and r the maximal cardinality of each
subset, that solves the corresponding PTP.

Remark 3. As a corollary from theorem 3 we can easily derive that when L is cross free and does

not contain stars, the polytope defined by (1.49)–(1.50) and zik ∈ R
n(n+1)

2
+ is integer.

The threading polytope

Let Pyz be the polytope defined by (1.48)–(1.50) and zik ∈ R
n(n+1)

2
+ and let P I

yz be the convex
hull of the feasible points of (1.48)-(1.51). We will call P I

yz a threading polytope.
All of the preceeding polynomiality results were derived without any refering to the LP re-

laxation of (1.47)–(1.51). The reason is that even for a rather simple version of the graph L the
polytope Pyz is non-integral. We have already seen (indirectly) that if L contains only local links
then Pyz = P I

yz. Recall the one-to-one correspondence between the threadings, defined as points
in Y and the paths in graph G. If L = {(i, i + 1), i = 1,m − 1} then Pyz is a linear description
of a unit flow in G that is an integral polytope. Unfortunately, this happenens to be a necessary
condition also.

Theorem 6. Let n ≥ 3 and L contains all local links. Then P I
yz = Pyz if and only if R = ∅.

Proof. (⇒) Without loss of generality we can take R = (1, 3), m = 3 and n = 3. Then the point
A = (y11 = y12 = y21 = y22 = 0.5, y32 = 0.75, y33 = 0.25, z1121 = z2132 = z1222 = z1232 =
0.5, z2232 = z2233 = z1132 = z1133 = 0.25) ∈ Pyz and the only eligible (whose convex hull
could possibly contain A) integer-valued vertices of Pyz are B = (y11 = y21 = y32 = z1132 = 1)
and C = (y12 = y22 = y32 = z1232 = 1) but A is not in the segment [B, C]. The generalization
of this proof for arbitrary m,n ≥ 3 and R is almost straightforward.

(⇐) Follows directly from Theorem 3.
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This is a kind of negative result setting a limit to relying on LP solution.

1.3.4 Lagrangian approaches
Consider an integer program

zIP = min{cx : x ∈ S}, where S = {x ∈ Zn
+ : Ax ≤ b} (1.54)

Relaxation and duality are the two main ways of determining zIP and upper bounds for zIP . The
linear programming relaxation is obtained by changing the constraint x ∈ Zn

+ in the definition
of S by x ≥ 0. The Lagrangian relaxation is very convenient for problems where the constraints
can be partitioned into a set of “simple” ones and a set of “complicated” ones. Let us assume
for example that the complicated constraints are given by A1x ≤ b1, where A1 is m× n matrix,
while the nice constraints are given by A2x ≤ b2. Then for any λ ∈ Rm

+ the problem

zLR(λ) = min
x∈Q

{cx + λ(b1 − A1x)}

where Q = {x ∈ Zn
+ : A2x ≤ b2} is Lagrangian relaxation of (1.54), i.e. zLR(λ) ≤ zIP for each

λ ≥ 0. The best bound can be obtained by solving the Lagrangian dual zLD = maxλ≥0 zLR(λ).
It is well known that relations zIP ≥ zLD ≥ zLP hold.

An even better relaxation, called cost-splitting, can be obtained by applying Lagrangian du-
ality to the reformulation of (1.54) given by

zIP = min cx1 (1.55)

subject to: A1x1 ≤ b1, A2x2 ≤ b2, (1.56)
x1 − x2 = 0 (1.57)
x1 ∈ Zn

+, x2 ∈ Zn
+, (1.58)

Taking x1−x2 = 0 as the complicated constraint, we obtain the Lagrangian dual of (1.55)-(1.58)

zCS = max
u
{min c1x1 + min c2x2} (1.59)

subject to: A1x1 ≤ b1, A2x2 ≤ b2, (1.60)
x1 ∈ Zn

+, x2 ∈ Zn
+, (1.61)

where u = c2, c1 = c− u.
The following well known polyhedral characterization of the cost splitting dual will be used

later:

Theorem 7 (see [23]).

zCS = max
{
cx : conv{x ∈ Zn

+ : A1x ≤ b1} ∩ conv{x ∈ Zn
+ : A2x ≤ b2}}

where conv{A} denotes the convex hull of A.
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In both relaxations in order to find zLD or zCS one has to look for the maximum of a con-
cave piecewise linear function. This appeals for using the so called subgradient optimization
technique. For the function zLR(λ), the vector st = b1 − A1xt, where xt is an optimal solution
to minQ{cx + λt(b1 − A1x)}, is a subgradient at λt. The following subgradient algorithm is an
analog of the steepest ascent method of maximizing a function:

• (Initialization): Choose a starting point λ0, Θ0 and ρ. Set t = 0 and find a subgradient st.

• While st 6= 0 and t < tmax do { λt+1 = λt + Θts
t; t ← t + 1; find st}

This algorithm stops either when st = 0, (in which case λt is an optimal solution) or after a fixed
number of iterations. We experimented two schemes for selecting {Θt}:

Θt = Θ0ρ
t (1.62)

Θt = Θ0
κt(Ut − Lt)ρ

t

||st||1 (1.63)

where

0 < ρ < 1

{κt} is a random sequence whose terms are uniformly chosen in [1, 1.4]
Lt is the best value of zLR(λ) up to iteration t

Ut is the best value of any feasible solution found up to iteration t

||st||1 is the 1-norm of the subgradient

1.3.5 Lagrangian relaxation
Relying on complexity results from section 1.3.3, we show now how to apply Lagrangian re-
laxation taking as complicating constraints (1.50). Recall that these constraints insure that the
y-variables and the z-variables select the same position of block k. Associating Lagrangian
multipliers λik to the relaxed constraints we obtain

zLR(λ) = min
y,z





m∑
i=1

ci(λ)yi +
∑

(i,k)∈L

dik(λ)zik





where
ci(λ) = ci +

∑

(k,i)∈L

λki, dik(λ) =
∑

(i,k)∈L

(dik − λikA
′′).

Consider this relaxation for a fixed λ. Suppose that a block i is on position j in the optimal
solution. Then the optimal values of the variables zijkl can be found using the method desctibed in
section 1.3.3. In this way the relaxed problem decomposes to a set of independent subproblems.
Each subproblem has a star as a contact graph. After solving all the subproblems, we can update
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the costs ci(λ) with the contribution of the star with root i and find the shortest S-T path in the
alignment graph.

Note that for each λ the solution defined by the y-variables is feasible to the original problem.
In this way at each iteration of the subgradient optimisation we have an heuristic solution. At the
end of the optimization we have both lower and upper bounds on the optimal objective value.

Symmetrically, we can relax the left end of each link or even relax the left end of one part
of the links and the right end of the rest. The last is the approach used in [5]. The same pa-
per describes a branch-and-bound algorithm using this Lagrangian relaxation instead of the LP
relaxation.

1.3.6 Cost splitting
In order to apply the results from the previous sections, we need to find a suitable partition of
L into L1

⋃
L2...

⋃
Lt where each Ls induces an easy solvable PTP (Ls), and to use the cost-

splitting variant of the Lagrangian duality. Now we can restate (1.47)-(1.51) equivalently as:

zL
IP = min





t∑
s=1

(
m∑

i=1

cs
iy

s
i +

∑

(i,k)∈Ls

dikzik)



 (1.64)

subject to: y1
i = ys

i , s = 2, t (1.65)
ys = (ys

1, ..y
s
m) ∈ Y, s = 1, . . . , t (1.66)

ys
i = Aizik, ys

k = Akzik s = 1, . . . , t (i, k) ∈ Ls (1.67)

zik ∈ B
n(n+1)

2 s = 1, . . . , t (i, k) ∈ Ls (1.68)

Taking (1.65) as the complicating constraints, we obtain the Lagrangian dual of PTP (L):

zCS = max
λ

min
y

t∑
s=1

(
m∑

i=1

cs
i (λ)ys

i +
∑

(i,k)∈Ls

dikzik) = max
λ

t∑
s=1

zLs

IP (λ) (1.69)

subject to (1.66), (1.67) and (1.68).
The Lagrangian multipliers λs are associated with the equations (1.65) and c1

i (λ) = c1
i +∑t

s=2 λs, cs
i (λ) = cs

i−λs, s = 2, . . . , t. The coefficients cs
i are arbitrary (but fixed) decomposition

(cost-split) of the coefficients ci, i.e. given by cs
i = psci with

∑
ps = 1.

From the Lagrangian duality theory it follows that zLP ≤ zCS ≤ zIP . However choosing
the decomposition remains a delicate issue. A tradeoff has to be found between tightness of the
bound and complexity of the dual. At one extreme, when decomposing the interaction graph into
cross-free sets, the dual problem is of O(mn3) complexity. This makes this approach hopeless
for practical situations. At the other extreme, each set in the decomposition could contain a single
edge. This is a very favorable situation for complexity matters, but it turns out that in this case,
the cost-splitting dual boils down to LP bound:

Theorem 8. If t = |L| then zCS = zLP .
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Proof. From Th. 7, we have

zCS = max



cy + dz :

⋂

(i,k)∈L

conv{y, z ∈ Zn
+ : yi = Ak

i zik ∧ yk = Ai
kzik}





However, as underlined in Rem. 3, the set

{y, z ∈ Rn
+ : yi = Ak

i zik ∧ yk = Ai
kzik)}

only has integer extremal points, which amounts to say that

{y, z ∈ Rn
+ : yi = Ak

i zik} = conv{y, z ∈ Zn
+ : yi = Ak

i zik ∧ yk = Ai
kzik}

The result follows:

zCS = max



cy + dz :

⋂

(i,k)∈L

{y, z ∈ Rn
+ : yi = Ak

i zik ∧ yk = Ai
kzik}



 = zLP

By applying the subgradient optimization technique ([23]) in order to obtain zCS , one need
to solve t problems vLs

IP (λ) for each λ generated during the subgradient iterations. As usual, the
most time consuming step is PTP (Ls) solving, but we have demonstrated its O(n2) complexity
in the case when Ls is a union of independent stars.

1.3.7 Experimental results
In this section we present three kinds of experiments. First, in subsection 1.3.7, we show that
the branch-and-bound algorithm based on the Lagrangian relaxation from section 1.3.5 (BB_LR)
can be successfully used for solving exactly huge PTP instances. In subsection 1.3.7, we study
the impact of the approximated solutions given by different PTP solvers on the quality of the
prediction. Lastly, in subsection 1.3.7 we experimentally compare the two relaxations proposed
in this paper and show that they have similar performances.

In order to evaluate the performance of our algorithm and to test it on real problems, we
integrated it in the structure prediction tool FROST [21, 22]. FROST (Fold Recognition-Oriented
Search Tool) is intended to assess the reliability of fold assignments to a given protein sequence.
In our experiments we used its the structure database, containing about 1200 structure templates,
as well as its score function. FROST uses a specific procedure to normalize the alignment score
and to evaluate its significance. As the scores are highly dependent on sequence lengths, for
each template of the database this procedure selects 5 groups of non homologous sequences
corresponding to -30%, -15%, 0%, +15% and +30% of the template length. Each group contains
about 200 sequences of equal length. Each of the about 1000 sequences is aligned to the template.
This procedure involves about 1,200,000 alignments and is extremely computationally expensive
[57]. The values of the score distribution function F in the points 0.25 and 0.75 are approximated
by this empirical data. When a “real” query is threaded to this template, the raw alignment score
S is replaced by the normalized distance NS = F (.75)−S

F (.75)−F (.25)
. Only the value NS is used to

evaluate the relevance of the computed raw score to the considered distribution.
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Solving PTP exactly

To test the efficiency of our algorithm we used the data from 9,136 threadings made in order
to compute the distributions of 10 templates. Figure 1.16 presents the running times for these
alignments. The optimal threading was found in less than one minute for all but 34 instances.
For 32 of them the optimum was found in less than 4 minutes and only for two instances the
optimum was not found in one hour. However, for these two instances the algorithm produced in
one minute a suboptimal solution with a proved objective gap less than 0.1%.
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Figure 1.16: Running times of 9,136 threading instances as a function of the search space size.
The experiment is made on 1.8 GHz Pentium PC with 512 MB RAM

It is interesting to note that for 79% of the instances the optimal solution was found in the
root of the branch-and-bound tree. This means that the Lagrangian relaxation produces a solution
which is feasible for the original problem. The same phenomenon was observed in [37, 4] where
integer programming models are solved by linear relaxation. However, the dedicated algorithm
based of the Lagrangian relaxation from section 1.3.5 is much faster than a general purpose
solver using the linear relaxation. For comparison, solving instances of size of order 1038 by
CPLEX of ILOG solver reported in [4] takes more than one hour on a faster than our computer,
while instances of that size were solved by LR algorithm in about 15 seconds.

The use of BB_LR made possible to compute the exact score distributions of all templates
from the FROST database for the first time [57]. An experiment on about 200 query proteins
of known structure shows that using the new algorithm improves not only the running time of
the method, but also its quality. When using the exact distributions, the sensitivity of FROST
(measured as the percentage of correctly classified queries) is increased by 7%. Moreover, the
quality of the alignments produced by our algorithm (measured as the difference with the VAST
alignments) is also about 5% better compared to the quality of the alignments produced by the
heuristic algorithm.
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Impact of the approximated solution on the quality of the prediction

We compared BB_LR to two other algorithms used by FROST – a steepest-descent heuristic
(H) and an implementation of the branch-and-bound algorithm from [18] (B). The comparison
was made over 952 instances (the sequences threaded to the template 1ASYA when computing
its score distribution). Each of the three algorithms was executed with a timeout of 1 minute
per instance. We compare the best solutions produced during this period. The results of this
comparison are summarized in Table 1.8. For the smallest instances (the first line of the table)
the performance of the three algorithms is similar, but for instances of greater size our algorithm
clearly outperforms the other two. It was timed out only for two instances, while B was timed
out for all instances. L finds the optimal solution for all but 2 instances, while B finds it for no
instance. The algorithm B cannot find the optimal solution for any instance from the fourth and
fifth lines of the table even when the timeout is set to 2 hours. The percentage of the optima
found by H degenerates when the size of the problem increases. Note however that H is a
heuristic algorithm which produces solutions without proof of optimality. Table 1.9 shows the
distributions computed by the three algorithms. The distributions produced by H and especially
by B are shifted to the right with respect to the real distribution computed by L. This means that
for example a query of length 638AA and score 110 will be considered as significantly similar
to the template according to the results provided by B, while in fact this score is in the middle of
the score distribution.

Table 1.8: Comparison between three algorithms: branch-and-bound using Lagrangian relax-
ation (L), heuristic steepest-descent algorithm (H), and branch-and-bound of Lathrop and Smith
(B). The results in each row are average of about 200 instances.

query m n |T | average time(s) opt(%)
length L H B L H B

342 26 4 3.65e03 0.0 0.1 0.0 100 99 100
416 26 78 1.69e24 0.6 43.6 60.0 100 63 0
490 26 152 1.01e31 2.6 53.8 60.0 100 45 0
564 26 226 1.60e35 6.4 56.6 60.0 100 40 0
638 26 300 1.81e38 12.7 59.0 60.0 99 31 0

We conducted the following experiment. For the purpose of this section we chose a set of 12
non-trivial templates. 60 distributions are associated to them. We first computed these distribu-
tions using an exact algorithm for solving the underlying PTP problem. The same distributions
have been afterwords computed using the approximated solutions obtained by any of the three
algorithms here considered. By approximated solution we mean respectively the following: i)
for a MIP model this is the solution given by the LP relaxation; ii) for the Lagrangian Relaxation
(LR) algorithm this is the solution obtained for 500 iterations (the upper bound used in [5]). Any
exit with less than 500 iterations is a sign that the exact value has been found; iii) for the Cost-
Splitting algorithm (CS) this is the solution obtained either for 300 iterations or when the relative
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Table 1.9: Distributions produced by the three algorithms.

query distribution (L) distribution (H) distribution (B)
length F (.25) F (.50) F (.75) F (.25) F (.50) F (.75) F (.25) F (.50) F (.75)

342 790.5 832.5 877.6 790.5 832.6 877.6 790.5 832.5 877.6
416 296.4 343.3 389.5 299.2 345.4 391.7 355.2 405.5 457.7
490 180.6 215.2 260.4 184.5 219.7 263.4 237.5 290.4 333.0
564 122.6 150.5 181.5 126.3 157.5 187.9 183.3 239.3 283.4
638 77.1 109.1 142.7 87.6 118.5 150.0 154.5 197.0 244.6

error between upper and lower bound is less than 0.001.
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Plot of time in seconds with CS algo-
rithm on the x-axis and the LP algorithm
from [4] on the y-axis. Both algorithms
compute approximated solutions for 962
threading instances associated to the tem-
plate 1ASYA0 from the FROST database.
The linear curve in the plot is the line
y = x. What is observed is a signif-
icant performance gap between the algo-
rithms. For example in a point (x, y) =
(0.5, 3) CS is 102.5 times faster than LP re-
laxation. These results were obtained on
an Intel(R) Xeon(TM) CPU 2.4 GHz, 2 GB
RAM, RedHat 9 Linux. The MIP models
were solved using CPLEX 7.1 solver.

Figure 1.17: Cost-Splitting Relaxation versus LP Relaxation

We use the MYZ integer programming model introduced in [4]. It has been proved faster
than the MIP model used in the package RAPTOR [37] which was well ranked among all non-
meta servers in CAFASP3 (Third Critical Assessment of Fully Automated Structure Prediction)
and in CASP6 (Sixth Critical Assessment of Structure Prediction). Because of time limit we
present here the results from 10 distributions only6. Concerning the 1st quartile the relative error
between the exact and approximated solution is 3× 1130−3 in two cases over all 2000 instances
and less than 10−6 for all other cases. Concerning the 3rd quartile, the relative error is 10−3 in
two cases and less than 10−6 for all other cases.

All 12125 alignments for the set of 60 templates have been computed by the other two algo-
rithms. Concerning the 1st quartile, the exact and approximated solution are equal for all cases

6More data will be solved and provided for the final version.
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Figure 1.18: Plot of time in seconds with CS (Cost-Splitting Relaxation) algorithm on the x-axis
versus LR (Lagrangian Relaxation) algorithm [5] on the y-axis concerning score distributions of
two templates. Both the x-axis and y-axis are in logarithmic scales. The linear curve in the plot
is the line y = x. Left: The template 1ASYA (the one referenced in [5]) has been threaded with
962 sequences. Right: 1ALO_0 is one of the templates yielding the biggest problem instances
when aligned with the 704 sequences associated to it in the database. We observe that although
CS is often faster than LR, in general the performance of both algorithms is very close.

for both (LR and CS) algorithms. Concerning the 3rd quartile and in case of LR algorithm the
exact solution equals the approximated one in all but two cases in which the relative error is
respectively 10−3 and 10−5. In the same quartile and in case of CS algorithm the exact solution
equals the approximated one in 12119 instances and the relative error is 7×10−4 in only 6 cases.

Obviously, this loss of precision (due to computing the distribution by not always taking the
optimal solution) is negligible and does not degrade the quality of the prediction. We therefore
conclude that the approximated solutions given by any of above mentioned algorithms can be
successfully used in the score distributions phase.

Cost splitting versus Linear Programming and Lagrangian relaxations

Our third numerical experiment concerns running time comparisons for computing approximated
solutions by LP, LR and CS algorithms. The obtained results are summarized on figures 1.17,
1.18 and 1.19. Figure 1.17 clearly shows that CS algorithm significantly outperforms the LP
relaxation. Figures 1.18 and 1.19 compare CS with LR algorithm and illustrate that they give
close running times (CS being slightly faster than LR). Time sensitivity with respect to the size
of the problem is given in Fig. 1.19.

1.3.8 Conclusion

The results presented in this paper confirm once more that integer programming approach is well
suited to solve the protein threading problem. Even if the possibilities of general purpose solvers
using linear programming relaxation are limited to instances of relatively small size, one can
use the specific properties of the problem and develop efficient special purpose solvers. After
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Figure 1.19: CS versus LR: recapitulation plot concerning 12125 alignments.

studying these properties we propose two Lagrangian approaches, Lagrangian relaxation and
cost splitting. These approaches are more powerful than the general integer programming and
allow to solve huge instances7, with solution space of size up to 1077, within a few minutes.

The results lead us to think that even better performance could be obtained by relaxing addi-
tional constraints, relying on the quality of LP bounds. In this manner, the relaxed problem will
be easier to solve. This is the subject of our current work.

This paper deals with the problem of global alignment of protein sequence and structure
template. But the methods presented here can be adapted to other classes of matching problems
arising in computational biology. Examples of such classes are semi-global alignment, where
the structure is aligned to a part of the sequence (the case of multi-domain proteins), or local
alignment, where a part of the structure is aligned to a part of the sequence. Problems of structure-
structure comparison, for example contact map overlap, are also matching problems that can be
treated with similar techniques. Solving these problems by Lagrangian approaches is the subject
of the next section.

7Solution space size of 1040 corresponds to a MIP model with 4× 104 constraints and 2× 106 variables [54].
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1.4 A Novel Algorithm for Finding Maximum Common Or-
dered Subgraph

1.4.1 Introduction

It is a fundamental axiom of biology that the 3-dimensional structure of a protein has a crucial
influence on its function- two proteins that are similar in their 3-dimensional structure will likely
have similar functions. Comparing two protein structures for similarity is therefor a crucial task
and has been extensively investigated [67].
Since it is not clear what quantitative measure to use for comparing protein structures, a mul-
titude of measures have been proposed. Each measure aims in capturing the intuitive notion
of similarity. We study the contact-map-overlap (CMO) measure, first proposed in [68]. This
measure has been found to be very useful for measuring protein similarity - it is robust, takes
partial matching into account, translation invariant and captures the intuitive notion of similarity
very well for details. Thus the problem of designing efficient algorithms that guarantee the CMO
quality is an important one that has eluded researchers so far.

Here, we present an algorithm for exact solving the CMO problem (the formal definition
is given below). The CMO is just one of the scoring schemes used for comparison of protein
structures. The protein’s primary sequence is usually though-of as composed of residues. Un-
der specific physiological conditions, the linear arrangement of residues will fold and adopt a
complex three dimensional shape, called native state (or tertiary structure) of the protein. In its
native state, residues that are far away along the linear arrangement may come into proximity in
three dimensional space. The proximity relation between residues in a protein is captured by a
mathematical construct called a contact map. Formally, a map is specified by a 0− 1 symmetric
n× n matrix C whose 1-elements correspond to pairs of amino acids on 3D contact, i.e. cij = 1
if the Euclidean distance of two heavy atoms(or the minimum distance between any two atoms
belonging to those residues) from the i-th and the j-th amino acid of a protein is smaller than
a given threshold in the protein native fold. In the pairwise comparison one tries to evaluate
the similarity in the 3D- folds of two proteins by determining the maximum overlap (also called
alignment) of contacts map (See Fig 1.20, where the two contact maps are shown in red and the
matching in blue ).
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Figure 1.20: Contact map overlap instance

Our interest in the comparison of the 3D structures of protein molecules based on such max-
imal common sub-graph detection is provoked by the apparent similarity of the resulting op-
timization problem with the one derived by another challenging problem- the protein folding,
approached by the protein threading technique. For the later in [4] we have presented a method-
ology, based on s.c. non-crossing matching in bipartite graphs, culminated in highly efficient
algorithms for solving the PTP by using the Lagrangian duality [5, 12, 58]. In the same time (in-
dependently) in [46] a Lagrangian approach have been reported successful for the CMO problem.
Please refer to this paper for the history of this problem, the various techniques for solving it, and
at the end for the triumph of the algorithm proposed there. So the challenge is : could one create
a competitive algorithm based on the above-mentioned PTP platform ? Below, we concentrate on
the description of such an algorithm and answer affirmatively to this question. The counterpart of
the CMO problem in the graph theory is the well known maximum common subgraph problem
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(MCS) [69]. The bad news for the later is its APX-hardness (see A compendium of NP optimiza-
tion problems available at http://www.nada.kth.se/~viggo/problemlist/). The
only difference between the above defined CMO and MCS is that the izomorphism used for the
MCS is not restricted to the non-crossing matchings only. Nevertheless the CMO is also known
[65] to be NP-hard. Some authors [66] use the adjectives sequential, if in doing protein structure
alignment the sequential order (the vertices of the graphs are ordered by a linear sequence and
the bijection is order-preserving) is enforced, and non-sequential (equivalent to MCS ) in the
other case.

1.4.2 The mathematical model
We are going to present the CMO problem as a matching problem in a bipartite graph, which in
turn will be posed as a longest augmented path problem in a structured graph. Toward this end
we need to introduce few notations as follows. The contacts maps of two proteins P1 and P2 are
given by graphs Gm = (Vm, Em) with Vm = {1, 2, . . . , nm} for m = 1, 2. The vertices Vm are
better seen as ordered points on a line and correspond to the residues of the proteins. The arcs
(i, j) correspond to the contacts. The right and left neighborings of node i are elements of the
sets δ+

m(i) = {j|j > i, (i, j) ∈ Em}, δ−m(i) = {j|j < i, (j, i) ∈ Em}. Let i ∈ V1 be matched
with k ∈ V2 and j ∈ V1 be matched with l ∈ V2. We will call a matching non-crossing, if
i < j implies k < l. A feasible alignment of two proteins P1 and P2 is given by a non-crossing
matching in the complete bipartite graph B with a vertex set V1 ∪ V2.

Let the weight wikjl of the matching couple (i, k)(j, l) be set as follows

wikjl =

{
1 if (i, j) ∈ E1 and (k, l) ∈ E2

0 otherwise (1.70)

For a given non-crossing matching M in B we define its weight w(M) as a sum over all couples
of edges in M . The CMO problem consists then in maximizing w(M), where M belongs to the
set of all non-crossing matchings in B.

In [4, 5, 12, 58] we’ve already dealt with non-crossing matching and proposed a network
flow presentation of similar one-to-one mappings (in fact the mapping there was many-to-one ).
The adaptation of this approach to CMO is as follows: The edges of the bipartite graph B are
mapped to the points of n1 × n2 rectangular grid B′ = (V ′, E ′) according to: point - (i, k) ∈ V ′

←→ edge - (i, k) in B.
Definition. The feasible path is an arbitrary sequence (i1, k1), (i2, k2), . . . , (it, kt) of points

in B′ such that ij < ij+1 and kj < kj+1 for j = 1, 2, . . . , t− 1.
The correspondence feasible path←→ non-crossing matching is obvious. This way the prob-

lems on non-crossing matchings are converted to problems on feasible paths. We also add arcs
(i, k) → (j, l) ∈ E ′ iff wikjl = 1. In B′, solving CMO corresponds to finding the densest (in
terms of arcs) subgraph of B′ whose node set is a feasible path (see for illustration Fig. 1.21).

To each node (i, k) ∈ V ′ we associate now a 0/1 variable xik, and to each arc (i, k) →
(j, l) ∈ E ′, a 0/1 variable yikjl. Denote by X the set of feasible paths. The problem can now be
stated as
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Figure 1.21: Left: Vertex 1 from V1 is matched with vertex 1 from V2 and 2 is matched with
3: matching couple (1, 1)(2, 3). Other matching couples are (3, 4)(5, 5). This defines a feasible
matching M = {(1, 1)(2, 3), (3, 4)(5, 5)} with weight w(M) = 2. Right: The same matching
visualized in graph B′.

v(CMO) = max
∑

(ik)(jl)∈E′
yikjl (1.71)

subject to

xik ≥
∑

l∈δ+
2 (k)

yikjl, j ∈ δ+
1 (i)

i = 1, 2, . . . , n1− 1,
k = 1, 2, . . . , n2− 1

(1.72)

xik ≥
∑

l∈δ−2 (k)

yjlik, j ∈ δ−1 (i)
i = 2, 3, . . . , n1,
k = 2, 3, . . . , n2

(1.73)

xik ≥
∑

j∈δ+
1 (i)

yikjl, l ∈ δ+
2 (k)

i = 1, 2, . . . , n1− 1,
k = 1, 2, . . . , n2− 1

(1.74)

xik ≥
∑

j∈δ−1 (i)

yjlik, l ∈ δ−2 (k)
i = 2, 3, . . . , n1,
k = 2, 3, . . . , n2.

(1.75)

x ∈ X (1.76)

Actually, we know how to represent X with linear constraints. Recalling the definition of
feasible path, (1.76) is equivalent to

k∑

l=1

xil +
i−1∑
j=1

xjk ≤ 1, i = 1, 2, . . . , n1, k = 1, 2, . . . , n2. (1.77)
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We recall that from the definition of the feasible paths in B′ (non-crossing matching in B)
the j-th residue from P1 could be matched with at most one residue from P2 and vice-versa.
This explains the sums into right hand side of (1.72) and (1.74) – for arcs having their tails at
vertex (i, k); and (1.73) and (1.75)– for arcs heading to (i, k). Any (i, k)(j, l) arc can be activated
(yikjl = 1)iff xik = 1 and xjl = 1 and in this case the respective constraints are active because of
the objective function.

A tighter description of the polytop defined by (1.72)–(1.75) and 0 ≤ xik ≤ 1, 0 ≤ yikjl

could be obtained by lifting the constraints (1.73) and (1.75) as it is shown in Fig. 1.22. The
points shown are just the predecessors of (i, k) in graph B′ and they form a grid of δ−1 (i) rows
and δ−2 (k) columns.Let i1, i2, . . . , is be all the vertices in δ−1 (i) ordered according the number-
ing of the vertices in V1 and likewise k1, k2, . . . , kt in δ−2 (k). Then the vertices in the l-th col-
umn (i1, kl), (i2, kl), . . . (is, kl) correspond to pairwise crossing matchings and at most one of
them could be chosen in any feasible solution x ∈ X (see (1.75)). This "all crossing" property
will stay even if we add to this set the following two sets: (i1, k1), (i1, k2), . . . , (i1, kl−1) and
(is, kl+1), (is, kl+2, . . . , (is, kt). Denote by colik(l) the union of these three sets and analogously
by rowik(j) the corresponding union for the j-th row of the grid. When the grid is one column
(row) only the set rowik(j)(colik(l))is empty.

Now a tighter LP relaxation of (1.72)–(1.75) is obtained by changing (1.73) with

xik ≥
∑

(r,s)∈rowik(j)

yrsik, j ∈ δ−1 (i)
i = 2, 3, . . . , n1,
k = 2, 3, . . . , n2

(1.78)

and (1.75) with

xik ≥
∑

(r,s)∈colik(l)

yrsik, l ∈ δ−2 (k)
i = 2, 3, . . . , n1,
k = 2, 3, . . . , n2.

(1.79)

Remark:Since we are going to apply the Lagrangian technique there is no need neither for an
explicit description of the set X neither for lifting the constraints (1.72) (1.74).

1.4.3 Lagrangian relaxation approach
Here, we show how the Lagrangian relaxation of constraints (1.78) and (1.79) leads to an effi-
ciently solvable problem, yielding upper and lower bounds that are generally better than those
found by the best known exact algorithm [46].

Let λh
ikj ≥ 0 (respectively λv

ikj ≥ 0) be a Lagrangian multiplier assigned to each constraint
(1.78) (respectively (1.79). By adding the slacks of these constraints to the objective function
with weights λ, we obtain the Lagrangian relaxation of the CMO problem

LR(λ) = max
∑

i,k,j∈δ−1 (i)

λh
ikj(xik −

∑

(r,s)∈rowik(j)

yrsik)

+
∑

i,k,l∈δ−2 (k)

λv
ikl(xik −

∑

(r,s)∈colik(l)

yrsik) +
∑

(ik)(jl)∈EB′

yikjl

(1.80)

subject to x ∈ X , (1.72), (1.74) and y ≥ 0.
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(i,k)

l

b)

(i,k)

Figure 1.22: O: set of vertices in V ′ which are tails for the arcs heading to (i, k). In a): H
correspond to the indices of yjlik in (1.75) for l fixed. In b): H correspond to the indices of
yjlik in (1.79) for l fixed.

Proposition 3. LR(λ) can be solved in O(|V ′|+ |E ′|) time.

Proof:
For each (i, k) ∈ V ′, if xik = 1 then the optimal choice yikjl amounts to solving the following

: The heads of all arcs in E ′ outgoing from (i, k) form a |δ+(i)| × |δ+(k)| table. To each point
(j, l) in this table, we assign the profit max{0, cikjl(λ)} , where cikjl(λ) is the coefficient of yikjl

in (1.80). Each vertex in this table is a head of an arc outgoing from (i, k).Then the subproblem
we need to solve consists in finding a subset of these arcs having a maximal sum cik(λ) of
profits(the arcs of negative weight are excluded as a candidates for the optimal solution) and
such that their heads lay on a feasible path. This could be done by a dynamic programming
approach in O(|δ+(i)||δ+(k)|) time. Once profits cik(λ) have been computed for all (i, k) we can
find the optimal solution to LR(λ) by using the same DP algorithm but this time on the table of
n1× n2 points with profits for (i, k)-th one given by

cik(λ) +
∑

j∈δ−1 (i)

λh
ikj +

∑

l∈δ−2 (k)

λv
ikl. (1.81)

where the last two terms are the coefficients of xik in (1.80).
Remark:The inclusion x ∈ X is explicitly incorporated in the DP algorithm.

The algorithm

In order to find the tightest upper bound on v(CMO) (or eventually to solve the problem) , we
need to solve in the dual space of the Lagrangian multipliers LD = minλ≥0 LR(λ), whereas
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LR(λ) is a problem in x, y. A number of methods have been proposed to solve Lagrangian du-
als: subgradient method, dual ascent methods,constraint generation method, column generation,
bundel methods,augmented lagrangian methods, etc. Here, we choose the subgradient method.
It is an iterative method in which at iteration t, given the current multiplier vector λt, a step is
taken along a subgradient of LR(λ), then if necessary, the resulting point is projected onto the
nonnegative orthant. It is well known that practical convergence of the subgradient method is
unpredictable. For some problems, convergence is quick and fairly reliable, while other prob-
lems tend to produce erratic behavior of the multiplier sequence, or the Lagrangian value, or
both.In a "good" case, one usually observe a saw-tooth pattern in the Lagrangian value for the
first iterations, followed by a roughly monotonic improvement and asymptotic convergence to a
value that is hopefully the optimal lagrangian bound. The computational runs on a reach set of
real-life instances confirm a "good" case belonging of our approach at some expense in the speed
of the convergence.

In our realization, the update scheme for λikj is λt+1
ikj = max{0, λt

ikj − Θtgt
ikj} 8, where

gt
ikj = x̄ik−

∑
ȳjlik is the sub-gradient component(0, 1,or−1), calculated on the optimal solution

x̄, ȳ of LR(λt). The step size Θt is Θt = α(LR(λt)−Zlb)P
(gt

ikj)
2+
P

(gt
ikl)

2 where Zlb is a known lower bound
for the CMO problem and α is an input parameter. Into this approach the x-components of
LR(λt) solution provides a feasible solution to CMO and thus a lower bound also . The best
one (incumbent) so far obtained is used for fathoming the nodes whose upper bound falls below
the incumbent and also in section 1.4.4 for reporting the final gap.If LD ≤ v(CMO) then the
problem is solved. If LD > v(CMO) holds, in order to obtain the optimal solution, one could
pass to a branch&bound algorithm suitably tailored for such an upper bounds generator.

From among various possible nodes splitting rules, the one shown in Fig. 1.23 gives quite sat-
isfactory results (see section 1.4.4). Formally, let the current node be a subproblem of CMO de-
fined over the vertices of V ′ falling in the interval [lc(i), uc(i)] for i = 1, n2(in Fig. 1.23these are
the points in-between two broken lines).Let (rowbest, colbest) be the arg max min(Su(i, k), Sd(i, k)),
where Sd(i, k) =

∑
j≤k max(uc(j)− i, 0) and Su(i, k) =

∑
j≥k max(i− lc(j), 0). Now, the two

descendants of the current node are obtained by discarding from its feasible set the vertices in
Sd(rowbest, colbest) and Su(rowbest, colbest) resp.The goal of this strategy is twofold:to create
descendants that are balanced in sense of feasible set size and to reduce maximally the parent
node’s feasible set.

In addition, the following heuristics happened to be very effective during the traverse of the
B&B tree nodes. Once the lower and the upper bound are found at the root node, an attempt to
improve the lower bound is realized as follows.

Let (ik1 , k1), (ik2 , k2), . . . , (iks , ks) be an arbitrary feasible path which activates certain num-
ber of arcs (recall that each iteration in the sub-gradient optimization phase generates such path
and lower bound as well).

Then for a given strip size sz (an input parameter set by default to 4), the matchings in the
original CMO are restricted to fall in a neighborhood of this path, allowing xik to be non zero
only for

max{1, ij − sz} ≤ i ≤ min{n1, ij + sz}, j = k1, k2, . . . , ks.

8analogously for λikl
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Figure 1.23:

The Lagrangian dual of this subproblem is solved and a better lower bound is possibly sought.
If the bound improves the incumbent,the same procedure is repeated by changing the strip along-
side the new feasible solution.

Finally, the main steps of the B&B algorithm are as follows:
Initialization: Set L={original CMO problem, i.e. no restrictions on the feasible paths}.
Problem selection and relaxation: Select and delete the problem P i from L having the biggest
upper bound. Solve the Lagrangian dual of P i. (Here a repetitive call to a heuristics is included
after each improvement on the lower bound).
Fathoming and Pruning: Follow the classical rules.
Partitioning : Create two descendants of P i using (rowbest, colbest). Add these descendants to
L.
Termination : if L = ∅, the solution (x∗, y∗) which yielded the incumbent objective value is
optimal.

1.4.4 Computational results

The numerical results presented in this section were obtained on a cluster of 12 AMD Opteron(TM)
CPU 2.4 GHz, 4 Gb Ram, RedHat 9 Linux, connected by a 1 Gb Ethernet network. The algo-
rithm was implemented in C. To test its performance we used a set of large proteins suggested by
Jeffrey Skolnick that was used in various recent papers related to protein structure comparison
[46, 70]. This set contains 33 proteins with a total of 40 domains classified by SCOP into five
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families (see Table 1.10) 9. Below we compare the performance of our approach with the previ-
ously known exact algorithm [46]. Note that both approaches use diverse (but Lagrangian type)
relaxations. Our algorithm will be called a_purva10 while the other Lagrangian algorithm is
denoted here by (LR)11.

Fold Family Proteins
1 Flavodoxin-like CheY-related 1b00, 1dbw, 1nat, 1ntr,

1qmp(A,B,C,D), 3chy, 4tmy(A,B)
2 Cupredoxin-like Plastocyanin/ 1baw, 1byo(A,B), 1kdi, 1nin, 1pla

azurin-like 2b3i, 2pcy, 2plt
3 TIM beta/alpha- Triosephosphate 1amk, 1aw2, 1b9b, 1btm, 1hti

barrel isomerase (TIM) 1tmh, 1tre, 1tri, 1ydv, 3ypi, 8tim
4 Ferritin-like Ferritin 1b71, 1bcf, 1dps, 1hfa, 1ier, 1rcd
5 Microbial Fungal 1rn1(A,B,C)

ribonucleases ribonucleases

Table 1.10: The Skolnick set

The Skolnick set requires aligning 780 pairs of proteins. Those are medium size proteins,
the number of their residues varies from 95 (2b3iA) to 252 (1aw2A). The maximum number of
contacts is 593 (1btmA). We bounded the execution time to 1800 seconds for both algorithms.
a_purva succeeded to solve 171 couples for the given period of time, while LR solved only
157 couples. Figure 1.24 illustrates LR/a_purva time ratio as a function of solved instances.
It is easily seen that a_purva is significantly faster than LR (up to several hundred times in the
majority of cases). Table 1.11 contains more details concerning the first 164 pairs of proteins.
We observed that this set is a very interesting one. It is characterized by the following properties:
a) in all but 5 instances the a_purva running time is less than 10 seconds; b) in all instances
the relative gap12 at the root of the B&B is smaller than 4, while in all other instances this
gap is much larger : greater than 18 even for the couples we succeeded to solve for less than
1800 sec: c) this set contains all instances such that both proteins belong to the same family
according SCOP classification. In other words, each pair such that both proteins belong to the
same family is an easily solvable instance for a_purva and this feature can be successfully
used as a discriminator (at least for the Skolnick set). In fact, by virtue of this relation (similar
structure - less computational time and vice-versa) we were able to correctly classify this 40
items set in 2000 seconds overall running time on all 780 instances.

9Caprara et al. [46] mention only four families. This wrong classification is also accepted in other studies [70].
The families are in fact five as shown in Table 1.10. According to SCOP classification the protein 1arn1 does not
belong to the first family as indiquated in [46]. Note that this corroborates the results obtained in [46] but the authors
considered it as a mistake.

10Apurva (Sanskrit) = not having existed before, unknown, wonderful, ...
11The code of LR, as well as the contact map graphs for the Skolnick set, were kindly provided to us by Giuseppe

Lancia.
12We define the relative gap as 100× UB−LB

UB .
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F Proteins CMO Time Time Proteins CMO Time Time
Name LR a_pr Name LR a_pr

1 1b00A 1dbwA 149 192.00 1.2 1ntr_ 1qmpA 119 545.94 7.18
1 1b00A 1nat_ 145 166.98 1.11 1ntr_ 1qmpB 115 454.01 4.23
1 1b00A 1ntr_ 118 565.47 3.59 1ntr_ 1qmpC 116 610.93 6.56
1 1b00A 1qmpA 143 198.72 1.33 1ntr_ 1qmpD 118 522.53 4.44
1 1b00A 1qmpB 136 439.95 59.65 1ntr_ 3chy_ 130 339.86 5.53
1 1b00A 1qmpC 139 263.81 1.68 1ntr_ 4tmyA 126 450.05 3.34
1 1b00A 1qmpD 137 181.23 1.89 1ntr_ 4tmyB 127 399.26 3.75
1 1b00A 3chy_ 154 141.50 0.85 1qmpA 1qmpB 221 3.77 0.03
1 1b00A 4tmyA 155 143.92 0.9 1qmpA 1qmpC 232 0.35 0.02
1 1b00A 4tmyB 155 75.41 0.73 1qmpA 1qmpD 230 0.02 0.03
1 1dbwA 1nat_ 157 226.42 1.51 1qmpA 3chy_ 160 69.78 1.07
1 1dbwA 1ntr_ 130 426.13 5.53 1qmpA 4tmyA 162 98.21 0.78
1 1dbwA 1qmpA 152 159.74 2.93 1qmpA 4tmyB 164 50.48 0.62
1 1dbwA 1qmpB 150 63.63 1.52 1qmpB 1qmpC 221 1.60 0.02
1 1dbwA 1qmpC 150 180.52 2.38 1qmpB 1qmpD 220 1.61 0.03
1 1dbwA 1qmpD 152 111.28 1.78 1qmpB 3chy_ 156 68.17 0.84
1 1dbwA 3chy_ 164 84.22 1.19 1qmpB 4tmyA 157 51.32 0.58
1 1dbwA 4tmyA 161 73.71 1.1 1qmpB 4tmyB 156 66.11 0.64
1 1dbwA 4tmyB 163 47.87 1.11 1qmpC 1qmpD 226 3.65 0.02
1 1nat_ 1ntr_ 127 302.39 3.59 1qmpC 3chy_ 157 75.14 1.23
1 1nat_ 1qmpA 157 66.03 1.04 1qmpC 4tmyA 162 55.46 1.26
1 1nat_ 1qmpB 149 69.00 0.99 1qmpC 4tmyB 162 78.52 0.58
1 1nat_ 1qmpC 152 73.53 1.07 1qmpD 3chy_ 158 59.47 1.11
1 1nat_ 1qmpD 151 99.14 1.33 1qmpD 4tmyA 157 59.23 0.71
1 1nat_ 3chy_ 163 76.95 0.86 1qmpD 4tmyB 159 53.27 0.59
1 1nat_ 4tmyA 175 15.58 0.28 3chy_ 4tmyA 171 54.33 0.55
1 1nat_ 4tmyB 172 19.06 0.37 3chy_ 4tmyB 174 41.43 0.5
1 4tmyA 4tmyB 230 0.02 0.02
2 1bawA 1byoA 152 11.59 0.25 1byoB 2b3iA 135 7.21 0.27
2 1bawA 1byoB 155 6.11 0.18 1byoB 2pcy_ 175 2.28 0.05
2 1bawA 1kdi_ 140 33.84 0.55 1byoB 2plt_ 174 3.90 0.06
2 1bawA 1nin_ 153 9.45 0.21 1kdi_ 1nin_ 129 52.53 1.13
2 1bawA 1pla_ 124 28.04 0.62 1kdi_ 1pla_ 126 33.59 0.89
2 1bawA 2b3iA 130 15.57 0.38 1kdi_ 2b3iA 122 40.83 0.84
2 1bawA 2pcy_ 148 6.91 0.16 1kdi_ 2pcy_ 145 15.19 0.3
2 1bawA 2plt_ 161 5.22 0.13 1kdi_ 2plt_ 150 24.56 0.32
2 1byoA 1byoB 192 2.61 0.02 1nin_ 1pla_ 130 22.76 0.69
2 1byoA 1kdi_ 148 17.89 0.35 1nin_ 2b3iA 129 25.55 0.5
2 1byoA 1nin_ 140 30.14 0.85 1nin_ 2pcy_ 139 23.31 0.49
2 1byoA 1pla_ 150 7.55 0.16 1nin_ 2plt_ 146 18.85 0.52
2 1byoA 2b3iA 132 10.26 0.39 1pla_ 2b3iA 122 12.65 0.32
2 1byoA 2pcy_ 176 2.18 0.04 1pla_ 2pcy_ 143 4.75 0.14
2 1byoA 2plt_ 172 3.77 0.07 1pla_ 2plt_ 144 7.10 0.17
2 1byoB 1kdi_ 152 11.89 0.21 2b3iA 2pcy_ 127 11.79 0.35
2 1byoB 1nin_ 141 21.05 0.6 2b3iA 2plt_ 140 7.37 0.17
2 1byoB 1pla_ 148 6.94 0.16 2pcy_ 2plt_ 172 3.67 0.06
3 1amk_ 1aw2A 411 1272.28 1.48 1btmA 1tmhA 432 1801.97 2.81
3 1amk_ 1b9bA 400 1044.23 2.04 1btmA 1treA 433 1512.26 2.59
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3 1amk_ 1btmA 427 1287.48 2.38 1btmA 1tri_ 419 1455.08 3.26
3 1amk_ 1htiA 407 265.16 1.4 1btmA 1ydvA 385 692.72 1.52
3 1amk_ 1tmhA 424 638.26 1.29 1btmA 3ypiA 406 1425.09 2.43
3 1amk_ 1treA 411 716.51 1.52 1btmA 8timA 408 940.59 2
3 1amk_ 1tri_ 445 447.54 0.97 1htiA 1tmhA 416 588.98 1.07
3 1amk_ 1ydvA 384 462.44 1.05 1htiA 1treA 426 395.23 0.81
3 1amk_ 3ypiA 412 427.66 0.97 1htiA 1tri_ 412 779.84 1.55
3 1amk_ 8timA 410 386.73 0.94 1htiA 1ydvA 382 405.04 1.09
3 1aw2A 1b9bA 411 961.04 3.28 1htiA 3ypiA 422 148.75 0.56
3 1aw2A 1btmA 434 750.67 3.1 1htiA 8timA 463 112.65 0.52
3 1aw2A 1htiA 425 363.03 1.78 1tmhA 1treA 513 119.27 0.23
3 1aw2A 1tmhA 474 185.72 0.51 1tmhA 1tri_ 413 630.57 2.19
3 1aw2A 1treA 492 157.79 0.37 1tmhA 1ydvA 384 785.56 1.5
3 1aw2A 1tri_ 408 1313.53 3.51 1tmhA 3ypiA 417 766.79 2.11
3 1aw2A 1ydvA 386 650.55 1.62 1tmhA 8timA 421 516.44 1.47
3 1aw2A 3ypiA 401 895.17 2.28 1treA 1tri_ 401 1169.41 2.68
3 1aw2A 8timA 423 276.06 1.76 1treA 1ydvA 389 1419.90 2.21
3 1b9bA 1btmA 441 653.29 2.08 1treA 3ypiA 407 522.65 1.34
3 1b9bA 1htiA 394 809.23 2.27 1treA 8timA 425 310.95 1.15
3 1b9bA 1tmhA 418 548.56 1.34 1tri_ 1ydvA 371 1040.31 1.92
3 1b9bA 1treA 410 613.99 1.25 1tri_ 3ypiA 412 607.52 1.75
3 1b9bA 1tri_ 391 1804.98 3.32 1tri_ 8timA 412 830.38 1.45
3 1b9bA 1ydvA 362 1608.97 6.1 1ydvA 3ypiA 374 355.82 0.92
3 1b9bA 3ypiA 396 700.45 1.88 1ydvA 8timA 388 399.47 0.99
3 1b9bA 8timA 392 634.48 1.66 3ypiA 8timA 418 267.14 0.65
3 1btmA 1htiA 403 1566.88 3.51
4 1b71A 1bcfA 211 1800.08 453.08 1bcfA 1rcd_ 222 528.84 1.99
4 1b71A 1dpsA 174 1800.43 266.54 1dpsA 1fha_ 180 1800.24 9.45
4 1b71A 1fha_ 216 1802.46 303.02 1dpsA 1ier_ 184 1800.31 8.42
4 1b71A 1ier_ 214 1801.32 480.43 1dpsA 1rcd_ 184 1490.02 5.7
4 1b71A 1rcd_ 211 1802.48 319 1fha_ 1ier_ 299 69.34 0.25
4 1bcfA 1dpsA 187 510.17 3.81 1fha_ 1rcd_ 295 36.40 0.19
4 1bcfA 1fha_ 218 1017.59 2.69 1ier_ 1rcd_ 297 24.03 0.15
4 1bcfA 1ier_ 226 556.33 3.28
5 1rn1A 1rn1B 191 1.23 0.03 1rn1B 1rn1C 197 0.21 0.01
5 1rn1A 1rn1C 190 1.01 0.03
6 1qmpD 1tri_ 131 1801.09 1674.98 1byoB 1rn1C 66 1800.09 686.03
6 1kdi_ 1qmpD 73 1800.15 904.75 1dbwA 1treA 145 1802.01 1703.2
6 1tmhA 4tmyB 112 1802.80 1521.23 1dbwA 1tri_ 149 1800.73 1173.5
6 1dpsA 4tmyB 89 1800.39 913.24

Table 1.11: Column one contains the number of the families according
to table 1.10. The sixth class contains the hardest solved Skolnick set
intstances. Column two(six) contains the names of the couples, column
three(seven) is the score, column four(height) gives the time in seconds
taken by LR algoritm, and column five(nine) presents the corresponding
time taken by a_purva.
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Figure 1.24: LR time
a_purva time ratio as a function of solved instances

Our next observation (see Figures 1.25 and 1.26) concerns the quality of gaps obtained by
both algorithms on the set of unsolved instances. Remember that when a Lagrangian algorithm
stops because of time limit (1800 sec. in our case) it provides two bounds: one upper (UB), and
one lower (LB). Providing these bounds is a real advantage of a B&B type algorithm compared to
any metaheuristics. These values can be used as a measure for how far is the optimization process
from finding the exact optimum. The value UB-LB is usually called absolute gap. Any one of
the 609 points (x, y) in Figure 1.25) presents the absolute gap for a_purva (x coordinate) and
for LR (y coordinate) algorithm. All points are above the y = x line (i.e. the absolute gap for
a_purva is always smaller than the absolute gap for LR). On the other hand the entire figure is
very asymmetric in a profit of our algorithm since its maximal absolute gap is 33, while it is 183
for LR.

We afterwards similarly compared lower and upper bounds separately. This is illustrated in
Figures 1.26. Any point denoted by ◦ has the lower bound computed by a_purva(LR) as x (y)
coordinate, while any point denoted by × has the upper bound computed by a_purva(LR) as x
(y) coordinate. We observe that in a large majority the points ◦ are below the y = x line while
the points × are above this line. This shows that usually the lowers bounds found by a_purva
are higher, while its upper bounds are all smaller and it is clear that a_purva significantly
outperforms LR on quality of its bounds.
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Figure 1.25: Comparing absolute gaps on the set of unsolved instances. The gaps computed by
a_purva are significantly smaller.
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Figure 1.26: Comparing the quality of lower and upper bounds on the set of unsolved instances.
a_purva clearly ourperforms LR on the quality of its bounds.

1.4.5 Conclusion
In this section, we give efficient exact B&B algorithm for contact map overlap problem . The
bounds are found by using Lagrangian relaxation and the dual problem is solved by sub-gradient
approach. The efficiency of the algorithm is demonstrated on a benchmark set of 780 instances
and the dominance over the existing algorithms is total. When the algorithm is used for classi-
fication purposes (and this was the primary goal) the average time for correctly classifying two
proteins of the same class is 0.6 seconds.
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1.5 Optimal Segmentation of Bacterium Genomes

1.5.1 Introduction

A practical way to study the plasticity of bacterium genomes without systematically sequencing
all the available strains is to exploit the LR-PCR (Long Range Polymerase Chain Reaction)
technique. The genomes of the strains are split into a large number of short segments before
performing a LR-PCR on each of them. Depending on the reorganization, the deletion or the
insertion of certain genomic zones, it is expected that a few segments will not be amplified.
Thus, a profile – or a signature – can be assigned to each strain. It represents the set of amplified
and non amplified segments. The final step is to perform a global analysis of all the profiles.
This strategy, recently tested by Ohnishi et al. [60] to study the genome diversity of E. coli, is
explained on Fig. 1.27.
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Figure 1.27: Strategy to study the plasticity of a circular bacterial genome: a reference strain is
fully covered with overlapping segments. The two extremities of each segment are characterized
by starting and ending primers. On the reference strain, the LR-PCR amplifies all the segments.
On strain A the zones a and f have swapped, preventing the amplification of segments 1, 2, 6 and
7. On strain B, zone e is modified: segments 5 and 6 cannot be amplified.

This strategy first implies to determine the set of segments which will cover the genome. A
strain whose genome is entirely sequenced is chosen as reference. Then, potential PCR primers
are localized on the genome since they specify the position where the segments start and end.
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Having these data, the goal is to cover the genome with overlapping segments of nearly identical
size, knowing that the segments locations are constrained by the position of the primers.

Actually, the distribution of the primer sites along the bacterium genome is non-uniform.
There may have large regions (a few Kbp) without primer sites or, on the contrary, very dense
regions of primer sites. In addition, some regions are forbidden: they correspond to repeated
zones, bacteriophage sequences, or mobile elements such as transposons. As some of these
regions are longer than the expected length of the covering segments, the circular genome is cut
into a few number of linear pieces, called domains (see Fig. 1.28).

X

Y

Z

A

B

C

Figure 1.28: Regions X, Y and Z are forbidden. The length of each one of them is larger than the
size of the covering segments. The problem of segmenting a full genome is therefore transformed
in segmenting three linear pieces denoted here as A, B and C and called domains. Any domain
is associated to the solution of an independent subproblem.

Thus, the problem of segmenting a complete bacterial genome is reduced to cover each do-
main with segments of nearly identical size. Along a domain, there are specific positions called
primer sites. The overlapping segments can start and end only at these particular positions. If
we assume, for the sake of simplicity, that a solution is made of a list S of N segments, and
that each segment can take only P different positions, then the number of possibilities is equal to
PN . Finding the best one when N is large is clearly a combinatorial problem (in real application,
N > 100).

More formally, the problem can be formulated as follows. Given a domain, i.e. a DNA
sequence ranging from a few 100 Kpb to a few Mbp, together with all potential primer positions,
we need to cover it with a sequence of overlapping segments of nearly identical size. Such a
covering will be called a segmentation if the segments satisfy the following conditions:

• The length of any segment varies in the range [L,L].

• The length of the overlap between any two consecutive segments varies in the range [O, O].

• The distance from the beginning of the domain to the starting-primer of the first segment
is no more than Ds. The distance from the ending-primer of the last segment to the end of
the domain is no more than De.
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Two cases of this problem have been considered. In the first one we search for a sequence S
of overlapping segments, each one of size as close as possible to a given ideal length L. In the
second case, the value of L is unknown and we look for a couple (L∗, S), where L∗, L ≤ L∗ ≤ L,
and such that the sequence S is of of minimal error with respect to L∗.

For each case we: (i) formulate a suitable combinatorial optimization model; (ii) program
dedicated algorithm for solving these models; (iii) analyze the complexity of the proposed al-
gorithms. We are not aware of other algorithms from the literature to have been used for this
purpose. This paper focusses on the algorithmic aspects of the problem. The reader interested in
the genomic aspects can find more details in the accompanying paper [63].

Organization of the paper is as follows. The formal statement of the problem and definitions
are given in section 1.5.2. Section 1.5.3 considers the first case of the problem, while the second
case is discussed in section 1.5.4. Numerical results and complexity analysis are provided in
section 1.5.5.

1.5.2 Graph problem formulation
The formal statement of the problem is as follows. Let be given: i) a nucleotide sequence D
containing DL elements (called domain); ii) a set Sl of starting-primer sites; iii) a set Sr of
ending-primer sites. We can then define the set F of feasible segments, i.e. couples of starting
and ending primers, f = [b, e], b < e, such that:

• b ∈ Sl, e ∈ Sr.

• the length l(f) = e− b satisfies L ≤ l(f) ≤ L.

Let us denote by Fs (resp. Ft) the set of segments which can begin (resp. end) a segmentation.
This means that if f = [b, e] ∈ Fs then b ≤ Ds and that if f = [b, e] ∈ Ft then DL − e ≤ De.

Definition 4. The segment f ′ is compatible with the segment f (denoted as f ≺ f ′), iff f ′ starts
to the left of the ending-primer site of f and the length of the overlap is in [O,O].

Definition 5. A sequence S = f1, f2, . . . fk of feasible segments will be referred to as a covering
sequence (segmentation) if f1 ∈ Fs, fk ∈ Ft and fi ≺ fi+1.

Definition 6. A covering graph of the nucleotide sequence is a directed graph G(V, A):

• the node set V = F ∪ {s, t}, where s and t two additional vertices.

• the arc set

A = {(f, f ′) ∈ F × F : f ≺ f ′}
∪ {(s, f) ∈ {s} × Fs}
∪ {(f, t) ∈ Ft × {t}}

Remark 4. Note that the covering graph G(V, A) is without circuits because of the binary relation
“is compatible with”. The non-directed version of this graph is a subgraph of the so called
interval graph (see chapter 1.5.4 [62]) over the set of feasible intervals.
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1.5.3 The case when the segment length is given
In this section we assume that an ideal length L is given and we define a cost function CL(f) on
F as: ∀f ∈ F CL(f) = |l(f) − L|. The problem to solve can be considered as a minmax
(bottleneck) variant of the classical Shortest Path Problem (SPP), if the length of a path r =
s, v1, . . . vk, t is determined by CL(r) = max

vi∈r
CL(vi).

One can easily see an one-to-one correspondence between covering sequences and the di-
rected paths from s to t in G. In this context the length of a path can be viewed as the error
of the segmentation associated to this path. If we denote by R the set of paths from s to t, the
problem to be solved is min

r∈R
CL(r) = C∗

L. An instance of the problem is given on Fig. 1.29,

while its corresponding covering graph is depicted on Fig. 1.30.
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Figure 1.29: An instance of the problem where: DL = 35, Sl = {1, 3, 10, 12, 21, 23}, Sr =
{11, 13, 22, 24, 29, 35}, Ds = 3, De = 6, (L, L) = (6, 14), L = 10, (O, O) = (1, 3).
For the sake of simplicity we do not consider the entire set F , but a subset of it containing the
feasible segments a, b, c, d, e, f with lengths respectively (12, 8, 10, 14, 8, 12).
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Figure 1.30: The covering graph corresponding to Fig. 1.29. The circles contain the segments
lengths. When the algorithm SPP is applied to this graph, it finds an optimal path (s − a − c −
e − t) which contains segments with lengths 12, 10 and 8. The error with respect to 10 equals 2.

For a graph G without circuits, a dynamic programming recurrence gives an algorithm linear
in A. Let us denote by di the length (in sense of max instead of sum) of the shortest path from
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s to vi and let Γ−1(v) be the set of all predecessors of v. Then obviously we have :

di = min
vj∈Γ−1(vi)

max{dj, CL(vi)} (1.82)

which leads to the algorithm SPP given below.

Algorithm SPP(G)
{Search for the shortest s − t path in G using a DP recurrence}
di = min

vj∈Γ−1(vi)
max{dj, CL(vi)} = max{dk, CL(vi)}

set π[i] = k; (note that k = arg min
vj∈Γ−1(vi)

max{dj, CL(vi)}
endfor

print : c ← π[|V |];
while c > 0 do

print c;
c ← π[c];

endwhile

The SPP algorithm takes as input a graph and generates a list of segments. The vertices of
G are topologically sorted before processed. This means that vertices are arranged on a line in
such a way that all arcs are from left to right.

Complexity Analysis

If the graph is represented by the predecessors of each vertex, then the algorithm SPP has com-
plexity O(|A|). This follows from the observation that |A| equals the sum of in-degrees of the
vertices and from the fact that the complexity of the topological sort is O(|A|) (see [62] chapter
3.3.4).

Remark 5. For our problem the indices of the vertices are naturally induced by appearance of the
starting-primers, i.e. the graph is already topologically sorted.

1.5.4 The case when the segment length is unknown
Up to now, the error of the segmentation was measured by the maximal deviation of the segments
from a given ideal length L. Usually, this length is taken as the middle of the interval [L, L] (i.e.
L = (L + L)/2) and is in fact a kind of simplification of the problem. Note for example that
on Fig. 1.29 there is a feasible path (a, d, f). The deviation in the lengths of the corresponding
segments, (12, 14, 12), is very small. In fact the error with respect to L = 13 is one and this
path is definitely a good candidate for the LR-PCR technique. However, it cannot be discovered
in the framework of the above described model.
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For these reasons, in this section, we make a step further toward a quite natural general-
ization of the problem by considering L as a parameter and looking for L∗ such that the best
segmentation with respect to it is of minimal error. This will change the original problem
min
r∈R

CL(r) = C∗
L to the problem min

L
min
r∈R

CL(r) = C∗. In order to put the later one in

more tractable form we can exclude L from the model in the following way: For an arbitrary
(s − t)-path r = sv0 . . . vnt let cr

min = min
vi∈r

{l(vi)} and cr
max = max

vi∈r
{l(vi)}. (Recall

that l(i) is the length of the ith segment). Then the following assertion is true:

Theorem 9. The minimal error of the segmentation given by a path r is 0.5(cr
max − cr

min) and
it is attained at the length L∗(r) = 0.5(cr

max + cr
min).

If we call cr
max − cr

min spread of the path r then according to the theorem an equivalent
reformulation of the above-mentioned problem is simply to find the (s − t)-path in G of
minimal spread, which is to find 4∗ = cmax − cmin = min

r∈R
{cr

max − cr
min}

Now, let us associate to any vertex i 6= s of the covering graph a set Ai defined as follows:

Ai = {(cr
min, cr

max) | r being a path from s to i} (1.83)

In this way a list Ai contains diverse spreads corresponding to all possible (s − i)-paths.
The solution is the minimal spread in the list At. An intuitive construction of the lists Ai is
illustrated on Fig. 1.31, while formally they are computed by the recurrences (1.84)

Ai =





{(L, L)} if i = s⋃

j∈Γ−(t)

Aj if i = t

⋃

j∈Γ−(i)

{l(i) . I | I ∈ Aj} otherwise
. (1.84)

where e . (l, u) denotes the smallest interval containing e, l and u.

Remark 6. Note that the recurrence (1.84) is correct since the covering graph is without circuits.

Defined in this way, the set At contains the pair (cr
min, cr

max) for any r being a path from s
to t. If the vertices of the graph are topologically sorted, the recurrence (1.84) can be computed
by a single traverse of the graph. The rest of the algorithm is now straightforward: select from
At the couple (l, u) with minimal spread, delete vertices with length not in the interval [l, u].
Any of the (s − t)-paths in the reduced graph is optimal.

Complexity Analysis

If the graph is represented by the predecessors of each vertex, then the algorithm SPP has com-
plexity O(|A|).

This algorithm is in fact a simple enumeration procedure and the size of the sets Ai could
be very large. For these reasons we introduce an operation (say * operation) which leads to a
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significant reduction in these sets size. The * operation retains only those couples which are
eligible for continuation, i.e. mutually non inclusive and is more precisely defined as follows:

A∗ = A \ {(l, u) ∈ A | ∃(l′, u′) ∈ A, [l′, u′] ⊂ [l, u]} (1.85)

The recurrence (1.84) is respectively modified:

A∗
i =





{(L, L)} if i = s
 ⋃

j∈Γ−(t)

A∗
j




∗

if i = t


 ⋃

j∈Γ−(i)

{l(i) . I | I ∈ A∗
j}




∗

otherwise

(1.86)

The * operation removes from Ai only pairs (l, u) which are obviously non optimal, because
of (1.85), and we therefore do not lose solution. The algorithm SITA, is described below.
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Figure 1.31: This graph illustrates the links between six segments (a,b,c,d,e,f) and the two ar-
tificial vertices s and t. The circles contain the lengths of the corresponding segments. Above
any vertex i is given the set Ai as defined in (1.83). Note that no one of the elements of the list
Ae can be eliminated. Although the element (7, 10) appears less interesting than (11, 12), its
elimination leads to a loss of the solution. In contrast, at vertex c we can eliminate (7, 12) since
[11, 12] ⊂ [7, 12] without loosing the solution. Respectively, at vertex f we can eliminate
(7, 12) since [7, 10] ⊂ [7, 12]. This elements reduction corresponds to the * operation defined
in (1.85).
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Algorithm SITA(G)
input: directed graph G(V, A, C);
output: minimal spread (cmin, cmax);
initialization: A∗

s ← {(L, L)};
topological_sort(G);

for i=2 to |V | do
for all vj ∈ Γ−(vi) do A∗

i ←
(⋃

A∗
j

)∗
enddo ;

enddo ;
(cmin, cmax) ← arg min

(l,u)∈A∗
t

(u − l);
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Figure 1.32: The graph illustrates the behavior of the algorithm SITA on the problem instance
depicted on Fig. 1.29. It finds that an optimal spread of size 2 exists and that the associate length
L∗ equals 13. The obtained optimal path is (s − a − d − f − t). It contains segments with
lengths 12, 14 and 12. Note that run on the same graph, the SPP algorithm was misled by the
value of L∗ and returned a path of spread 4.

Complexity analysis

Let A∗, B∗ be two sets such that any e ∈ A∗ (resp. any e ∈ B∗) is a minimum in respect to
the inclusion relation. Note that in this case we can define the following total order relation in
A∗ (resp. B∗)

(l, u) ≺ (l′, u′) iff (l < l′) ∧ (u < u′). (1.87)

If we assume now that A∗ and B∗ are sorted according to (1.87), then applying sort-merge
alike algorithm we can realize the operation (A∗ ⋃ B∗)∗ in O(max(|A∗|, |B∗|)) operations
(interval comparisons). Also note that the result is directly sorted according to (1.87). Using this
observation, we can easily prove that the complexity of the SITA algorithm is O(C|A|), where
C is the maximum number of eligible intervals and all of them are in the interval [L, L]. The
inequality C ≤ (L − L)/2 can be easily verified.
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1.5.5 Computational experiments
The SPP and SITA algorithms are general purpose in sense of underlying graphs, but the primary
goals were to use them for the interval graphs discussed in the introduction. That’s why all runs
are done on graphs, corresponding to domains of varying lengths with uniformly distributed
primers. Thus the lack of sufficient biological material is compensated by a randomly generated
genomes and despite some mismatches with the reality they could serve well for measuring the
computational analysis of their efficiency.

Recalling that the basic parameters are: the length DL of the studied genome domain, the
number n of primers in this domain, the allowing length from L to L for the segments and
overlap from O to O , it seems more convenient to express the computational complexity of
the algorithms as a function of these parameters. Towards this end, the following mixture of
probabilistic and deterministic arguments are used below.
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Figure 1.33: Execution time (user time) for the algorithm SITA, run on randomly generated
genomes of increasing length, (i.e primers are uniformly distributed over the domain), but of
fixed primer density for each curve. We performed our computational experiments on a Pentium
4 (1.6 Ghz) machine on Linux. Each point on the curves is the average of ten runs.

If we denote by δ the average density of the primers in the domain we obviously have δ =
n

DL
< 1. Now, for any starting-primer in the domain we have on average (L − L)δ compatible

primers (i.e. each one of can built a different segment beginning with the same starting-primer).
Thus, the total number of segments in the domain is O((L − L)δn). Similarly, for a given
segment, there are on average (O − O)δ potential primers to begin a compatible segment; for
any of these starting-primers, there are on average (L − L)δ potential ending-primers. The
total number of pairs of compatible segments (remember it corresponds to |A| in the graph
terminology) is therefore O((L − L)2(O − O)δ3n).

Therefore, we obtain that the algorithms proposed in this paper are linear in respect to the
number of primers in this domain. More precisely, the average bounds for the maximum num-
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ber of operations are: O(|A|) = O((L − L)2(O − O)δ3n) for the SPP algorithm and
O(C|A|) = O((L − L)3(O − O)δ3n) for SITA algorithm. As we already mentioned
C = (L − L)/2 is a theoretical upper bound for the lengths of the lists associated with the
vertices. It was quite intricated (but not unexpected) to observe how huge is the gap between this
bound and the real ones (less then 10 in all runs depicted on Fig. 1.33). One can easily show that
this bound is achieved for example on a graph of 11 vertices and costs from L = 10 to L̄ = 20.
If the pairs entering the vertex of cost 15 are [10, 16], [11, 17], [12, 18], [13, 19], [14, 20] then
all (C = (L − L)/2) of them will survive the seep of * operation. But whatever is the graph
with such costs there is no corresponding nucleotide sequence. In this sense, this theoretical up-
per estimate for C is indeed very pessimistic and unlikely to be reached in real life. For instance,
real life values for the parameters are: 1 Mbp for the length of the domains; 5000 to 15000 for
the number of primers; 10 Kbp ± 1000 for the length of the segments; 1 Kbp ± 500 for the
overlap and δ < 10−2 (density). In all our runs with these real life parameters we observed that
C < 10. In practice, the algorithm is fast and can segment whole genomes in very short time.

1.5.6 Conclusion

In this paper we pose and answer two questions about covering a genome by a sequence of
overlapping segments. The quality of the covering is measured according to two criteria:

• the maximal deviation of the segment’s length from a given length is minimal;

• the maximal spread between the longest and the shortest segment is minimal.

We propose two algorithms: SPP for solving the former problem and SITA for solving the
later one. They take as input the set of starting and ending-primers, the genome domain to split
into segments, and the parameters corresponding to the segment length and the overlap size.
The result is an optimal list of segments satisfying the corresponding criterion. The algorithm
SITA has been implemented using the Objective CAML language. It is part of a package called
GenoFrag which also includes another software, jointly developed with the INRA13 microbiol-
ogy team, to generate the set of primers14. Actually, this software acts as a pipeline of filters fed
by a complete genome: each filter, dedicated to some specific features, discard all the primers
which do not satisfy user-specified constraints–GC-content, thermodynamic stability, hairpin
loop size, etc. (see [63] for more details).

We tested the two algorithms on the Staphylococcus Aureus [59], a Gram-positive pathogenic
bacterium. Primers were generated from the N315 S. Aureus strain using different filters. The
largest domain represents 1.3 Mbp with an average primer density of 0.006. The computation
time for generating the optimal list of overlapping segments on a standard Linux machine (PC
running at 1.6 Ghz with 256 Mbytes of memory) does not exceed one minute. This is a very

13Laboratoire d’hygiène alimentaire,UMR STLO, INRA, ENSAR, 65 rue de Saint Brieuc, 35042 Rennes, France
14GenoFrag contains also a software for solving the problem when the length L is given. The complexity of the

underlying algorithm is slightly weaker (logarithmic factor) than SPP, since it focuses on graphs with circuits. We
do not present it here for the lack of space. The interested reader can find its description in [64].
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fast process compared to the space of all potential solutions. Furthermore, as explained in the
previous section, the complexity of the algorithms is linear in respect to the genome size.

Thanks to this property, the use of these algorithms is definitely not restricted to small
genomes, but can be applied to significantly larger ones.
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Chapter 2

Tiling problems

Tiling is a technique used to group elemental computation points so as to increase computation
granularity and thereby to reduce computation time when dealing with distributed memory par-
allel computers. This technique is restricted to perfect loop nests with uniform dependence as in
the example below.

for i = 2 to N do
for j = 2 to N do
for k = 2 to N − 1 do
a(i, j, k) = a(i − 1, j, k) + a(i, j − 1, k) + a(i, j, k − 1) + a(i − 1, j − 1, k + 1)

This is an example of a perfect loop nest of depth n = 3 on the computational domain (itera-
tion space) containing all integer points (i, j, k) 2 ≤ i ≤ N, 2 ≤ j ≤ N, 2 ≤ k ≤ N − 1,
called nodes. We are not interested in the detail of the computation performed by the state-
ments within the nest. Of interest here are the four dependence vectors d1 = (1, 0, 0), d2 =
(0, 1, 0), d3 = (0, 0, 1), d4 = (1, 1, −1) which we capture in the dependence matrix D =
(d1, d2, d3, d4) column-wise. A tile (supernode) is a set of nodes defined as a n-dimensional
parallelepiped box defined by cutting hyperplanes as:
Consider n linearly independent vectors hi. A tile is translated copy of the canonical tile defined
as follows: a node p belongs to the tile if and only if:
0 ≤ hi.p < βi, i = 1, 2, . . . , n
The other definition is by change of basis. Consider n linearly independent vectors pi to define
the edges of the tile. The tile is then the set of nodes whose coordinates are positive and strictly
less than one in the basis defined by pi’s.
If P is the matrix whose column vectors are pi and H is the matrix with rows hi then P −1 =
H .
Tiling is simply paving the iteration space with translated copies of the canonical tile defined
above. Classical constraints on tiles are the following:
Tiles are bounded This means H is non singular.
Tiles are identical by translation This constraint is imposed to allow for automatic code gen-
eration. To ensure this constraint, we impose that the edges of the tile have integral components,
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i.e. P is an integral matrix.
Tiles are atomic Each tile is a unit of computation: all synchronization points are beginnings
and ends of tiles. The order on tiles must be compatible with the order of nodes. This is satisfied
if all di belong to the cone defined by the edges of a tile. This condition is mathematically ex-
pressed as Hd ≥ 0.
Tiling is a good paradigm for parallel computers with distributed memory. In these multicomput-
ers, the relatively high communication startup costs makes frequent communication very expen-
sive. Tiling can be used to reduce the communication overhead between processors by grouping
loop iterations into tiles so that communication takes place per each tile instead of per each node.
But in general this is not only the communication time to be taken into account. The problem is
to choose the best tile size and shape to minimize the execution time of a loop nest, called time-
minimal problem , which is a difficult discrete non-linear optimization problem. In the following
two sections, we present a close-form optimal tiling for the most used tile shapes: orthogonal
and oblique (in two dimensional space).

2.1 Optimal Orthogonal Tiling

2.1.1 Introduction

Tiling the iteration space [17, 7, 14] is a common method for improving the performance of
loop programs on distributed memory machines. It may be used as a technique in parallelizing
compilers (see [6, 13] where it is also called coarse-grain pipelining), as well as in performance
tuning of parallel codes by hand (see also [10, 15]). A tile in the iteration space is a (hyper) paral-
lelepiped shaped collection of iterations to be executed as a single unit, with the communication
and synchronization being done only once per tile. Typically, communication are performed by
send/receive calls and also serve as synchronization points. The code for the body contains no
communication calls.

The tiling problem can be broadly defined as the problem of choosing the tile parameters
(notably the shape and size) in an optimal manner. It may be decomposed into two subproblems:
tile shape optimization [5], and tile size optimization [2, 6, 9, 13] (some authors also attempt to
resolve both problems under some simplifying assumptions [14, 15]). By its very nature, such a
two step approach may not be globally optimal, but is often used in order to make the problem
tractable.

In this paper, we address the tile size problem, which, for a given tile shape, seeks to choose
the size (length along each dimension of the hyper parallelepiped) so as to minimize the total
execution time. In its most general formulation, this is a hard discrete non-linear optimization
problem, and there is currently no solution. However, optimal solutions can be found analytically
under certain restrictions.

We assume that the dependencies are uniform, the iteration space (domain) is an n-dimensional
hyper-rectangle, and the tile boundaries are parallel to the domain boundary (this is called or-
thogonal tiling). A sufficient condition for this that in all dependence vectors, all non-zero terms
have the same sign. Whenever orthogonal tiling is possible, it leads to the simplest form of code;
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indeed most compilers do not even implement any other tiling strategy.
Our approach is based on the two step model proposed by Andonov and Rajopadhye [2],

and who addressed the 2-dimensional case, and which was later extended to 3 dimensions by
Andonov et al. [3]. In this model we first abstract each tile by two simple parameters: tile
period, Pt and inter-tile latency, L. We formulate and partially resolve the corresponding ab-
stract optimization problem. We then “instantiate” the abstract model by accounting for specific
architectural and program features, and analytically solve the resulting non-linear optimization
problem, yielding the desired tile size.

The extension to n dimensions was an open question and which is resolved in this paper. We
first extend and generalize the Andonov-Rajopadhye model to the case where an n-dimensional
iteration space is implemented on a k-dimensional (hyper) toroid (for any 1 ≤ k ≤ n − 1).
We then instantiate the functions for the tile period and latency, and solve the corresponding
optimization problem. We also consider a more general form of the specific functions for L
and Pt. These functions are general enough to not only include a wide variety of machine and
program models, but also be used with the BSP model [11, 16], which is gaining wide acceptance
as a well founded theoretical model for developing architecture independent parallel programs.

The remainder of this paper is organized as follows. In the following section we develop
the model and formulate the abstract optimization problem. In Section 2.1.3 we instantiate the
model for specific machine and program parameters, and show how the model is general enough
to include most of the models used in the literature. In Section 2.1.4 we resolve the problem for
the simplified HKT model which assumes that the communication cost is constant, independent
of the message volume (this is very similar to the particular case of the BSP model where the
network bandwidth is very high). Next, in Section 2.1.5 we resolve the more general optimization
problem. We present our conclusions in Section 2.1.6.

2.1.2 Abstract Model Building

We now develop an analytical performance model for the running time of the tiled program.
We introduce the notation required as we go along. The original iteration space is an N1 ×
N2× . . .×Nn hyper-rectangle, and it has (at least n linearly independent) dependency vectors,
d1, d2, . . .. The nonzero elements of the dependency vectors all have the same sign (say positive,
without loss of generality). Hence, orthogonal tiling is possible (does not induce any cyclic
dependencies between the tiles). Let the tiles be x1 × x2 × . . . × xn hyper-rectangles, and let
ni = Ni

xi
be the number of tiles in the i-th dimension. The tile graph is the graph where each

node represents a tile and each arc represents a dependency between tiles, and can be modeled
by a uniform recurrence equation [8] over an n1 × n2 × . . . × nn hyper-rectangle. It is well
known that if the xi’s are large as compared to the elements of the dependency vectors1, then
the dependencies between the tiles are unit vectors (or binary linear combinations thereof, which
can be neglected for analysis purposes without any loss of generality). A tile can be identified
by an index vector z = [z1, . . . , zn]

T . Two tiles, z and z′, are said to be successive, if z − z′

1In general this implies that the feasible value of each xi is bounded from below by some constant. For the sake
of clarity, we assume that this is 1.
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is a unit vector, i.e, one of them depends directly on the other. A simple analysis [7] shows that
the earliest “time instant” that tile z can be executed (counting one tile as one macro step) is
tz = z1 + . . . + zn.

We map the tiles to p1×p2×. . .×pk processors, arranged in a k dimensional hyper-toroid2

(for k < n). The mapping is by projection onto k of the n canonical axes. To visualize this
mapping, first consider the case when k = n − 1. Assume (without loss of generality) that the
allocation of tiles to processors is by projection along the n-th dimension, i.e., tile z is executed
by processor [z1, . . . , zn−1]

T . This yields a (virtual) array of n1×n2×. . .×nn−1 processors,
each one executing a macro column of the tile graph (i.e., all the tiles in the n-th dimension).
However, we do not insist that ni = pi, otherwise we would (unnecessarily) constrain xi to be
Ni

pi
, so this array is emulated by our p1×p2×. . .×pn−1 hyper-toroid by using multiple passes.

Note that there will be ni

pi
passes in the i-th dimension. The case when k < n is modeled by

simply letting pk+1 = . . . = pn−1 = 1.
The period, Pt of a tile is defined as the time between executions of corresponding instruc-

tions in two successive tiles in the same macro column (i.e., they are mapped to the same proces-
sor). The latency, L between tiles is defined to be the time between executions of corresponding
instructions in two successive tiles mapped to different processors. Depending on the volume of
the data transmitted and the nature of the program dependencies, the latency may be different for
different dimensions of the hyper-toroid, and we use Li to denote the latency in the i-th dimen-
sion, for i − 1 . . . k (in dimensions k + 1 to n − 1, successive tiles are executed on the same
processor, and the notion of latency is moot).

Now, to model the running time of this implementation, we assume that by the time the first
processor, [1, . . . , 1]

T finishes computing its macro column, at least one of the “last” processors
(i.e., one of [1, . . . , pi, . . . , 1]

T , for 1 ≤ i ≤ k) has finished its first tile. In this case,
processor [1, . . . , 1]

T can immediately start another pass. If this were not the case, the first
(and hence all) processors would be idle between passes, and this would lead to a sub-optimal
solution. This was formally proved for the 2-dimensional case by Andonov and Rajopadhye
[2], and the same argument can be easily extended. Let W = N1N2 . . . Nn denote the total
computation volume, v = x1x2 . . . xn be the tile volume and P = p1p2 . . . pk be the total
number of processors. The total number of tiles is n1n2 . . . nn = W

v
. Let p̃i denote pi − 1,

P̃k =
k∑

i=1

p̃i and vmax = (
∏k

i=1 Ni)/P .

Let us first analyze a single pass. Each processor must execute nn tiles, and this takes nnPt

time. However, the last processor (i.e., the one with coordinates [p1, p2, . . . pk]
T) cannot start

because of the dependencies of the tile graph. Indeed, processor [p1, 1 . . . , 1]
T can only start at

time (p1 − 1)L1, processor [p1, p2 . . . , 1]
T , at time (p1 − 1)L1 + (p2 − 1)L2), and hence

processor [p1, p2 . . . , pk]
T can only start its first pass at time

k∑

i=1

p̃iLi.

There are W
v

tiles, of which Pnn are executed in each pass, and hence there are W
P vnn

passes.

2This is just an abstract machine architecture. Our machine model is independent of the topology, since we will
later assume that communication time is independent of distance and/or contention.
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Because a new pass can begin as soon as the first processor is done with its macro column, the
last pass can start at time

(
W

P vnn
− 1

)
Ptnn. Thus, the last processor starts executing its last

macro column at time instant
(

W

Pvnn

− 1

)
Ptnn +

k∑

i=1

p̃iLi. It takes another Ptnn time,

and hence the total running time is as follows.

T (x1, . . . xn) =
WPt

Pv
+

k∑

i=1

p̃iLi (2.1)

Our optimization problem is formulated as follows.
Prob. 1: Minimize (2.1) in the feasible space, R given below (recall that the lower bounds may
be other than 1, based on the dependencies of the original recurrence).

R =
{
[x1 . . . xn]

T ∈ Zn | 1 ≤ xi ≤ ui

}
(2.2)

where ui = Ni

pi
for i = 1 . . . k, and ui = Ni for k < i ≤ n.

2.1.3 Machine and Program Specific Model
We now “instantiate” Prob. 1 for a specific program and machine architecture. The code executed
for a tile is the standard loop:

repeat
receive(v1); receive(v2), ...,receive(vk) ;
compute(body);
send(v1); send(v2), ..., send(vk) ;
end

where we denote by vi the message transmitted in the i-th dimension. We will now determine Pt

and Li. Our development is based on Andonov & Rajopadhye [1], and uses standard assumptions
about low level behavior of the architecture and program [4]. The sole distinction for the k-
dimensional machine is that each tile now makes k systems calls to send (and receive) messages.
A tile depends directly on its n neighbors in each dimension. The volume of data transfer
along the i-th dimension is proportional to the (hyper) surface of the tile in that dimension, i.e.,∏

j 6=i

xj =
v

xi

. In the first k dimensions, this corresponds to an inter-processor communication,

whereas in the dimensions k + 1 . . . n, the transfer is achieved through local memory. Hence
the period of a tile can be written as follows.

Pt = k(βr + βs) +

(
2τcv

k∑

i=1

1

xi

)
+ αv (2.3)

Here βs (resp. βr) is the overhead of the send (resp. receive) system call, τc is the time
(per byte) to copy from user to system memory, α is the computation time for a single instance
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of the loop body (we neglect the overhead of setting up the loop for each tile, as well as cache
effects), and 1/τt is the network bandwidth. Similarly the latency is given by (see [2] for details)

Li = Pt + τt

v

xi

− kβr

= kβs +

(
2τcv

k∑

i=1

1

xi

)
+ αv + τt

v

xi

(2.4)

Note that the βr’s are subtracted because the receive occurs on a different processor, and
when the sender and receiver are properly synchronized, the calls are overlapped. Substituting
in Eqn. (2.1) and simplifying, we obtain

Tk(~x) = αvP̃k + 2τcP̃kv

k∑

i=1

1

xi

+ τtv

k∑

i=1

p̃i

xi

+
2τcW

P

k∑

i=1

1

xi

+

+ k(βr + βs)
W

Pv
+ kβsP̃k +

αW

P
(2.5)

Simplifying assumptions and particular cases

The model of (2.5) is very general. One may want to specialize it for a number of reasons
— say rendering the final optimization problem more tractable, or modeling a certain class of
architectures or computations. It turns out that many of these simply consist of choosing the
parameters appropriately in the above function.

The HTK model, first used by Hiranandani et al. [6], corresponds to setting βr = τc =
τt = 0 (a slightly more general version consists of letting βr be nonzero). This model assumes
that the computation cost is independent of the message size, but is dominated by the startup
time(s) βs (and βr). At first sight this may seem an oversimplification. However, in addition
to making the mathematical problem more tractable, it is not far from the truth, as corroborated
by other authors [12, 13]. Indeed, experimental as well as analytic evidence [1] shows that on
machines such as the Intel Paragon the more accurate models yield no observable difference in
the predictions. With τc = τt = 0, we obtain the HKT cost function:

Tk(~x) =
αW

P
+ k(βr + βs)

W

Pv
+ (αv + kβs)P̃k (2.6)

The BSP model [11, 16] has been proposed as a formal model for developing architecture
independent parallel programs. It is a bridge between the PRAM model which is general but
somewhat unrealistic, and machine-specific models which lead to lack of portability and pre-
dictability of performance. Essentially, the computation is described in terms of a sequence
of “super-steps” executed in parallel by all the processors. A super-step consists of (i) some
local computation, (ii) some communication events launched during the super-step, and (iii) a
synchronization which ensures that the communication events are completed. The time for a
super-step is the sum of the times for each of the above activities. This is very similar to our tile
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model: indeed, if we simply set τt = βr = 0 and βs = β
k

(β is the BSP synchronization cost)
we obtain the running time of the program under the BSP model. With this simplification, we
obtain the BSP cost function as follows.

Tk(~x) =
αW

P
+

βW

Pv
+ (αv + β)P̃k + 2τc

(
P̃kv +

W

P

) k∑

i=1

1

xi

(2.7)

In the BSP model, the communication startup cost is replaced by the synchronization cost.
However, in our general cost function (2.5) we incur the startup cost k times. As a result, if we
take a particular case of the BSP model where the network bandwidth is extremely high (and it
is the synchronization cost which dominates the communication time), then this high bandwidth
BSP cost function is not exactly the same as the HKT model (2.6) but given as follows

Tk(~x) =
αW

P
+

βW

Pv
+ (αv + β)P̃k (2.8)

With some other simple modifications, our cost function can also model the overlap of com-
munication and computation, which is often used as a performance tuning strategy. This is not
detailed here due to space constraints.

2.1.4 Solution for the simple models

In this section, we will focus only on the HTK and the high bandwidth BSP models. our main
results are that the optimal tile volume can be determined as a closed form solution, that the
optimal virtual architecture is an n − 1 dimensional hyper toroid. These results serve two im-
portant purposes, in spite of the apparent simplicity of the model. First, they are valid for a
number of machines where the communication latency and network bandwidth are both rela-
tively high (such as the Intel paragon, and a number of similar machines as well as networks of
workstations). Second, they give a good indication of our solution method for the more general
results.

The first observation that we can make from (2.6) is that the running time depends only on
the tile volume and not on the specific tile size parameters – for a given tile volume, any set
of values for xi (provided that they yield a feasible solution) will give the same running time.
Hence the problem to solve is to determine the optimal volume. It is easy to see that (2.6) is a
strongly convex function of the form T (x) = A

x
+ Bx + C, which attains its optimal value of

C + 2
√

AB at x =
√

A
B

. Let us define

ṽ =

√
k(βr + βs)W

PαP̃k

(2.9)

T̃k =
αW

P
+ kβsP̃k + 2

√
kα(βr + βs)WP̃k

P
(2.10)
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The optimal solution will be as given above if ṽ is a feasible tile volume. Now, observe that
each xi is bounded from above by Ni

pi
, and hence v ≤ W

P
. Asymptotically, W À P , and

clearly 1 ≤ ṽ ≤ W
P

. Hence we have the following result.

Theorem 10. The optimal tile volume and the corresponding running time for the HKT model
are given by by (2.9-2.10).

So far, we have assumed that k is a fixed constant as are each of the pi’s. In practice,
we typically have P processors, and the values of each pi are not specified. Let us therefore
consider two different P -processor architectures, one corresponding to a k-dimensional torus
of p1 . . . pk processors and another a k − 1 dimensional torus of p′

1 . . . p′
k−1 processors. The

optimal running time on the first architecture is given by (2.10) and on the latter, it is

T̃k−1 =
αW

P
+ (k − 1)βsP̃

′
k−1 + 2

√
(k − 1)α(βr + βs)WP̃ ′

k−1

P

where P̃ ′
k−1 =

k−1∑

i=1

p′
i. The difference between the two is thus

∆(k) = T̃k−1 − T̃k = kβs

(
k−1∑

i=1

p̃′
i −

k∑

i=1

p̃i

)
− βs

k∑

i=1

p̃i

+ 2

√
2αβsW

P




√√√√(k − 1)

k−1∑

i=1

p̃′
i −

√√√√k

k∑

i=1

p̃i


(2.11)

Observe that the last term is asymptotically dominant here (since it is proportional to
√

W ,
and hence we have the following result.

Corollary 1. The optimal architecture is a balanced n − 1 dimensional hyper-torus

Proof. For any k, we can show with a simple counting argument that the last term in the function
∆(k) is positive (for large enough P ). Hence, the globally optimal running time will be obtained
for k = n − 1. Now, we also see from (2.10) that the optimal running time is an increasing
function of P̃k, and this is minimized by a balanced hyper-torus, i.e., one in which, pi =

n−1
√

P
in each dimension.

We leave it as an exercise to the reader to show that this result holds even for the high band-
width BSP cost function (2.8). Indeed, the proof is simpler since the k and the k − 1 terms drop
off.

We also note that the optimization of the processor architecture yields in improvement in
the last two terms of (2.10), but leave the first term (the ideal parallel running time) unchanged.
Hence, the optimal architecture yields only a second order improvement. Nevertheless, a strong
result that states that a certain architecture is always better, is interesting by itself.
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2.1.5 Solution for the BSP cost function
We will now solve our optimization problem using the BSP cost function defined by (2.7) in the
feasible space specified by (2.2). We will show that our problem can be decomposed into two
special cases. The first case is very similar to the HTK model, but the one is more complicated,
for which we first solve the corresponding unconstrained optimization problem and then deter-
mine where the constrained solution lies. We will also discuss which of the two cases is more
likely in practice. Our results are based on the following key observation.

Lemma 1. The solution of Prob. 2 satisfies

either xi = Ni

pi
, for i = 1 . . . k

or xi = 1, for i = k + 1 . . . n

Proof. Consider a feasible solution, ~x with volume
∏

xi, and suppose that we follow a “constant
volume” trajectory as follows. Increase any or all of xi for i = 1 . . . k and (correspondingly)
decrease any or all of xi for i = k + 1 . . . n, so as to maintain the volume constant. Observe
that along this trajectory the cost function (2.7) decreases monotonically. We can continue to do
so until we reach a boundary of the feasible space, R, i.e., one of the above conditions holds.

Based on this, we have to look for the solution in the two regions of R corresponding to the
above two conditions.

Case I

Let R1 = R ∩ xi = Ni

pi
for i = 1 . . . k, and R2 = R ∩ xi = 1 for i = k + 1 . . . n. The

cost function in region R1 can be simplified to

Tk(~x) = (α + 2τcÑk)
W

P
+ βP̃k +

βW

Pv
+ (α + 2τcÑk)P̃kv (2.12)

where Ñk =
∑k

i=1
pi

Ni
. We can now use the same reasoning as in Section 2.1.4 leading to

Theorem 10 and obtain the optimal volume and running time as follows:

ṽ =

√
βW

P (α + 2τcÑk)P̃k

(2.13)

T̃k = (α + 2τcÑk)
W

P
+ βP̃k + 2

√
βWP̃k(α + 2τcÑk)

P
(2.14)

As before, appropriate values for xk+1 . . . xn in R1 that yield the optimal volume are all
equivalent. Observe that in (2.14) we have a factor 2τcÑk in the dominant term. It is thus very
important to minimize this term, by choosing the architecture and mapping. We will address this
later.
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Case II

Let us now consider that xi = 1 for i = k + 1 . . . n. Here, v =
∏k

i=1 xi, but the cost
function remains the same as (2.7), except that we have only k variables to solve for. We obtain
the solution in two steps.

Unconstrained optimization We first solve the problem in the entire positive orthant, without
any constraints. This can be formulated as follows.

Prob. 2: Minimize (2.7) in the feasible space Rk
+ =

{
[x1 . . . xk]

T | xi ≥ 0
}

.

Let Hv = {~x ∈ Rk
+ | ∏k

i=1 xi = v} be the hyperboloid with volume v. Observe that

the set of families Hv is a partition of Rk
+, i.e., Rk

+ =
⋃
v

Hv, and hence min
Rk

+

Tk(~x) =

min
v

min
Hv

Tk(~x). Thus, we first minimize (2.7) for a given tile volume (i.e., over a given hyper-

boloid Hv) and then choose the volume. Now, observe that for a fixed v, (2.7) is of the form
A + B

∑
i

1
xi

. Hence we need to minimize
∑

i
1
xi

. We have the standard inequality for any set
of non-negative yi

1

k

k∑

i=1

yi ≥ k

√√√√
k∏

i=1

yi

and we know that the relation is an equality when y1 = y2 = . . . = yk. Hence, for a given tile
volume, v, the optimal tile shape is (hyper) cubic with xi = k

√
v, for each i = 1 . . . k. Thus,

k∑

i=1

1

xi

=
k

k
√

v
, and we can define,

f(v) = min
Hv

T (~x) =
A

v
+ Bv + 2kτcP̃kv1− 1

k + kDv− 1
k +

αW

P
+ βP̃k (2.15)

where A = βW
P

, B = αP̃k, and D = 2τcW
P

. Now we have to determine the optimal tile
volume by minimizing f(v) in the feasible space, 1 ≤ v ≤ vmax. The first derivative of f(v)
is given by

f ′(v) =
−A

v2
+ B + 2τc(k − 1)P̃kv− 1

k − Dv− 1
k

−1 (2.16)

We can solve f ′(v) = 0 exactly by either a symbolic mathematics package, or by numerical
means. However, the following approximate solution is much easier. We define a function h(v)
which is an approximation of f ′(v) from above (in the sense that f ′(v) ≤ h(v) for v ≥ 1) as
follows:

h(v) =
−A

v2
+ B + 2τc(k − 1)P̃k − D

v2
(2.17)
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Its zero is at
√

A+D

2τc(k−1)fPk+B
, and substituting and simplifying, we obtain the following (approx-

imate) optimal solution of the unconstrained problem.

ṽ ≈
√

β + 2τc

(2τc(k − 1) + α)P̃k

W

P
(2.18)

T̃k ≈ αW

P
+ 2kτc

(
(2τc(k − 1) + α)P̃k

β + 2τc

) 1
2k (

W

P

)2k−1
2k

+

√
P̃k

(
β

√
(2τc(k − 1) + α)

β + 2τc

+ α

√
β + 2τc

2τc(k − 1) + α

) √
W

P

+ 2kτc

(
β + 2τc

2τc(k − 1) + α
P̃k

k+1
k−1

)k−1
2k

(
W

P

)k−1
2k

+ βP̃k (2.19)

Of course we could always determine an exact solution if needed, but we have found the
approximate solution to be reasonable in practice. Moreover, as we shall see later, it illustrates
some interesting points. Also recall that in the problem as we have resolved so far, we assume
that k and the pi’s are fixed, as also the choice of which of the Ni’s to map to the processor
space.

Constrained Optimization We now address the question of the restrictions on the optimal
solution imposed by the feasibility constraints (2.2) namely 1 ≤ xi ≤ ui. Note that the
unconstrained (global) optimal solution is on the intersection of the line L ≡ xi = xj , for 0 <
i, j ≤ k and the hyperboloid Hev, where ṽ is the optimal tile volume (2.18). If this intersection
is outside the feasible space (2.2) we will need to solve the constrained optimization problem.
We have observed that the optimal running time is extremely sensitive to the tile volume, and
much less dependent on the particular values of xi (indeed this is predicted by the HTK model).
We have the following cases

Case A: ṽ > vmax In this case, the optimal volume hyperboloid does not intersect the feasible
space, and (given that it is more important to choose the volume optimally) we choose the tile
size given by xi = Ni

pi
, for i = 1 . . . k.

Case B: ṽ ≤ vmax Now, Hev has a non-empty intersection with (2.2) and so our heuristic is to
choose a solution by moving one of the xi’s such that we move within the feasible region.

Local or Global: Let us now consider which of the two cases is more likely (of course it is
preferable to be in B since this gives us a global optima). Assuming that each of the Ni grow
asymptotically and that P grows much more slowly, and since ṽ is proportional to

√
W/P , it is

obvious that wmax > ṽ (asymptotically, for a large enough k, typically k > n/2). This leads
to the following
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Proposition 1. Asymptotically, the globally optimal tile size is feasible.

Proof. We have seen that we will always (asymptotically) be in Case B. Now consider the case
when the intersection of the line L with Hev is outside the feasible region (which is a rectangular
(hyper) parallelepiped, with vertices ~1 and

[
N1

p1
, . . . , Nk

pk

]
. Now observe that the intersection

of L and Hv is a feasible point for any feasible tile volume v, iff L is the diagonal of this
parallelepiped. Hence, by choosing the architecture such that each pi is proportional to Ni, we
achieve our objective.

Where is the solution?

The optimal solutions for the two cases are given, respectively by (2.13-2.14) for region R1

and by (2.18-2.19) for region R2. Most authors [6, 13, 12] have only considered region R1

either implicitly by not posing the problem in full generality, or by erroneously claiming that
the solution is always in R1. In fact, not only is this incorrect, but the final solution always
asymptotically be in R2! Indeed, this is obvious when we see the additional factor, 2τcÑi in the
dominant term in (2.14) as compared to (2.19).

Let us now consider the other terms in (2.19). We see that the second most dominant term is

(W
P

2k−1
2k , whose degree increases with k. Hence a smaller dimensional architecture is better (in

the limit, a linear array will reduce this term to just K
√

W/P ). However, with a linear array, it
may be impossible to make ṽ a feasible volume (see discussion above). Hence our strategy is to
choose an architecture that minimizes the dimension k, but still satisfies ṽ ≤ vmax.

2.1.6 Conclusions

We addressed the problem of finding the tile size that minimizes the running time of SPMD pro-
grams. We formulated a discrete non-linear optimization problem using first an abstract model
and then specific machine model. The resulting cost function is general enough to subsume most
of those in the literature, including the BSP model. We then analytically solved the resulting
discrete nonlinear optimization problem, yielding the desired solution.

We first developed a solution for a simplified version of the cost function, and then extended
it to resolve the more general BSP model, which is gaining widespread acceptance as a suitable
model for architecture independent parallel programming.

There are a number of open questions. The first one is the direct extension to the non or-
thogonal case (when the tiles boundaries cannot be parallel to the domain boundaries). We have
addressed this elsewhere (for the 2-dimensional case) and formulated a non-linear optimization
problem [2], but a closed form solution is not available. Finally, experimental validation on a
number of target machines is the subject of our ongoing work.
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2.2 Optimal Semi-Oblique Tiling

2.2.1 Introduction
Iteration space tiling [17, 7] (also called loop blocking, partitioning, etc.) is a well-known tech-
nique used by compilers and automatic parallelizers to improve data locality and to control pro-
gram granularity by increasing the computation to communication ratio (see also [10, 25, 14, 36,
38]). It is also used by programmers for manually tuning parallel and sequential codes. On dis-
tributed memory machines it may be implemented as follows. The program executes in SPMD
(Single Program Multiple Data) fashion, communication being performed by send/receive calls.
A tile in the iteration space is a (hyper parallelepiped shaped) collection of iterations to be exe-
cuted as a single unit with the following protocol—all the (non-local) data required for each tile
is first obtained by appropriate communication calls (eg. with libraries such as MPI, OpenMP or
BSPLib). The body of the tile is executed next, and this is repeated iteratively.

The tiling problem can be broadly defined as that of choosing all the tile parameters (notably
the tile shape and tile size) in an optimal manner. In its most general formulation, this is a
hard, discrete, non-linear optimization problem, and there is currently no solution. However,
optimal solutions can be found analytically under certain restrictions. The problem is usually
decomposed into two subproblems: tile shape optimization [22], and tile size optimization [20,
6, 9, 13]. By its very nature, such a two step approach is not globally optimal, but often makes the
problem tractable. Some authors simultaneously resolve both problems under certain simplifying
assumptions [14, 36, 28].

Whether tiling is used for locality enhancement (i.e., optimizing the performance of a multiple-
level memory hierarchy on a single processor) or in the context a parallel machine, the overall
problem is identical, but there are important differences in the details. For the former, the mod-
els are usually statistical (due to the nature of caches), there are few exact models of program
performance, and the solutions are often heuristic. This is not the case in the latter context, the
case that we treat in this paper.

Most of the work on optimal tiling (we defer a detailed discussion to Section 2.2.8) consid-
ers perfect loop nests with (hyper) parallelepiped shaped iteration spaces (domains) and uniform
dependences. Furthermore, with a few exceptions, all pragmatic work on the subject—where
theoretical predictions are backed with experimental evaluations on real machines—further re-
stricts the tiles boundaries to be parallel to the domain boundaries (Andonov and Rajopadhye
call this orthogonal tiling [20]). When this restriction is relaxed we have oblique tiling.

Though oblique tiling is used by expert programmers, the common arguments against it are
that

• automatic code generation for arbitrary slopes of the tile boundaries is difficult;

• the resulting code will need to test for many boundary cases and hence is likely to be
inefficient;

• most programs can always be tiled orthogonally, albeit in a degenerate manner by not tiling
certain loops (i.e, by letting the tile size be 1 in these dimensions)
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It is not therefore obvious that oblique tiling will systematically yield improved performance.
Recently the gains of oblique tiling (eg. more than 20% improvement over the best orthogonal

tiling) were demonstrated through analytic models and also experimentally verified by a number
of authors [19, 30]. Wonnacott [39] even observed significant gains in cache performance on
uniprocessors. All authors considered a restricted case where all but one set of tile boundaries
are parallel to the domain boundaries. We call such a tiling semi-oblique.

Restricting ourselves to semi-oblique tiling is motivated by many factors: (i) most cases il-
lustrating the advantages of oblique tiling actually use semi-oblique tiling; (ii) after semi-oblique
tiling, the resulting tiled program can be easily parallelized with good (provably optimal) load
balance through either block or block-cyclic allocation of rows (or “stacks”) of tiles to proces-
sors, while this is not necessarily true for all tilings; (iii) code-generation for the tiled program is
not as difficult as for the general case; and (iv), it renders our mathematical development more
tractable.

In this paper, we address the problem of optimal semi-oblique tiling, but restricted to a two
dimensional parallelogram shaped iteration domain. Such a tiling is completely specified by
four parameters: the tile size (i.e., its width and height), the number of processors, and the tile
shape (i.e., the slope of the oblique tile boundary). We resolve the problem of choosing all
these parameters optimally, an improvement over previous results where one or more parameters
were fixed, leading to a sub-optimal solution. Our formulation is based on the BSP model [11,
16], a widely accepted portable model for performance prediction on parallel machines. Our
solution can be trivially incorporated into a compiler with almost no overhead, since it is exact
and analytical (a closed form solution given as a formula). It may even be possible to envisage its
use in a run-time system: if some instrumentation code is added at the beginning of the program
(say for the first few iterations), then the machine and program parameters used to determine
the tile size and shape can be more precisely measured, and the optimal tiling parameters can be
instantiated at that time.

Our specific contributions are as follows.

• We prove, by comparing with a PRAM lower bound, that for any semi oblique tiling, our
proposed allocation of tiles to processors is optimal.

• We formulate and analytically solve a non-linear optimization problem to determine the tile
size that minimizes the total execution time of the tiled program on a parallel machine for
a given number of processors and given tile shape. As part of the solution, we also provide
a means to analytically determine the optimal number of processors for a given problem
instance (i.e., the number beyond which there is no reduction in the running time). Finally,
we give a gradient-like algorithm to determine the optimal tile shape.

• Among numerous computational experiments we validate our predictions by parallelizing
Fickett’s k-band algorithm for finding the best global alignment of two similar sequences
[27, 37]. This is a common and often repeated task in computational molecular biology,
and has proved difficult to parallelize, and hence our parallelization is interesting in its own
right. The optimal performance was obtained simply by plugging the problem parameters
into our general solution.
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The remainder of this paper is organized as follows. In Section 2.2.2 we describe semi-
oblique tiling and describe the tiling problem by tiling parameters. In Sections 2.2.3–2.2.5 we
show how to determine in an optimal way all the tiling parameters. In Section 2.2.7 we present
experimental results based on the sequence comparison application described in Section 2.2.6.
In Section 2.2.8 we give a detailed discussion of the related work. In section 2.2.9 we conclude.

2.2.2 Problem Formulation
We first describe and formalize two-dimensional semi-oblique tiling. Next, we parallelize the
resulting tile graph on an ideal machine (a p-processor PRAM), determine a lower bound for its
running time, and then describe a parallelization on a pragmatic machine using a simple block-
cyclic distribution of tiles to processors. We show that if we model the communication costs
of the machine using the BSP model, our block-cyclic strategy remains optimal. Finally, using
the running time predicted by the BSP model, we formulate the discrete non-linear optimization
problem to determine the tiling parameters so as to minimize the running time.

Semi-oblique tiling

We consider the problem of parallelizing a uniform recurrence [33] of the form

a[i, j] = f(a[i − d1, j − d′
1], . . . , a[i − dw, j − d′

w]) (2.20)

over the N × M rectangular3 domain D = {(i, j) | 0 ≤ i < N, 0 ≤ j < M}, with a set
of dependence vectors,

δ1 =

(
d1

d′
1

)
, . . . , δw =

(
dw

d′
w

)

We denote the largest i-component of any dependence vector by δ = maxx(dx). We assume
that all the dependence vectors belong to the cone generated by the extreme vectors

(
1

−γ

)
and

(
0

1

)
for some rational γ (which could have any sign). It is well known [40] that the following tiling
is legal: tiles are parallelograms with one pair of sides parallel to j axis, and the other pair with
a slope −γ. Each tile contains s rows of iteration domain points and there are r points in each
row. We call the integers s and r as tile height and width respectively.

Such a tiling is formally described as follows. Let

H =

(
1 0
γ 1

)
, Q = diag

(
1

s
,
1

r

)
, and T = QH

where the rows of H are given by the normals of the parallel lines specifying the tiles. For any
two integers, i′ and j′ the following set is called the (i′, j′)-th tile.

{(i, j) | i′s ≤ i < (i′ + 1)s, j′r ≤ γi + j < (j′ + 1)r}
3A parallelogram shaped domain can be easily transformed to a rectangular one, without loss of generality

(indeed, the program for Fickett’s algorithm has such a domain).
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Figure 2.1: Transformation of the domain D and optimal schedules in the transformed domain

It is easy to verify that the transformation z′ = bTzc maps this set to the point (i′, j′).
The integer points of the transformed domain connected by the transformed dependence vectors
represent the so called tile graph. Like the tiles, the transformed domain is also a parallelogram
with one side parallel to the j′ axis. The other side has a slope σ = γs

r
. This slope, which is

identical to the rise as defined by Högstedt et al. [30], turns out to be a critical parameter. It is
well known [7] that under standard assumptions, the extreme dependences in the tile graph are
the canonical ones (provided the tiles are large enough compared to the original dependences).
The tile graph contains n = N

s
rows of tiles and there are m = M

r
+ |σ| tiles per row.

Fig. 2.1 illustrates two typical cases (for M = 8, N = 12, r = 2 and s = 4). In
Fig. 2.1a, γ = 1, which gives σ = 2; in Fig. 2.1b γ = −1, resp. σ = −2. We use the
convention that the origin is top-left, i (resp. i′) is vertical downwards, j (resp. j′) is horizontal
to the right. Diagonals in the bottom diagrams are optimal schedule lines (as explained later).
For simplicity, we do not show all tile graph dependencies and schedule lines. The rise, σ is
explained intuitively by the fact that successive rows of the tile graph are shifted to the right (left,
if σ is negative) by precisely σ.

So far, we implicitly assumed that σ is integer. If this is not so, the picture changes and
a number of complications arise—the rows of the tile graph do not remain identical, the shift
between successive rows is not constant, etc. Even the number of tiles in different rows may be
different. If we want to give exact formulæ for this case, we have to use floor and ceiling func-
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tions, greatest common divisors and other integer arithmetic tricks. In the interest of simplicity,
we prefer to use a rational approximation and proceed as outlined above, since it describes the
average case. For example, though the number of tiles in each row may be different, it repeats
with some periodicity and the average number of tiles in each row is m. Similarly, the average
shift between successive rows (as we shall shortly see) is σ + 1 (which we shall henceforth
denote by σ̄). This approximation simplifies our mathematical model, without straying too far
from reality. The same remark is true and for the case when m or n is not integer. The effect of
these approximations will be discussed again in Section 2.2.7 when we present our experimental
results.

Our notational conventions are as follows: we use upper case letters, N and M to denote,
respectively, the height and width of the original domain, and lower case letters (n and m) for
the corresponding parameters of the tile graph. The height and width of the tile itself are s and r,
respectively. The slopes of the non-horizontal boundaries of the original domain, the tile graph,
and the tile itself, are respectively, 0, σ and γ.

Parallelizing the tile graph on a PRAM

We now investigate the parallelization of the tile graph, first on an unbounded number of proces-
sors, and on a fixed number of processors. We also give a mapping of tiles to processors that
achieves optimal performance.

In our analysis we will assume that all tiles, including boundary (i.e., “partial”) tiles, take a
single “time step” to execute. This is justified by the fact that although boundary tiles have fewer
computations to perform, other processors are simultaneously computing “full” tiles, and the data
dependences between the tiles ensure the necessary synchronization. We will see later that it is
also consistent with the BSP model that we use, since the model assumes a global synchronization
at each step.

We will consider the following two cases (see Fig. 2.1).

Case a: σ̄ > 0. In this case, because of the dependencies between the tiles, the optimal
schedule on a unbounded number of processors is (1, 1), i.e., all tiles on the line i′ +j′ =
t start at instant t. According to this schedule, the first tile of the i′th row, namely tile
(i′, σi′), can start at the moment σ̄i′. Thus the delay of each row relative to the previous
one is σ̄.

We may visualize the schedule by skewing the tile graph, i.e., shifting each row to the right
relative to the previous one (by 1), yielding another parallelogram (called the scheduled
tile graph) whose oblique boundary has slope σ̄. We interpret the horizontal axis of this
parallelogram as the time.

Taking into account that the number of rows is n and that number of tiles in a row is m,
we can easily verify that the make-span of this schedule is Σ = (n − 1)σ̄ + m. It is also
easy to see that if m ≥ nσ̄, the maximum degree of parallelism is n, otherwise it is m

σ̄
,

and hence the above make-span can be achieved on min(n, m
σ̄
) or more processors.

Now assume that we have p < min(n, m
σ̄
) processors (we let p̄ denote p−1, henceforth;

we also assume that p|n whenever p ≤ n). Observe that for any of the first (c.f. last) p̄σ̄
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steps, the number of tiles that can be executed at any instant is less than p. The number of
tiles during this “startup” (c.f. “wrap-up”) phase is 1

2
p̄σ̄p. Thus, a total of p̄σ̄p tiles take

2p̄σ̄ time steps. The remainder of the tile graph contains nm − p̄σ̄p tiles. Obviously,
any parallel implementation of these tiles on p processors will take at least nm

p
− p̄σ̄ time.

Hence, a lower bound on the make-span of our tile graph on p processors is nm
p

+ p̄σ̄ (see
Fig. 2.2(a)).

Case b: σ̄ ≤ 0. In this case, tiles on the line t = j′ − σi′ − σ can start at the instant
t, and the optimal schedule is (−σ, 1). There is no delay between successive rows (all
rows can start simultaneously). The make-span is Σ = m, the width of the tile graph,
and it can be achieved on n or more processors. Furthermore, if we have only p < n
processors, the make-span is bounded from below by nm

p
. Thus, in general, the make-span

is bounded from below by max(n
p
, 1)m. Also observe that for σ̄ = 0, the two formulæ

are identical.

We now give a specific mapping of our tile graph, and show that it achieves the above lower
bound. We allocate tiles to processors by rows in the so-called block-cyclic manner and adopt
a multiple-pass execution. In other words, the i′th row of the tile graph is allocated to the
i′th (virtual) processor. The n virtual processors are then mapped cyclically to the p physical
processors. The mapping may be visualized as horizontally splitting the n × m tile graph into
n
p

slices, each of size p × m (Fig. 2.2(b) and (c) illustrate two possibles cases between two
successive slices).

p̄σ̄ mn
p

− p̄σ̄ p̄σ̄ m m pσ̄

i d l e 

processors

time

p

p

p

pp

p

(a) (b) σ̄ ≥ 0; m ≥ pσ̄ (c) σ̄ ≥ 0; m < pσ̄

Figure 2.2: Scheduled tile graph: (a) Illustration for the PRAM make-span lower bound. (b) and
(c) Scheduling on limited number of processors - two possibles cases for successive passes.

Theorem 11. The above mapping is optimal.

Proof. Each slice is executed as a pass on the p processors. It is clear that for case (b) above,
this strategy achieves the optimal make-span, max(n

p
, 1)m.

For case (a) i.e., when σ̄ is positive, the make-span of a single pass is clearly p̄σ̄ + m. Note
however, that successive passes can be pipelined—a pass may start (i.e., its first tile is executed
by the first processor) even before the previous pass is completely finished (i.e., its last tile is
executed by the last processor). In fact, there are two constraints that determine when a pass can
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start: the first processor must have finished executing all the m tiles of the previous pass, and the
last processor must have finished executing its σ-th tile from the previous pass (since the first tile
in the next pass depends directly on it). Hence the interval between the start of two successive
passes is max(m, pσ̄). Both possible cases are illustrated on Fig. 2.2(b) and (c). Note that
when m < pσ̄ there is an idle time between two successive passes. Since there are n

p
passes,

the last pass can only start at time (n
p

−1) max(m, pσ̄), and this last pass itself takes p̄σ̄ +m
additional time steps. Putting this together and simplifying, we get the following expression for
the make-span of the tile graph on p processors.

Σ =





Σ1 = mn
p

+ p̄σ̄ if 0 ≤ σ̄ ≤ m
p

Σ2 = m + (n − 1)σ̄ if m
p

≤ σ̄

Σ3 = max
(
1, n

p

)
m if σ̄ ≤ 0

(2.21)

Comparing this with the PRAM make-span, we see that block-cyclic allocation is optimal.

Performance modeling on a BSP machine

The above make-span Σ reflects the time in “number of parallel steps” where each step corre-
sponds to the execution of a single tile (and communication of its results). To convert it into
running time on a realistic machine, we need to model communication. A detailed machine
model allows the possibility of overlapping communication and computation. However, such
approach complicates matters and renders the resulting discrete non-linear optimization problem
extremely difficult to resolve analytically. More on this subject in the experimental section 2.2.8

To simplify things we use the BSP model [16], where computation proceeds in a sequence
of macrosteps. Each macrostep consists of independent local computation by the individual
processors interspersed with the initiation of communication activity, through so-called one-
sided communication primitives such as get and put. A macrostep terminates with a global
barrier synchronization, and it is during the synchronization that the communication is actually
effected, the results being available for the next macrostep. In addition to the number of proces-
sors, p, a BSP machine is uniquely characterized by two parameters, the synchronization cost of
the machine, β′ and the network permeability, τ ′ (both parameters defined relative to the proces-
sor speed). The permeability is defined in terms of the time for the interconnection network to
realize what is called an h-relation—an arbitrary (all-to-all) communication between processors
where each processor sends/receives no more than h bytes of data. The permeability is τ ′ if an
h-relation takes hτ ′ processor cycles.

In our parallelization of the tile graph, each macrostep is identical, and corresponds to what
we have called a step in determining our PRAM make-span, Σ. Hence the total execution time
is simply ΣP , where P is the time for performing a macrostep. As a direct consequence,
the above result of the optimality of tile allocation remains valid (other models which allow
communication-computation overlap do not necessarily retain this optimality).

We now determine a precise analytic formulation of the execution time of our program, and
formulate our discrete non-linear optimization problem.
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Two tiles are said to be successive if one of them depends directly on the other. Our mapping
of tiles to processors ensures that successive tiles are mapped either to the same processor (in
which case there is no communication involved) or to processors that are adjacent (modulo p).
As a result, it is easy to see that during a macrostep, each processor executes rs instances of the
original loop body. Moreover, the communication during a macrostep consists of each processor,
i′ sending a number of data elements to i′ + 1 (modulo p). The number of data values sent is
proportional to r. Indeed, if we return to the description of the semi-oblique tiling of Eqn (2.20)
as given in Section 2.2.2, we can easily see that the exact number of transmitted elements is
δr (recall that δ = maxx(dx) is the largest i-component of the dependence vectors in the
original program). Note that even even though there may be oblique dependences in the tile
graph, the corresponding data values come from only a “corner” of the tile, and moreover, they
are subsumed by the previous tile’s communication if each tile sends precisely δ rows of values.
As a result, we have

P = β + τr + αrs (2.22)

for appropriate constants α, β and τ . Therefore, in order to find the optimal tile size, we need to
minimize T (r, s) = ΣP , where

T (r, s) =





T1(r, s) =
(

mn
p

+ p̄σ̄
)
P if 0 ≤ σ̄ ≤ m

p

T2(r, s) = (m + (n − 1)σ̄)P if m
p

≤ σ̄

T3(r, s) = max
(
1, n

p

)
mP if σ̄ ≤ 0

(2.23)

Although we leave only r and s as explicit variables, p and γ are also unspecified parameters of
the tiling and must be determined. The continuity of this function follows trivially from the facts
that T1 = T2 at the boundary m = pσ̄, and T1 = T3 at the σ̄ boundary.

Each of the cases of Eqn. 2.23 implicitly defines a sub-domain of the feasible space of our op-
timization problem. Before resolving the problem, we first show that the third case of Eqn. 2.23,
can be eliminated. Observe that this case is only possible for γ < 0. Note that for any fixed s
the associated timing function, can be simplified to

T3(r, s) = max
(
1, n

p

)
(M − γs)

(
β
r

+ τ + αs
)

This function monotonically decreases with r, and hence reaches its minimum for the largest
possible value of r, i.e., the one that satisfies σ̄ = 0. This straightforward observation shows
that we are not interested in any r and s such that σ̄ < 0. In other words, we can eliminate the
third case of Eqn. (2.23) and solve our optimization problem under the constraint σ̄ ≥ 0.

2.2.3 Optimizing the tile size
In this section we suppose that the tile shape γ and the number of processors p are fixed, and
consider the running time as a function of only r and s. We will show how to minimize this
function over the space of feasible tile sizes.
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(a) γ > 0, N
p

< M−p
γp̄

(b) γ > 0, N
p

≥ M−p
γp̄

(c) γ < 0
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Notation
N, M : Size parameters of the original

iteration domain.

r, s: Tile size parameters.

γ: Tile shape parameter.

p: Number of processors.

σ: Rise of the tiling, σ = γs
r

.

σ̄: σ̄ = σ + 1.

n, m: Number of rows (columns) in the
tile graph, n = N

s
, m = M

r
+|σ|.

Figure 2.3: Subdivision of the feasible domain R

The restrictions n ≥ 1 and m ≥ 1 (at least one row in the tile graph and at least one tile
per row) give upper bounds on r and s. Let r− and s−, be the respective lower bounds, i.e.,
r ≥ r− and s ≥ s−. These bounds are imposed by the validity conditions for a tiling, namely
that tiles must be large enough to span the original dependences. We suppose henceforth that
these bounds are 1; however all our results can be directly generalized. So the feasible domain
of our optimization problem is

R = {(r, s) | r ≥ 1, s ≥ 1, m ≥ 1, n ≥ 1, σ̄ ≥ 0}
This domain is subdivided by the straight line m = pσ̄. Note next that the first case of

Eqn. (2.23) is meaningful only for n ≥ p since the factor n
p

in it corresponds to the number of
passes. If n < p then the number of passes is 1 and the running time is given by the second case
of Eqn. (2.23). If we define the two sub-domains by D1 = R ∩ {(r, s) | m ≥ pσ̄, n ≥ p}
and D2 = R \ D1 (see Fig. 2.3), the optimization problem is naturally decomposed into the
following two subproblems.

Problem P1 : Minimize T1(r, s) = Σ1P over D1

Problem P2 : Minimize T2(r, s) = Σ2P over D2

The objective functions of the two problems are equal on the boundary between their feasible
domains.
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The global solution is the smaller of the solutions of P1 and P2, both non-linear discrete
optimization problems. We consider them as continuous problems and take the closest integer
point to the solution. This turns out to be reasonable in practice, since our function is fairly flat
near the optimum.

To solve the optimization problems Pi, i = 1, 2 we proceed as follows. First we find the
unconstrained (not necessarily global) optima of the function Ti. Those of them which are in
Di are candidate solutions of the problem. Then we minimize Ti on each of the boundaries
of Di, from where we get more candidate solutions. Finally we take the best of these, i.e.,
the candidate for which the value of Ti is minimal. The following remainder of this section
is devoted to these subproblems. Readers not interested in the mathematical details may skip
directly to Section 2.2.3 where we summarize the results and explain how to use them.

Before we enter into the details of our solution, let us make several remarks.

Remark 7. All the domain boundaries r = 1, s = 1, m = 1, n = 1, σ = −1, n = p, and
m = pσ̄ are linear functions of r and s (straight lines in Fig 2.3).

Remark 8.

T1(r, s) ≥ T2(r, s) for (r, s) ∈ D1

T2(r, s) ≥ T1(r, s) for (r, s) ∈ D2

Our problem then consists in minimizing T (r, s) = max(T1(r, s), T2(r, s)) ∈ D1

⋃ D2

where T is continuous function.

Remark 9. Since P does not change with p, the function T2 is independent of p, the number of
processors.

As a direct consequence of this, if ever the solution to our optimization problem is in the sub-
domain corresponding to the second case of Eqn. 2.23, it should be possible to do no worse with
fewer processors. The mathematical details how to detect when this occurs, and hence determine
the optimal number of processors are given in Section 2.2.4.

Finding the unconstrained optima of T1

From (2.22) we have r = P−β
τ+αs

. Using this and (2.23) we can express T1 as a function of P
and s:

T1(r, s) = T (P , s) =
P

P − β
f(s) + p̄P

where

f(s) = (τ + αs)

(
MN

sp
+

|γ|N
p

+ p̄γs

)
.

Now, from the necessary optimality condition ∇T (P , s) = 0 we obtain

2αpp̄γs3 + (τpp̄γ + α|γ|N)s2 − τMN = 0 (2.24)

P =

√
βf(s)

p̄
+ β or r =

1

τ + αs

√
βf(s)

p̄
(2.25)
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Eqn. (2.24) is a cubic equation of s and can be solved analytically using the Cardano formulæ.
From (2.24) and (2.25) we obtain (1 or 3) candidate points (r, s) for unconstrained optimum.
We consider only those which are in D1.

Optimizing T1 on the boundaries of D1

All the possible boundaries of D1 are segments of the lines s = 1, n = p, r = 1, σ = −1
and m = pσ̄. We have to consider only some of them depending on the values of the problem
parameters M , N , γ and p (see Fig. 2.3). On each of these boundaries we can express T1 as a
one variable function. To optimize such a function we take into account the zeros of its derivative
and the end points of the corresponding segment.

On the boundaries s = 1 and n = p (or more generally s = c, where c is some constant)
the function has the form

T1(r, c) = T (r) = Ar +
B

r
+ const,

where A = β
(

MN
pc

+ |γ|N
p

+ p̄γc
)

and B = p̄(τ + αc). The condition T ′(r) = 0 gives

Br2 − A = 0. Another possible boundary is r = 1, for which

T1(1, s) = T (s) =
A

s
+ Bs + Cs2 + const,

where A = MN(β+τ)

p
, B = α

(
γN
p

+ p̄
)
+ p̄γ(β+τ ), C = αγp̄. In this case the condition

T ′(s) = 0 gives 2Cs3 + Bs2 − A = 0, which is a cubic equation of s. At the boundary
σ = −1 (or r = −γs) we have

T1(−γs, s) = T (s) =
N

p

(
A

s2
+

B

s
+ Cs

)
+ const,

where A = −Mβ
γ

, B = (Mτ + β), C = −γα. The condition T ′(s) = 0 gives Cs3 −
Bs − 2A = 0 which is again a cubic equation of s. The last boundary m = pσ̄ between D1

and D2 will be analyzed in Section 2.2.3 when we solve the problem P2 since T1 = T2 on this
boundary.

Finding the unconstrained optima of T2

The function T2 can be represented in the form

T2(r, s) =
(

M
r

+ nσ̄
)
P + (|σ| − σ − 1)P

If γ ≥ 0 the last term in this representation is −P . If γ < 0 we have −1 ≤ σ ≤ 0 and from
here we obtain that it is between −P an P . In both cases the last term contributes at most one
period. Therefore we can drop it and instead of T2 we can consider the function

T̂2(r, s) =
(

M
r

+ nσ̄
)
P
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Now using r = γs
σ

we can express T̂2 as a function of σ and s

T̂2(r, s) = T (σ, s) = ((M + γN)σ + γN)

(
β

γs
+

τ

σ
+ α

s

σ

)

The necessary condition for optimum ∇T (σ, s) gives

∂T

∂s
= ((M + γN)σ + γN)

(
α

σ
− β

γs2

)
= 0 (2.26)

∂T

∂σ
=

β(M + γN)

γs
− γN(τ + αs)

σ2
= 0 (2.27)

If the first multiple of (2.26) is zero, we substitute σ = − γN
M+γN

in (2.27) and obtain a quadratic

equation of s. If the second multiple is zero, substituting σ = αγs2

β
in (2.27) leads to a cubic

equation of s. In this way we obtain several candidate solutions. We consider only those which
are in D2.

Optimizing T2 on the boundaries of D2

The possible boundaries of D2 are segments of the lines r = 1, s = 1, σ = −1, m = 1,
n = 1, n = p and m = pσ̄. On the boundaries r = 1, s = 1 and σ = −1 it is easy
to express T2 as a one variable function and to optimize it as we did in for T1 in Section 2.2.3.
When there is one row of tiles or one tile per row (n = 1 or m = 1) there are no tiles which
can be executed in parallel. That is why the best thing to do is to execute a sequential code on
a single processor and to obtain a running time αMN . The boundary n = p was already
investigated in Section 2.2.3. The only boundary left is m = pσ̄. Although it is possible to use
more sophisticated techniques and to optimize on this boundary by solving a quartic equation
(which is still analytically resolvable), here we prefer to give an approximate method which is
simpler, but precise enough. Once again we optimize the function T̂2 instead of the original
function T2. From m = pσ̄, we obtain r = M−p̂γs

p
, where p̂ = p − sgn γ. Now we can

express T̂2 as a function of s:

T̂2(
M−p̂γs

p
, s) = T (s) =

(
M +

|γ|N
p

+
MN

ps

) (
βp

M − γp̂s
+ τ + αs

)

Denote the first multiple in the last equation by f(s) and the second one by g(s). We have
to minimize the function T (s) for s ∈ [1, smax], where smax = N

p
if γ ≤ 0 and smax =

min(N
p

, M−p
γp̄

) otherwise. The function f is decreasing in this segment. Consider the function
g. Its derivative is

g′(s) = α +
βpp̂γ

(M − γp̂s)2

If γ ≥ 0 then g′(s) is positive else g′(s) has two zeros

s1,2 =
M

γp̂
±

√
−β

α

p

γp̂
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The root s2 is negative and it is out of the considered segment [1, smax]. There are three possi-
bilities:

1. If γ ≥ 0 or γ < 0 and s1 ≤ 1 then g is increasing in [1, smax].

2. If γ < 0 and s1 ∈ (1, N
p
) then g is decreasing in [1, s1] and it is increasing in [s1, smax].

3. If γ < 0 and s1 ≥ smax then g is decreasing in [1, smax].

When g is decreasing in some segment, T reaches its minimum at the right end point of the
segment, but when g is increasing the minimum of T may be anywhere in the segment. So we
have to minimize T (s) = f(s)g(s) in the segment [smin, smax] where smin = 1 (case 1) or
smin = s1 (case 2), f is decreasing and g is increasing in [smin, smax].

We linearize g taking instead of it the straight line ĝ passing through the points (smin, g(smin))
and (smax, g(smax)), ĝ(s) = Ks + L, where

K =
g(smax) − g(smin)

smax − smin

, L = g(smax) − Ksmax.

Now we consider the function

f(s)ĝ(s) = As +
B

s
+ const,

where A =
(
M + |γ|N

p

)
K, B = MNL

p
, which we can easily minimize on the segment

[smin, smax]. To find a more precise solution, we can subdivide the considered segment [smin, smax]
into several segments and to apply a linearization of g in each of them.

Summary

The results results above are summarized in Table 2.1. Each row of this table explains how to
minimize the function named in Column 2 subject to the constraints mentioned in Column 1. We
now explain how to interpret this table and how to find the optimal tile size for each problem
instance (determined by M , N , γ) and for each architecture parameter setting (p, β, τ , α).
Each row (we only consider those rows which are relevant to the parameters M , N , γ, and p,
see Fig. 2.3) is to be read as follows: to minimize, under the constrains mentioned in Column 1,
the function named in Column 2, we find the solutions of the cubic equation Ax3 + Bx2 +
Cx + D = 0, with the coefficients given in Column 5 (missing coefficients are taken as 0). For
each solution, x (and also for the endpoints of the segment if the feasibility condition is given as
a segment), we use the formulæ in Columns 3 and 4 to determine the candidate r and s. Then we
retain only those that satisfy the feasibility test in Columns 6 (the feasibility test is given either
in terms of r and s or in terms of x). To find the optimal solution we take the best solution over
all the relevant rows.

In row 2, the function h(x) = β(MN
px

+ |γ|N
p

+ γp̄x). In row 6 onwards, p̂ = p − sgn γ.
The parameters L, K, smin and smax are defined in Section 2.2.3.

121



Constraints T r s coefficients feas. set #

1
q

h(x)
p̄(τ+αx)

x A = 2αpγp̄, B = τpp̄γ + α|γ|N , D = −τMN (r, s) ∈ D1 3

none 2 − x(M+γN)
N

x B = α(M + γN), C = τ(M + γN), D = −βN (r, s) ∈ D2 1

β
αx

x A = α2(M + γN), C = −αβN , D = τβN (r, s) ∈ D2 2

n = p 1,2 x N
p

B = p̄(τ + α N
p

), D = −h(N
p

) [1, M
p

− γp̂N
p2 ] 4

m = pσ̄ 1,2 M−p̂γx
p

x B = (M +
|γ|N

p
)K, D = MNL

p
[smin, smax] 5

σ = −1 1 −γx x A = αγ, B = Mτ + β, D = −2Mβ
γ

[1, N
p

] 6

2 −γx x A = 2αγ, B = Mα − τγ, D = Mβ
γ

[N
p

, N ] 7

s = 1 1 x 1 B = p̄(τ + α), D = −h(1) [1, M−γp̂
p

] 8

2 x 1 B = (N − 1)(τ + α), D = β(M + γN + |γ| − γ) [M−γp̂
p

, M + |γ|] 9

r = 1 1 1 x A = 2αγpp̄, B = pp̄(α + γβ + γτ) + αγN , [1, min(N
p

, M−p
γp̄

)] 10
D = −MN(β + τ)

2 1 x B = (τ + α)(M + γN − 1), D = −βN [min(N
p

, M−p
γp̄

), N ] 11

m = 1, n = 1 2 M N T = αMN 12

Table 2.1: Solution of the optimization problem.

Table 2.1 lists 12 separate cases, and in general, we have to consider all of them. Indeed,
Table 2.2 gives a set of problem instances which cover all rows of Table 2.1. However, some
of these instances are extremely unrealistic. For “normal” problems only the first six rows are
relevant.

2.2.4 Optimizing the number of processors
Our model can be used not only to determine the optimal tile size and to predict the performance
of the parallel code, but also to analyze the sensitivity and the influence of the problem and
architecture parameters on the performance. In this section we will analyze the parameter p, the
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M N p γ α β τ r∗ s∗ row
20000 50000 8 1 2.6 × 10−7 4.03 × 10−4 2.02 × 10−7 1498 111 3
20000 50000 30 1 2.6 × 10−7 4.03 × 10−4 2.02 × 10−7 600 69 5
20000 50000 300 1 2.6 × 10−7 4.03 × 10−4 2.02 × 10−7 46 34 2
20000 50000 10 -1 2.6 × 10−7 4.03 × 10−4 2.02 × 10−7 410 410 6
20000 50000 1500 -1 2.6 × 10−7 4.03 × 10−4 2.02 × 10−7 39 39 7
20000 120 8 1 2.6 × 10−7 4.03 × 10−4 2.02 × 10−7 531 15 4
20000 50000 8 1 2.6 × 10−3 4.03 × 10−4 2.02 × 10−7 1663 1 8
20000 50000 8 1 2.6 × 10−11 4.03 × 10−4 2.02 × 10−7 20000 50000 12
40000 50000 8 1 2.6 × 10−7 4.03 × 10−7 2.02 × 10−3 1 4065 10
40000 50000 600 1 2.6 × 10−7 4.03 × 10−7 2.02 × 10−3 1 66 11

Table 2.2: Problem instances covering the rows of Table 2.1

number of processors.
Recall that T2(r, s) is independent of p, the number of processors (see Remark 9)—we

can obtain the same running time for our program using fewer processors! This can be easily
explained by looking once again at the tile graph at Fig. 2.1. The maximal number of tiles that
can be executed in parallel is equal to the maximal number of points on the schedule lines. For
any fixed r and s the optimal number of processors is equal to this “thickness” of the tile graph
and one cannot expect better performance with more processors. For all points in the interior
of D2 the thickness of the tile graph is less than the declared number of processors. In other
words, the points in D1 correspond to tile sizes for which the available resources (processors)
are insufficient, while the points in D2 give tile sizes for which there is redundancy of resources.
The balance between the available and the necessary resources is achieved on the boundary
between D1 and D2.

If ever the global solution of our problem is in D2, we are using more processors than neces-
sary for that problem size. Nevertheless, it is desirable (and easy) to know whether this condition
arises (and at least to flag it to the user and prescribe a more appropriate p). Observe that when
p is reduced the boundary between D1 and D2 moves to the interior of the initial domain D2. In
this way each interior point of D2 can be made a boundary point if we choose an appropriate p.
Based on this observation, our general strategy is as follows. Solve P1 and P2. Let the optimal
values be attained at the points (r1, s1) and (r2, s2). If the point (r2, s2) is in the interior of D2

and T2(r2, s2) < T1(r1, s1) then reduce the number of processors so that the point (r2, s2)
falls on the boundary between D1 and D2. The point (r2, s2) is still optimal for the reduced
number of processors and the optimal running time is the same (see Remark 8).

Each problem instance has a certain degree of parallelism, in other words some number of
processors p∗, such that no improvement of the performance can be obtained using more than
p∗ processors. Now we are going to find this number of processors.

Given a problem instance, suppose we have sufficiently many processors (our allocation of
tiles allows using of at most N processors). If there are no resource limitations the running
time of the program is given by the function T2. In the terms of our model the domain D1

becomes empty and the domain D2 becomes the whole problem domain R. Let (r∗, s∗) be
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the point where the function T2 reaches its minimum over the entire domain R (as explained in
Sections 2.2.3 and 2.2.3). Then T2(r

∗, s∗) is the best possible running time for that problem
instance. Now we are interested which is the minimal number of processors for which we can
obtain the same running time. It suffices to choose a number of processors so that the point
(r∗, s∗) falls on the boundary between D1 and D2. If we choose less processors, this running
time is impossible, because the point (r∗, s∗) falls in the interior of D1 where T1 > T2 (see
Remark 8). Since the boundary between D1 and D2 is composed of the two lines n = p and
m = pσ̄, we have

p∗ = min

{
N

s∗ ,
M + |γ|s∗

r∗ + γs∗

}

2.2.5 Optimizing Tile Shape
In this section we study the question of choosing the tile shape (determined by the parameter
γ) in an optimal manner, i.e., so that the resulting running time is minimal. In order for the
tiling to be valid, all dependence vectors must be in the cone(

(
1

−γ

)
,
(
0

1

)
). Let γ0 be such that

the resulting cone is the tightest possible, i.e., such that
(

1

−γ0

)
coincides with one of the extreme

dependencies. Then the possible tile shapes are given by γ > γ0. Let (r0, s0) be the optimal
tile size with γ = γ0 and let (r0, s0) ∈ D1 (if necessary the number of processors is reduced
as explained in Section 2.2.4). Now consider T1(r0, s0) as a function of γ:

T 0(γ) = T1(γ; r0, s0) =
(

N
p

|γ| + p̄s0γ + const
)

P
r0

Let γ0 ≥ 0. Then for any γ > γ0 we obtain

T 0(γ) − T 0(γ0) = (γ − γ0)
(

N
p

+ p̄s0

)
P
r0

> 0

i.e., T 0(γ) > T 0(γ0). The same is true for arbitrary fixed (r0, s0) ∈ D1. In other words, the
minimal value of T1 is obtained for γ = γ0 or we have to choose the tightest possible cone.

Now consider the case γ0 < 0. In this case the optimal tile shape is not obvious since r0

and s0 depend on γ) but we are going to give a gradient-like method to improve it. For any γ,
γ0 < γ ≤ 0 we have

T 0(γ) − T 0(γ0) = (γ − γ0)
(
−N

p
+ p̄s0

)
P
r0

Now if s0 ≥ N
pp̄

it is impossible to improve the running time in the point (r0, s0) by increasing
γ and we stop because γ0 is (locally) optimal. Otherwise the function T 0 decreases when γ is
increased. As was shown above we must keep γ negative and we have to leave the point (r0, s0)
in D1 respecting the inequality m ≥ pσ̄. In other words we can take γ1 = min{0, M−pr0

p̂s0
}

(where p̂ = p − sgn γ) and to continue the process iteratively.
At kth step, let we have some γk and let (rk, sk) ∈ D1 be the solution of the optimization

problem for γ = γk.
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• If sk > N
pp̄

we have to decrease γ in order to improve the running time at the point
(r0, s0). We have to respect the constraints γ ≥ γ0 and σ ≥ −1 so we take γk+1 =
max{−rk

sk
, γ0}.

• If sk < N
pp̄

we have to increase γ. We have to take into account the constraints γ ≤ 0

and m ≥ pσ̄ so we set γk+1 = min{0, M−prk

p̂sk
}.

If γk+1 = γk, stop, γk is locally optimal. Otherwise set k = k + 1 and iterate.
The above algorithm does not ensure globally optimal tile shape but it allows to improve it

locally.
Example Let M = 20000, N = 50000, p = 8, γ0 = −1, α = 2.6 × 10−7s,

β = 4.03 × 10−4s, τ = 2.02 × 10−7s. We obtain (r0, s0) = (1081, 154) which is
the interior of D1 and optimal running time T 0 = 33.48s. Since s0 < N

pp̄
= 893 we set

γ1 = min{0, 8.2} = 0. Resolving the optimization problem with γ1 we obtain (r1, s1) =
(27, 6250) which is on the boundary n = p and optimal running time T 1 = 33.11s. Since
s1 > 893 we set γ2 = max{−0.004, −1} = −0.004. The new solution is the same,
(r2, s2) = (27, 6250) with running time T 2 = 32.87s but it is already at the line σ = −1
and that is why we have to stop, i.e., we choose γ3 = max{−0.004, −1} = γ2 and stop.
The obtained value γ = −0.004 is locally optimal. It turns out to be also globally optimal as
checked by enumeration.

An even more drastic improvement is obtained for M = 200, N = 5000000, all other
parameters as above (although this may seem an extreme example, it is not that unlikely in some
biological sequence comparison problems). Here for γ = −1, the optimal tile size is given by
r = 112, s = 77, yielding a running time of 53.6 seconds. However, for γ = 0, (which is
optimal) and the corresponding optimal tile size (r = 1, s = 166410), the running time is only
33.1 seconds, a gain of nearly 40%.

2.2.6 The sequence global alignment application: Fickett’s algorithm

In order to validate the derivations from the model we write and run a code based on an algo-
rithm for solving the sequence global alignment problem [37]. This problem originates from the
computational molecular biology and nowadays it is one of the most frequently solved problems
in this domain. Below we give a brief formalization of the problem and the algorithm.

Let a = a1a2 . . . a|a| and b = b1b2 . . . b|b| be two sequences of characters over some
alphabet Ω. An arbitrary insertion of gaps (t) into a and b results into new sequences ā and b̄.
If the lengths |ā| and |b̄| are equal (say of size L) we call (ā, b̄) an alignment of the sequences
a and b. Let f(x, y) be a function on Ω̄ × Ω̄, where Ω̄ = Ω

⋃{t}, such that f(t, t) = 0.
Then

∑L
i=1 f(āi, b̄i) is called score of the alignment (ā, b̄). The alignment with the minimal

score is optimal. The well known dynamic programming algorithm [37] finds l(|a|, |b|), the
score of an optimal alignment by the recursion:
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l(i, j) = min





l(i − 1, j − 1) + f(ai, bj)
l(i, j − 1) + f(t, bj)
l(i − 1, j) + f(ai, t)
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Figure 2.4: Domain of a k-band global alignment of two sequences

The domain of this recursion is {(i, j) | 1 ≤ i ≤ |a|, 1 ≤ j ≤ |b|} with l(i, 0) and
l(0, j) fixed properly, and l(i, j) is the score of the best alignment of the subsequences a1 . . . ai

and b1 . . . bj . The time complexity of this algorithm is O(|a|×|b|). For “k-similar” sequences,
which means that the best alignment has less than k gaps, we can adopt the same algorithm
discarding some subset of the domain of the recursion. This subset can be determined as follows.
The definition of the alignment implies that we must insert at least |b| − |a| gaps in the shorter
sequence a plus c gaps into both sequences evenly distributed. Then the set of relevant indices is
given by the constrains − c

2
≤ j −i ≤ |b|−|a|+ c

2
. These constrains restrict the computations

only over the indices belonging to a band-like subset of the rectangular |a| × |b| index set (see
Fig. 2.4). This band could be easily extended to a parallelogram domain, which can be considered
as an image of some rectangle transformed by the unimodular matrix H from Section 2.2.2
with γ = 1. This allows a direct application of the proposed optimization technique to the
parallelization of this k-band algorithm. In the next section we present experimental results on a
problem instance with |b| = 55000 and |a| = 50000. The sequence b is randomly generated
over the DNA alphabet and a is obtained from b by deleting some 5000 characters at random
positions. In this way the best alignment of the two sequences is obvious. The minimal number
k of gaps in each alignment is k = |b| − |a| = 5000 but we take a broader band choosing
c = 15000. If we return now to the notation from Section 2.2.2 this corresponds to an index
domain with M = |b| − |a| + c = 20000 and N = |a| = 50000 with 109 index points.
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2.2.7 Experimental Validation

We performed our computational experiment on the IBM SP2 machine at CINES4 and on the
Cray T3E at the EPCC 5. The program is written in C. As a communication library we use MPI,
following the BSP model and performing a global barrier synchronization at the end of each
macrostep.

Determining the Machine-Dependent Parameters

We first detail some of our calibration experiments to determine machine and program parameters
in it—α, β and τ . Ideally, it would have been necessary to implement the program using a library
such as BSPLib. However, the behavior of tiled loops is simple enough that we can achieve the
BSP protocol by simply using the standard send-receive libraries and a single additional
synchronization.

To measure the communication parameters we use the following method. For a given mes-
sage size r we measured the communication time of r integers around a ring (each processor
sends a message of size r integers to its right neighbor and receives a message of the same size
from its left neighbor), followed by a synchronization (this is the additional synchronization cor-
responding to a BSP macrostep, although it is redundant for our code since the send-receive
calls ensure the necessary synchronization). We repeated this 1000 times and took the average
time, tr. We found tr for different values of r (from 1000 to 10000 with step 100). According
to our model tr = β + τr and we used a least squares fit to obtain β and τ . It turned out
that these parameters depend on the number of processors (communication and synchronization
of more processors is more expensive, as has been widely reported for the BSP model). For
example, when the number of processors is 8 the obtained values are β = 4.03 × 10−4s and
τ = 2.02 × 10−7s and when p = 16 we have β = 6.05 × 10−4s and τ = 2.22 × 10−7s.

To measure the parameter α, we simply ran the main loop for varying tile size on a sin-
gle processor and determined the average time to execute each iteration. We obtained α =
2.6 × 10−7s. Note that we did not attempt to optimize the performance of the single-processor
code, (eg. for caches by loop blocking, strip mining, etc.) Hence, the value of α that we ob-
tained (2.6 × 10−7s) was surely pessimistically high. More on this later, when we discuss our
experimental results.

Experimental Results

Using the computed parameters, we measured the performance of the k-band algorithm. Fig. 2.5(left)
gives the theoretical (solid line) and experimental (each point being the average of 10 runs) run-
ning times for different s, with r fixed to its theoretical optimal value (1500) and p = 8.
Fig. 2.5(right) shows the same figures when s is fixed to its optimal value of 110 (note that this

4http://www.cines.fr: Centre Informatique National de l’Enseignement Supérieur, Montpellier, France,
project mih1931

5http://www.epcc.ed.ac.uk/tracs/ Edinburgh Parallel Computing center, grant number HPRI-CT-
1999-00026 (the TRACS Programme at EPCC)
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requires 57 passes). We observe that (i) the function is quite flat for a large range of r and s; (ii)
the two functions match reasonably; and (iii) that the discrepancy is more sensitive to changes of
r than s.
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Figure 2.5: Running times for different s and r with the other parameter fixed to the predicted
optimum.

The observed discrepancy resembles a shift, plus small periodic fluctuations. We hypothesize
that the shift can be explained by cache effects on each processor which renders α dependent on
the tile size (more precisely, roughly linear with r, given that the order of loop execution within
a tile has the j loop as the inner one). To verify this, we simply plugged a different value of α
in the theoretical function (the dashed curve in Fig. 2.5), and this matches the experimental data
much more closely (and the variation of the discrepancy with r seems to be linear).

α r∗ s∗ Texp α r∗ s∗ Texp
.01 447 1887 37.11 0.5 1445 83 35.76
.05 230 1647 35.76 0.6 1441 76 35.61

.1 1568 171 35.42 0.7 1428 71 35.74

.2 1505 126 35.38 0.8 1437 66 35.75

.3 1489 104 35.51 0.9 1419 63 35.72

.4 1458 92 35.59 1.0 1414 60 35.91

Table 2.3: Sensitivity to α (shown in µsecs).

Table 2.3 shows the fluctuation of the predicted optimal tile size with α, and the experimental
running time of the program for these tile sizes. Observe that though the optimal tile size itself
changes a lot, the corresponding running time is insensitive, even when α is four times our
estimate of α. However, for an optimistically low estimate, we move far from the true optimal.

We also hypothesize that the periodic fluctuations are due to the rational approximation we
use, namely the inherent step-wise dependence of the timing function of the tile size. We would
have the same effect even for the theoretical timing function in the case of an integer arithmetic.

128



50.00

100.00

150.00

200.00

250.00

300.00

0 500 1000 1500 2000 2500 3000

tim
e 

(s
ec

)

r

p=8, N=50000, M=20000

Theoretical
Experimental

100.00

105.00

110.00

115.00

120.00

125.00

130.00

135.00

140.00

145.00

150.00

0 500 1000 1500 2000 2500 3000

tim
e 

(s
ec

)

r

p=8, N=50000, M=20000

Theoretical 
Theoretical (adjusted)

Experimental

Figure 2.6: Predicted and observed running times, with s fixed for (a) degenerate orthogonal
tiling (s = 1), and (b) single pass, or block distribution (s = N

p
= 6250). Although each

curve leads to an optimal value which is also more or less corroborated by the experimental data,
they are merely local minima. The true optimal (Fig. 2.5) is 2.5 (respectively 3) times faster.

Fig. 2.6 gives the predicted and experimental running times for two special cases: s = 1,
(degenerate orthogonal tiling) and s = 6250 (the one-pass solution, or block distribution of
tiles to processors). The best running times for these cases are respectively about 2.5 and 3
times slower than the optimal running time. Fig. 2.7 gives the running times and the speedup for
varying p, each time for the (predicted) optimal r and s, showing nearly linear speedup.
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Figure 2.7: Running times and speedup for different p

Experimental validation on other machines

We ran similar experiments on two other parallel machines, a Cray T3E and a Sun HPC 6500. On
the former, we measured the following constants: α = 1.98 × 10−7s, β = 1.09 × 10−4s and
τ = 6.6 × 10−8s. On this machine we observed an extremely stable behavior of our codes and
the experimental running times corroborated our theoretical predictions even closer than on the
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Figure 2.8: Theoretical and experimental results for the parallelization of Fickett’s algorithm for
comparison of two similar sequences on Cray T3E. Iteration space – 109 points, 16 processors.
The running time is shown as a function of one of the tile parameters (width, height) when the
other one is fixed at its theoretically predicted optimal value.

IBM SP2 (see Fig. 2.8). However, the experiments which we conducted on the shared memory
machine Sun HPC 6500 at the EPCC showed that our results, originally developed for distributed
memory machines, cannot be directly applied to shared memory architectures.

2.2.8 Related Work

The tiling problem has received the extensive scrutiny of a number of authors, but with differing
hypotheses, problem formulations, and cost functions. Therefore, comparisons must be made
carefully. Furthermore, although tiling is also extensively used by many authors for data locality,
these results are perfectly complementary to the subject of this paper. Additional level(s) of tiling
can be used on each processor, completely independently of the optimal solution proposed here.
The only parameter that this would change for our analysis is α, and as noted above, the results
are relatively insensitive to its value. Space constraints preclude a detailed discussion of tiling
for locality, literature (e.g. [25, 38]) which is at least as extensive as on tiling for parallelism.

The word tiling was coined by Wolfe [17], though the transformation was described with
varying degrees of generality by a number of authors: Schreiber and Dongarra [36], and Ra-
manujam and Sadayappan [14]. Similar notions had previously been developed in the context
of fixed-size systolic array synthesis by Fortes & Moldovan [34], and Navarro et al. [35]. The
foundations of tiling were formulated in the seminal paper of Irigoin and Triolet [7]. Xue [40]
presents an excellent overview of these results as well as a formulation of tiling as a loop trans-
formation, and a precise description of the legality conditions of a tiling.

Although the early papers were more concerned with legality, they also discussed the problem
of the choice of the tiling parameters. Different cost functions associated with the tile volume
and tile surface area were proposed in some of the above work [7, 36, 14], and also by Boulet
et al. [22] and Calland and Risset [24]. However, such a cost function is approximate at many
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levels: first, the tile’s surface area is but an approximation of the number of dependence vectors
that cross a tile boundary; this itself is an approximation of the communication volume (since
the allocation of tiles to processors could result in localizing some of the inter-tile dependences
to the same processor); the communication volume itself is but one aspect of the time for the
communication (e.g. the startup cost, or network latency may often be dominant). It is not
surprising that these results (some of which are very elegant mathematically) are not validated
experimentally.

Independently, a number of authors address the problem of optimizing a much more realistic
cost measure, namely the running time of a tiled program on a parallel machine. For 2-D orthog-
onal tiling, King et al. [10] consider the case of square tiles (i.e., the height and width of the tiles
are both equal). Hiranandani et al. [6] and Palermo et al. [13] consider rectangular tiles, but only
for a block distribution of tile-rows to processors (i.e., the tile height is fixed to be s = N

p
) under

slightly different machine models. The latter two results were in the context of prototype com-
piler implementations, and although the compiler handles arbitrarily deep loops, only the two
innermost loops are tiled. Andonov and Rajopadhye [20] resolve the problem when block-cyclic
allocations are permitted. Ohta et al. [12] also address the same problem, but incorrectly claim
that the block distribution is always optimal (for a detailed discussion on this see [21, 23]).

A drawback of such a precise machine model is that of “portability”. Even slight variations
in a few parameters (e.g. allowing communication computation overlap) significantly alter the
optimization problem, and analytic solutions may not be easily found. Andonov et al. generalize
the orthogonal tile sizing results to n-D loop nests [21], and also use the BSP model [16], which
is portable across a wide range of machines.

We thus have two sets of results, one seeking to optimize the tile shape using very approxi-
mate cost functions, and another seeking, for a given, restricted class of tile shapes, the tile size
that minimizes a realistic cost function. An interesting result is due to Hodzic and Shang who op-
timize both shape and size (for n-D loops) but assume an unbounded number of processors [28].

The case of oblique tiling has not received much attention, principally because of the dif-
ficulty of analytically modeling the running time of the tiled program. Högstedt et al. [30]
develop a cost model (later simplified somewhat by Desprez et al. [26]) for 2-D semi-oblique
tiling of parallelogram (or trapezium) shaped domains. They define and identify the rise as a
critical parameter, and give analytic formulæ for the idle time of the program (from which its
running time can be easily computed). Their model is different from BSP, and in particular,
allows communication-computation overlap.

Högstedt et al. [31, 32, 29] further generalize their results to n-D (so-called rectilinear) loops,
and also determine the optimal schedule using linear programming. This work is complementary
to ours—more general in some aspects and more restrictive in others. They consider higher
dimensional loops, and multiple levels of tiling, and obtain precise functions for the running
time of the program. They do not address the choice of the parameters in its full generality,
but consider a single independent parameter, the rise, σ = γs

r
. They then suppose that the tile

slope γ, the number of processors, p, and the number of passes (and hence the tile height, s)
are all given, which reduces their problem to optimally selecting r. Although fixing the first two
may be justifiable, fixing s could take them them far from the true optimum (recall that the best
single pass solution of the k-band algorithm is about three times slower than the true optimal),
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or require an oracle (to guess that 57 passes are needed).
Wonnacott [39] introduces a transformation called time-skewing. He considers n-D loops

(not necessarily perfectly nested, but those that are amenable to an exact value-based dependence
analysis), and addresses the use of semi-oblique tiling in the context of cache performance im-
provement on sequential and also parallel machines. For parallel machines, although he identifies
that tiles larger than a certain size will allow complete overlap of communication and computa-
tion, he does not address the problem of the optimal tile size. Moreover, his proposed allocation
of tiles to processors could lead to load imbalance.

Agarwal et al. [18] address a more general case in the context of distributed memory ma-
chines. They consider affine rather than just uniform dependences, and like Wonnacott , they
tackle both cache optimization and parallelization. Their main contribution is that they give an
algorithm to estimate an analytic formula that gives what is called the “cache footprint” of a tile.
Using this formula, they suggest that a compiler would be able to find the optimal tiling parame-
ters automatically. They also implement such a compiler and show that it gives excellent results,
but precise details of its implementation are missing (e.g. for a simple 2-D uniform dependence
example in the paper, they use the method of Lagrangian multipliers to analytically find the opti-
mal tiling parameters; it is not clear how their compiler would automatically solve this, and other
more complicated problems). As we have seen, the optimization problems even for “simple”
cases are fairly involved, and we expect that their compiler uses heuristics for common cases.

BSP versus send-receive model

In this section, we compare the results presented here with some of our preliminary results
presented at CPC 2000 [19]. There we considered a case study to determine the optimal tile
size when the shape is given (i.e., semi-oblique tiling with γ = 1). The machine model was
based on send-receive system calls, rather than BSP. This allows for a precise modeling of
computation-communication overlap, but renders the non-linear optimization problem difficult,
and the proposed solution was approximate. We present here the analytical behavior of the two
functions and how their optima compare.

The send-receive cost function [19] had parameters that are different from the three-
parameter BSP model (the arithmetic time, α is of course common to both). For the send-receive
model, the communication time is modelled by a message “startup cost” (which is similar in
spirit, but not identical, to the BSP synchronization cost, β), and two parameters τc and τt,
which represent “transfer rate” per byte. The first one represents the transfer time that cannot
be overlapped with computation (e.g. the time to “copy” a message from the user memory space
to system memory) and the other is the time which can be overlapped (e.g. the actual “transfer”
time, during which the sending processor is free to continue on to the next tile, but the receiving
processor still has to wait, because the transfer is not yet complete).

We first compared both theoretical curves using the same arithmetic time, α = 0.26×10−6,
and the values for the two transfer rates as measured6 in our earlier experiments [19]: τt =

6Note that the experiments, although on the same IBM SP2 machine, were performed by different people, at
different times (possibly under different versions of the OS and programming environment).
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Figure 2.9: Comparison of send-receive vs BSP analytical models: running time as a func-
tion of s with r fixed to its optimal value as predicted by the send-receive (left) and the
BSP (right) models. The overall behavior of the curves is very similar. Both analytically pre-
dicted function minima (visualized as horizontal lines) correspond perfectly to the minima of the
curves.

0.0022 × 10−6s and τc = 0.0011 × 10−6s respectively. For β we first took realistic values:
βbsp = 403.0 × 10−6s and βsr = 45.0 × 10−6s (as measured for the send-receive
model in [19]). The obtained results are given in Fig. 2.9 and illustrate that: (i) the analytically
predicted function minimum match perfectly with the theoretical curve minimum in both models;
and (ii) the behavior of both timing functions in general, is very close.

Then we artificially increased the values of both β keeping βbsp = 10 × βsr. In the very
large interval, 0.45×10−4 ≤ βsr < 0.225×10−2, we did not observe any significant differ-
ence in both models. However, for βsr ≥ 0.225 × 10−2 (see Fig. 2.10), the send-receive
model formulas (with its approximate solution) accumulate visible error, while the BSP analytical
solution give always the true minimum. However, note that these values of β are extremely large
and are not realistic (except maybe for very large latency parallel machines, maybe for clusters).

We therefore reiterate that the approximation in [19] is sufficiently good for the simple cases
considered (γ = 1, and a tightly couple parallel machine), but does not hold for arbitrary γ and
β. For reasonable values of β the results of both models are very close. The fact that in the
current study we chosen to use the relatively simpler BSP model, enabled us to completely and
exactly resolve the general 2-D semi-oblique problem. This choice is not to the detriment of any
precision, as confirmed by our computational experiments.

2.2.9 Conclusions
In this section we addressed and resolved the problem of optimally tiling a 2-D rectangular (or
parallelogram shaped) iteration domain using (semi) oblique tiles—one set of tile boundaries are
parallel to the domain boundary, and the other is oblique. Although the benefits of such tiling
(wherever possible) have been well known, there was no systematic method to choose the tiling
parameters optimally. We have shown analytically and experimentally, how all of them, namely
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Figure 2.10: Sensitivity to β, which is artificially increased. βsr is fixed to 0.225 × 10−2 and
βbsp = 0.225 × 10−1. Note that the (approximate) analytically predicted function minimum
send-receive (the horizontal line on left) does not correspond to the real minimum of the
curve. In contrast, we have perfect match in the BSP model (right).

the tile height and width, the tile slope and also the number of processors can be determined so
as to minimize the total execution time on a parallel BSP machine. Another key aspect is that our
solution is in closed form as simple formulæ, and hence can trivially incorporated into a compiler
(or even a run-time system, if one desires to dynamically alter the tile size to exploit fluctuations
“in the field”). Moreover, our solution enables us to analyze the impact of the problem and
architectural parameters, p, α, β, τ, N and M (some of whose effects are beyond the intuition
of even advanced programmers).

We validated our results on a number of examples, both synthetic and real. One of the
examples in particular is interesting in its own right, and we have therefore presented it here. We
derived a parallel sequence alignment program which achieves optimal performance on an IMP
SP2. Similar results are expected for all dynamic programming algorithms with banded domains,
and problems such as SOR relaxation.

Note that though tiling is a well studied problem, and incremental gains of successive results
are relatively small, our running times are 2.5 and 3 times faster than the best performance using
previously known techniques.

Limiting ourselves to 2-D loops is not as restrictive as it may seem at first glance. Many
problems can profit from the techniques as we have seen. Moreover, for an n-D loop nest, we
could choose to tile only the two innermost loops using semi-oblique tiling. The results in this
paper would then serve a heuristics since they would not guarantee global optimality, but this is
a useful starting point. It is interesting to mention that even for orthogonal tiling, such a strategy
is often used (e.g. the Fortran-D compiler at Rice University [6] and the Paradigm project at the
University of Illinois [13]).

The main open problems include extensions to fully oblique tiling, to higher dimensions, and
to multiple levels of tiling.
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Chapter 3

Knapsack Problems

3.1 A Dynamic Programming Based Reduction Procedure for
the Multidimensional 0-1 Knapsack Problem

This section presents a preprocessing procedure for the 0-1 multidimensional knapsack problem.
First, a non-increasing sequence of upper bounds is generated by solving LP-relaxations. Then, a
non-decreasing sequence of lower bounds is built using dynamic programming. The comparison
of the two sequences allows either to prove that the best feasible solution obtained is optimal,
or to fix a subset of variables to their optimal values. In addition, a heuristic solution is ob-
tained. Computational experiments with a set of large-scale instances show the efficiency of our
reduction scheme. Particularly, it is shown that our approach allows to reduce the CPU time of a
leading commercial software.

3.1.1 Introduction
Here, we present a preprocesssing scheme for the 0-1 Multidimensional Knapsack Problem
(MKP), which can be formulated as

max
∑

j∈N

cjxj

s.t.
∑

j∈N

aijxj ≤ bi, i ∈ M

xj ∈ {0, 1}, j ∈ N

where N = {1, 2, . . . , n} is the set of items, M = {1, 2, . . . , m} is the set of knapsack
constraints with capacities bi, associated weights aij and profits cj . The objective is to find a
subset of items that yields a maximum profit. We assume that all the data aij , bi, cj are non-
negative integers and, without loss of generality, that cj > 0, bi > 0, aij ≤ bi for all j ∈ N
and all i ∈ M and

∑
j∈N aij > bi for all i ∈ M .

The MKP is typically encountered in the areas of capital budgeting and resource alloca-
tion. The paper by Manne and Markowitz [32] is probably one of the earliest references to this
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problem. Other applications include project selection, cutting stock, loading problems, deter-
mining the optimal investment policy for the tourism sector of a developing country, and, more
recently, delivery of groceries in vehicles with multiple compartments, approval voting, multi-
project scheduling, satellite communications. It also appears in a collapsing problem and as a
subproblem in large models for allocating processors and data bases in a distributed computer
system. Finally, the MKP model is more and more frequently used as a benchmark to compare
general purpose methods as metaheuristics.

In this paper we will often use shortcut notations for the problem like

max{cx : aix ≤ bi, i ∈ M x ∈ Bn}
or

max{
∑

j∈N

cjxj :
∑

j∈N

Ajxj ≤ b, xj ∈ B, j ∈ N}

or simply
max{cx : Ax ≤ b, x ∈ Bn}

3.1.2 Related work
The Multidimensional Knapsack Problem generalizes the well-known Knapsack Problem (KP)
which deals with only one constraint. As the single constraint case, the MKP is NP-hard but not
strongly NP-hard. Polynomial approximation schemes exist for the single knapsack problem
and some of them are generalized for the MKP [9, 17]. But while there are fully polynomial
approximation schemes for m = 1, finding fully polynomial approximations for m > 1 is
NP-hard [20, 31].

Most of the research on knapsack problems deals with the much simpler single constraint
case (m = 1). This problem is very well studied and efficient exact and approximate algorithms
have been developed for obtaining optimal and near-optimal solutions. An extensive overview of
exact and heuristic algorithms is given by Martello and Toth [34]. Randomly generated instances
up to 250000 variables may be solved to optimality. Important recent advances can be found in
[35, 40].

Exact methods

In contrast, the MKP is significantly harder to solve in practice than the KP. As soon as the
number of knapsack constraints increases, exact algorithms usually fail to provide an optimal
solution of moderate size instances in a reasonable amount of time. For example, one of the
recent versions of CPLEX (6.5.2) is not able to solve difficult problems with 100 variables and 5
constraints to optimality, because of the memory requirements of the search tree [38].

All general 0-1 integer programming techniques may be applied to the MKP [10, 36, 37].
Only the nonnegativity of the coefficients distinguishes this problem from the general 0-1 integer
programming problem. The dense constraint matrix and the absence of special constraints, such
as generalized upper bounds, special-ordered sets, etc., complicate the development of efficient
algorithms for the MKP. That is why relatively few special-purpose algorithms address the MKP.
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The development of exact algorithms for 0-1 integer programming began several decades
ago [4, 5, 21, 23]. Typically, these approaches start with preprocessing phase, finding lower and
upper bounds of the objective value and trying to reduce the problem size by fixation of variables
and elimination of constraints. The second phase is an implicit enumeration, which uses the
preprocessing information.

The first special-purpose branch and bound algorithm for the MKP is published by Shih [46].
An upper bound is obtained using the minimum of the LP-relaxation values associated with each
of the m single constraint knapsack problems. Gavish and Pirkul [19] develop another branch-
and-bound algorithm using the surrogate relaxation of the problem. Their algorithm was proved
to be faster than the Shih’s one for randomly generated instances containing up to 200 variables
and 5 constraints. Other interesting results are given by Fréville and Plateau [16] for the case
of two constraints (m = 2). They solve instances up to 2000 variables by using an efficient
preprocessing phase based on an exact solving of the surrogate dual.

Other kinds of special-purpose exact methods, with only limited success being reported, in-
clude the dynamic programming based methods [22, 51], an enumerative algorithm based on the
Fourier-Motzkin elimination [7] and an iterative scheme using linked LP-relaxations, disjonctive
cuts and implicit enumeration [47].

3.1.3 Heuristic methods
A lot of heuristic methods were developed during the last three decades, the best of them being
able to provide near optimal solutions for instances with sizes up to n = 500 and m = 30,
in a reasonable amount of CPU time. The main ideas developed for the MKP can be roughly
classified into four categories. The greedy algorithms construct a feasible solution step by step
by fixing one (or more) variables at each iteration. The first algorithm using the greedy principle
was published by Senju and Toyoda [45]. Relaxation-based methods combine local search and
information provided by the LP-relaxation, the lagrangean relaxation or the surrogate relaxation,
to generate feasible solutions (a comprehensive review of these methods is given by Fréville
and Plateau [14]). The last two groups concern metaheuristics, which are very popular methods
since the last decade. Simulated annealing, threshold method, tabu search and GRASP are used
to enhance the basic local search by overcoming bad local optima. Particularly, good results have
been obtained with tabu search embedded into a strategic oscillation scheme [24, 28]. Finally,
promising approaches were recently developed concerning genetic algorithms for constrained
optimization [12].

3.1.4 Preproccesing techniques
Preprocessing techniques play a fundamental role in the development of efficient integer pro-
gramming methods. The basic techniques try, among other things, to fix variables, to identify
infeasibility and constraint redundancy, to tighten the LP-relaxation by modifying coefficients
and by generating strong valid inequalities. Most of the research deals with branch-and-cut al-
gorithms which were successful for solving large scale 0-1 linear programming problems. Sem-
inal ideas to generate strong valid inequalities are given by Crowder et al. [10]. Savelsbergh
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[44] presents a framework of basic techniques to improve the representation of a mixed integer
programming problem. Constraint pairing [27], probing techniques and logical reduction meth-
ods [26], are also very useful techniques to improve enumeration procedures and branch-and-cut
methods. More recently, Glover et al. [25] generate cuts from surrogate constraint analysis. Con-
straint pairing and surrogate analysis are used by Osorio et al. [38] to generate logic cuts. Their
computational experiments show that the preprocessing approach improves the performance of
CPLEX.

The reduction technique presented in our paper tries to fix some of the variables to their
optimal values. The common variable fixation techniques are based on a good lower bound
l = cx associated with a feasible solution x. They use the following property:

For any j ∈ N and for any ε ∈ {0, 1}, if

zj = max{cx : Ax ≤ b, x ∈ Bn, xj = ε} ≤ l

then either xj = 1 − ε in any optimal solution of the MKP, or x is optimal.

Of course, the above MKP is as hard to solve as the original problem, but it should be clear
that any upper bound on zj suffices. Fayard and Plateau [13] use reduced costs associated with
lagrangean relaxation to derive such upper bounds. Fréville and Plateau [15] propose more
refined upper bounds induced by additivity of the reduced costs and separation on the optimal
basic fractional variable of surrogate relaxations.

In this paper we propose an alternative approach based on dynamic programming and LP
upper bounds. The idea of this approach is contained in [50] for the single constraint case. We
extend it for the MKP and introduce a number of improvements and new ideas.

3.1.5 Dynamic programming approaches
Dynamic programming (DP) was introduced by Bellman [6]. Toth presents the early DP-based
approaches for the KP in [48] and reports numerical experiments with limited success. More
recently, Pisinger proposes a DP algorithm for KP which constructs a core problem of minimal
size, thus minimizing the sorting and reduction efforts. Hybrid methods, combining dynamic
programming and implicit enumeration, were developed for the KP. The first approach was pub-
lished by Plateau and Elkihel [41]. A recent approach, the so-called combo algorithm, is able to
solve very large instances up to 10 000 variables within less than one second, with basically no
difference in the solution times of “easy” and “hard” instances [35].

Marsten and Morin [33] proposed the first hybrid method for the MKP, which combines
heuristic algorithms, dynamic programming and branch-and-bound approaches. More sophisti-
cated methods, such as a successive sublimation procedure can be found in [30].

3.1.6 General method
Consider the function

f(k, g) = max{
k∑

j=1

cjxj :
k∑

j=1

Ajxj ≤ g, xj ∈ {0, 1}, j = 1, . . . , k} (3.1)
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Obviously, f(n, b) is the optimal value of the MKP. This value can be found using the recursion

f(k, g) = max{f(k − 1, g), ck + f(k − 1, g − Ak)}
for k = 1, . . . , n and Ak ≤ g ≤ b with boundary conditions

f(0, g) = 0, 0 ≤ g ≤ b

f(k, g) = f(k − 1, g), k = 1, . . . , n, g ≥ 0, g 6≥ Ak

>From a practical point of view, to solve the MKP problem we have to fill a table of size
n × b1 × · · · × bm which can be very memory- and time-consuming even for medium-size
instances of the single knapsack problem (m = 1). The first step to overcome the problem is to
use a sparse representation of the table as described in the next section.

3.1.7 List representation
This kind of representation is used in [1, 29, 48] for single knapsack problems. It is based
on the step-wise growing nature of the knapsack function and uses a list containing only the
points where the value of the knapsack function changes. In this section we present a natural
generalization of this idea for the MKP.

During the solution process we keep a list of (m + 1)-tuples. Each tuple corresponds to a
feasible solution. It represents the objective value and the residual capacities of this solution. We
start with the list {(0, b)} corresponding to the solution x = 0. At kth step, k = 1, . . . , n
we construct new solutions with xk = 1 using the ones constructed at the (k − 1)th step (if
possible) and add them to the list. The process is formally described in Algorithm 1.

Algorithm 1 DP Using List Representation

1 L = (0, b)
2 for k = 1, . . . , n do
3 L1 = ∅
4 for (f, g) ∈ L
5 if g ≥ Ak then L1 = L1 ∪ {(f + ck, g − Ak)}
6 end for
7 L = L ∪ L1

8 end for

To restore the optimal solution, it suffices to keep in each element of the list a pointer to the
element from which it was obtained or simply the step on which it was obtained.

Even for small problem instances the computational effort of the DP algorithm is consider-
able. This complexity is in the nature of the method because in fact it generates all the feasible
solutions of the problem. Hence it is not much better than an explicit enumeration of all 0-1
vectors.
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There are different strategies to recognize the solutions which are not perspective and to
remove them from the list at earlier stages. The most straightforward technique is to evaluate
the new solutions using bounds and then the dynamic programming becomes nothing but a kind
of breadth-first branch-and-bound algorithm. We will show a different way to use bounds in
Section 3.1.8.

Another way to reduce the size of the list is to use a dominance. This method uses the
step-wise growing behavior of the knapsack function (3.1). It is especially suitable for single
knapsack problems. Several variants of dominance for single 0-1 knapsack can be found in
[1, 29, 48]. The main idea is very simple. Consider two elements of the list e1 = (f1, g1)
and e2 = (f2, g2). Suppose that f1 ≥ f2 and g1 ≥ g2, that is the solution corresponding
to e1 has a better objective function and more residual capacity than the one corresponding to
e2. In this case it is clear that any continuation of the solution corresponding to e1 will be no
worse than any continuation of e2. That is why we can remove e2 from the list without missing
the optimal solution. The dominance is very efficient for single knapsack problems (m = 1).
Unfortunately this is not the case for m > 1, where detecting the dominance is very time
consuming and moreover, the dominance occurs very rarely in the solution process. The reason
is that for each two numbers a and b, either a ≤ b or b ≤ a, while for vectors we have not
such a total order. Our preliminary computational experiments showed that it is not worthwhile
to use dominance for the MKP, because the high price paid to detect it is not compensated by
considerable elimination of elements of the list.

The analysis of the DP method shows that it is not directly applicable in the context of the
MKP. In the next section we show a combination of this method with a bounding technique
which allows to fix some of the variables at their optimal values and in many cases even to solve
the entire problem.

3.1.8 A new procedure to fix variables
We propose a new method which combines LP-relaxation, upper bounds, and dynamic program-
ming in order to obtain efficient reduction and heuristic procedures for the MKP.

As we have seen in the previous sections, the DP method is not directly applicable. Neverthe-
less the first several steps of the algorithm are very fast since there are no expensive computations.
In this section we will show how to use this advantage.

Main results

Let x be a feasible solution of our problem

z = max{cx : Ax ≤ b, x ∈ Bn} (3.2)

and let uj , j = 1, . . . , n be upper bounds of the problems where xj is fixed at the opposite
value of xj :

uj ≥ zj = max{cx : Ax ≤ b, xj = 1 − xj, x ∈ Bn} (3.3)
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Let us reorder the variables so that

u1 ≥ u2 ≥ · · · ≥ un (3.4)

We introduce the variables in the DP algorithm using this order. At the end of each step of
the algorithm we calculate lower bounds lk by completing with xk+1, . . . , xn the best possible
entry of the list L so that the obtained solution is feasible. To be more precise

lk = max
(f,g)∈L

{f : g ≥
n∑

j=k+1

Ajxj} +
n∑

j=k+1

cjxj (3.5)

The meaning of the bounds lk is explained by the next proposition (see [35] for proof in the case
m = 1).

Proposition 1. For each k = 1, . . . , n

lk = max{cx : Ax ≤ b, x ∈ Bn, xj = xj, j = k + 1, . . . , n} (3.6)

>From this proposition it follows that

l1 ≤ l2 ≤ · · · ≤ ln (3.7)

In this way we obtain a non-increasing sequence of upper bounds (3.4) and a non-decreasing
sequence of lower bounds (3.7). At the moment when the both sequences “meet” each other we
are done and the optimal solution is found as shows the next proposition.

Proposition 2. If lk ≥ uk+1 for some k then z = lk.

Proof. Let x∗ be an optimal solution of (3.2).
1. Let x∗

j = xj for all j = k + 1, . . . , n. Then from (3.2) and (3.6) the proposition is
obvious.

2. Let x∗
j = 1 − xj for some j = k + 1, . . . , n. Then

z = zj ≤ uj ≤ uk+1 ≤ lk

On the other hand we have z ≥ lk, hence z = lk.

Algorithm 2 gives a formal description of the method. Note that if the list L is sorted by
f then l (line 12) can be computed easier. The only essential complication comparing to Algo-
rithm 1 comes from the lines 1-3.

Even in the version with bounds the list may become too long before we fix all the variables
(this is in fact the common case). But the first several steps are very fast and they can help to fix
many variables. In this way we can use the proposed method as an efficient preprocessing proce-
dure which reduces the size of the problem instead of an exact algorithm. The next proposition
explains the mechanism of fixing the variables.

Proposition 3. If ls ≥ uk for some s < k then there exists an optimal solution x∗ of the MKP
such that x∗

j = xj , j = k, . . . , n.
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Algorithm 2 DP with bounds

1 Find a feasible solution x
2 Compute the bounds u1, . . . , un

3 Reorder the variables to satisfy (3.4)
4 L = (0, b), p = cx, q = Ax
5 for k = 1, . . . , n do
6 L1 = ∅
7 for (f, g) ∈ L
8 if g ≥ Ak then L1 = L1 ∪ {(f + ck, g − Ak)}
9 end for
10 L = L ∪ L1

11 if xk = 1 then p = p − ck, q = q − Ak

12 l = p + max(f,g)∈L{f : g ≥ q}
13 if l ≥ uk+1 then break
14 end for

Proof. Consider lk−1 and the corresponding solution. Use lk−1 ≥ ls ≥ uk and apply Proposi-
tion 2.

The first question is how to choose the moment to stop, in other words, the number of the
DP steps to perform. This number of steps, say s, is an algorithm parameter that can be used
to tune the code according to the available memory size and the size of the problem. For our
computational experiments we used s = 18 − blog2(m + 2)c and the time to perform the
first s DP steps was practically 0. In general, when we choose the number of steps we have to
consider the tradeoff between the speed of the algorithm and its quality. In the worst case each
step is twice slower than the previous one. On the other hand, the bounds lk become better at
each step and we have the chance to fix more variables.

Another observation that allows to improve the code is that there is no need to compute the
bounds lk at each step. For large-size problems the chances to fix all the variables in several
steps are small and that is why we prefer to perform the first s steps without computing the lower
bounds (in this case the steps become faster) and to compute only the bound ls after the sth step.

The last observation is that once we finish and fix some of the variables we can apply the
same method for the reduced problem. Since part of the variables are fixed, the upper bounds for
the reduced problem will be tighter and it is possible to fix some other portion of variables. We
can continue in this way until we fix all the variables or no variable can be fixed.

The final version of our method is outlined in Algorithm 3.

3.1.9 Computing the bounds
In section 3.1.8 we give a general framework of the method without considering how to generate
the feasible solution x or the upper bounds uj . The choice of the initial feasible solution and
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Algorithm 3 DP with bounds (revised)

1 Find a feasible solution x
2 Compute the bounds u1, . . . , un

3 Reorder the variables to satisfy (3.4)
4 Compute the number of DP steps s
5 L = (0, b)
6 for k = 1, . . . , s do
7 L1 = ∅
8 for (f, g) ∈ L
9 if g ≥ Ak then L1 = L1 ∪ {(f + ck, g − Ak)}
10 end for
11 L = L ∪ L1

12 end for
13 l =

∑n
j=s+1 cjxj + max(f,g)∈L{f : g ≥ ∑n

j=s+1 Ajxj}
14 if l < un then stop (no fixation is possible)
15 else if l ≥ us+1 then stop (all the variables are fixed)
16 else
17 let k be such that uk−1 > l ≥ uk

18 fix xj = xj , j = k, . . . , n
19 apply the same algorithm for the reduced problem
20 end if

the method of computing the upper bounds are crucial for the performance of our algorithm. A
better initial solution and tighter bounds give the possibility to fix more variables, but on the
other hand they are more computationally expensive.

The most commonly upper bounds used in integer programming are the ones produced by
linear programming (LP). It seems that they have the best quality/complexity tradeoff. That is
why we use this kind of bounds. More precisely

uj = bmax{cx : Ax ≤ b, 0 ≤ x ≤ 1, xj = 1 − xj}c (3.8)

The next question is how to choose the feasible solution x. The choice of LP bounds forces
the use of the LP solution. Let x̄ be the optimal solution of the LP relaxation of the MKP

max{cx : Ax ≤ b, 0 ≤ x ≤ 1} (3.9)

and let u = bcx̄c. This solution contains m basic variables which are typically fractional and
the rest n − m variables are 0-1. Now suppose that for some j with integer x̄j we choose
xj = 1 − x̄j . Then the bound uj will be equal to u and the fixation of the variable xj will
never work. That is why the only reasonable choice is xj = x̄j whenever x̄j is integer. For
the fractional variables the only restriction is that x must be feasible. In the other hand, we are

147



interested to have a good feasible solution. Let B be the set of the basic (fractional) variables.
We can consider the restricted problem

max{cx : Ax ≤ b, xj = x̄j, j 6∈ B, xj ∈ {0, 1}, j ∈ B}

with only m variables and less right hand sides. Since m is assumed to be small we can solve
it exactly (using for example the simplest variant of DP) and take the optimal solution as values
for xj , j ∈ B.

Finding the bounds uj , j = 1, . . . , n involves solving n linear programs which can be time
consuming process. But we can use the solution of (3.9) as a starting point for the optimization
of (3.8). In this case only a small number of simplex iterations is needed and finding the bounds
is very fast.

Example 1. Consider the following instance of the MKP with 10 variables and 2 constraints

(
c
A b

)
=




31 92 53 36 44 43 54 44 42 46
19 83 99 56 76 91 62 89 95 16 290
42 93 49 60 2 8 38 3 24 58 200




The solution of its LP relaxation is

x̄ = (0.1744, 1, 0, 0, 1, 0, 1, 0.5582, 0, 1)

The only solution of the restricted problem

max{31x1 + 44x8 : 19x1 + 89x8 ≤ 53, 42x1 + 3x8 ≤ 9, x1, x8 ∈ {0, 1}}

is (0, 0) and hence the initial feasible solution is

x = (0, 1, 0, 0, 1, 0, 1, 0, 0, 1)

The upper bounds are

(u1, . . . , u10) = (264, 240, 243, 241, 257, 257, 260, 262, 246, 249)

which imposes the following order of the variables

x1, x8, x7, x5, x6, x10, x9, x3, x4, x2

Table 3.1 gives the list L, p, q and the lower bound l at the end of each phase of the algorithm.
The tuple (p; q) is placed next to the list element with which it is combined to obtain the lower
bound. After the third iteration of the loop in lines 6-12 of Algorithm 3 we stop because the rest
of the upper bounds are less or equal to the current lower bound. The optimal solution is already
known. It is

x∗ = (1, 1, 0, 0, 1, 0, 0, 1, 0, 1)

with objective value 257.
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var L (p; q) l
x1 (0; 290, 200) (236; 237, 191) 236

(31; 271, 158)
x8 (0; 290, 200) (236; 237, 191) 236

(31; 271, 158)
(44; 201, 197)
(75; 182, 155)

x7 (0; 290, 200)
(31; 271, 158)
(44; 201, 197)
(54; 228, 162)
(75; 182, 155) (182; 175, 153) 257
(85; 209, 120)
(98; 139, 159)

(129; 140, 117)

Table 3.1: An example of solving the MKP by Algorithm 3

It is easy to show that our reduction scheme is stronger than previous methods based on
reduced costs only [15, 28]. Let v be the optimal values of the dual variables associated to the
knapsack constraints. Let r0 =

∑
i∈M vibi, rj =

∑
i∈M viaij for j ∈ N ,

S(v) : max{
∑

j∈N

cjxj :
∑

j∈N

rjxj ≤ r0, 0 ≤ x ≤ 1}

be the surrogate relaxation with relaxed integrality constraints and let

LR(λ) : λr0 + max{
∑

j∈N

(cj − λrj)xj : x ∈ Bn}

be the lagrangean relaxation of S(v). It is well known that, first z(LR(1)) = z(S(v)) = cx,
and second, that if bz(LR(1) : xj = 1 − xj)c = bz(LR(1))c + (cj − rj) ≤ cx for any
j, such that cj − rj < 0, then the variable xj can be fixed to xj (there is a symmetric result
for cj − rj > 0). As uj ≤ bz(LR(1) : xj = 1 − xj)c (since λ = 1 is not necessarily
the optimal multiplier for the reduced problem), our reduction test uj ≤ cx is stronger than the
ones using the reduced costs only.

Example 2. Consider the following example (n = 15, m = 4) from [38]




36 83 59 71 43 67 23 52 93 25 67 89 60 47 64
7 19 30 22 30 44 11 21 35 14 29 18 3 36 42 87
3 5 7 35 24 31 25 37 35 25 40 21 7 17 22 75

20 33 17 45 12 21 20 2 7 17 21 11 11 9 21 65
15 17 9 11 5 5 12 21 17 10 5 13 9 7 13 55




Our method provides the initial solution x with objective value cx = 301 as shown in
second row of Table 3.2 (the same initial solution is used in [38]). The reduced costs of the LP
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j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
xj 0 0 1 0 0 0 0 0 1 0 0 1 1 0 0

red.costs 311 335 335 315 324 330 292 294 335 299 335 312 313 325 311
u1

j 308 327 332 232 311 294 277 277 309 285 285 299 304 306 295
u2

j 301 325 328 311 290 300 306
u3

j −∞ 326 −∞ −∞

Table 3.2: Upper bounds for Example 2

relaxation allow to fix only the variables x7, x8 and x10. Our upper bounds uj allow to fix 8
variables at their optimal values (in italic on the third row of Table 3.2). If we fix these variables
and recompute the upper bounds, three more variables may be fixed. After one more iteration
only x3 is not fixed, but one can easily see that its optimal value is 1. In this way x is proved to
be an optimal solution.

3.1.10 Experimental results
The implementation of Algorithm 3 is written in C. To obtain a faster code and to compare with
the last achievements in 0-1 programming we use the commercial product CPLEX of ILOG. The
code is compiled using gcc v. 2.96 with option -O3 and linked to CPLEX callable library. The
computational experiments are performed on Compaq AlphaServer DS20 with EV6/500MHz
processor.

We tested our approach on several data sets. For the first experiment we generated random
instances, following the procedure described in [15]. To generate the coefficients of the matrix A
we use two types of probability distributions. The first one is the uniform U(0, M) distribution.
The second one, which we call D(α, p, M), has a density function

f(x) =





λ − λ−θ
α

x if 0 ≤ x ≤ α
θ

M−α
(M − x) if α ≤ x ≤ M

0 otherwise

The parameters θ and λ are chosen so that F (α) = p and F (M) = 1 where F is the
distribution function.

In both cases the objective function c and the right-hand side b are generated in the following
way:

cj =

∑m
i=1 Aij

m
+ 500rj, rj ∈ U(0, 1), j = 1, . . . , n (3.10)

bi = ri

n∑

j=1

Aij, ri ∈ U(0, 1), i = 1, . . . , m (3.11)

Table 3.3 gives the reduction results on this set of instances. Each row summarizes 10 in-
stances. We give the minimum, maximum and average number of variables rest after the appli-
cation of the DP algorithm. The average percentage of reduction is also given. For comparison
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Distribution m n reduced n (DP algorithm) F & P
min max avg avg % avg %

U(0, 1000) 5 100 0 49 15.1 84.9 63.6
250 20 100 37.2 85.1 62.9
500 0 51 21.4 95.7 68.1

10 100 0 39 20.5 79.5 42.0
250 0 68 17.2 93.1 49.4
500 0 170 49.4 90.1 56.0

D(α, p, M) 5 100 0 94 28.3 71.7 45.0
α = 100 250 16 197 57.8 76.9 61.7
p = 0.9 500 0 403 111.8 77.6 60.9
M = 1000 10 100 0 78 28.1 71.9 19.8

250 0 230 73.7 70.5 27.9
500 0 243 82.6 83.5 34.8

D(α, p, M) 5 100 0 94 44.9 55.1 56.6
α = 50 250 45 234 138.9 44.4 44.2
p = 0.9 500 0 492 144.4 71.1 46.8
M = 1000 10 100 0 90 33.2 66.8 13.4

250 0 217 116.5 53.4 12.0
500 0 451 152.1 69.6 22.3

Table 3.3: Reduction Results

we include the same percentage reported by Fréville and Plateau in [15] after applying their
reduction procedure.

In 44 of the 180 instances the problem is completely solved by the DP algorithm. A consid-
erable reduction of the problem size is also observed for the remaining cases.

Table 3.4 shows the efficiency of the algorithm in terms of CPU time and quality of the
solution over the same set of instances. To estimate the efficiency, we apply the DP algorithm
and then solve the reduced problem using CPLEX. We compare this total solution time with the
time to solve the initial problem by CPLEX.

Table 3.4 shows that a negative reduction of CPU times occurs for some of the smaller in-
stances (that is, solving the problem by DP is slower than solving it by general methods). How-
ever, when n increases, the effect of the DP algorithm becomes obvious. Looking at the reduc-
tion of the problem size, one can expect greater reduction of the solution time. But as it is well
known, the reduced (also called core) problem inherits most of the “complexity” of the original
problem.

Another measure of efficiency is the quality of the DP solution. Recall that when DP algo-
rithm stops, we have a feasible solution (it’s value being ls) even if it is not able to fix all of the
variables. Table 3.4 also gives the relative gap between this solution and the optimal solution of
the problem. For more than the half (95) of the cases this gap is 0. For none of the cases the gap
is more than 2%.

For the second experiment we use the data set of Chu and Beasley [12], available at http://msmga.ms.ic.ac.uk/.
The matrix coefficients in this set are drawn from uniform U(0, 1000) distribution. The ob-
jective coefficients are the same as in (3.11) and the right-had side coefficients are the sum
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Distribution m n average time (ms) % gap %
t1 t2 t3 t4 r min max avg

U(0, 1000) 5 100 78 55 133 153 13.0 0 0.10 0.02
250 165 298 463 563 17.8 0 0.28 0.05
500 333 420 753 2187 65.5 0 0.01 0.00

10 100 92 87 178 208 14.4 0 0.06 0.01
250 165 417 582 1287 54.8 0 0.08 0.01
500 465 11678 12143 26648 54.4 0 0.08 0.02

D(α, p, M) 5 100 97 25 122 60 -102.8 0 0.84 0.10
α = 100 250 177 170 347 353 1.9 0 0.29 0.05
p = 0.9 500 427 1527 1953 2427 19.5 0 0.18 0.03
M = 1000 10 100 137 42 178 118 -50.7 0 0.52 0.05

250 273 243 517 607 14.8 0 0.42 0.09
500 508 1547 2055 3720 44.8 0 0.42 0.07

D(α, p, M) 5 100 103 42 145 63 -128.9 0 0.94 0.16
α = 50 250 203 307 510 342 -49.3 0 0.75 0.27
p = 0.9 500 438 465 903 1048 13.8 0 0.38 0.07
M = 1000 10 100 130 93 223 173 -28.8 0 1.92 0.30

250 257 413 670 817 18.0 0 0.55 0.18
500 588 980 1568 1750 10.4 0 0.51 0.13

Table 3.4: Time and Gap Results. t1 – time of DP algorithm; t2 – time to solve the reduced
problem by CPLEX; t3 – total time to solve the problem, t3 = t1 + t2; t4 – time to solve the
initial problem by CPLEX; r – average reduction of the total solution time (in %), r = t4−t3

t4
;

gap – the gap between the solution given by DP and the optimal solution (in %), gap = z−ls
z

.

of the matrix coefficients in the corresponding row, multiplied by some constant α. For each
m = 5, 10, 30, n = 10, 250, 500, and α = 0.25, 0.5, 0.75 there are ten instances, or a
total of 270 instances. The summarized results for this data set are presented in Table 3.5.

The results for the last data set show that the performance of our method is particularly good
for problem instances with a small number of constraints and a big number of variables. To
confirm this observation we generated random instances with m = 2, n up to 6000, objective
coefficients determined by (3.11) and right-hand sides bi = 0.25

∑
j∈N aij . It is seen that the

reduction of the time grows with the size of the problem (for example the total solution time with
reduction is about 7 times less than the total solution time without reduction for n = 4600.
For n > 4600 it is impossible to solve the problem without applying the reduction procedure
(the search tree generated by CPLEX reaches the memory limit), while the total solution time
when applying the reduction procedure is less than 1 min. Observe also that the time t3 (DP
+ CPLEX) has relatively robust behavior and grows slowly with n, while the time t4 (CPLEX
only) fluctuates and grows much faster.

Finally, we tested our approach on the data set of Glover and Kochenberger [24], a set of
difficult instances, for which the optimal solutions are unknown. Our algorithm fails to reduce
the size of these problems, but at least we quickly obtain good feasible solutions. Table 3.7
shows the objective values of the solutions we found and the best known solutions [49]. The
time to obtain these solutions is less than 0.1 s for all the cases, while the times reported in [49]
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m 5 10 30
n α (1) (2) (3) (1) (2) (3) (1) (2) (3)

100 .25 20.2 9 0.18 2.1 1 0.60 0.0 - 0.61
100 .50 21.5 9 0.09 0.1 5 0.29 0.1 - 0.20
100 .75 30.7 13 0.07 10.6 9 0.09 0.4 -3 0.12
250 .25 22.0 - 0.23 0.8 - 0.35 0.0 - 0.23
250 .50 21.1 - 0.09 0.5 - 0.18 0.0 - 0.14
250 .75 42.0 17 0.04 10.6 - 0.08 0.0 - 0.09
500 .25 23.5 - 0.12 2.4 - 0.22 0.0 - 0.09
500 .50 22.3 - 0.06 1.4 - 0.09 0.0 - 0.05
500 .75 47.8 - 0.02 7.3 - 0.05 0.0 - 0.03

Table 3.5: Results for the data set of Chu and Beasley. (1) – reduction of the number of variables
(in %), (2) – reduction of the total solution time (in %), (3) – gap between the best solution and
the solution found by DP (in %)

n t1 t2 t3 t4 n t1 t2 t3 t4
200 0.17 0.11 0.28 0.28 3200 8.47 4.70 13.17 69.97
400 0.30 0.28 0.57 1.55 3400 9.71 17.44 27.15 190.22
600 0.49 0.62 1.11 3.51 3600 11.02 10.36 21.38 122.90
800 0.76 0.92 1.68 8.35 3800 12.87 13.72 26.59 254.01

1000 1.11 1.57 2.68 14.84 4000 13.73 17.23 30.96 264.50
1200 1.45 1.54 2.99 13.29 4200 14.84 14.47 29.31 215.03
1400 1.88 3.13 5.01 26.96 4400 16.15 13.70 29.86 226.67
1600 2.49 2.14 4.63 25.67 4600 18.08 10.59 28.66 268.94
1800 3.32 3.96 7.28 52.81 4800 20.03 7.23 27.26 -
2000 3.60 3.91 7.51 44.18 5000 21.84 14.95 36.79 -
2200 4.16 2.44 6.60 34.14 5200 22.68 25.13 47.81 438.30
2400 5.12 4.00 9.11 61.70 5400 25.32 25.62 50.95 -
2600 6.03 5.48 11.50 74.64 5600 25.86 19.71 45.57 -
2800 6.51 8.04 14.56 90.09 5800 28.88 11.81 40.69 -
3000 7.72 10.46 18.18 133.40 6000 30.18 29.72 59.89 -

Table 3.6: Time results for m = 2, α = 0.25. t1 – time of DP algorithm; t2 – time to solve
the reduced problem by CPLEX; t3 – total time to solve the problem, t3 = t1 + t2; t4 – time to
solve the initial problem by CPLEX. The times are in seconds
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problem n × m found by DP best known
GK018 100 × 25 4520 4528
GK019 100 × 25 3860 3869
GK020 100 × 25 5175 5180
GK021 100 × 25 3194 3200
GK022 100 × 25 2517 2523
GK023 200 × 15 9226 9235
GK024 500 × 25 9054 9070

Table 3.7: Results for the data set of Glover an Kochenberger

are considerable (about 300 s for 100 variables, 700 s for 250 variables, and 2000 s for 500
variables).

3.1.11 Conclusion
We presented a new dynamic programming based approach to the MKP. We introduce and use
sparse data representation, which decreases memory and time requirements. We use the dynamic
programming and the LP relaxation information to derive lower and upper bounds allowing to
find the optimal values of some or all the variables. The proposed algorithm is a fast and efficient
preprocessing procedure allowing to reduce the problem size and in many cases even to find the
optimal solution. Even if no variables are fixed, the procedure remains a robust and very fast
heuristic method, providing a feasible solution of good quality by successive improvements of
the rounded LP solution. We use the LP bounds but another bounding technique as Lagrangean
or surrogate relaxation may be directly plugged in our algorithm.

The experimental results are promising and motivate future work on the improvement of the
method. After the end of the DP phase, it is possible to make an attempt to reduce the gap
between the lower and the upper bounds by tightening the upper bounds of the last variables
using for example partial enumeration. Another reduction of the gap may come from improving
the lower bound.
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3.2 A Hybrid Algorithm for the Unbounded Knapsack Prob-
lem

This section presents a new approach for exactly solving the Unbounded Knapsack Problem
(UKP) and proposes a new bound that was proved to dominate the previous bounds on a special
class of UKP instances. Integrating bounds within the framework of sparse dynamic program-
ming led to the creation of an efficient and robust hybrid algorithm, called EDUK2. This algo-
rithm takes advantage of the majority of the known properties of UKP, particularly the diverse
dominance relations and the important periodicity property. Extensive computational results
show that, in all but a very few cases, EDUK2 significantly outperforms both MTU2 and EDUK,
the currently available UKP solvers, as well the well-known general purpose mathematical pro-
gramming optimizer CPLEX of ILOG. These experimental results demonstrate that the class of
hard UKP instances needs to be redefined, and the authors offer their insights into the creation of
such instances.

3.2.1 Introduction
The knapsack problem is one of the most popular combinatorial optimization problems. Its
unbounded version, UKP (also called the integer knapsack), is formulated as follows: there is a
knapsack of a capacity c > 0 and n types of items. Each item of type i ∈ N = {1 . . . n}
has a profit, pi > 0, and a weight, wi > 0. The problem, UKP c

w,p, is to fill the knapsack in an
optimal way, which is done by solving

f(w, p, c) = max {px subject to wx ≤ c, x natural integers vector} (3.12)

where w, p and x denote vectors of size n.
Many of this problem’s properties have been discovered over the last three decades: [2, 8,

18, 37, 34, 42], but no existing solver has yet been developed that benefits from all of them. A
detailed and comprehensive state-of-the art discussion the interested reader can find in the very
recent monograph [39].

In this paper we introduce a new upper bound and determine a UKP family for which this
bound is the tightest one known. We also design a new algorithm that combines dynamic pro-
gramming and branch-and-bound methods to solve UKP1. To the best of our knowledge this
is the first time that such an approach has been used for UKP. Extensive computational experi-
ments demonstrate the effectiveness of embedding a branch-and-bound algorithm into a dynamic
programming.2 These results also shed light on the case of really hard UKP instances.

A hybrid algorithm, combining dynamic programming and branch-and-bound approaches
has been proposed in [55] for the 0/1 knapsack problem, and in [56] for the case of subset-
sum problem. The adjective "hybrid" was also used for knapsack problem algorithms in [57]
(0/1 knapsack problem) and [54] (0/1 multiple knapsack problem), but this is another kind of
hybridization.

1The Uv bound has already been presented in a research report [43] and partial results have been used by others
in [39].

2EDUK2 is free open-source software available at:
http://download.gna.org/pyasukp/ where it is denoted by PYAsUKP.
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The paper is organized as follows. Section 3.2.2 briefly summarizes the basic properties of the
problem. Section 3.2.3 presents a new upper bound and its corresponding class. Section 3.2.4
is dedicated to the description of EDUK2 a new algorithm that takes advantage of all known
dominance relations and successfully combines them with a variety of bounds. In Section 3.2.5
this algorithm is compared with other available solvers. In Section 3.2.6 we conclude.

3.2.2 A summary of known dominance relations and bounds
The dominance relations between items and bounds allow the size of the search space to be
significantly reduced. All the dominance relations, enumerated below, could be derived by the
following inequalities:

∑

j∈J

xjwj ≤ αwi, and
∑

j∈J

xjpj ≥ αpi for some x ∈ Zn
+ (3.13)

where α ∈ Z+, J ⊆ N and i 6∈ J .

1. Dominances

(a) Collective Dominance [2, 52]. The i-th item is collectively dominated by J , written
as i ¿ J iff (3.13) hold when α = 1. The verification of this dominance is
computationally hard, so it can be used in a dynamic programming approach only.
To the best of our knowledge EDUK (Efficient Dynamic programming for UKP) [2]
is the only one that makes practical use of this property.

(b) Threshold Dominance [2]. The i-th item is threshold dominated by J , written as
i ≺≺ J iff (3.13) hold when α ≥ 1. This is an obvious generalization of the previous
dominance by using instead of single item i a compound one, say α times item i. The
smallest such α defines the threshold of the item i, written ti, as ti = (α − 1)wi.
The lightest item of those with the greatest profit/weight ratio is called best item,
written as b. One can trivially show that ti ≤ wbwi or even sharper inequality
ti ≤ lcm(wb, wi) where lcm(wb, wi) is the least common multiple of wi and
wb.

(c) Multiple Dominance [34]. Item i is multiply dominated by j, written as i ¿m j,
iff for J = {j}, α = 1, xj = bwi

wj
c the inequations (3.13) hold.

This dominance could be efficiently used in a preprocessing because it can be de-
tected relatively easily.

(d) Modular Dominance [52]. Item i is modularly dominated by j, written as i ¿≡ j
iff for J = {b, j}, α = 1, wj = wi + twb, t ≤ 0, xb = −t, xj = 1 the
inequalities (3.13) hold.

2. Bounds
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U3 [34] It is assumed here that the first three items are of the largest profit/weight ratio.

U3 = max{U0, Ū1} (3.14)

where: z′ =

⌊
c

w1

⌋
p1 +

⌊
c̄

w2

⌋
p2; c̄ = c mod w1; c′ = c̄ mod w2

U0 = z′ +

⌊
c′p3

w3

⌋

Ū1 = z′ +

⌊(
c′ +

⌈
w2 − c′

w1

⌉
w1

)
p2

w2

−
⌈

w2 − c′

w1

⌉
p1

⌋

Us [8] . Us = c +
⌊

c
w1

⌋
α. This bound is stronger than U3 for the class of strongly

correlated UKP (SC-UKP) defined as pi = wi + α where α > 0. Here item 1 is
supposed to be the lightest one.

Uv [43] . Uv = c + max

{
(pi−wi)

b wi
w1

c , i ∈ N

} ⌊
c

w1

⌋
. Here again item 1 is supposed

to be the lightest one. This bound is stronger than U3 for a special class of UKP
(namely SAW-UKP see def. 7 below)

3.2.3 A new general upper bound for UKP
In following paragraphs, we introduce a new upper bound for the UKP and show that it improves
Uv and is not comparable to U3 in the general case. For the special UKP family, the SAW-UKP,
which includes the SC-UKP class (with α ≥ 0), this new bound is tighter than the previously
known bounds.

Without losing generality it is assumed in this section that: 1 is the lightest item within the
set of items with (pi − wi) ≥ 0 (i.e. ∀i > 1, w1 ≤ wi or pi ≤ wi) and p1 ≥ w1 + 1. (If
all pi − wi ≤ 0 then assume 1 is the item with the best ratio and by changing p to ψp, ψ =⌈

w1+1
p1

⌉
we will achieve the goal. If such an equivalent transformation is done, the bound should

be divided by ψ). It is also assumed that no item is multiply dominated. Let us define the
following terms:

for all i 6= 1, qi =
pi−p1

j
wi
w1

k

wi mod w1
, q∗ = max

i 6=1
{qi}, τ ∗ = min {1, q∗},

β(τ ) = max
i∈N

{
(pi − τwi)

b wi

w1
c

}
, β∗ = β(τ ∗).

Theorem 12. [Uτ∗] for all UKP c
w,p, f(w, p, c) ≤ Uτ∗ = τ ∗c + β∗

⌊
c

w1

⌋
≤ Uv

Proof. First, for a fixed τ , 0 ≤ τ ≤ 1,

max{px, wx ≤ c} = max{τwx + (p − τw)x, wx ≤ c}
≤ τc + max{(p − τw)x, wx ≤ c} (3.15)
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Case τ ∗ = q∗ ≤ τ ≤ 1: in this case,

q∗ = max
i 6=1





pi − p1

⌊
wi

w1

⌋

wi mod w1



 = max

i 6=1





pi − p1

⌊
wi

w1

⌋

wi − w1

⌊
wi

w1

⌋


 ≤ τ

and therefore

for all i, pi − τwi ≤
⌊

wi

w1

⌋
(p1 − τw1) (3.16)

Relation (3.16) means that in UKP c
w,(p−τw) all items i are multiply dominated by the item

1, and also that β(τ ) = p1 − τw1. Thus, max{(p − τw)x, wx ≤ c} = β(τ )
⌊

c
w1

⌋
.

The function u(τ ) = τc+(p1 −τw1)
⌊

c
w1

⌋
is an increasing function, and its minimum

is reached for τ = τ ∗. This proves both inequalities of the theorem as Uv = u(1) and
Uτ∗ = u(τ ∗).

Case q∗ > 1 = τ ∗: in this case,

Σn
i=1(pi − wi)xi ≤ (p1 − w1)x1 + β∗Σn

i=2

⌊
wi

w1

⌋
xi

≤ β∗Σn
i=1

⌊
wi

w1

⌋
xi ≤ β∗

⌊
Σn

i=1

wixi

w1

⌋
≤ β∗

⌊
c

w1

⌋

and Uτ∗ = Uv = c + β∗
⌊

c
w1

⌋
.

Remark 1. When q∗ > 1, then in almost all cases the (classical) upper-bound U =
⌊

pbc
wb

⌋
is

better than Uτ∗ . It can be obtained from (3.15) by taking τ = max pi

wi
= pb

wb
.

We recall the definition of SAW-UKP first given in [43]

Definition 7. All UKP c
w,p instances in which q∗ ≤ 1 are called SAW-UKP.

Thus a SAW-UKP verifies: (pi − wi) ≤ (p1 − w1)
⌊

wi

w1

⌋
.

The following condition is a necessary condition for UKP c
w,p to be a SAW-UKP.

Lemma 2. If UKP c
w,p is a SAW-UKP, then the item 1 is the best one.

Proof.

UKP c
w,p is a SAW-UKP means that q∗ ≤ 1, i.e. for all i ∈ N, qi =

pi−p1

j
wi
w1

k

wi mod w1
≤ 1. Then we

can derive for all i ∈ N :
pi−p1

j
wi
w1

k

wi−w1

j
wi
w1

k ≤ 1 ⇔ (pi − wi) ≤ (p1 − w1)
⌊

wi

w1

⌋
which implies

(pi − wi) ≤ (p1 − w1)
wi

w1
⇔ pi

wi
≤ p1

w1

158



Thus, it can now be established that Uv is tighter than U3 for this family of UKP.

Theorem 13. If UKP c
w,p is a SAW-UKP, then Uτ∗ ≤ Uv ≤ U3

Proof. It is assumed that the first three items are of the largest ratio, and also that p3

w3
≥ 1 (as

above, if it is not the case, changing p to ψp, ψ = dw3+1
p3

e achieves the goal).

Since U3 = max{U0, Ū1} it is enough to prove Uv ≤ U0 . Since w2 ≥ w1,
⌊

c mod w1

w2

⌋
=

0. Thus z′ =
⌊

c
w1

⌋
p1 and c′ = c̄ = c mod w1.

U0 =

⌊
c

w1

⌋
p1 +

⌊
c′ p3

w3

⌋
=

⌊
c

w1

⌋
p1 +

⌊
(c mod w1)

p3

w3

⌋

≥
⌊

c

w1

⌋
p1 + (c mod w1) =

⌊
c

w1

⌋
p1 + c −

⌊
c

w1

⌋
w1 =

⌊
c

w1

⌋
(p1 − w1) + c

≥ Uv

Example 1 (A Saw UKP). n=7; c=2900;N={1;. . . ;7};
p=[300;580;301;601;605;322;310]; w=[120;245;130;260;310;194;190].

We can compute that q= [_; -4.; 0.1; 0.05; 0.0714285; 0.297297; 0.142857] (remember that
q1 is not define). Hence q∗ ≈ 0.297 and Example 1 is therefore a SAW-UKP. The bounds are:
Uτ∗ = 7205 < Uv = 7220 < U3 = 7246. The optimal value is 7202.

Remark 2. For a non-SAW-UKP, it is possible for Uv to be stronger than U3 and vice versa:
(c.f. examples 2 and 3)

Example 2 (A non-SAW-UKP with U3 < Uv). case where Remark 1 applies.
n=6; c=1 619 881; p =[1 001; 1 002; 10 025; 10 026; 11 248; 11 249].
w=[1 000; 1 001; 10 023; 10 024; 11 233; 11 234]. Here we obtain:
q = [_; 1.; 0.6521739; 0.6667; 1.0171673; 1.0170940] and q∗ = 1.017.
The bounds are U3 = 1 622 044 < 1 622 088 = Uv = Uτ∗ . The optimal profit is 1 622 032
obtainable with x1 = 8; x2 = 28; x3 = x4 = x6 = 0; x5 = 141.

Example 3 (A non-SAW-UKP with U3 > Uv = Uτ∗). n=2; c=2 900;
p=[297;309]; w=[120;131]. Here, q=[_;1.0909] hence q∗ ≈ 1.09; and the bounds are Uτ∗ =
Uv = 7172 < U3 = 7175. The optimal profit is 7140 obtainable with x1 = 23; x2 = 1.

3.2.4 The new algorithm EDUK2
The algorithm described below is based on a convenient combination of two basic approaches
used in UKP solvers, namely dynamic programming (DP) and branch and bound (B&B) meth-
ods.
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Dynamic programming (DP)
One of the basic recursions used for solving UKP is

f(N, y) = max
j∈Jy

{f(N, y − wj) + pj} for Jy ⊆ N (3.17)

The eligible set Jy is supposed to contain at least one item i s.t. xi > 0 in some optimal
solution to UKP y

N . The cardinality of this set is crucially important for the efficiency of any algo-
rithm based on the above formula(3.17). To the best of our knowledge EDUK is the only solver
that uses this recursion with obvious efficiency. The main components of its implementation are
the computation of formula (3.17) by slice, a sparse representation of the iteration space, and
the use of threshold dominance. Slices are defined as intervals of y, and the sparse representa-
tion is based on the stepwise form of the function f . In the following presentation, the couples
(y, f(N, y)) in which the function value changes will be called optimal states.

The periodicity property has been described by Gilmore and Gomory [22] as the capacity y∗,
called the periodicity level, such that for each y > y∗, there is an optimal solution with xb > 0.
It is well known that, for each UKP ∞

N such a y∗ exists, but its value is not easily detectable. So,
although the periodicity property can drastically reduce the search space, it can only be detected
in a DP framework, using the following formula:
y∗ < y+ = min{y|∀y′ > y − wmax, there is an optimal solution with xb > 0}.

Finally, the fact that DP algorithms compute optimal solutions for all values of y below the
capacity c allows the recursion to be stopped when the capacity:
min{max{ c

2
, wmax}, y+} is reached.

Branch-and-bound (B&B)
Unlike DP, B&B algorithms compute an optimal solution only for a given capacity, and are
dependent on the quality of the computed upper bounds. The MTU2 algorithm proposed by
Martello and Toth [34] uses the upper bound U3 and the now well known variable reduction
scheme: let z be the objective function value of a known feasible solution, and let U be an upper
bound of f(N, c − wj) + pj; if U ≤ z, then either z is optimal or xj can be set to zero.

Hybridization of DP and B&B
There are several complementary ways to integrate the knowledge of bounds into the DP process.

1. The first approach is to use the variable reduction scheme in a pre-processing stage to
reduce the set N .

2. The second approach consists of computing, for each optimal state (y, f(N, y)), an up-
per bound U(c − y) for a knapsack with c − y capacity. If U(c − y) + f(N, y) ≤ z,
then the state can be discarded, or in other words, can be “fathomed by bounds in the
B&B context”. In this way, if a sparse representation is chosen, fewer states must be
computed. This designs a DP with bounds algorithm.
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3. The third approach consists of solving an UKP c
core using a B&B algorithm in which the

core set is a subset of the items with the best ratios. If f(core, c) = U(c) then the
problem is solved. Otherwise, f(core, c) is used during the DP with bounds algorithm
described above.

The EDUK2 algorithm outline

The algorithm EDUK2 given below is an hybridization of EDUK with an arbitrary (but efficient)
B&B algorithm, following the above description. The basic steps of EDUK2 are:

step 1 Compute in O(n) time an upper bound U and an initial feasible solution with value z.
Discard from N all items multiply dominated by b. They are detected in linear time.

step 2 For the reduced set of items N , apply the variable reduction scheme in O(|N |) times.
Then, select a size C core subset containing the items with the best ratios.

step 3 To improve the lower bound, run a B&B algorithm on the core, limiting the algorithm to
a maximum of B explored nodes.

step 4 Run the DP with bounds fathoming states algorithm (the second integration approach
described above).

In the current implementation of EDUK2, a B&B similar to the one used by Martello and
Toth in MTU2 [34] with the ability to choose the computed upper bound (currently Uv, Uτ or
U3), is used in step 3. An enhanced version of EDUK, which eliminates the fathomed states,
operates in step 4.

The EDUK2 parameters, B and C, were experimentally tuned and in the current implemen-
tation of the algorithm, their values are C= min{n,max{100, n/100}} and B = 10000.

3.2.5 Performance evaluation experiments
Computational experiments were run in order to: (i) test the efficiency of the B&B/DP pairing
and the state discriminating capacity of the new bounds Uτ∗ and Uv; (ii) exhibit some actual
hard instances. Unfortunately, very few real-life instances of UKP have been reported in the
literature. For this reason we concentrated our efforts on a set of benchmark tests using: (a)
random profit and/or weight generation with some correlation formulae; (b) hard data sets that
were specially designed for the B&B approach [11].

Very few other UKP solvers are available for comparison with EDUK2. Though Babayev
et al. [3] have proposed an integer equivalent aggregation and consistency approach (CA) that
appears to be an improvement over MTU2. However, this approach does not use the threshold
dominance and is incomparable to the one suggested here. Caccetta & Kulanoot [8] have re-
cently described two specialized algorithms for solving two particular classes of UKP: CKU1 for
Strongly Correlated UKP (SC-UKP) and CKU2 for Subset Sum Problem(SS-UKP). However,
these algorithms are not applicable to the general UKP. Thus, we chose to compare EDUK2 with
the only two publicly available solvers: EDUK [2], which is considered to be the most efficient
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DP algorithm [39], and MTU2, a B&B solver [34]. All instances are free from simply dominated
pairs (pi, wi), (pj, wj), s.t. pi ≥ pj and wj ≤ wj .

We start by a comparison of the behaviors of MTU2, EDUK and EDUK2 on classic data sets,
then we focus on comparing EDUK with EDUK2 on new hard instances not solvable by MTU2.
In the case of SAW UKP, we study the impact on the resolution time when using the new bound
Uτ∗ instead of Uv. We also compare EDUK2 with the general purpose solver CPLEX.

Classic data sets

A complete study of the classic UKP benchmarks, where the behaviors of EDUK and MTU2 have
been compared, can be found in [2]. Most of these UKP appear to be easy solvable by EDUK2,
and for this reason we report only the most interesting subset of the data from our computational
results.

EDUK2 and EDUK were written in objective caml 3.08. The respective codes were all run
on a Pentium 4, 3.4GHZ with 4GB of RAM, and the time limit for each run was set to 300 sec.
MTU2 was executed on the same machine and compiled with g77-3.2. The impact of the
bounds was tested by simply substituting the bound Uv in EDUK2 with U3 in a version called
eduU3 .

Known “hard” instances

First, we focus on the data sets found to be difficult for MTU2 or EDUK [2].
(A) The SS-UKP instances (w = p) are known to be difficult for EDUK.
We built such instances by generating 10 instances for each possible combination of wmin ∈
{100, 500, 1000, 5000, 10000}, wmax ∈ {0.5×105; 105} and n ∈ {1000; 2000; 5000; 10000}
with c randomly generated within [5 × 105, 106]. We obtain in this manner 400 distinct in-
stances. The average cpu time for the different algorithms was:

EDUK2: 0.045s; eduU3: 0.045s; EDUK: 0.474; MTU2: 0.136s.

According to these results, EDUK2 is 10 (resp. 3) times faster than EDUK (resp. MTU2).
We also tested the sensitivity of the algorithms with respect to wmin, and the results showed

that EDUK2 is much less sensitive to wmin than EDUK. On an average the time for EDUK in-
creased about 80 times when wmin passed from 100 to 10000, while for EDUK2the average
increase is 40.

EDUK2 EDUK MTU2
wmin = 100 0.005s. 0.025s. 0.042s.
wmin = 10000 0.2s. 1.82s. 0.25s.

(B) A set of instances of a Special SC-UKP was built according to the formula

wi = wmin + i − 1 and pi = wi + α with wmin and α given. (3.18)

Chung et al. [11] have shown that solving this problem is difficult for B&B . We set wmin =
1 + n(n + 1) and n ∈ {50; 100; 200; 300; 500}, and used both a negative and a positive
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value for α. For each set, we generated 30 instances with a capacity taken randomly from the
interval [106, 107].

α > 0 The average time needed to solve the 150 instances was:

EDUK2: 3.32s, eduU3: 3.37s; EDUK: 4.29s.

MTU2 was able to solve only 9 of the 60 instances with n ∈ {50; 100} and none for
n > 100 . NB: these problems are SAW-UKP.

α < 0 The average time needed to solve the 150 instances was:

EDUK2: 6.01s; eduU3:5.93s; EDUK:8.65s.

MTU2 was able to solve only 10 of the 60 instances with n ∈ {50; 100} and none for
n > 100. NB: these problems are not SAW-UKP.

From these results, it appears that EDUK2 is 1.3 (resp. 1.45) times faster than EDUK when α > 0
(resp. <0). As expected, these instances were hard for MTU2.

Sensitivity to variations in the capacity: a comparison with EDUK

The B&B algorithms are known to be very sensitive to variations in the capacity. DP algorithms,
on the other hand, are known to be robust, but with computational time increases linearly with
the capacity value. Our computational experiments show that EDUK2 inherits the good prop-
erties of both B&B and DP. Data presented in Fig. 3.1 were generated by formula (3.18) as a
Special SC-UKP. We observe that EDUK2’s overall computational time is upper-bounded by the
minimum between the time taken by the pseudo-polynomial DP approach and the time for B&B.
EDUK2 has lost the regular behavior typical of EDUK, but this is in its favor, since the time ratio
EDUK(i)

EDUK2 (i)
≥ 1 is valid for any instance i, and reaches a value of 2.5 for more than 12% of the

c values.
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Formula (3.18) where n = 100, wmin = n(n + 1) + 1, α = −3 and
c is randomly and uniformly generated between [90 000, 560 000]. The
whole figure is depicted on the left. On the right, a zoom on the sub-interval
[450 000, 500 000] is shown. On an average, EDUK2 is more than 25%
faster than EDUK. MTU2 always requires more than 1200 sec., except for
5% of the points where it requires less than 12 seconds. These are the points
where EDUK2 finds the solution with the B&B .

Figure 3.1: Capacity sensitivity of EDUK2 and EDUK

SAW-UKP instances

This class contains 880 SAW-UKP instances according to definition 7, generated using the fol-
lowing parameters: c = 1

10

∑
w, wmin ∈ {100; 200; 500; 1000},

wmax ∈ {10000; 100000; 1000000} and n ∈ {1000; 2000; 5000; 10000}. For each of
the 44 possible parameter combinations3, we randomly generated 20 instances, for which we
obtained the following average times:

EDUK2: 0.129s, eduU3: 0.252s; EDUK: 0.610s.

We therefore observe that for this family EDUK2 is about 5 times faster than EDUK, and using
Uv instead of U3 accelerates EDUK2 by a factor of 2. A comparison of efficiency between Uv

and Uτ is reported in the section 3.2.5.
Due to arithmetic overflow MTU2 was run only 200 instances with wmax = 1000. For 95 of

these instances, it reached the time limit of 300 seconds.

EDUK2 versus CPLEX versus EDUK

In this section we compare EDUK2 and EDUK with one of the most popular general purpose
mathematical programming optimizers CPLEX of ILOG4. For this purpose we focus on three
types of problems, each defined by a pair (w, p) and a wide set of capacity. Each instance has
been solved by EDUK2 , EDUK and CPLEX, and the respective required times are reported in

3The combination n = wmax = 10000 is not possible due to simple dominance.
4We used version 10.0.1 of CPLEX
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Fig.3.2-Fig.3.7. The first two problems were generated by formula (3.18) with parameters as
given above the graphics. As discussed in section 3.2.5, they are known to be difficult for B&B.

Figure 3.2: EDUK2 versus EDUK on a set of 540 hard non-saw UKP instances

For the first problem, (Fig.3.2-Fig.3.3), the capacity varies from 4 × 104 to 105 generating
540 instances. Fig. 3.2 compares the behavior of EDUK2 with the one of EDUK. As in Fig. 3.1,
EDUK behaves regularly, while the shape of EDUK2’s curve permits to distinguish three different
cases that alternate periodically: i) a high plateau where both algorithms need the same time
since the solution was found by dynamic programming; ii) a low plateau where the solution was
found by the bound provided in the B&B phase. EDUK2 computes the results instantaneously
being 50 times faster than EDUK. iii) intermediate stage where the solution was found due to
B&B/DP hybridization. The weight of the best item (here 21000) is a period of any of these three
stages in the behavior of EDUK2.
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Figure 3.3: EDUK2 versus CPLEX on a set of 540 hard non-saw UKP instances

Next experiment was dedicated to EDUK2 versus CPLEX comparison. Running time for
CPLEX was bounded by 600 seconds. Fig. 3.3 illustrates that for this lapse of time and on the
same data set CPLEX succeeds to solve about 12% of the instances. The solved instances have
their capacity in a narrow neighborhood of a multiple of the best item weight. This is clearly
seen on Fig. 3.3. These instances correspond in fact to the low plateau ii) above described. In
the dominant case, 88%, EDUK2 is more than 100 times faster than CPLEX.

Figure 3.4: EDUK2 versus EDUK on a set of 1350 hard saw UKP instances
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Figure 3.5: EDUK2 versus CPLEX on a set of 1350 hard saw UKP instances

Figures 3.4 and 3.5 illustrate the same comparison in case of SAW UKP. Here the capacity
varies from 4 × 104 to 2 × 105 generating 1350 instances . As theoretically expected, due
to the new bound, EDUK2 instantaneously finds the solution (except for few values just below
a multiple of the weight of the best item). We observe similar phenomena as before: again
EDUK2 is about 50 times faster than EDUK (with very few exceptions). CPLEX succeeds to
solve about 22% of the instances for the given lapse of time. These instances correspond to a
multiple of the best item weight. Outside these rare cases EDUK2, is more than 100 times faster
than CPLEX.

Next experiment focusses on randomly generated instances being non-SAW UKP and with-
out simple dominance. We generated 2700 such instances with parameters as described in figures
3.7 and 3.6 and a capacity varying in the interval 11 × 104 − 43 × 104. Fig. 3.6 compares
EDUK2 versus EDUK on this data set. The behavior of both algorithms is very similar to the
one observed on Fig. 3.2: the running time of EDUK2 has a typical saw shape with minimums
around the multiples of the best item and upper-bounded by the time of EDUK. Fig. 3.7 illus-
trates EDUK2 versus CPLEX behavior. CPLEX succeeds to solve all instances with a capacity
less than 21 × 104 and those with a capacity close to a multiple of the best item, but fails for
all other instances with a capacity larger than 21 × 104. For all these instances EDUK2 is as at
least 100 times faster than CPLEX.
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Figure 3.6: EDUK2 versus EDUK on a set of 2700 randomly generated UKP instances

Figure 3.7: EDUK2 versus CPLEX on a set of 2700 randomly generated UKP instances

Do hard UKP instances really exist?

Based on these results, one is inclined to conclude –wrongly– that UKP are easy to solve. It
is important to remind that, in the above experiments, the considered instances are of moderate
size only. A real-life problem of the same size would indeed be easy to solve. However, real
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problems may have large coefficients, which makes necessary testing the solvers’ behavior on
such data sets.

New hard UKP instances
In order to construct difficult instances, we considered data sets with large coefficients and/or
large number of items. Because MTU2 cannot be used for such instances because of arith-
metic overflow, we restricted our comparisons to EDUK, eduU3 and EDUK2. For such data sets
EDUK2 and eduU3 benefit of the num ocaml library, which provides exact unlimited integer
arithmetic to compute the bounds. All the runs were done on a Pentium IV Xeon , 2.8GHZ with
3GB of RAM. CPU time was limited to one hour per instance. If this time limit was reached,
we reported 3600 sec. in order to compute the average5. We use the notation xn to denote
x × 10u+1 + n, where 0 < b n

10u c < 10 (e.g. n = 213, 4n = 4213).
In order to measure the improvement of EDUK2 in respect to EDUK and the influence of the

new bound, we use the following metrics:

for each of the three algorithms :
nmd: number of non-multiply dominated items (step 1 of EDUK2);
ncd: number of non-collectively dominated items (as computed by EDUK);
cpu: running CPU time in seconds;
rp: denotes the ratio y+

c
where y+ is the capacity level where the algorithm detects that

the periodicity level y∗ is reached.

for EDUK2 and eduU3 :
vrs: number of items eliminated in the variable reduction step 6;
wdp: number of instances for which the optimal solution was found without using DP
(steps 1 to 3);
rst: ratio of the number of states in the DP phase (step 4 of EDUK2) with respect to the
number of states for EDUK.

In the tables below, the reported value in the nmd, ncd, cpu columns is the average for the
number of instances; the value in the wdp columns refers to the total number of instances; the
value in the vrs, rp and rst columns, reports the average for the number of instances for which
the algorithm enters the DP phase.

Instances known to be difficult for B&B

We generated large data sets using the formula (3.18). It is easy to see that for such a data set,
ncd = min(n, wmin). For a given n, the formula determines n pairs (wi, pi), and we generated
20 different values for c (Fig. 3.8).

EDUK had some trouble in solving these sets and was unable to solve the 20 problems with
α = −5, n = 104, and wmin = 11 × 104 in less than one hour. In one special case, where

5The notation t(k) means that the average time is t sec., with k instances reaching the time limit.
6The notation x(y) in this column means that for y instances the optimal value was founded in this step and x

is the average of the number of reduced variables in the other instances.
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20 instances per line EDUK2 eduU3 EDUK
α n wmin nmd ncd cpu vrs wdp rst rp cpu vrs wdp rst rp cpu rp
5 5 10 n n 21.77 0(13) 13 0.29 0.047 37.81 642(3) 3 0.38 0.069 80.06 0.108

15 n n 46.57 0(8) 8 0.34 0.099 52.29 83(7) 7 0.56 0.141 111.28 0.188
50 n n 154.19 0(2) 2 0.55 0.470 156.63 0(2) 2 0.68 0.555 261.29 0.661

5 10 10 n n 0.03 0(20) 20 - - 135.22 2420(3) 3 0.54 0.007 336.70 0.008
50 n n 344.12 0(6) 6 0.26 0.037 367.94 0(6) 6 0.41 0.052 915.11 0.079

110 n n 771.53 0(2) 2 0.20 0.112 816.90 0(2) 2 0.26 0.139 2808.50 0.300
-5 5 10 n n 64.82 44(6) 6 0.78 0.091 65.14 44(6) 6 0.78 0.091 113.67 0.108

15 n n 104.89 11(2) 2 0.61 0.091 104.62 11(2) 2 0.61 0.091 183.31 0.188
50 n n 232.26 0(8) 8 0.86 0.650 231.13 0(8) 8 0.86 0.650 447.40 0.660

-5 10 10 n n 167.26 1317(4) 4 0.67 0.009 170.34 1317(4) 4 0.67 0.009 317.01 0.009
50 n n 508.37 0(6) 6 0.45 0.058 511.36 0(6) 6 0.45 0.058 1539.74 0.079

110 n n 1401.(3) 0(4) 4 - 0.124 1394.(3) 0(4) 4 - 0.124 (20) -
c is randomly generated between [20n; 100n].

Figure 3.8: Large hard data sets created using formula (3.18). Data from n and wmin columns
should be multiplied by 103 to get the real value.

α = 5 and n = wmin = 10000, the solution was always found immediately in the initial
variable reduction step, using the bound Uv. Excluding these two special sets, EDUK2 is on
an average from 1.7 to 3.7 times faster than EDUK. Note that for all these instances, the optimal
solution was found by EDUK2 and eduU3 either in the variable reduction step, either in the
DP phase but never in the B&B step. Note that EDUK2 was 1.01 to 1.7 times faster than
eduU3when α > 0 (these instances belong to the SAW-UKP family). However, in the case
α < 0 EDUK2 and eduU3 behave very similarly.

Data sets without simply dominated items

For the data in (Fig. 3.9), wi were randomly generated between [wmin; wmax], and pi values
were generated using p1 ∈ [w1; w1 +500], pi ∈ [p(i−1) +1; p(i−1) +125]. c was randomly
generated between [wmax; 2×106]. Clearly, for these instances, the number of non-collectively

200 instances per line EDUK2 eduU3 EDUK
n wmin wmax nmd ncd cpu vrs wdp rst rp cpu vrs wdp rst rp cpu rp

20 5 1n 20000 19999 317.27 10989 3 0.49 0.703 317.47 10989 3 0.49 0.703 713.23 0.676
50 5 1n 46569 10052 38.66 44106 6 0.54 0.441 38.61 44106 6 0.54 0.441 208.48 0.485
20 20 10n 19985 16851 118.65 11121 2 0.25 0.989 120.47 11121 2 0.25 0.989 344.81 0.994
50 20 10n 50000 49999 1026.(1) 28881 0 0.22 1.00 1015.(1) 28881 0 0.22 1.00 2959.(8) 1.00
20 50 10n 19999 19924 126.(2) 9955 0 0.23 1. 210.(1) 9997 0 0.23 1 504. 1
50 50 10n 50000 49999 1553.(1) 22827 0 0.32 1.00 1555.(1) 26981 0 0.32 1.00 3289.(51) 1.00

Figure 3.9: Data sets without simply dominated items. The data from n and wmin columns
should be multiplied by 103 to get the real value.

dominated items determines the efficiency of the algorithms. With this kind of data generation,
where c < 2 × wmax and n is large enough, the periodicity property does not help (rp ≈ 1).
EDUK2 outperforms significantly EDUK and slightly eduU3 .
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SAW data sets

SAW-UKP instances (according to definition 7) were generated with the following parameters:
wmax = 1n, pmax = 2n and c ∈ [wmax; 10n]. For each pair (n, wmin), we generated nbi
distinct instances (Fig. 3.10). The tight and computationally cheap upper-bound for these sets

EDUK2 eduU3 EDUK
n wmin nbi nmd ncd cpu vrs wdp rst rp cpu vrs wdp rst rp cpu rp

10 10 200 9975 1965 8.03 8015 14 0.40 0.597 11.12 5323 2 0.47 0.630 29.06 0.636
50 5 500 49925 5568 70.78 41289(1) 17 0.05 0.51 108.97 25287(1) 11 0.53 0.517 294.30(1) 0.521
50 10 200 49955 8983 71.02 39779(3) 6 0.40 0.49 122.66 26510(3) 3 0.49 0.492 416.88 0.496

100 10 200 99809 6592 264.12 90436 1 0.32 0.510 387.03 65289 1 0.45 0.519 1268.45 0.523

Figure 3.10: SAW data sets. Data from n and wmin columns should be multiplied by 103.

gives a clear advantage to EDUK2 compared to EDUK and eduU3 . This bound has an impact
on the number of instances solved in the variable reduction step or by the initial B&B (column
wdp), the number of reduced variable (column vrs), and the number of states (column rst).

Increasing ratio sets

In order to create difficult instances for DP, we generated items in such a way that the ratio p
w

is
an increasing function of the weight. It is easy to see that cd = n in this case. w values were
uniformly and randomly generated within the interval [wmin..wmax] (without duplicates) and
were sorted in an increasing order. Then p was generated using

p1 = pmin + k1 and

pi = bwi × (0.01 +
pi−1

wi−1

)c + ki with ki randomly generated ≤ 10 (3.19)

We set wmin = pmin = n, wmax = 10n, and c was randomly generated within [wmax..1000n].
We did not observe any significant difference between EDUK2 and eduU3 , though both were
about 4 times faster than EDUK.

500 instances per line EDUK2 eduU3 EDUK
n wmin nmd ncd cpu vrs wdp rst rp cpu vrs wdp rst rp cpu rp
5 n n n 7.93 3101 23 0.40 0.827 7.84 3101 23 0.40 0.827 29.05 0.816

10 n n n 36.84 5660(1) 13 0.43 0.745 36.73 5660(1) 13 0.43 0.745 147.76 0.759
20 n n n 184.55 12010 3 0.38 0.791 184.18 12010 3 0.38 0.791 735.24 0.783
50 n n n 808.26 25499 2 0.46 1 805.24 25499 2 0.46 1 2764.59 1

Figure 3.11: Increasing ratio data sets generated with formula (3.19). Data from n column should
be multiplied by 103.

Uτ∗ versus Uv for the SAW-UKP family
Theorem 13 states that Uτ∗ is the best known upper-bound for the SAW-UKP family. In order to
illustrate the quality improvement we have run EDUK2 with Uτ∗ and Uv respectively on a set
of 14 000 SAW-UKP instances. The results are given in Fig. 3.12. The quality of a bound U is
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computed by the gap: QU = (U − opt)/opt where opt is the optimal value of the UKP. On
these 14 000 instances, we observe that the average values are QUτ∗ = 0.016 , QUv = 0.023.

Figure 3.12: Uτ∗ versus Uv on 14 000 instances of SAW-UKP. To any instance is associated
a point with coordinates (Qv, Qτ ) where Qv (resp. Qτ ) is the corresponding gap QU =
(U − opt)/opt. In all instances Uτ∗ yields better bound.

Summary

EDUK2 consistently and significantly outperformed EDUK on all data sets. On an average,
EDUK2 was between 1.7 and 6 times faster than EDUK ; for many instances, EDUK2 yielded
the solution immediately while EDUK required several minutes (sometimes more than 1 hour).
Fig. 3.13 illustrates the clear superiority of EDUK2 to the one of EDUK on two large sets of
instances. The efficiency of EDUK2 is obtained by the cumulative effect of the different ways
that B&B and DP are integrated. Taking into account all the new hard instances (except those
generated with formula (3.18)), the reduction variables step reduces the number of items to be
considered on an average varying from 55% to 95%. Integrating bounds during the DP phase
further reduces the number of states from 46% to 95%. The impact of the new bound Uτ∗ is
important for all SAW-UKP instances and it affects all steps of the algorithm. For the non-SAW
UKP instance no significant difference was observed between using Uτ∗ , Uv or U3.
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Running times in seconds of EDUK2 (on the horizontal axis) and of EDUK (on the vertical
axis). Each point corresponds to one instance. The line is the equal-time line. Left: data set
generated by formula (3.19) with n = 2 × 104. Right: SAW data set with n = 5 × 104).

Figure 3.13: Plots of two set of instances

The superiority of EDUK2 to the general solver CPLEX is (as expected) apparent. In the
dominant case, in all tests presented in section 3.2.5 EDUK2 was more than 100 times faster than
CPLEX7. Additionally to these tests we found useful to check the performance of EDUK2 in
some recent UKP applications. One such application is described in [53] where CPLEX has
been used as UKP solver, instead of a special purpose algorithm. We generated the same set of
instances as in [53] for n = 106. EDUK2 computed 5 such instances on an average time of 0.15
seconds, while the respective running time in [53] is announced to be around 30hrs!

There are still hard instances with large values for n and wmin, notably those generated with
formula (3.18), where α < 0, wmin = 110000, n = 10000. They were solved by EDUK2 on
an average of 25 to 30 minutes. For all these difficult instances, the number of items that are not
collectively dominated is very large. Thus, it appears that for such cases, DP algorithm needs to
explore a huge iteration space when B&B fails to discover the solution.
3.2.6 Conclusion
We have shown that a hybrid approach combining several known techniques for solving UKP
performs significantly better than any one of these techniques used separately. The effectiveness
of the approach is demonstrated on a rich set of instances with very large inputs. The combined
algorithm inherits the best timing characteristics of the parents (DP with bounds and B&B ) and
performs significantly better on almost all of the instances. We also proposed a new upper bound
for the UKP and demonstrated that this bound is the tightest one known for a specific family of
UKP. Our EDUK2 algorithm takes advantages of most of the known UKP properties and is able
to solve all but the very special hard problems in a very short time. It appears that instances,
previously known to be difficult, are now solvable in less than a few minutes.

7CPLEX execution time was upper bound by 600 sec.
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Chapter 4

The classification problem

Discriminant analysis involves studying the difference between two or more mutually exclusive
groups. In the classification problem of discriminant analysis, the objective is to use measured
values on a set of relevant variables or attributes in order to predict the group membership of a
new observation. Discriminant analysis has been applied extensively in wide variety of areas,
such as finance, marketing, artificial intelligence, medical sciences, biology, and social sciences.
Fisher’s linear discriminant function and quadratic discriminant function have long been the stan-
dard techniques for establishing discriminant rules in classification analysis. Both of these func-
tions, however, are based on the assumption of multivariate normality of the measured variables.
In many situations involving real data, these assumptions are seriously violated, for instance, in
the case of binary variables and when outliers are present in the data set. Recent studies have
indicated that outlier-contaminated data set are the norm rather than the exception in a number
of business-related fields with up to 10% of outlier observations. That is why, a number of
researchers have introduced and investigated mathematical programming- (MP) based formu-
lations to solve the classification problem, resulting in a number of useful nonparametric tech-
niques which have been shown to perform well under various data conditions. The most common
MP approaches suggested in the literature are the MSD (minimize the sum of the deviations) and
the MMD (minimize the maximum deviation). Mixed-integer programming (MIP) formulations
have been suggested which directly minimize the number of misclassified observations, in the
training sample. Of course, the MIP formulations can require extensive computational resources
which may be prohibitive for large data sets. What is proposed below is a step towards overcom-
ing this obstacle. More precisely, we study the two-group classification problem which involves
classifying an observation into one of two groups based on its attributes. The classification rule is
a hyperplane which misclassifies the fewest number of observations in the training sample. Exact
and heuristic algorithms for solving the problem are presented. Computational results confirm
the efficiency of this approach.

181



Introduction
The classification problem, also called a discriminant problem, involves classifying an observa-
tion into one of a number of mutually exclusive groups, according to its attributes. This is one
of the most fundamental problems of scientific inquiry with applications in biology, artificial
intelligence, social and administrative sciences.

Observations are characterized by their attributes, so they can be represented by vectors, each
component of which is a value of some attribute. In the two-group linear discriminant analysis
a hyperplane with a normal vector w and a bias w0 is determined, so that an observation X is
assigned to the first group if Xw ≤ w0 and to the second group otherwise. This hyperplane, also
called a linear discriminant function, is determined from a training sample – a set of observations,
whose group membership is a priori known, so that it best separates the two groups according to
some criterion. Different approaches to the classification problem are developed depending on
this criterion.

In this paper we present an efficient algorithm for constructing liner discriminant function
which minimizes the number of misclassified observations from the training sample. This prob-
lem is known to be intractable, which necessitates the developing of efficient special purpose
exact or heuristic algorithms.

We use the following notations:

m – the number of attributes;
n – the number of observations (points) in the training sample;
Xi = (xi1, . . . , xim) – the i-th observation, i ∈ 1, n;
G1 – the index set for the points of the first group;
G2 – the index set for the points of the second group.

The rest of the paper is organized as follows. In Section 1 we briefly discuss and compare the
most popular approaches to the classification problem. In Section 2 we transform the problem
to more convenient equivalent form by duality considerations. Using the new formulation we
develop an exact branch-and-bound algorithm for solving the problem in Section 3. Section 4
presents a family of heuristics and a framework of local search algorithms for approximate solu-
tions. Section 5 summarizes the results of computational experiment and analyzes the efficiency
of the proposed algorithms. In Section 6 we conclude.

4.1 Overview of approaches to the classification problem
There are two popular ways to tackle the classification problem – by statistical techniques and
by mathematical programming (MP) approaches.

Statistical approaches are the classical tool in discriminant analysis. In general, they operate
with the assumption that each population has known distribution. Classification rules, produced
by statistical approaches, minimize the probability of misclassification. When the population dis-
tributions are multivariate normal with mean vectors µi, a common variance-covariance matrix
Σ, and relative frequencies πi, i = 1, 2, the classification rule states:
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Assign an observation X to G1 if

XT Σ−1(µ1 − µ2) >
1

2
(µ1 − µ2)

T Σ−1(µ1 + µ2) + ln
π2

π1

and to G2 otherwise.

This is the most widely known Fisher’s linear discriminant function [5]. When µ1, µ2, and Σ are
replaced by their maximum likelihood estimators, a sample-based classification rule is obtained.

MP approaches are developed as an alternative to the statistical methods. As an example
of linear programming (LP) approaches we shall demonstrate the MMD (minimize maximum
distance) model [6]:

Maximize d

subject to:
m∑

j=1

xijwj + d ≤ w0 for i ∈ G1

m∑

j=1

xijwj − d ≥ w0 for i ∈ G2

wj, d – unrestricted

This model determines a hyperplane that maximizes the minimum distance, d, between an ob-
servation and the hyperplane.

After their introduction by Freed and Glover [6, 7], various LP formulations have been pro-
posed [8, 9, 14] and shown to outperform statistical approaches, when the assumptions for group
distributions are violated [3, 11, 13]. As well as their advantages, LP formulations have several
defects [14]. One of them is that they may produce the trivial solution wj = 0 for all j, i. e.
meaningless classification rule. To overcome this defect, a normalization constraint bw = c is
added to the model, where b is a nonzero vector and c is a nonzero constant. The addition of this
constraint prevents the zero solution, but causes some side effects as eliminating possible solu-
tions, for which bw = 0. Sensitivity to the extreme values is also a problem of LP formulations.
If an observation from one group is far within the region of the other group, LP models give
unsatisfactory results. This fault can be overcome by using mixed integer programming (MIP)
formulations. For example:

Minimize
n∑

i=1

zi

subject to:
m∑

j=1

xijwj − Mzi ≤ w0 for i ∈ G1

m∑

j=1

xijwj + Mzi ≥ w0 for i ∈ G2
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wj – unrestricted; zi ∈ {0, 1}
where M is sufficiently large number. The binary variables zi are 0 if the i-th observation is
correctly classified and 1 otherwise. MIP formulations directly minimize the number of mis-
classified observations. Computational time for solving these formulations by general purpose
methods is significant because of the large number of binary variables and also because LP re-
laxations of MIP models produce bad lower bounds for large M . Bajgier and Hill [3] stated
that “MIP approaches is unlikely to be practical for discriminant problems with more than 50
cases unless very efficient, special-purpose algorithms (either exact or heuristic) are developed”.
Such algorithms are proposed in [1, 4, 12]. In the next sections we also propose algorithms that
minimize the number of misclassifications.

4.2 Problem formulation

Consider n points Xi = (xi1, . . . , xim), i ∈ 1, n from two groups – G1 and G2. The group
membership of each point is known. Our objective is to remove minimal number of points, so
that the rest of them become linearly separable, i. e. the system

m∑

j=1

xijwj ≤ w0 for i ∈ G1

m∑

j=1

xijwj ≥ w0 for i ∈ G2

has a nonzero solution after removing these points. It is proved in [2] that the above problem is
NP -hard and moreover, very hard to approximate – not approximable within 2log1−ε n for any
ε > 0, unless NP ⊆ QP .

Let A be a matrix whose columns are

Ai =

{
(−1, Xi)

T for i ∈ G1

(1, −Xi)
T for i ∈ G2

, i ∈ 1, n

and let w = (w0, w1 . . . , wm)T . We prevent zero solution by normalization bw > 0 for an
arbitrary nonzero vector b. So we obtain the following problem:

(P) Find a set I ⊆ 1, n of minimal cardinality, such that the system

AT w ≤ 0

bw > 0 (4.1)

becomes feasible after removing constraints with numbers in I .
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Consider the system

Ax = b

x ≥ 0 (4.2)

According to the Farkas theorem, (1) is feasible if and only if (2) is infeasible. Let I ⊆ 1, n
be an index set. Denote by (2I) the system (2) with removed (zeroed) variables xi for i ∈ I .
Then the initial problem P is equivalent to (has the same solution as) the following problem:
(R) Find a set I ⊆ 1, n of minimal cardinality, so that the system (2I) is infeasible.

Further on we consider the problem R instead of the original problem P. Before proceeding
with solving this problem, let us make several remarks.

1. Note that for practical problems the number of points n is much grater than the dimension
m of the observation space. Working with the new system with only m + 1 constraints
instead of the initial system with n constraints is much easier.

2. In our formulation points on the discriminant hyperplane are considered as properly clas-
sified. Such separation is called unstrict. When strict separation is needed, we consider the
system

m∑

j=1

xijwj ≤ w1
0 for i ∈ G1

m∑

j=1

xijwj ≥ w2
0 for i ∈ G2

with a normalization constraint
w2

0 − w1
0 > 0

and construct a problem, similar to R in the same way.

3. From any optimal solution I∗ of R, the separating hyperplane of the points, whose indices
are out of I∗, could be easily found. It is possible to solve some of the linear models with
the remaining points, already linearly separable, to obtain some secondary goal.

4. Finally, let us specify some notations. As usual, a basis of (2) is an index set B ⊆ 1, n
with m + 1 elements, such that the corresponding matrix B, consisting of columns Aj

for j ∈ B is non-singular. We shall use basic representations of (2) of the form

n∑

i=1

yixi = b (3)

where yi = B−1Ai and b = B−1b. When b ≥ 0, the relevant basis is called feasible.
We shall denote the j-th element of B by B(j). The solution of (2) xB(j) = bj for j ∈
0, m and xi = 0 for i /∈ B corresponds to the feasible basis B . Basic representations of
(2) are a key feature of our algorithms.
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4.3 Exact algorithm
In this section we propose a branch-and-bound algorithm for solving the problem R to optimality.
The main features of each branch-and-bound algorithm are the branching strategy and the lower
bounds generated at each node. They are described in subsections 1 and 2 respectively. Other
problem specific details and an overall description of the algorithm are given in subsection 3.

4.3.1 Branching procedure
The branching strategy is based on the following theorem.

Theorem 14. Let I∗ be an optimal solution of R. Then:
(i) for each k ∈ I∗, there exists a feasible basis B of (2), such that k ∈ B;
(ii) for each feasible basis B of (2), there exists k ∈ I∗, such that k ∈ B .

Proof. (i) Let k ∈ I∗ and I = I∗ \ {k}. The system (2I) is feasible, because I∗ is an optimal
solution of R. Let B be a feasible basis of (2I). Then (2I) has the following basic representation

∑

i∈B

yixi +
∑

i∈1,n\(I∪B)

yixi = b.

Suppose that k /∈ B , then
∑

i∈B

yixi +
∑

i∈1,n\(I∪B∪{k})

yixi = b

is a basic representation of (2I∗), i. e. (2I∗) is feasible, which contradicts to the optimality of
I∗.

(ii) Let B be a feasible basis of (2). Suppose that for each k ∈ I∗ k /∈ B . Then (2) has a
basic representation

∑

i∈B

yixi +
∑

i∈I∗
yixi +

∑

i∈1,n\(I∗∪B)

yixi = b.

Hence, (2I∗) has a basic representation
∑

i∈B

yixi +
∑

i∈1,n\(I∗∪B)

yixi = b,

i. e. (2I∗) is feasible. This contradiction proves (ii).

Theorem 1 shows that each feasible basis of the system (2) contains a variable which is
removed in the optimal solution of our problem. So at each node the candidates for removing
may be only the m+1 basic variables instead of all n variables. Formally, let I be an index set.
By RI we denote the problem R, where the system (2) is replaced by (2I). The branching tree
is defined in the following way:
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1. R is the root of the tree.

2. Suppose RI is in a certain node of the tree. Then:

(a) if the system (2I) is infeasible, this node is a leaf of the tree;

(b) if the system (2I) is feasible and B is its feasible basis, then the successors of this
node are the problems RI∪{B(j)} for j ∈ 0, m.

It follows from Theorem 1 that if I∗ is an optimal solution of R and |I∗| = s, then RI∗ is
a leaf on the s-th level of the tree. So, the branching at any node will be performed on the basic
variables of the corresponding problem.

Note that the same problem may appear several times in the tree. For example, let k and l
be in a basis of (2), k be in a basis of (2{l}), and l be in a basis of (2{k}). Then the problem
R{k,l} will appear twice at the second level of the tree. To avoid this, we proceed as follows.
Let B be the feasible basis of problem RI , on which we perform branching. Then branching
on B(0), . . . , B(j − 1) is not performed in the whole subtree with root RI∪{B(j)}, even if
they are basic in some node of this subtree. It is easy to see that in this way we avoid repeating
problems without loosing possible solutions. When we pass from a basis of a certain node to a
basis of its successor, it is useful to leave as many of the old basic variables as possible in the
new basis. This will increase the number of repeating problems and hence, will reduce the nodes
of the tree.

4.3.2 Lower bounds
To obtain lower bounds of the solutions of the problems RI , we use Theorem 2, which immedi-
ately follows from Theorem 1.

Theorem 15. Let B1, . . . , Bl be mutually exclusive feasible bases of the system (2) and I∗ be
an optimal solution of the problem R. Then |I∗| ≥ l.

We find a sequence of mutually exclusive feasible bases of (2) using the following “greedy”
strategy:

1. l = 0.

2. Find a feasible basis of (2). If there is not such a basis, i. e. (2) is infeasible, stop. Else
l = l + 1, Bl =this feasible basis.

3. Remove all basic variables from (2). Goto 2.

To find mutually exclusive bases of a certain problem, bases of its predcessor, already found,
can be used in the following way. Let B1, . . . , Bl be mutually exclusive feasible bases for
the problem RI and let us try to find such a sequence for the problem RI∪{i}. If i /∈ B1 ∪
. . . ∪ Bl then the new problem has the same sequence of mutually exclusive bases. In the
case when i belongs to some of these bases, without loss of generality, consider that i ∈ B1.
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dsf(problem R);
{

/*try to fathom node*/
if (R.lb>=record) return;
/*branch on the basic vars*/
for(j=0;j<=m;j++)
{

/*branch only on free vars*/
if (R.status[R.basis[j]]!=NONE) continue;
/*generate new problem*/
newR=R;
newR.status[R.basis[j]]=OUT;
remove basis[j] from newR by pivoting on row j;
perform dual simplex method over newR;
if (newR is infeasible)
{

/*better solution is found*/
modify record and save the new incumbent;
return;

}
compute newR.lb using the information for bases of R;
dsf(newR);
R.status[R.basis[j]]=BANNED;

}
}

Figure 4.1: Branch-and-bound algorithm

Then B2, . . . , Bl remain feasible bases for the new problem. We try to find more bases by
applying the above “greedy” technique to the system (2B2∪...∪Bl∪{i}). In this way generating
the lower bounds at each node of the tree is not an expensive procedure if the data are organized
in appropriate way.

Finally, note that if B1, . . . , Bl are mutually exclusive bases for the problem RI then a lower
bound for this problem is |I| + l, which together with the previous considerations ensures the
nondecreasing property of the bounds along any path from the root.

4.3.3 Algorithm Description

We perform a depth-first branch-and-bound search using the described branching procedure.
Lower bounds generated at each node are used to fathom in the usual way. A brief description
of the algorithm is given on Figure 1. It is implemented by recursive function dsf (Depth-First
Search) which gets an argument of type problem. This is a structure containing information
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for the problem at the current node and some of its fields are:

lb – the lower bound for the current problem;
basis – an array containing the indices of basic variables for the basic repre-

sentation of the current problem;
status – an array containing information for the status of all variables. The

status of each variable may be: NONE – meaning that the variable is free to branch
on it; OUT – meaning that this variable has been removed at lower level of the tree
and BANNED – meaning that branching on this variable has already been performed;

y and b – arrays containing the basic representation of the current problem.

The problem structure also contains an information about the mutually exclusive bases used to
obtain the lower bound.

For the efficient performance of the branch-and-bound algorithm it is important to have a
good initial incumbent and value of record respectively. In the next section we propose heuris-
tic algorithms used to obtain the initial solution. They may also be used as an independent tool
for approximate solving of the discriminant problem.

4.4 Upper bounds and heuristic algorithms
We propose methods that produce feasible solutions of the problem R close to the optimal solu-
tion. These methods are based on the following result.

Theorem 16. Let (3) be an arbitrary basic representation of the system (2) and λ be a vector,
such that 〈λ, b〉 > 0. Then the set T = {i ∈ 1, n, 〈λ, yi〉 > 0} is a feasible solution of R.

Proof. Multiplying (3) by λ we obtain

n∑

i=1

〈λ, yi〉xi = 〈λ, b〉.

After removing the variables with indices in T , the last equality becomes:
∑
i∈1,n

〈λ,yi〉≤0

〈λ, yi〉xi = 〈λ, b〉.

The left-hand side of the last equality is nonpositive for any values of the variables xi ≥ 0 while
the right-hand side is positive by assumption. Hence, the system (2T ) is infeasible, i. e. T is a
feasible solution of R.

If we set all but j-th component of λ equal to zero, we obtain that the sets

Tj =

{
{i ∈ 1, n, yji > 0} if bj > 0

{i ∈ 1, n, yji < 0} if bj < 0
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U1(problem R)
{

U={1,...,n};
for(j=0;j<=m;j++)
{

if (R.b[j]==0) continue;
T={};
if (R.b[j]>0)

for(i=1;i<=n;i++) {if (R.y[j][i]>0) T=T+{i};}
else

for(i=1;i<=n;i++) if (R.y[j][i]<0) T=T+{i};
if (|T|<|U|) U=T;
}
return U;

}

Figure 4.2: Heuristic U1

are feasible solutions of R. Taking the minimal of these sets we obtain the simplest heuristic, U1:
U1 is the set of minimal cardinality among the sets Tj for j ∈ 0, m and bj 6= 0.
The algorithm for finding the set U1 is shown at Figure 2. Geometrically, the j-th row of

B−1 determines a hyperplane which misclassifies all points i with yji > 0 (or by reversing the
signs of the normal vector those with yji < 0). The heuristic U1 suggests to take the hyperplane
with the smallest misclassification rate.

Obviously, we can try to improve by looking for a linear combination of hyperplanes which
is a kind of a local search procedure. As usual its complexity and quality increases with the
volume of the neighborhood area. The formal description of the idea is given below.

Consider k rows from (3) with numbers j ∈ J , |J | = k:

n∑

j=1

cixi = c0

where ci are the vectors with components yji, j ∈ J , and c0 is the vector with components bj ,
j ∈ J . We choose J so that c0 6= 0. Note that there are at least k linearly independent among
the vectors ci, i ∈ I (for example, such are the unit vectors ej , j ∈ 1, k). Let

T (λ) = {i ∈ 1, n, 〈λ, ci〉 > 0}.

By Theorem 3, if 〈λ, c0〉 > 0 then T (λ) is a feasible solution of R. Consider the following
problem:

[(Sk)] Find a vector λ, such that 〈λ, c0〉 > 0 and the set T (λ) is minimal.
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Obviously, any optimal solution of Sk is an upper bound for the optimal solution of R and as
it will be shown later, the sharpness of the bounds increases with k. To solve this problem, let

D(λ) = {µ : 〈µ, c0〉 > 0; 〈λ, ci〉〈µ, ci〉 ≥ 0, i ∈ 1, n}.

Lemma 3. If λ is a solution of Sk then each vector from D(λ) is also a solution of Sk.

Proof. Let λ be a solution of Sk and µ ∈ D(λ). If 〈λ, ci〉 ≤ 0 then 〈µ, ci〉 ≤ 0, i. e. if
i /∈ T (λ) then i /∈ T (µ). Then T (µ) ⊆ T (λ). But 〈µ, c0〉 > 0, hence µ is a solution of
Sk.

For the sets I ⊆ 1, n, |I| = k−1, for which the vectors ci, i ∈ I are linearly independent,
we define rays dI as follows:

〈dI, ci〉 = 0, i ∈ I (4)

〈dI, c0〉 > 0 (5)

It is clear that for each set I there is at most one ray satisfying conditions (4) and (5).

Lemma 4. For each vector λ, such that 〈λ, c0〉 > 0, there exists a set I such that dI ∈ D(λ).

Proof. Consider the cone

D′(λ) = {µ : 〈λ, ci〉〈µ, ci〉 ≥ 0, i ∈ 1, n}.

Let d1, . . . , ds be all of the extreme rays of D′(λ). Since λ ∈ D′(λ), we have

λ =
s∑

i=1

αidi,

where αi ≥ 0, i ∈ 1, s. Hence,

〈λ, c0〉 =
s∑

i=1

αi〈c0, di〉 > 0.

Then 〈c0, di〉 > 0 for at least one i ∈ 1, s. Let d be one of the rays d1, . . . , ds, such that
〈c0, d〉 > 0. Then d ∈ D(λ). d is a section of k − 1 hyperplanes

{µ : 〈λ, ci〉〈µ, ci〉 = 0}.

Let I be the set of the numbers of these hyperplanes. Since d satisfies (4) and (5), d ≡ dI .

As an immediate corollary from Lemma 1 and Lemma 2 appears the following result.

Theorem 17. Some of the rays dI , defined by (4) and (5) is an optimal solution of the problem
Sk.
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The rays dI are easily found by (4) and (5). By checking all of them we can find a solution
of Sk.

Thus we obtained a method for finding upper bounds Uk, k ∈ 1, m + 1 by considering k
rows of (3) and solving the problems Sk. It is easy to see that |U1| ≥ · · · ≥ |Um+1|, but the
computational effort for finding Uk is considerable for big k. These heuristics are useful only
for small k. We shall prove that as it is to be expected, Um+1 produces the optimal solution of
R. For that purpose, note that the problem Sm+1 can be defined as follows: Find the minimal
among the sets T (λ) = {i ∈ 1, n, 〈λ, yi〉 > 0} where 〈λ, b〉 > 0. and the initial problem
P can be written down in the following way: Find the minimal among the sets I(w) = {i ∈
1, n, 〈w, Ai〉 > 0} where 〈w, b〉 > 0.

Lemma 5. The problems Sm+1 and P are equivalent (have the same solutions).

Proof. Let T (λ0) be an optimal solution of Sm+1 and w0 = (B−1)T λ0. Then:

〈w0, b〉 = 〈(B−1)T λ0, b〉 = 〈λ0, B−1b〉 = 〈λ0, b〉 > 0,

〈w0, Ai〉 = 〈(B−1)T λ0, Ai〉 = 〈λ0, B−1Ai〉 = 〈λ0, yi〉, i ∈ 1, n.

Hence, I(w0) is a feasible solution of P and I(w0) ≡ T (λ0). Suppose that I(w0) is not an
optimal solution of P. Then there exists w1, such that 〈w1, b〉 > 0 and |I(w1)| < |I(w0)|.
Let λ1 = BT w1. Then:

〈λ1, b〉 = 〈BT w1, B−1b〉 = 〈w1, BB−1b〉 = 〈w1, b〉 > 0,

〈λ1, yi〉 = 〈BT w1, B−1Ai〉 = 〈w1, BB−1Ai〉 = 〈w1, Ai〉 > 0, i ∈ 1, n.

Hence, T (λ1) is a feasible solution of Sm+1 and T (λ1) ≡ I(w1). But |T (λ1)| = |I(w1)| <
|I(w0)| = |T (λ0)|, which contradicts the optimality of T (λ0). Therefore, I(w0) ≡ T (λ0)
is an optimal solution of P.

It can be proved that an optimal solution of P is also an optimal solution of Sm+1 in the same
way.

From the last lemma and the equivalence between the problems P and R, it follows that:

Theorem 18. Um+1 is an optimal solution of the problem R.

The heuristics Uk depend on the basis where they are computed, i. e. Uk = Uk(B). The
next theorem shows the strong influence of the basis upon these heuristics.

Theorem 19. There exists a basis B of the system (2), such that U1(B) is an optimal solution
of the problem R.

Proof. Let (3) be an arbitrary basic representation of (2) and λ be a solution of the problem
Sm+1. Due to Theorem 5, T (λ) ≡ Um+1 is an optimal solution of R. According to Theo-
rem 4, there exists a set I, such that |I| = m; the vectors yi, i ∈ I , are linearly independent;
〈λ, yi〉 = 0, i ∈ I; and 〈λ, b〉 > 0. We construct a matrix M with the following columns:
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M1, . . . , Mm are the vectors yi, i ∈ I , and M0 = ys, where we choose s so that the matrix
M is non-singular. By multiplying (3) from left by M−1, we obtain a new basic representation

n∑

i=1

y′
ixi = b

′

where y′
i = M−1yi, b

′
= M−1b. The basis corresponding to this representation is B =

{s} ∪ I . We shall prove that B is the required basis. Let λ′ = MT λ. Then:

〈λ′, b
′〉 = 〈MT λ, M−1b〉 = 〈λ, MM−1b〉 = 〈λ, b〉 > 0,

〈λ′, y′
i〉 = 〈MT λ, M−1yi〉 = 〈λ, MM−1yi〉 = 〈λ, yi〉, i ∈ 1, n.

Hence, T (λ′) ≡ T (λ) is the optimal solution of R. y′
i, i ∈ I are unit vectors and moreover,

〈λ′, y′
i〉 = 〈λ, yi〉 = 0, i ∈ I . Hence, λ′

j = 0, j ∈ 1, m. Since 〈λ′, b〉 > 0, λ′
0 6= 0 and

has the same sign as b
′
0. Then

T (λ′) = {i ∈ 1, n, 〈λ′, y′
i〉 > 0} = {i ∈ 1, n, λ′

0y
′
0i > 0} = T0

is an optimal solution of R. U1 was defined to be the minimal among the sets T0, . . . , Tm,
hence U1 ≡ T0. The last means that the heuristic U1, applied for the new basis B , produces the
optimal solution of the problem R.

Using the last result, a local-search algorithm suggests itself. Let f(B) = |U1(B)| and a
neighborhood of B be the set N(B) of all bases that differ from B only by one element (neigh-
bors of B in the usual sense). We minimize locally the function f by using the neighborhood
system N . The local search procedure we use is shown on Figure 3. This routine is called sev-
eral times with different starting points – the mutually exclusive bases of (2), found to derive a
lower bound of R. The local-search heuristic is used to determine an initial lower bound for the
branch-and-bound algorithm.

4.5 Computational experiment
In this section we describe the computational testing done to evaluate the performance of the
proposed branch-and-bound (BB) algorithm and the local search (LS) heuristic. The discriminant
power of the MIP approaches to the classification problem was investigated in detail in [3, 12,
15]. That is why we focus our study only on computational efficiency of our algorithms. We
use a part of Joachimsthaler and Stam [11] simulation data experimental design also used in [12]
and [1]. This approach allows comparing the computational behavior of the algorithms on easily
generated benchmarks which are statistically identical samples rather than on identical instances.

We generate three-variate normal distributions with different means and dispersion matrices.
Different settings of these parameters form three cells. Table 1 shows the population parameters
for each cell. I is the unit matrix and e = (1, 1, 1)T .
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localsearch(problem R)
{

while (1)
{

U=U1(R);
for(j=0;j<=m;j++)

for(i=1; i<=n; i++)
{

if (R.y[j][i]==0) continue;
newR=R;
make a simplex pivot with pivoting element newR.y[j][i];
if (|U1(newR)|<|U|) break;

}
if (|U1(newR)|<|U|) R=newR;
else return U;

}
}

Figure 4.3: Local search heuristic

Cell Dispersion matrices Mean vectors
G1 G2 G1 G2

1 I I 0 .5e
2 I 2I 0 .6e
3 I 4I 0 .8e

Table 4.1: Parameter settings
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Cell BB LS PMM BPMM
1 .2640 .2648 .258 .266
2 .2529 .2533 .255 .262
3 .2194 .2197 .220 .226

Table 4.2: Average misclassification rates

Cell 0 1 2
1 93 6 1
2 96 4 0
3 97 3 0

Table 4.3: Number of misclassifications of LS over BB

For each cell, 100 random samples were generated. Each sample contained 100 observations
– 50 observations from G1 and 50 observations from G2. We compare our results with the results
of Koehler and Erenguc [12] for their exact algorithm PMM and heuristic BPMM. Table 2 shows
the average misclassification rates for each cell of the study. The surprisingly good performance
of LS is seen in this table.

The closeness of LS to the optimal solution becomes more obvious from Table 3. It shows
the number of misclassifications produced by LS over those of BB. As it is seen in this table,
among all of the 300 generated samples, only in 14 LS differs from the optimum. In no case LS
misclassified more than two observations over BB.

Tables 4 through 8 summarize the statistics for the required computational effort. Table 4
shows the number of the nodes of the tree generated by BB. Table 5 shows the number of linear
programs (LPs) solved by BB (by LP we mean finding of a feasible basis of a system (2I) for
some I). Note that in a certain node of the tree, more than one LP may be solved because of the
searching of lower bounds. Tables 6 and 7 show the number of pivots required by BB and LS
respectively. The number of pivots required by BB includes the number of pivots required by LS
because LS was used to obtain an initial upper bound for BB.

As it is seen in these tables, the computational effort required by BB sharply decreases when
the group overlap is smaller. For example, when the average misclassification rate decreases
only by 0.0335 (cells 2–3), the average number of pivots is approximately 2.5 times lower. The

Cell Average St. deviation Minimum Maximum
1 8,532 10,774 174 62,298
2 7,072 9,134 81 44,538
3 2,405 2,880 47 19,816

Table 4.4: Number of nodes of the tree generated by BB
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Cell Average St. deviation Minimum Maximum
1 19,734 25,280 417 143,972
2 16,041 21,052 242 99,744
3 5,327 6,565 115 45,679

Table 4.5: Number of LPs solved by BB

Cell Average St. deviation Minimum Maximum
1 137,377 159,238 13,581 897,485
2 101,778 109,990 12,453 507,973
3 39,849 33,016 10,313 236,037

Table 4.6: Number of pivots performed by BB

computational effort required by LS is relatively constant and significantly lower.
For comparison, Table 8 shows some average results from the study of Koehler and Erenguc

for their exact algorithm. Linear programs solved by their algorithm have a matrix of the same
size as ours but they also have an objective function and a simple lower bound for each variable.
A minor pivot is one in which a nonbasic variable switches its boundary value. A major pivot
is one where a nonbasic variable is pivoted into basis. Major pivots are computationally more
expensive than the minor ones. As there are no simple lower bounds for the variables in our
models, we perform only major pivots.

4.6 Conclusions
In this paper we proposed exact and heuristic algorithms for solving the two-group classification
problem, formulated into its most difficult form, where the goal is a hyperplane directly minimiz-
ing the number of misclassified points. The algorithms are based on some specific properties of
the vertices of a polyhedral set neatly connected with the model, which is far from the commonly
used mixed-integer model. The results of the conducted computational experiment characterize
the proposed branch-and-bound algorithm as an efficient algorithm for minimizing the number
of the misclassifications in the training sample especially when the group overlap is relatively
small. The local search heuristic produces solutions, very close to the optimum and requires

Cell Average St. deviation Minimum Maximum
1 13,538 1,703 8,712 17,400
2 12,834 1,712 8,705 17,667
3 11,283 1,383 8,353 14,287

Table 4.7: Number of pivots performed by LS
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Cell LPs Minor pivots Major pivots
1 99,417 229,612 62,720
2 100,284 233,216 64,437
3 61,821 161,663 53,485

Table 4.8: Some average results from the study of Koehler and Erenguc

significantly lower computational effort, so it is an valuable alternative to the exact methods.
The algorithms may be a subject to further refinement. We did not investigate, for example, the
effects of changing the order of processing the nodes of the tree, the order of choosing basic
variables etc. Some more sophisticated (but more expensive) ways of finding mutually exclusive
bases for generating lower bounds than the simple “greedy” technique may also be tested. The
approach we developed for the local search algorithm may also be used by other heuristics. It
was already successfully applied in [10] in the context of a tabu search algorithm.
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1 Recent Advances in Solving the
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1.1 INTRODUCTION

Genome sequencing projects generate an exponentially increasing amount of raw
genomic data. For a number of organisms whose genome is sequenced, very little is
experimentally known, to the point that, for some of them, the first experimental evi-
dence gathered is precisely their DNA sequence. In the absence, or extreme paucity,
of experimental evidences, bioinformatic methods play a central role to exploit the
raw data. The bioinformatic process that extracts biological knowledge from raw
data is known as annotation.

Annotation is composed of two phases:

1. a static phase whose purpose is to describe the basic “objects” that are found
in the genome: the genes and their products the proteins.

2. a dynamic phase that seeks to describe the processes, i.e., the complex ways
genes and proteins interact to create functional networks that underly the bio-
logical properties of the organism.

The first phase is the cornerstone of the annotation process. The first step consists
in finding the precise location of genes on the chromosome. Then, for those genes
that encode proteins, the next step is to predict the associated molecular, cellular
and phenotypic functions. This is often referred to as in silico functional annotation.

†Partially supported by ANR grant Calcul Intensif projet PROTEUS (ANR-06-CIS6-008) and by
Hubert Curien French-Bulgarian partnership “RILA 2006” N0 15071XF
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Different methods exist for predicting protein functions, the most important of which
are based on properties of homologous proteins.

Homology is a key concept in biology. It refers to the fact that two proteins are re-
lated by descent from a common ancestor. Homologous proteins have the following
properties:

• they may have sequences that, despite the accumulated mutations, still resem-
ble the ancestor sequence;

• their three-dimensional structures are similar to the structure of the ancestor;

• they may have conserved the ancestor function, or at least a related function.

Therefore the principle of in silico functional analysis, based on homology searches,
is to infer a homology relationship between a protein whose function is known and
the new protein under study then to transfer the function of the former to the latter.

The inference of the homology relationship is based on the previously listed prop-
erties of homologous proteins. The first methods developed used the first property,
the conservation of the sequences, and were based on sequence comparisons using
alignment tools such as PSI-BLAST [1].

These methods are still the workhorses of in silico functional annotation: they
are fast and endowed with a very good statistical criterion allowing to judge when
two proteins are homologous. Unfortunately they also have a drawback. They are
very inefficient when the proteins under study happen to be remote homologs, i.e.,
when their common ancestor is very ancient. In such a case the sequences may have
undergone many mutations and they are no longer sufficiently similar for the proteins
to be recognized as homologous.

For instance, when analyzing prokaryote genomes, these techniques cannot pro-
vide any information about the function of a noticeable fraction of the genome pro-
teins (between 25% and 50% according to the organism studied). Such proteins are
known as “orphan” proteins. One also speaks of orphan families when several ho-
mologous proteins are found in newly sequenced genomes that cannot be linked to
any protein with a known function.

To overcome this problem new methods have been developed that are based on
the second property: the good conservation of the 3D structure of homologous pro-
teins. These methods are known as threading methods, or more formally, as fold1

recognition methods.
The rational behind these methods is threefold:

1. As mentioned above, 3D structures of homologous proteins are much better
conserved than the corresponding amino acid sequences. Numerous cases of
proteins with similar folds and the same function are known, though having
less than 20% sequence identity [2].

1in this context fold refers to the protein 3D structure
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2. There is a limited, relatively small, number of protein structural families. Ex-
act figures are still a matter of debate and vary from 1 000 [3] to at most a few
thousands [4]. According to the statistics of the Protein Data Bank (PDB)2

there are about 700 (CATH definition [5]) or 1 000 (SCOP definition [6]) dif-
ferent 3D structure families that have been experimentally determined so far.

3. Different types of amino acids have different preferences for occupying a par-
ticular structural environment (being in an α-helix, in a β-sheet, being buried
or exposed). These preferences are the basis for the empirically calculated
score functions that measure the fitness of a given alignment between a se-
quence and a 3D structure.

Based on these facts, threading methods consist in aligning a query protein se-
quence with a set of 3D protein structures to check whether the sequence might be
compatible with one of the structures. These methods consist of the following com-
ponents:

• a database of representative 3D structural templates;

• an objective function (score function) that measures the fitness of the sequence
for the 3D structure;

• an algorithm for finding the optimal alignment of a sequence onto a structural
template (with respect to the objective function);

• a statistical analysis of the raw scores allowing the detection of the significant
sequence-structure alignments.

To develop an effective threading method all these components must be properly
addressed. A description of the implementation of these different components in the
FROST (Fold Recognition Oriented Search Tool) method [7] is detailed in the next
section. Let us note that, from a computer scientist’s viewpoint, the third component
above is the most challenging part of the treading method development. It has been
shown that, in the most general case, when variable length alignment gaps are al-
lowed and pairwise amino acid interactions are considered in the score function, the
problem of aligning a sequence onto a 3D structure is NP-hard [8]. Until recently,
it was the main obstacle to the development of efficient threading methods. During
the last few years, much progress has been accomplished toward a solution of this
problem for most real life instances [9, 10, 11, 12, 13, 14].

Despite these improvements, threading methods, like a number of other bioin-
formatic applications, have high computational requirements. For example, in order
to analyze the orphan proteins that are found in prokaryote genomes, a back of the
envelop computation shows that one needs to align 500 0003 protein sequences with

2http://www.rcsb.pdb/
3This figure corresponds to the number of sequenced genomes (500) times the average number of proteins
per genome (3 000) times the mean fraction of orphan proteins ( 1

3 )
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at least 1 000 3D structures. This represents 500 millions alignments. Solving such
quantity of alignments is, of course, not easily tractable on a single computer. Only
a cluster of computers, or even a grid, can manage such amount of computations.
Fortunately, as we will show hereafter, it is relatively straightforward to distribute
these computations on a cluster of processors or over a grid of computers.

Grids are emerging as a powerful tool to improve bioinformatic applications ef-
fectiveness, particularly for protein threading. For example, the encyclopedia of life
project [15] integrates 123D+ threading package in its distributed pipeline. All the
pipeline processes, from DNA sequence to protein structure modeling, are paral-
lelized by a grid application execution environment called APST (for Application-
level scheduling Parameter Sweep Template). Another distributed pipeline for pro-
tein structure prediction is proposed by T. Steinke and al. [16]. Their pipeline
consists in three steps : a pre-processing phase by sequence alignments, a protein
threading phase and a final 3D refinement. Their threading algorithm solves the
alignment problem by a parallel implementation of a Branch-&-Bound optimizer us-
ing the score function of Xu and al. [17]. With a cluster of 16 nodes, they divided by
2 the computation-time of aligning 572 sequences with about 37 500 structures from
the PDB.

To maintain a structural annotation database up to date (project e-protein4), McGuf-
fin and colleagues describe a fold recognition method distributed on a grid with
the JYDE (Job Yield Distribution Environment) system which is a meta-scheduler
for clusters of computers. To annotate the human genome, they use their mGen
THREADER software integrated with JYDE on three different grid systems. On
these three independent clusters of 148, 243 and 192 CPUs (515 CPUs), the human
genome annotations can be updated in about 24 hours.

The rest of this chapter is organized as follows. In section 1.2 we present basic
features of the FROST method. Section 1.3 further details the mathematical tech-
niques used to tackle the difficult problem of aligning a sequence onto a 3D structure.
Section 1.4 introduces the different operations required in FROST to make the entire
procedure modular and describes how the modules can be distributed and executed
in parallel on a cluster of computers. Computational benchmarks of the parallelized
version of FROST are presented in section 1.5. In section 1.6 we discuss future
research directions.

1.2 FROST: A FOLD RECOGNITION METHOD

1.2.1 Definition of protein cores

Threading methods require a database of representative 3D structures. The Protein
Data Bank (PDB) that gathers all publicly available 3D structures contains about
40 000 structures. However this database is extremely redundant. Analyses of the

4http://www.e-protein.org/
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PDB show that it contains at most about 1 000 different folds [6]. In theory only these
folds need to be taken into consideration. In practice, to obtain a denser coverage of
the 3D structure space, the PDB proteins are clustered into groups having more than
30% sequence identity and the best specimen of each group (in terms of quality of
the 3D structure : high resolution, small R-factor, no, or few, missing residues) is
selected. The final database contains about 4 500 3D structures.

For the purpose of fold recognition, the whole 3D structure is not required, only
those parts of the structure which are characteristic of the structural family need to
be considered. This leads to the notion of structural family core. The core is defined
as those parts that are conserved in all the 3D structures of the family and are thus
distinctive of the corresponding fold.

There are two practical reasons for using cores:

1. aligning a sequence onto portions of the 3D structure that are not conserved is
likely to introduce a noise that would make the detection process more diffi-
cult;

2. by definition, no insertion or deletion is permitted within core elements since,
otherwise, they would not be conserved parts of the family structures.

In protein families often one observes that the conserved framework of the 3D
structure consists of the periodic secondary structures, α helices and β strands, the
loops at the surface of the protein are variables. Accordingly, in FROST the core of
the protein structures is defined as consisting of the helices and strands.

Hereafter we will refer to cores instead of 3D structures or folds.

1.2.2 Score function

To evaluate the fitness of a sequence for a particular core we need an objective (or
score) function. There are two categories of score functions: “local” and “non local”.
The former ones are, in essence, similar to the score functions used in sequence
alignment methods. The later consider pairs of residues in the core and are specific
of threading methods.

In threading methods, a schematic description of the core structure is used instead
of a full atomic representation. Each residue in the core is represented by a single
site. In FROST it is the Cα of the residue in the structure. Each site is characterized
by its state which is a simplified representation of its environment in the core. A
state is defined by the type of secondary structure (α helix, β strand or coil) in which
the corresponding residue is found and by its solvent accessibility (buried if less
than 25% of the residue surface in the core is accessible to the solvent, exposed if
more than 60% is accessible and intermediate otherwise). This defines 9 states, for
instance the site is located in a helix and exposed, or in a strand and buried, etc.

In FROST we use a canonical expression for the score function. Altschul [18]
has shown that the most general form of a score for comparing sequences is a log-
likelihood:
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score(ri,r j) = log
P(rir j|E)

P(ri)P(r j)

The score of replacing amino acid ri by amino acid r j is the log of the ratio of two
probabilities:

1. the probability that the two amino acids are related by evolution, i.e., they are
aligned in the sequence because they evolved from the same ancestral amino
acid;

2. the probability that the two amino acids are aligned just by chance.

If the two amino acids, on average, in a number of protein families, are observed
more often aligned than expected by chance, i.e., if the numerator probability is
greater than the product of the denominator probabilities then the ratio is greater
than 1 and the score is positive. On the contrary if the two amino acids are observed
to be less often aligned than expected by chance the score is negative.

These considerations led to the development of empirical substitution matrices
(for instance the PAM [19] or BLOSUM matrices [20]) that gathers the scores for
replacing a given amino acid by another one during a given period of evolution. Find-
ing the optimal alignment score for two sequences amounts to maximizing the prob-
ability that these two sequences have evolved from a common ancestor as opposed
to being random sequences (assuming that the alignment positions are independent).

Very similar matrices can be developed for threading methods, except that we
now have at our disposal an extra piece of information: the three-dimensional struc-
ture of one of the sequences. Therefore we can define a set of nine state-dependent
substitution matrices as:

score(Ri,r j)Sk = log
P(Rir j|E)Sk

P(Ri)Sk P(r j)
(1.1)

where P(Ri)Si is the probability of observing amino acid Ri in state Sk, P(r j) is the
background probability of amino acid r j in the sequence database and P(Rir j |E)Sk

is the probability of observing amino acids Ri and r j aligned in sites with state Sk in
protein families. Note that throughout this section uppercases are used for residues
that belong to the core and lower case for residues that belong to the sequence that is
aligned onto the core.

This expression represents the score for replacing amino acid Ri by amino acid r j
in a particular state (see Figure 1.1). In addition, since we know the 3D structure,
it is possible to use gap penalties that prevent insertion/deletion in core elements.
This provides a score function that is local, i.e., a score depends on a single site
in a particular sequence. However, with this kind of score, we do not use the real
3D structure but only some of its properties that are embodied in the state (type of
secondary structure and solvent accessibility).

In order to, explicitly, take into account the 3D structure we must generalize these
state-dependent substitution matrices. This is done by considering pairs of residues
that are in contact in the core. In FROST residues are defined to be in contact in a



FROST: A FOLD RECOGNITION METHOD vii

three-dimensional structure if there exists at least one pair of atoms, one atom from
each residue side chain, for which the distance is less than a given cut-off value. The
corresponding score function is defined as:

score(RiR j,rkrl)SnSm = log
P(RiR jrkrl |E)SnSm

P(RiR j)SnSmP(rk,rl)
(1.2)

where P(RiR j)SnSm is the probability of observing the pair of amino acids Ri and
R j at sites that are in contact in protein 3D structures and are characterized, respec-
tively, by states Sn and Sm. P(rk,rl) is the background probability for the amino acid
pair rkrl in the sequence database. P(RiR jrkrl |E)SnSm is the probability to observe the
amino acid pair RiR j aligned with the amino acid pair rkrl in the structural context
described by states SnSm in protein families.

This expression represents the score for replacing the pair of amino acids RiR j
by the pair rkrl in sites that are characterized by states Sn and Sm and are in contact
in protein cores (see Figure 1.1). There are 89 such matrices. This type of score
function is non-local since it takes into account two sites in the sequence. As we will
describe in the next section the fact that the score function is local or non-local has
a profound influence on the type of algorithm that needs to be used for aligning the
sequence onto the core.

1.2.3 Sequence-core alignment algorithms

For local score functions there exists very efficient algorithms to align sequences
with cores. It is sufficient to borrow the algorithms used for sequence alignments
and to make the slight modifications that are required to adapt them to our problem.
These algorithms are all based on some forms of dynamic programming [21, 22]
and thus are of O(N2), N being the size of the sequences. Besides, if the computa-
tional requirements are of prime importance, we also have available fast and accurate
heuristics (such as BLAST and its variants [1] or FASTA [23]). As shown on Figure
1.1 the knowledge of the 3D structure of one of the sequence, permits the use of
substitution matrices that are proper to the state of each site in the core. Secondary
structure specific gap penalties can also be used, i.e., gap penalties that make in-
sertions/deletions more difficult in helices or strands. In addition these techniques
readily enable the use of sequence profiles instead of simple sequences, a procedure
that is known to improve the sensitivity of sequence comparison methods [24].

On the contrary, non-local score functions do not permit the use of algorithms
based on dynamic programming. Indeed, all dynamic programming techniques are
based on a recursive procedure whereby an optimal solution for a given problem
is built from previously found subproblem optimal solutions. For instance, for se-
quence alignments, the optimal score for aligning two substrings s[1..i] and t[1.. j] is
obtained from the optimal solutions previously found for aligning substrings s[1..i−
1] with t[1.. j−1], s[1..i−1] with t[1.. j] and s[1..i] with t[1.. j−1] by the following
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Fig. 1.1 Upper part: 1D alignment of two sequences the query sequence (5th row) is
shown in bold lowercase letters, the core sequence (4th row) in slanted uppercase letters. The
first row is the observed secondary structure: helix (H), strand (E) or coil (C). The second
row is the solvant accessibility: exposed (e) or buried (b). The third row is the corresponding
state. Deletion are indicated by dashes. In the core we focus on the 2nd and 8th sites, labelled
with black circles. The state of the 8th site is Eb, that is, an exposed strand. To score this
position in the core we must use score(I,v)Eb the score of replacing an isoleucine by a valine
in an exposed strand environment (Ri = I, r j = v and Sk = Eb in the corresponding equation).
Note also that since we are in a strand a specific gap penalty must be used. Lower part: 3D
alignment of the same two sequences. In the 3D structure the two above sites are in contact.
To score this interaction we must use score(FI,wv)HeEb the score of replacing the pair FI
by the pair wv in an exposed helical - buried strand environment (Ri = F, R j = I, rk = w, rl =
v, Sn = He and Sm = Eb in the corresponding equation). Here, since we are in core elements,
no insertion/deletion is allowed.

recurrence expression:

A[i, j] = max







A[i−1, j]+gp
A[i−1, j−1]+ c(s[i], t[ j])
A[i, j−1]+gp

where A[k, l] is the optimal score for aligning substring s[1..k] with substring
t[1..l], gp is the cost of a gap and c(s[i], t[ j]) is the cost for aligning the i-th letter
of string s with the j-th letter of string t.
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Non-local score functions ruin this recursive procedure since, now, the score for
aligning two sequences does not exclusively depends on the optimal score of previ-
ous subsequences but also upon interactions with distant residues.

As a consequence, the first threading methods proposed relied on various heuris-
tics to align sequences onto cores, for instance Madej et al. [25] used a stochastic
technique in the form of a Gibbs Monte Carlo.

Lathrop [8] showed that, in the most general case, the problem of aligning a se-
quence onto a core with a non-local score function is NP-hard. A few years later,
Akutsu and Miyano [26], showed that it is MAX-SNP-hard, meaning that there is no
arbitrary close polynomial approximation algorithm, unless P = NP.

Lathrop and Smith [9] were the first to propose an algorithm, based on a branch
& bound technique, that provided, for small instances, an exact solution to the prob-
lem. Uberbacher and colleagues [17], a couple of years later, described another
algorithm based on a divide & conquer approach. These two algorithms were, ap-
parently, rather slow and only able to cope with the easiest problems. They were not
implemented in an actual threading method, to the best of our knowledge.

At the turn of the century, new methods based on advanced mathematical pro-
gramming methods, Mixed Integer Programming (MIP), were developed [27, 28,
10, 11, 14] that were able to tackle the most difficult instances of the problem in
a reasonable amount of time. Two protein threading packages are currently avail-
able that implement exact methods based on the latter approach: RAPTOR5 [12]
and FROST6 [7]. In section 1.3 we will describe in more details the FROST imple-
mentation of the MIP models. Other interesting integer programming approaches for
solving combinatorial optimization problems that originate in molecular biology are
discussed in recent surveys [29, 30].

1.2.4 Significance of scores

Equipped with the above techniques we are able to get an optimal score for aligning
any sequence onto a database of cores. We are now faced with the problem of the
significance of this score. Let us assume that we have aligned a particular sequence
with a core and got a score of 60. What does this score of 60 mean? Is it represen-
tative of a sequence that is compatible with the core? In other words, if we align
a number of randomly chosen sequences with this core what kind of score distribu-
tion are we going to obtain? If, for a noticeable fraction of those alignments, one
gets scores greater than or equal to 60 it is likely that the initial score is not very
significant (unless of course all the chosen sequences are related to the core).

Similar questions arise when one compares two sequences. Statistical analyses
have been carried out to study this problem and it has been shown [31] that the
distribution of scores for ungapped local alignments of random sequences follows
an extreme value distribution. The parameters of this distribution can be analytically

5http://www.bioinformaticssolutions.com/
6http://genome.jouy.inra.fr/frost/
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calculated from the features of the problem : type of substitution matrix used, size of
the aligned sequences, background frequencies of the amino acids, etc. When gaped
alignments are considered it is no longer possible to perform analytical calculations
but computer experiments have shown that the shape of the empirical distribution is
still an extreme value distribution whose parameters can be readily determined from
a set of sequence comparison scores.

Such analytical calculation cannot be done for a sequence-core alignment. In fact
we do not even know the shape of the score distribution for aligning randomly chosen
sequences onto cores although some preliminary work seems to indicate that it could
also be an extreme value distribution [32].

In FROST, to solve this problem, we adopt a pragmatic, but rather costly, ap-
proach. For each core, we randomly extract from the database five sets of 200 se-
quences unrelated to the core. Each set contains sequences whose size corresponds
to a percentage of the core size, i.e., 30% shorter, 15% shorter, same size as the core,
15% longer and 30% longer. The assumption behind this procedure is that when
a sequence is compatible with a core, its length must be similar to the core length
(± 30%). 7 We align the sequences of each set with the core. This provides em-
pirical distributions of scores for aligning sequences with different lengths onto the
core. For each distribution we determine the median and the third quartile and we
compute a normalized score as :

Sn =
S−q2

q3−q2

where Sn is the normalized score, S is the score of the query sequence, q2 and q3
are, respectively, the median and third quartile of the empirical distribution.

This normalized score allows us to compare the alignments of the query sequence
onto different cores. The larger the normalized score the more probable the existence
of a relationship between the sequence and the core. Indeed, a large normalized score
indicates that the query sequence is not likely to belong to the population of unre-
lated sequences from which the score distribution was computed. Unfortunately,
since we do not know the shape nor the parameters of the distributions, we cannot
compute a precise probability for the sequence to belong to this population of un-
related sequences. We use empirical results obtained on a test database to estimate
when a normalized score is significant at a 99% level of confidence [33, 7] (see next
section).

When we need to align a new query sequence whose length is not exactly one of
the above lengths that were used to pre-calculate the score distributions, we linearly
interpolate the values of the median and the third quartile from those of the two
nearest distributions. For instance if the size of new query sequence is 20% larger
than the size of the core, the corresponding median and third quartile values are given
by:

7This is the assumption in case of a global alignment. In section 1.6 we will consider more general types
of alignments: semi-global and local, for which this assumption does not hold.
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q20
n = q15

n +
20−15
30−15

(q30
n −q15

n )

where qL
n represents the median (n = 2) or the third quartile (n = 3) of the score

distribution when sequences of length L are aligned onto the core.

1.2.5 Integrating all the components: the FROST method

FROST is intended to assess the reliability of fold assignments to a given protein se-
quence (hereafter called a query sequence or query for short) [33, 7]. To perform this
task, FROST used a series of filters, each one possessing a specific scoring function
that measures the fitness of the query sequence for template cores. The version we
describe, here, possesses two filters.

The first filter is based on a fitness function whose parameters involve only a local
description of proteins and corresponds to Eq. (1.1). This filter belongs to the cate-
gory of profile-profile alignment methods and is called 1D filter. The algorithm used
to find the optimal alignment score is based on dynamic programming techniques.

The second filter employs the non local score function (1.2). Because it makes
use of spatial information, it is called a 3D filter in the following. As explained in
section 1.2.3, this type of score function requires dedicated algorithms for aligning
the query sequence onto the cores. The algorithm used in FROST, based on a MIP
model, is further described in the next section.

FROST functions as a sieve. The 1D filter is fast, owing to its dynamic program-
ming algorithm of quadratic complexity. It is used to compare the query sequence
with all the database cores and rank them in a list according to the normalized scores.
Only the first N cores from this list are, then, passed to the 3D filter and aligned with
the query sequence.

Each of the N above cores is now characterized by two normalized scores, one for
the 1D filter and one for the 3D filter. These scores can be plotted on a 2 dimensional
diagram. As shown on Figure 1.2 this allows us to define the area on the diagram,
delimited by line equations connecting the scores, that empirically provides a 99%
confidence threshold.

Several score functions, other than the ones described in section 1.2.2, can be
developed. The only point that matters is whether these functions are local or non-
local. The same sieve principle as the one described for the two above score functions
is still applicable. The difference is that now the N resulting cores are characterized
by a number of scores greater than two. This makes the visual inspection as explained
above difficult and one must rely, for instance, on a Support Vector Machine (SVM)
algorithm to find the hyperplanes that separate positive from negative cases.
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Fig. 1.2 Plot of the 1D score (along the x-axis) and 3D score (along the y-axis) for different
(Q,C) pairs (where Q is a query sequence and C is a core). Grey open circles represent (Q,C)
pairs that are related, black crosses (Q,C) pairs that are not related, that is, respectively, the
query sequence is known to have the same 3D structure as the core and the query sequence is
known to have a different 3D structure from the core. The area beyond the lines indicated on
the plot contains only 1% black crosses, which are thus false positives. For this example the
recall is 60% [7].

1.3 FROST: A COMPUTER SCIENCE VISION

1.3.1 Formal definition

In this section we give a more formal definition of protein threading problem (PTP)
and simultaneously introduce some existing terminology. Our definition is very close
to the one given in [9, 34]. It follows a few basic assumptions widely adopted by the
protein threading community [11, 35, 9, 34, 12, 17]. Consequently, the algorithms
presented in the next sections can be easily plugged in most of the existing fold
recognition methods based on threading.
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Query sequence A query sequence is a string of length N over the 20-letter amino
acid alphabet. This is the amino acid sequence of a protein of unknown structure
which must be aligned with core templates from the database.

Core template All current threading methods replace the 3D coordinates of the
known structure by an abstract template description in terms of core blocks or seg-
ments, neighbor relationships, distances, environments, as explained in section 1.2.2.
This avoids the computational cost of atomic-level mechanics in favor of a more ab-
stract, discrete representation of alignments between sequences and cores.

We consider that a core template is an ordered set of m segments or blocks.
Segment i has a fixed length of li amino acids. Adjacent segments are connected
by variable length regions, called loops (see Fig. 1.3(a)). Segments usually corre-
spond to the most conserved parts of secondary structure elements (α-helices and
β-strands). They trace the path of the conserved fold. Loops are not considered as
part of the conserved fold and consequently, the pairwise interactions between amino
acids belonging to loops are ignored. It is generally believed that the contribution of
such interactions is relatively insignificant. The pairwise interactions between amino
acids belonging to segments are represented by the so-called contact map graph (see
Fig. 1.3(b)). Different definitions for residues in contact in the core can be used, for
instance in [12] they assume that two amino acids interact if the distance between
their Cβ atoms is within p Å and they are at least q positions apart along the template
sequence (with p = 7 and q = 4). There is an interaction between two segments, i and
j, if there is at least one pairwise interaction between amino acids belonging to i and
amino acids belonging to j. Let L ⊆ {(i, j) | 1 ≤ i < j ≤ m} be the set of segment
interactions. The graph with vertices {1, . . . ,m} and edges L is called generalized
contact map graph (see Fig. 1.3(c)).

Alignments Let us note, first, that in this section we adopt an inverse perspective
and describe the alignment of a sequence onto a core as positioning the segments
along the sequence. The problem remains exactly the same but it is easier to describe
this way. Such an alignment is called feasible if the segments preserve their original
order and do not overlap (see Fig 1.4(a)). An alignment is completely determined by
the starting positions of all segments along the sequence. In fact, rather than absolute
positions, it is more convenient to use relative positions. If segment i starts at the kth
query sequence character, its relative position is ri = k−∑i−1

j=1 l j. In this way the
possible (relative) positions of each segment vary between 1 and n = N +1−∑m

i=1 li
(see Fig. 1.4(b)). The set of feasible alignments is

T = {(r1, . . . ,rm) | 1≤ r1 ≤ ·· · ≤ rm ≤ n}. (1.3)

The number of possible alignments (the search space size of PTP) is |T |=
(m+n−1

m

)

,
which is a huge number even for small instances (for example, if m = 20 and n = 100
then |T | ≈ 2.5×1022).

Most of the alignment methods impose an additional feasibility condition, upper
and lower bounds on the lengths of query zones not covered by segments (loops).
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(a)

(b)

(c)

Fig. 1.3 (a) 3D structure backbone showing α-helices, β-strands and loops. (b) The corre-
sponding contact map graph. (c) The corresponding generalized contact map graph.

This condition can be easily incorporated by a slight modification in the definition of
relative segment position.

In the above definition, gaps are not allowed within segments. They are con-
fined to loops. As explained above, the biological justification is that segments are
conserved so that the probability of insertion or deletion within them is very small.
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(a)

abs. position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

rel. position block 1 1 2 3 4 5 6 7 8 9
rel. position block 2 1 2 3 4 5 6 7 8 9
rel. position block 3 1 2 3 4 5 6 7 8 9

(b)

Fig. 1.4 (a) Example of alignment of query sequence of length 20 and template containing
3 segments of lengths 3, 5 and 4. (b) Correspondence between absolute and relative block
positions.

1.3.2 Network flow formulation

This section follows the formulation proposed in [27, 10]. In order to develop appro-
priate mathematical models, PTP is restated as a network optimization problem. Let
G(V,A) be a digraph with vertex set V and arc set A. The vertex set V is organized
in columns, corresponding to segments from the aligned core. In each column, each
vertex correspond to a relative position of the corresponding segment along the se-
quence. Then V = {(i, j) | i = 1, ...,m, j = 1, ...,n} with m the number of segments
and n the number of relative positions (see Fig. 1.5 where m = 6 and n = 3). A cost
Ci j is associated to each vertex (i, j) as defined by the scoring function (1.1). The
arc set is divided into two subsets : A′ is a subset containing arcs between adjacent
segments and A′′ contains arcs between remote segments. Thus A = A′∪A′′ with

A′ = {((i, j),(i+1, l)) | i = 1, ...,m−1, 1≤ j ≤ l ≤ n}
A′′ = {((i, j),(k, l)) | (i,k) ∈ L, 1≤ j ≤ l ≤ n}

To each arc ((i, j),(k, l)) is associated a cost Di jkl as defined by the scoring function
(1.2). The arcs from A′ will be referred as x-arcs and the arcs from A′′ as z-arcs.

By adding two extra vertices S and T and the corresponding arcs (S,(1,k)), k =
1, ...,n and ((m, l),T ), l = 1, ...,n, (considered as x-arcs) one can see the one-to-one
correspondence between the set of the feasible threadings and the set of the S-T path
on x-arcs in G. We say that a S-T path activates its vertices and x-arcs. A z-arc is
activated by a S-T path if both ends are on the path. We call the subgraph induced
by the x-arcs of an S-T path and the activated z-arcs augmented path. Then PTP
is equivalent to finding the shortest augmented path in G. Fig. 1.5 illustrates this
correspondence.
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Fig. 1.5 Example of alignment graph. The path in thick lines corresponds to the threading
in which the positions of the blocks are 1,2,2,3,4,4. Dashed line arcs belongs to A′′ where the
set of segment interactions is L = {(1,3),(2,5),(3,5)}.

1.3.3 Integer programming formulation

Let yi j be binary variables associated with vertices in the previous network. Then
yi j is one if segment i is at position j and zero otherwise (vertex (i, j) is activated or
not). Let Y be the polytope defined by the following constraints :

n

∑
j=1

yi j = 1 i = 1, . . . ,m (1.4)

j

∑
l=1

yil−
j

∑
l=1

yi+1,l ≥ 0 i = 1, . . . ,m−1, j = 1, . . . ,n−1 (1.5)

yi j ∈ {0,1} i = 1, . . . ,m, j = 1, . . . ,n (1.6)

Constraint (1.4) ensures that each block is assigned to exactly one position. Con-
straint (1.5) describes a non-decreasing path in the alignment graph. These con-
straints are illustrated in Fig1.6.

In order to take into account the interaction costs, we introduce a second set of
variables zi jkl ≥ 0, with (i,k) ∈ L and 1≤ j ≤ l ≤ n. These variables correspond to
x-arcs and z-arcs in the network flow formulation. For the sake of readability, we
will use the notation za for zi jkl with a ∈ A the arc set. The variable zi jkl is set to one
if the corresponding arc is activated. Then, we define the following constraints :

yi j =
n

∑
l= j

zi jkl (i,k) ∈ L, j = 1, ...,n (1.7)

ykl =
l

∑
j=1

zi jkl (i,k) ∈ L, l = 1, ...,n (1.8)

za ≥ 0 a ∈ A (1.9)

These constraints ensure that setting variables yi j and ykl to one (the path passes
through these two points), activates the arc zi jkl . Finding the shortest augmented path
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j
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(a)

y41 + y42 + y43 = 1
y51 + y52 + y53 = 1
y41− y51 ≥ 0
y41 + y42− y51− y52 ≥ 0
y41 + y42 + y43− y51− y52− y53 ≥ 0

Fig. 1.6 The effect of constraints (1.4) and (1.5) on zone (a). Exactly one vertex is activated
in column four and in column five. Activating a vertex at position (4, j) guarantees that no
vertex is activated in column five below j. If a vertex is activated in (5, j), then a vertex must
be activated in column four below j.

in graph G (i.e. solving PTP) is then equivalent to minimize the following function
subject to the previous constraints :

m

∑
i=1

n

∑
j=1

Ci jyi j + ∑
a∈A

Daza (1.10)

This model, introduced in [11], is known as MYZ model. It significantly out-
performs the MIP model used in the RAPTOR package [12] for all large instances
(see [11] for more details). Both models (MYZ and RAPTOR) are solved using
a linear programming relaxation (LP). The advantage of these models is that their
LP relaxations give the optimal solution for most of the real-life instances. They
have significantly beter performance than the branch & bounds approach proposed
in [9]. Their drawback is their huge size (both number of variables and number of
constraints) which makes even solving the LP relaxation slow. In the next section
we present more efficient approaches for solving these models. They are based on
Lagrangian relaxation.

1.3.4 Lagrangian approaches

Consider an integer program

zIP = min{cx : x ∈ S},where S = {x ∈ Zn
+ : Ax≥ b} (1.11)

Relaxation and duality are the two main ways of determining zIP and upper bounds
for zIP. The linear programming relaxation is obtained by changing the constraint x∈
Zn

+ in the definition of S by x≥ 0. The Lagrangian relaxation is very convenient for
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problems where the constraints can be partitioned into a set of “simple” ones and a set
of “complicated” ones. Let us assume for example that the complicated constraints
are given by A1x ≥ b1, where A1 is m× n matrix, while the simple constraints are
given by A2x≥ b2. Then for any λ ∈ Rm

+ the problem

zLR(λ) = min
x∈Q
{cx+λ(b1−A1x)}

where Q = {x ∈ Zn
+ : A2x≥ b2} is the Lagrangian relaxation of (1.11), i.e. zLR(λ)≤

zIP for each λ ≥ 0. The best bound can be obtained by solving the Lagrangian dual
zLD = max

λ≥0
zLR(λ). It is well known that the relation zIP ≥ zLD ≥ zLP holds.

1.3.5 Lagrangian relaxation

We show now how to apply Lagrangian relaxation (LR) taking Eq. (1.8) as a com-
plicated constraint. Recall that this constraint insures that the y-variables and the
z-variables select the same position of segment k. By relaxing such a constraint, we
relax the right end of a z-arcs. This means that an arc can be activated even though
its right end is not on the path, as it is illustrated in Fig1.7(a). For a fixed λ, the
relaxed augmented path problem obtained in this way can be solved in a polynomial
time using a dynamic programming (see [36]).

i

j

(a)
i

j

(b)

Fig. 1.7 Example of a threading instance with m = 6 blocks and n = 5 free positions. The
set of segment interactions is L = {(1,3),(3,4),(3,6)}. (a) The Lagrangian relaxation sets
the right end of any arc free. The solution for the relaxed problem could not satisfy the original
constraints. (b) The Lagrangian relaxation sets both right and left ends of arcs free.

In order to find the Lagrangian dual zLD one has to look for the maximum of a
concave piecewise linear function. This appeals for using the so called sub-gradient
optimization technique. For the function zLR(λ), the vector st = b1−A1xt , where xt is
an optimal solution to minx{cx+λt(b1−A1x)}, is a sub-gradient at λt . The follow-
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ing sub-gradient algorithm is an analog of the steepest ascent method for maximizing
a function:

• (Initialization): Choose a starting point λ0, Θ0 and ρ. Set t = 0 and find a
sub-gradient st .

• While st 6= 0 and t < tmax do { λt+1 = λt + Θtst ;Θt+1 = ρΘt , t ← t + 1; find
st}

This algorithm stops either when st = 0, (in which case λt is an optimal solution)
or after a fixed number of iterations tmax. The parameter 0 < ρ < 1 determines the
decrease of the sub-gradient step.

Note that for each λ the solution defined by the y-variables is feasible for the
original problem. In this way at each iteration of the sub-gradient optimization we
have a heuristic solution. At the end of the optimization we have both lower and
upper bounds on the optimal objective value.

Symmetrically, we can relax the left end of each link or even relax the left end of
one part of the links and the right end of the rest (see figure 1.7(b)). This approach
is used in [14]. The same paper describes a branch-and-bound algorithm using this
Lagrangian relaxation instead of the LP relaxation. This is the default algorithm in
the FROST package.

Another relaxation, called cost-splitting (CS), is presented in [37]. The results
presented in this paper clearly show that CS slightly outperforms LR, and both (LR
and CS) relaxations are significantly faster than LP (see Fig. 1.8). The interested
reader can find further details concerning these approaches in [36].

1.4 DIVIDING FROST INTO MODULES FOR DISTRIBUTION OVER A
CLUSTER

The following two sections are based on the results presented in [38].

1.4.1 Amount of computation to be done

In section 1.2.5 we described the FROST functioning. From a computational view-
point, this procedure can be divided into 2 phases: the first one is the computation
of score distributions (hereafter called phase D) and the second one is the alignment
of the sequence of interest with the dataset of templates (hereafter called phase E for
evaluation) making use of the previously calculated distributions. These two phases
are repeated for each filter (1D and 3D). We denote by Ali1D(Q,C) the process of
aligning a query sequence (Q) with a core (C) in the 1D filter and by Ali3D(Q,C)
the more computer intensive alignment process of the 3D filter. Although we have a
very efficient implementation of the corresponding algorithm based on a Lagrangian
relaxation technique, computing the score distributions for all the templates takes
more than a month when performed sequentially.

The whole procedure requires the following computations:
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Fig. 1.8 Cost-Splitting Relaxation versus LP Relaxation. Plot of times in seconds with the CS
algorithm on the x-axis and the LP algorithm from [11] on the y-axis. Both algorithms compute
approximate solutions for 962 threading instances associated with the template 1ASYA0 from
the FROST core database. The line y = x is shown on the plot. A significant performance gap
is observed between the algorithms. For example point (x,y) = (0.5,3) corresponds to a case
where CS is 102.5 times faster than LP relaxation. These results were obtained on an Intel(R)
Xeon(TM) CPU 2.4 GHz, 2 GB RAM, RedHat 9 Linux. The MIP models were solved using
CPLEX 7.1 solver (see [37] for more details).

1. Phase D: align non homologous sequences in order to obtain the scores distri-
butions for all templates and all filters. Since five distributions are associated
to any template, and there are about 200 sequences for each distribution, this
procedure needs solving about 1,200,000 quadratic problems Ali1D and the
same amount of NP-complete problems Ali3D.

2. Phase E: align the query with the dataset of templates which requires solving
several hundreds of quadratic problems Ali1D and N NP-complete problems
Ali3D (where N is usually ten).

Figure 1.9 shows the distribution of the alignment problems needed to be solved
during phase D and gives an idea of the amount of computation required by the 3D
filter. The number of the problems is about 1,200,000 while the size of the largest
instance is 6.6 1077.
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Fig. 1.9 Populations of the 3D problems solved during phase D as a log10 function of the
size of the search space (number of possible alignments).

Figure 1.10 shows the plot of the mean CPU time required to solve the 3D prob-
lems involved in phase D as a function of the number of possible alignments8.

The purpose of the procedure proposed in the next section is to distribute all these
tasks.

Note that phase D needs to be repeated each time the fitness functions or the
library of templates change, which is a frequent case when the program is used in a
development phase.

1.4.2 Distribution of the computations: dividing FROST into modules

The first improvement in the distributed version (DFROST) compared to the original
FROST consists in clearly identifying the different stages and operations in order to
make the entire procedure modular. The process of computing the scores distribu-
tions is dissociated from the alignment of the query versus the set of templates. We
therefore split the two phases (D and E) which used to be interwoven in the original
implementation. Such a decomposition presents several advantages. Some of them
are:

• Phase D is completely independent from the query, it can be performed as a
preprocessing stage when it is convenient for the program designer.

8The mean CPU time here concerns macro-tasks each one containing ten (gran3D=10) instances Ali3D
of the same size (see section 1.4.3)
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Fig. 1.10 Mean CPU time required to solve the 3D problems in phase D as a function of
their size.

• The utilization of the program is simplified. Note that only the program de-
signer is supposed to execute phase D, while phase E is executed by an “or-
dinary” user. From a user’s standpoint DFROST is significantly faster than
FROST, since only phase E is executed at his request (phase D being per-
formed as a preprocessing step).

• The program designer can easily carry out different operations needed for fur-
ther developments of the algorithm or for database updating such as: adding
new filters, changing the fitness functions, adding a new template to the library,
etc.

• This organization of DFROST in modules is very suitable for its decomposi-
tion in independent tasks that can be solved in parallel.

The latter point is discussed in details in the next section.
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1.4.3 Parallel Algorithm

We distinguish two kinds of atomic independent tasks in DFROST: the first is related
to solving an instance of a problem of type Ali1D, while the second is associated with
solving an instance of an Ali3D problem9.

Hence phase D consists in solving 1,200,000 independent tasks of type Ali1D
and Ali3D, while phase E consists in solving several hundreds of independent tasks
Ali1D and ten independent tasks Ali3D. The final decision requires sorting and anal-
ysis of the N best solutions of type Ali1D and the N best solutions of type Ali3D.

There is a couple of important observations to keep in mind in order to obtain
an efficient parallel implementation for DFROST. The first is that the exact number
of tasks is not known in advance. Second, which is even more important, the tasks
are irregular (especially tasks of type Ali3D) with unpredictable and largely varying
execution time. In addition, small tasks need to be aggregated in macro-tasks in
order to reduce data broadcasting overhead. Since the complexity of the two types
of tasks is different, the granularity for macro-tasks Ali1D should be different from
the granularity for macro-tasks Ali3D.

The parallel algorithm that we propose is based on centralized dynamic load bal-
ancing: macro-tasks are dispatched from a centralized location (pool) in a dynamic
way. The work pool is managed by a “master” who gives work on demand to idle
“slaves”. Each slave executes the macro-tasks assigned to it by solving sequentially
the corresponding subproblems (either Ali1D or Ali3D). Note that dynamic load
balancing is the only reasonable task-allocation method when dealing with irregular
tasks for which the amount of work is not known prior to execution.

In phase E the pool contains initially several hundreds of tasks of type Ali1D. The
master increases the work granularity by grouping gran1D of them in macro-tasks.
These macro-tasks are distributed on demand to the slaves that solve the correspond-
ing problems. The solutions computed in this way are sent back to the master and
sorted by it locally. The templates associated to the N best scores yield N problems
of type Ali3D. The master groups them in batches of size gran3D and transmits them
to the slaves where the associated problems are solved. The granularity gran1D is
bigger than the gran3D granularity. Finally the slaves send back to the master the
computed solutions.

The strategy in phase D is simpler. The master only aggregates tasks in macro-
tasks of size either gran1D or gran3D, sends them on demand to idle slaves (where
the corresponding problems are sequentially solved), and finally gathers the distri-
butions that have been computed. The master processes the library of templates in a
sequential manner. First, it aims at distributing all tasks for a given template to the
slaves. However, when the list of tasks for a given template becomes empty, but the
granularity level is not attained, the master proceeds to distribute tasks from the next
template. This strategy allows to reduce globally the idle time of the processors.

9In reality this problem can be further decomposed in subtasks. Although non independent, these subtasks
can be executed in parallel as show in [11, 10]. This parallelization could be easily integrated in DFROST
if necessary.
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1.5 COMPUTATIONAL EXPERIMENTS

1.5.1 Running times

The numerical results presented in this section (see Table 1.1) were obtained on a
cluster of 12 Intel(R) Xeon(TM) CPU 2.4 GHz, 2 Gb Ram, RedHat 9 Linux, con-
nected by a 1 Gb Ethernet network. The behavior of DFROST was tested by entirely
computing the phase D of the package, i.e. all the distributions for 1125 templates
for both filters.

Number of tasks Wall clock time Total sequential time Speed-up

3D filter 1,104,074 3d 3h 20m 37d 5h 11m 11.9
1D filter 1,107,973 31m 4h 13m 8.2
Both filters 2,202,047 3d 3h 51m 37d 9h 24m 11.8

Table 1.1 Comparison of the total time (in days, hours, minutes) taken by a number of
1D and 3D tasks with the corresponding wall clock time after parallelizing the program

In the case of 3D filter, solving 1,104,074 alignments in parallel as shown on
table 1.1 is very efficient. Comparison of the total sequential running times with the
wall clock time of the master shows that we obtain a speed-up of about 12, i.e., an
efficiency close to one. In the case of 1D filter, for solving 1,107,973 alignments, the
speed up is lower but then the total sequential time is much shorter than for solving
3D tasks.

These significant results, obtained on such a large data set, justify the work done
to distribute FROST and prove the efficiency of the proposed parallel algorithm.

Details from this execution are presented in table 1.2. The value of the parameters
gran1D and gran3D were experimentally fixed to 1000 and 10 respectively.

We can calculate an upper limit for the number of processors beyond which it is
not any more possible to benefit from adding more processors. The maximum time
for an alignment is 797.4 seconds 1.3, this time is the lower limit of the wall clock
time for the complete computation of the distributions for Ali3d. The total CPU
time necessary to calculate all Ali3D alignments is 3,215,460 seconds. Thus, adding
more than 4032 processors (3215460/797.4) will not further accelerate the global
process. This gives a theoretical upper limit. The assumption behind this procedure
is that difficult computations are submitted first. This strategy was not implemented
in the results presented in [38] since it requires a criterion for a preliminary running
time task estimation. Our observation on the code behavior when computing all
distributions confirm that a meaningful criterion is the solutions search space (see
figure 1.10). Another criterion could be the observed in the past running time for a
task.
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1.5.2 Statistical analysis of the results

Using this parallel algorithm we were able to compute all distributions for the entire
FROST templates library. This was never done with the sequential code, because
of large templates like 1BGLA0 with sequences as long as 528 amino acids, leading
to a number of possible alignments as large as 6.647E+77. Statistics concerning the
running time distribution are presented on Figure 1.11.

On average, the running time distribution of all Ali1D tasks, is characterized by
the following data:

minimum 1st quartile mean 3rd quartile maximum

0 s 0.03 s 0.58 s 2.32 s 797.4 s

Note that these times correspond to one alignment.
We observed that for 188 templates the computation of the distributions requires

more than one hour CPU time. Statistical details concerning the running time of the
four most time consuming templates are presented in table 1.3. Remember, that a
PTP instance (i.e. when the query and the 3D structure are fixed) is considered as an
atomic independent task in the current parallel strategy. Yet, as shown in [11, 10],
such an instance could be further decomposed in subtasks that could be executed in
parallel. We studied the need for implementing this parallelization in the package
FROST. However, taking in account that: i) the number of independent tasks when
computing distributions is very high; ii) the data from tables 1.2 and 1.3, as well as
their statistical recapitulations in figure 1.11, clearly showing that really hard PTP
instances are rather rare; iii) the speedup reported in section 1.5 is very satisfactory,
we decided, for the time being, to stay with the current parallel strategy.

1.6 FUTURE RESEARCH DIRECTIONS

It is well known that large fractions of the proteins have a modular organization as
shown on Figure 1.12. Such proteins are called multi-domain proteins. These mod-
ules can be detected at the level of the amino acid sequence as similar subsequences
that are found in different protein sequences. In the 3D structure of the whole pro-
teins these modules correspond, usually to one, sometimes to several, substructures
called structural domains10 [40] (see the right hand side of Figure 1.12).

Several cases can occur when studying such multi-domain proteins. Let us illus-
trate this point with the PEP-utilizers domain presented on Figure 1.12.

If one wishes to analyze the PEP-utilizers module family one needs to compare
the corresponding sequences over their complete lengths. Using global alignment
of the sequences (i.e. gaps before the beginning of a sequence and after its end are
penalized) will not give a satisfactory result. If the goal of the study is to search for

10in the literature the terms domain and module are often used somewhat interchangeably. In this paper
we restrict the use of module to subsequences and domain to 3D substructures
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the PEP-utilizers module in a set of sequences (such as those shown in Fig. 1.12),
one must use a semi-global alignment where the gaps before the beginning, and after
the end of a sequence are set to zero. This allows the shorter sequence of the PEP-
utilizers module to “slide” along the longer sequences until it finds the best match.

The most general case occurs when, comparing two sequences, for instance the
second and the fifth in Fig. 1.12, one is trying to analyze what is common between
these sequences. This corresponds to carrying out a local alignment, that is, finding
subsequences in both sequences that have the maximum score when aligned (for a
given score function).

The local alignment is the most general alignment technique. Accordingly, this is
the convenient alignment when comparing an unknown sequence with a database of
sequences, since it is unknown beforehand what the similarity is between the query
and the database sequences.

Due to the strong analogy that exists between sequence-sequence alignment meth-
ods and sequence-structure alignment methods, the above considerations are also
valid, mutatis mutandis, for protein threading methods.

In section 1.2.4 we mentioned that FROST permits only global alignment of a
sequence with a core. Even more, to the best of our knowledge, no current protein
threading approach exists, that uses non-local score functions for providing an ex-
act solution, and that is able to carry out semi-global and local alignments. Some
ideas to tackle this problem have been presented by G. Collet and al. in [42, 43]
where mathematical formulations, based on MIP models for semi-global and local
sequence/structure alignment, are discussed. The latest one is also called flexible
alignment since it allows omissions of blocks during the alignment process (see Fig.
1.13).

Semi-global and flexible alignments raise a number of new questions. Perform-
ing such alignments necessitates the alignment of cores with potentially very long
sequences (the largest proteins known are up to 10 000 residues long). The pro-
cess of computing distributions (see 1.2.4) needs to be significantly modified in the
context of arbitrarily long sequences. In addition, these types of alignment will dras-
tically increase the solution space and the corresponding running time. In order to
manage such an increase of the computational requirements the future semi-global
and flexible alignment algorithms will need more and more parallel and distributed
computing.

1.7 CONCLUSION

Fold recognition (protein threading) is rather typical of problems that occur in bioin-
formatics. It requires knowledge from different disciplines: biology for the definition
of cores, physical-chemistry for the development of score functions, computer sci-
ence for the conception of efficient alignment algorithms and statistics for explaining
the significance of the alignment score.

Sequence comparison methods play an outstanding role for exploiting protein
sequence data, in particular for in silico functional analysis. These methods are
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versatile and extremely efficient as long as close homologs are considered. Fold
recognition techniques are intended to replace them when the much more difficult
case of remote homologs needs to be tackled. Unfortunately, fold recognition tech-
niques are computer intensive and, for the moment, are less universal. In particular
the problem of fold recognition has received a satisfactory solution only for the case
of global alignments whereas, due to the protein modularity properties, semi-global
and local alignments are urgently needed. Fold recognition methods are also plagued
by the lack of a statistical theory permitting to assess the significance of alignment
scores. Our goal, in the near future, is to set fold recognition methods on an equal
footing with sequence alignment methods in terms of available types of alignment
and assessment of the alignment score significance.

Of course, due to the inescapable NP-hard property of fold recognition alignment
algorithms, these methods will always be more demanding in terms of computer
resources than sequence alignments, although we are able to achieve pruning peak
rate as high as 1074 per second for global alignments. However, as shown in this
paper, it is possible to harness the power of grid computing to perform the heavy
calculations that will be needed to analyze the 500 currently sequenced microbial
genomes and the further thousand that are to be released next year.
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Template DFROST CPU tot Cpu av NAli

1BGLA0 15455 107569 113 945
1ALO 0 9565 96579 97 995
1CXSA0 5988 55808 58 960
1DIK 0 4506 46855 47 977
1BGW 0 4152 45286 45 1000
1CLC 0 3580 37973 39 969
1AA6 0 3357 35819 38 926
1DJXB0 3025 31276 31 1000
1DAR 0 2705 28671 28 1000
1AOZA0 2477 25156 26 935
1AK5 0 2072 22326 22 979
1AUIA0 2016 22010 22 1000
1AOFB0 2065 21619 21 1000
1BHGA0 1904 20740 21 980
1AORA0 1920 20059 20 995
1AYL 0 1807 18961 19 973
1EUT 0 1753 18883 18 995
1CTN 0 1535 16670 16 1000
1ECL 0 1439 15589 16 953
1ATIA0 1492 15463 15 980
1CIY 0 1441 15044 15 1000
1BYB 0 1307 13892 14 990
1COY 0 1204 13150 13 957
1DLC 0 1104 11825 13 907
1BDP 0 1173 12814 12 995
1AOP 0 1134 12323 12 1000
1AG8A0 1120 12153 12 990
1BMFC0 1094 11338 11 1000
1ECFB0 1052 11254 11 990
1DERA0 1047 11109 11 1000
1ALKA0 1022 10937 11 965
1DPE 0 988 10626 11 957
1DDT 0 973 10349 10 1000
1AC5 0 907 9877 9 1000
1CAE 0 913 9870 9 990
1BMFD0 914 9467 9 998
1DPGA0 875 9092 9 1000
1ASYA0 1102 8634 9 952
1LYLA0 782 8335 8 990
1BIF 0 657 7129 7 948
1AD3A0 629 6669 6 1000
1DNPA0 776 6580 6 960

Table 1.2 An extract from the execution times (in seconds) when computing the 3D
score distributions. The templates for which the distributions are calculated are listed
in the first column. The second column gives the parallel time (the execution time for
the master) on a cluster of 12 processors. The third column shows the CPU sequential
time (obtained by adding the CPU times from the slaves). The fourth column reports
the average CPU time per alignment and the last column shows the actual number
of sequences that have been threaded to calculate the distributions. The value of the
granularity was fixed to 10.
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Fig. 1.11 Two templates with heavy distribution computations. 1BGLA0 and 1QBA 0, are
selected from table 1.3 and the corresponding box-plots of the distributions running time are
plotted using the statistical package R [39]. The left and right ends of a box correspond to the
lower and upper quartiles and the middle line corresponds to the median of the distribution.
Vertical lines, usually called “whiskers”, go left and right from the box to the extreme of the
data (here defined as 1.5 times the inter-quartile range). Outliers are plotted individually. Note
that the distribution is not symmetric and exhibits a heavy tail for longer CPU times.
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Nb Sol NAli Min Q1 Med Mean Q3 Max
1B

G
L

A
0 5.4 1027 55 0.95 0.96 0.98 0.97 0.98 1.02

1.2 1035 56 0.95 0.96 0.97 0.97 0.98 1.01
3.5 1058 192 35.6 39.9 42.2 45.2 50.0 73.2
1.3 1070 199 102.4 116.3 131.0 145.7 164.6 510.0
6.6 1077 150 203.8 229.7 252.6 291.7 327.5 797.4

1Q
B

A
0

1.6 103 58 1.82 1.83 1.83 1.84 1.84 1.89
8.3 1037 57 1.82 1.83 1.83 1.84 1.84 1.89
5.2 1057 197 27.1 30.2 32.5 36.3 39.8 76.6
2.8 1068 200 68.4 77.5 86.9 101.4 116.0 354.8
7.2 1075 200 130.1 154.7 178.3 207.0 239.8 789.8

1A
L

O
0

3.1 1033 57 0.85 0.87 0.87 0.87 0.88 0.89
6.0 1033 57 0.85 0.86 0.87 0.87 0.87 0.89
2.5 1057 190 25.8 29.3 36.1 40.8 46.7 135.2
1.6 1069 200 67.4 86.3 113.2 123.2 134.8 397.6
1.3 1077 200 139.9 175.7 231.0 262.2 303.4 735.0

1Y
G

E
0

3.4 1023 61 0.39 0.40 0.41 0.41 0.41 0.43
2.8 1045 59 0.40 0.41 0.41 0.41 0.42 0.42
2.1 1055 192 34.8 39.9 43.1 47.5 48.9 139.8
6.5 1061 173 71.2 80.5 89.5 102.0 115.9 365.1
4.4 1066 199 120.2 138.5 158.3 178.2 208.9 443.7

Table 1.3 Sequential times in seconds for computing the 3D score distributions of four
templates selected for their “difficulty” (search space size). For a given template the
5 rows represent alignment of sets of non related sequences having length respectively
equal to: -30%, -15%, 0%, +15%, +30% of the template length. Nb Sol is the number of
possible alignments that can be generated with the sequences and the template. This gives
an indication of the difficulty of the problem to solve. NAli is the number of alignments
(sequences) in the corresponding set. The last six columns report diverse running time
characteristics obtained when aligning the set of sequences with the corresponding 3D
structure: Min is the minimum value, Q1 is the time at the 1st quartile position, Med.
is the time at the median position, Mean is the average time, Q3 is the time at the 3rd
quartile position and Max is the maximum value.
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Fig. 1.12 Left panel: schematic representation of protein sequences with different modules
(data from the PFAM database [41]). In the figure we focus on the three modules of the second
sequence. These modules are also found in other sequences. Upper right panel: the structure
of this sequence (a pyruvate phosphate dikinase) has been solved (PDB code 1dik) and the
modules have been drawn in similar shades of gray in the 3D structure; lower right panel:
zoom on the 3D structure of the second module. This module has 102 residues.
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a)

b)

Fig. 1.13 Local alignment. a) A template containing five blocks. b) A sequence of 58 amino
acids. On its right-hand site this sequence contains a structural domain which exhibits a good
similarity to the template when only three blocks are aligned. To obtain this optimal alignment
(i.e. giving the best score), two blocks have to be omitted.
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