Lagrange’s four squares theorem with
variables of special type
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1 Introduction and statement of the results.
In this paper we study the equation of Lagrange
(1) ri+as+as+ai=N

with multiplicative restrictions imposed on the variables.

It is expected that every sufficiently large integer N, satisfying the con-
gruence condition N = 4 (mod 24), can be represented in the form (1) with
prime variables x;. This conjecture has not been proved so far. We should
mention, however, that Hua [6] proved that all large integers N such that
N =5 (mod 24), are sums of five squares of primes.

Greaves [3], Plaksin [10] and Shields [11] established the solvability of (1)
with two prime and two integer variables provided that NV is sufficiently large
and satisfies a natural congruence condition. Briidern and Fouvry [1] proved
that any sufficiently large integer N = 4 (mod 24), can be represented in
the form (1), where each variable is a number of type P34 (as usual, by P,
we denote any integer having at most r prime factors, counted according to
multiplicity).

D.R. Heath-Brown and the author considered recently the equation (1)
with more restrictive conditions on the variables than in the paper of Briudern
and Fouvry. In [5] two theorems were proved. The first of them states that
every sufficiently large N = 4 (mod 24) can be represented in the form (1),
where x; is a prime and where each of x4, 23, x4 is a number of type Pig;.
The most important part of the proof of this result is the establishment of
Propositions 1 and 2. The second of them asserts, that the sum L(k, N),
defined by (3), can be approximated in some average sense to the expected



main term, which we can find by a formal application of the circle method.
After that the proof of Theorem 1 of [5] can be established by using the
vector sieve. This sieve method was proposed by Iwaniec [7] and was also
used by Briidern and Fouvry [1], [2] and by the author [12] — [14].

The second theorem of [5] states that for every sufficiently large N =
4 (mod 24) the equation (1) is solvable in variables of type Py5. To prove
this result we use Proposition 3 of [5]. It, roughly speaking, states that the
number of the solutions of (1) in integers lying in progressions, can be ap-
proximated on average by the expected value with better level of distribution
than in the relevant theorem from the paper [1]. Then the result follows again
by application of the vector sieve.

The aim of the present paper is to show that improvements upon the
results of [5] (of about 20%, in some sense) can be achieved by attaching
Kuhn’s weight to one of the variables. The following theorems hold:

Theorem 1. Every sufficiently large integer N, satisfying N = 4 (mod 24),
can be represented in the form

(2) ¢+ 11+ a5+ a5 =N,
where x1 = Prg, 19 = Pgo, 13 = P}, and where q is a prime.

Theorem 2. Every sufficiently large integer N, satisfying N = 4 (mod 24),
can be represented in the form (1), where each of the variables is of type Po;.

We present only the proof of Theorem 1. Theorem 2 can be proved in
the same way. We omit the calculations because they are similar to those in
the relevant parts of [5], [12] — [14].
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2 Notations.

We assume that the integer NV is sufficiently large and satisfies the con-
gruence N = 4 (mod 24). Denote P = N'/2, Let ¢ € (0,107°%) be arbitrarily
small and let A > 10° be arbitrarily large number (they may not be the
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same in different occurrences). The constants in O-terms and <-symbols
are absolute or depend on ¢ and A. For positive U and V we write U < V
as an abbreviation of U < V <« U. The letters p and ¢ are reserved for
prime numbers. As usual, u(n), 7(n), Q(n) denote, respectively, the Mobius
function, the number of divisors of n and the number of prime factors of n,
counted according to multiplicity. Instead of m = n (modk) we write for
simplicity m =n (k). If p' | m, but p'** ¥ m then we write p' || m.

We denote by (my,ms) and [mq, msy] the greatest common divisor and,
respectively, the least common multiple of the integers of m;, ms. However,
if u,v are real numbers then (u,v) means the interval with endpoints u
and v. Finally, by bold style letters we denote three-dimensional vectors in
the following way: d = (d;,ds,d3). The meaning is always clear from the
context.

3  Proposition.

First we state a proposition, which is an analog of Proposition 2 of [5].
Consider the function

1 . 9 11
wolt) = exp ((20#10)271) if te (%’ _0) )
olt) = .
0 otherwise

and denote w(x) = [[°_, wo(z:P~Y). For any vector d with squarefree odd
components we consider the sum

(3) L(d,N) = Yo wx).

q2+xf—|—x§+m§:N
x;=0 (d,) 5 i:1,2,3

In order to prove Theorem 1 we have to approximate this sum by another
expression, which is easier to work with. The most difficult part of the proof
is to establish that this expression approximates £(d, N) in some average
sense indeed. We have the following:

Proposition. Suppose that K1, Ky, K3 are positive numbers, satisfying

Kl S K2K3, KQ S KIK:)” K3 S K1K2, K1K2K3 S P2/23—5 )



Let B;(d) be real functions, supported on the set of positive squarefree odd
integers, and such that

|Bi(d)| < 7%(d) , Bi(d)=0 if d>K;, i=1,2,3.

There exist quantities No = No(N), & = &(N), R(d, N) with the following
properties:
For Ny and & we have

P2
4 = — 1 loglog P.
(4) No log P’ < & < loglog

The quantity R s defined for vectors d with squarefree odd components
and can be decomposed in the following way

5 RAN)= ] v.N) ][] N ][] N,

plldidads p?||d1d2ds p3||d1da2ds

where V;(p, N), i = 1,2,3, are functions defined for primes p > 2 and such
that

(6) 7/11(37N):1/3: 1/4§¢1(p:N)§4: wl(paN):l_'_O(p_l):
0§1/)i(p,N)§4, 1=2,3.

We also have

(7) R(d, N) < 72(dy)7*(dy)T*(d3) .

Furthermore, if 2 1 kil; and pu(k;lj) # 0 for 1 <i,j < 3 then
(8) R(<k1[1,k2l2,k3l3>,N) - R(k, N) R(l, N) .

Finally, the following estimate holds:

No & R(d, N)

0) 3 Al (L@ N) - =S

dy,d2,d3

) < P?(log P) .

Let us notice, that the terms Ny and &R (d, N)/(d1dad3) can be conside-
red as the “singular integral” and, respectively, the “singular series”, for the
sum £(d, N). Hence the second term in the brackets in (9) is the expected
approximation to £(d, N), which we can find by a formal application of the
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circle method. For the exact definitions of Ny, & and R(d, N) we refer the
reader to [5].

The present proposition is a straightforward generalization of Proposi-
tion 2 from [5] (where we have K; = Ky = Kj3). The proof is long and
complicated, but differs slightly from the proof of the corresponding asser-
tion in [5], so we omit it. We also notice, that in Proposition 2 from [5] the
“singular series” is given in the form of series indeed, and its decomposition
as a product and the properties of the factors are established in [5], Section 4.

4  Proof of Theorem 1.

4.1 Beginning of the proof.

Suppose that aq, as, a3 and 6 are constants, such that

(10) 0<f<1, D<o <az<l1, o < ap < 1.

Define

(11) z = (log P)1* 2 = PY, i=1,2,3,

and let

(12) Bo = H P, B = H P, 1=1,2.
2<p<zo 20<p<zi

Consider the sum

(13) I'= 3 w(x) (1—9 3 (1—11552)).

P +zi+ai+ai=N 215p<z3
(71, PBoP1)=(v223,PoP2)=1 plz1

Using the condition N = 4 (24) and the definition of w(x) we find that the
solutions of (2), such that 2 | gzix9x3, are not counted in T'.

Our aim is to show that for suitable constants oy, as, as, 8, satisfying (10),
we have

(14) > P*(logP)™".



Having proved this, consider the part I of T', consisting of all terms, such
that z; = 0 (p?) for some prime p € [zy, 23). Using (10) and (11) we get

(15 I'< Y 3 1:22(21) S o

21<p<z *+ai+ad+a3=N  21<p<zs k<N @24al=k  ai+a3=N-k
21=0(p?) z1=0(p?)
1 —1 2—
< P? E E 1<<P+E(Pz1 —|—z3)<<P €,

21<p<z3 xz1,2<P
21=0(p?)

From (13) — (15) we conclude that there are > P?(log P)™* quadruples ¢,
x1, Ty, T3, satisfying (2) and such that ¢ is a prime, z; has no multiple prime
factors p € [z1, 23),

(16) (21, 2BoP1) = (2223, 2PP2) = 1
and
logp
— 1— .
(17) 1-0 ( 1ngg)>0
Zl§|l7<z3
plT1

From (11) and (16) we get

(18) Qzy), Qaz) < ay’.
Furthermore, from (16) and (17) we easily obtain
(19) Qzy) <0 +a3'.

The arguments are similar to those in [4], Chapter 9, § 2, for example, so we
omit them.

We see that our aim is to choose constants «, as, as, 6, satisfying (10), in
such a way, that the estimate (14) holds, and at the same time the number

max (a;', 07" +a3")

should be as small as possible.
It is clear that

(20) r=F-0G,



where

(21)

(22)

F = > w(x),

q2+m%+m%+m§:]\7
(z1,BoPB1)=(z223,PoP2)=1

o= X () X ew

21<p<z3 P+l +as+ai=N

(z1,PoP1)=(z223,PoP2)=1
21=0 (p)

In order to prove (14) we have to estimate F from below and G from above.

4.2 The estimation of F.

To study the sum F, defined by (21), we apply the vector sieve. We
proceed exactly as in Section 4 of [5]. For reader’s convenience we present
the main points, but omit the calculations.

Using the fundamental property of the Mobius function we represent F

in the form

(23)

where

(24)

Define

(26)

F = Z w(x) @1 Py B3 Ay Ay Ag,

a?+x?+as+ag=N

Dy = P*; D; = P", 1=1,2,

where 7,7, are constants such that

(27)

2§32:ﬂ§3§51:ﬂ§4, Oé1+043§771-
Q9 831



Let \F

5, 1 =0,1,2, be the Rosser functions of orders D;, respectively.

Denote
(28) oF= > N(d), i=123;
d|(z;,%o)
(200  Af= ) X(@d; A= D> M),  i=23.
d|(z1,%B1) d|(z;,%B2)

The definition and the properties of the Rosser weights can be found in
Iwaniec [8], [9]. In particular, we have

(30)  |NE(d)| <1, X(d)=0if u(d) =0 or d>D;, i=0,1,2;

(31) b, <®; <P, A <AN<A, i=1,23.
The lower estimate for F is based on the elementary inequality
(32) O Dy®3 A1 Aoy > BT DS PTATATAT + OF Dy D ATAT AT
+ D PFATATAT + OBy PTATATAS
+ 7P PTATA; AT + DT DT DTATATAS
—5 & DT DFATATAS
which proof is similar to the proof of Lemma 13 of [1]. From (23) and (32)

we get

(33) F>Fi+-+Fs—5F,

where F; are the contributions arising from the consecutive terms from the
right-hand side of (32).

Consider, for example, F;. Using (28), (29) and changing the order of
summation we write it in the form

Fi= > Bildi)Baldy) Bs(ds) L(d, N),

di,ds,d3
where
(34) Bildy= D A (R)A(D),
kI%Bo , 1|P1
kl=d
(35) Bild) = D A1), i=23.
HEg. 5



From this point onwards we assume that
(36) mo<2mp, 2y < 2/23.

We take e sufficiently small and use (26), (30) and (36) to verify that the
functions f;(d) satisfy the requirements of our Proposition (with K7 = DyDy,
K, = K3 = DyD5). Hence we have

(37) Fi = No&oFi + O(P*(log P)~*)
where

;L B1(dy) Ba(ds) Bs(ds)
(38) Fl = dl%;dg 7. dod, R(d,N).

From (8), (34), (35) and (38) we get

%) Fi=HV",
where
)\i EOMNT (BN (K
(40) qE — Z o ( 1)kol§ lz) (k) RO ).
k1,ka,ks|Bo 1K2K3
+ + +
" vie ¥ (h)Afz(lf)A? ) 21, ).
111B1 ;5 12,13]B2 10203

From (37) and (39) an asymptotic formula for F; follows.
We proceed with F;, 2 <4 <7 in the same way and use (33) to find

(42) F > No&o(BH VT + HIV + 2H TV — 5HT VYY) + O(P*(log P)™%),

where
- + +
(43) Vf — Z )\1 (ll))EQZ(llQ))\Q (l3) R(l, N) ’
111B1 5 12,13 B2 15253
+ - +
111B1 5 12,13 B2 15253



We note that from (7) and (30) follows
(45) V&V, VY, < (logP)*2.

Consider H*. Obviously s, = log Dy/logzy — 00 as P — oc. Hence we
may expect that the Rosser functions Ay behave like the Mobius function.
Indeed, if we substitute (k1 )u(ks)pu(ks) for A (ki) A$ (k2)A§ (ks) and denote
the new sum by H, then we can find that

(46) HE = Ho + O(exp(—+/log P)).

A detailed proof of this asymptotic formula is available in Section 3.7 of [14].
Furthermore, it is easy to prove that

(47) H, = (loglog P)™?.
From (4), (42) and (45) — (47) we get
(48) F = NogoHo (Vi +2Vy = 2VF) + O(P(log P)™").

4.3 The estimation of G.
We write the sum G, defined by (22), in the form

(49) Q = Z (]_ - logp ) Z w(x) (131(132(133A1A2A3 s

21< 10g2’3 24,2424 2
15p<z3 ¢ +ri+z5+x3=N

21=0(p)

where ®@;, A; are specified by (24) and (25).
For any prime p € [z1, z3) consider the upper Rosser function A®) of order
D, /p, where D, is given by (26). Let

(50) Al — Z AP (d) .
d|(z1,%B1)
We have
(51) INP(d) <1, AP(d)=0 if u(d)=0 or d> Di/p
and also
(52) Ay < AP
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Using (31), (49) and (52) we find that

(53) G<G,

where

lo
(54 Gi= > (1_logf) Y w(x) @R e APASAS
21<p<z3 &% P+ai+ad+ai=N

z1=0(p)

From (28), (29), (50) and (54) after some rearrangements we obtain

gl — Z BT(dl) 52(d2) B?)(d?)) ‘C(di N) ’

dy,d2,d3
where
logp
55 “(d) = (1— ))\+k)\(”)l
(59) @= 3 (122 ) Mw A0
21<p<z3
E|%Bo , 1P
klp=d

and where f3;(d) , i = 2,3, are defined by (35).
From (30), (36) and (51) follows that we can apply our Proposition again
(Wlth Kl == D()Dl, K2 == Kg == D[]DQ) and we find

(56) G1 = No&oGo + O(P?(log P)’A),
where

_ B (dy)Ba(ds) B3(d3)
(57) G, = dl%;dg T, R(d, N).

From (5), (8), (35), (55) and (57) we get

(58) g2 = %+g3 3
where HT is defined by (40),
N 1
(59) G= Y Ui (p, )(1 _logp )V(p)
z21<p<z3 p log 23
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and where

(p) + +
(60) JCEEEDS A (ll)?zl(ZZQ)A2 (Is) ROLN).
11|%B1 ;5 12,13 |Be 1lal3

From (7), (30) and (51) we get
(61) V@) <« (log P)'2.

Furthermore, using (6), (11), (59) and (61) we find that

(62) Gz =Gs+0O(P "),
where
1 logp
= (1= (»)
(63) G, ; , ( o ) %

Finally, from (4), (46), (47), (53), (56), (58), (61) and (62) we obtain

(64) G < No&oHoGs + O(P2(log P)™)).

4.4 The lower bound for I' and the end of the proof.
We take into account (20), (48) and (64) to get

(65) I > NoboHoM + O(P*(log P)~™1)),
where
(66) M = V7 +2V; — 2Vt —0G, .

We shall find approximations for the expressions V*, V7, V; and V@), de-
fined, respectively, by (41), (43), (44) and (60).

Consider, for example, V*. Suppose that [; | PB; and Iy, I3 | PBo. Using
(12) we find that the condition (;,{;) > 1 implies (;,1;) > 2. From this fact
and (7) we easily obtain

(67) VT =Vt 4+ 0O((log P) '),
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where in V* the summation is restricted to [; such that (I1, 1) = (I1,13) =
(lz,lg) = 1. In this case R(l, N) = 1/)1(11,N)@Z)1(l2,N)@/)1(l3,N), where we
have defined (I, N) = Hmﬂ/)l (p, N). Using the fundamental property of
the Mobius function and changing the order of summation we find that

(68) Vi= > pu(ha)u(ha)p(hs)
h1,h2,h3| P2
AL ()A3 (12) A5 (1)
< 1115

Y11y, N)bi(l2, N)bi (I3, N) -
L[P1, 12,13 P2
11=0 ([hQ,h;’,D
1o=0 ([hl,h;’,D
1350 ([hl,th

If h; | P2 and h; > 1 then h; > 2,. So, after some standard calculations,
which we leave to the reader, we get

(69) Vvt =VT + O((log P)~'%),

where V¥ is the contribution ofﬁe terms with hy = hy = hy = 1. From (67),
(69) and from the definition of Y+ we obtain

(70) V=T (T;")? + O((log P)™),
where
+
(71) TE=) A"l(l)zbl(l,N), i=1,2.
bty

Similarly we find that

(72) Vi =T (T,)° + O((log P)™™™),
(73) Vo =T T, T, + O((log P)7'™),
(74) Vo = 70 (752 4+ O((log P)~'%),
where
(»)
(75) 70 =3 20y 0. )
131
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From (63), (66), (70) and (72) — (74) we get
(76) M = T;" M* + O((log P)~'"),

where

M =TT, + 2T T, — 2T, — 07,°Gs

and
1 |

(77) Gi= > —(1-22) T,

z21<p<z3 p 08 %3
We write M* in the form
(78) M =M TH + 2 M, T,
where
(79) M1 - 71_ - 29171—1— — 095 s Mz - 7;_ - 927;—1—

and where 6,605 > 0 are constants such that
(80) 0, +6,=1.

Suppose that F'(s) and f(s) are the functions of the linear sieve. We have

(81)  f(s)= 2e"s7'log(s—1) for 2<s<4;
) F 2e7s ! for 1<s<
(82) F(s)= 267371(1 + [ e Log(t — 1)dt> for  3<s<d.
Here v = 0.577... is the Euler constant.
Denote
N
(83) | (1—%), i=1,2.

20<p<z;

Using (6) and (11) we get

(84) N =< —=—°



From the theory of the linear sieve (see Iwaniec [8], [9]) follows that if the
conditions (10), (11), (26) and (27) hold and if p € [z1, 23) then the quantities
7.5 and T® | defined by (71) and (75), satisfy

(85) WM< TT<WM{F(s)+O((log P)7))},  i=1,2,

(86) T >N {f(si) + O((log P)")}, =12,
(87) T® < 9, {F(%) +O((tog )}

Consider the sum Gs, defined by (77). From (87) we get

(88) Gs < My {Gs + O((log P)~/*))},
where . 1 log Dy /
B 1. logp og L /p
g6 N z1§2% p (1 10g2’3) F( logzl ) ‘

It follows from (27) that the argument of the function F'(s) in the last formula
belongs to the segment [1, 3], so we can apply (82). Using Abel’s summation
formula and the Prime Number Theorem after some calculations we obtain

(89) Gs =2¢"k + O((log P)™"),

where

1 B
ay t—Oé31

Kk = k(aq, as, s1) :/ dt .

oyt St — oyt
From (27), (79), (81), (82), (85), (86), (83) and (89) we get
(90) M; > 26N {k; + O((log P) 1))}, i=1,2,

where
s1—1
K = 31’1< log(s; — 1) — 26, — 291/ t tlog(t —1) dt) -0k,
2
Ko = sgl(log(SQ -1) - 92) )
We choose

a; = 0.004764,  ap, =0.012346, a3 = 0.014291,
0=0.12, 0, =0.4405, 6, = 0.5595,
m = 0.019056, 1, = 0.03395.
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It is easy to see that all conditions (10), (27), (36), (80) are satisfied. More-
over, using numerical integration we can verify that in this case

(91) K1, kg > 0.

Using (84), (90) and (91) we find that M; > (loglog P) (log P)~" fori =1, 2.
Having in mind (76), (78), (84) and (85) we get M > (loglog P)? (log P) .
Now we apply (4), (47) and (65) and the estimate (14) follows.

We have chosen our constants in such a way as to minimize the number
max (042’1 , 071+ 0451). It remains to note that our choice gives

80 <ay' <81, 78<O'+az'<T9.

We take into account (18), (19) and Theorem 1 is proved.
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