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Abstract

The purpose of this paper is to present a characterization of certain
types of generalized weighted Peetre K-functionals by means of a modulus
of smoothness. This new modulus is based on the classical one taken on
a certain linear transform of the function. A new modulus of smoothness
which describes the best algebraic approximation is introduced.
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1 Introduction

In a number of approximation processes the error is estimated by means of an
appropriate K-functional. Generally it is of the form

(11> K(fvt) :K(f7t§X7Y7D) :inf{Hf_g||X+t”Dg||X : gEY},

where X is a Banach space, D is a differential operator of the form
(1.2)  Dg(z) = Z(pk(x)g(k)(a:), oreX, E=0,....r, ©,>0 a.e.
k=0

with a given r € Nand ¥ C D™ Y(X) = {g € X : Dg € X} (note that
D~1(X) C X) is a dense subspace of X. Given X, Y and D the quantity (1.1)
is considered for every f € X and t > 0.

We shall also use the notation (1.1) when Y\D~}(X) # (), assuming
If—gllx +tIDgllxy = 4+oc for g € Y\D7}(X). In such cases the infimum
in the definition of the K-functional is actually taken on Y N D~1(X).

As the class of functions f for which we can estimate the infimum in (1.1)
for any t € (0,1] is quite narrow (because Y is large), it is useful to have an
easier to calculate modulus of smoothness Q(f,t) equivalent to the K-functional



above, namely that there exists a constant C' > 0 independent of f and ¢ such
that
CTIQ(f.1) < K(f.1) < C(F, 1),

which we denote in short by K(f,t) ~ Q(f,t). (We shall denote by C constants
of this kind which may differ at each occurrence.) Our goal is to define such
a modulus of smoothness for a number of X, Y and D, where X is a space of
functions defined on a fixed finite or infinite interval [a, ] on the real line.

In the unweighted case, i.e. weights equal to 1, it is well known (see [14] and
the references cited there) that for Dg = D"g := ¢(") and X = L, = L,a,}b]
with the usual Ly-norm denoted by |||, for 1 < p < oo or X = C = Cla, ]
with the uniform norm denoted by |||, for p = oo, we have

K(fa tr; va W;, DT) ~ wr(f7 t)pa
where w,(f,t), are the classical moduli of smoothness defined by
(1.3) wr(fit)p = sup [|ALF)I,
0<h<t
and the finite difference with a fixed step h is given by

ko (=) () f ifow,z+r a
(1.4) Zf(x)_{Zk—O( DR () f(@+kh), if z, 247k € [a,b],

0, otherwise.

Two important solutions of the considered problem are presented so far for

weighted Peetre K-functionals (D = ¢" D" with a proper weight ¢, which inside
(a,b) is equivalent to 1)
(1.5) K(ft"5 Ly, ACTY 0" D7) = if{|If — gll, +t"lle gl = 9 € AT},
where ACf, = ACF (a,b) = {g : ,9,...,g%) € AC[c,d] Va<c<d< b}
and AC[e, d] is the set of the absolutely continuous functions on [, d].

On one hand Ditzian and Totik introduced in [5] the varying step moduli

1.6 WI(f ), = sup |1AT )l
(10) L0 = s 187,070l

where the centered finite difference with (varying) step ¢ is given by A} f(z) =
Ay f(x —r8/2). They generalized in [5] some earlier results of theirs (see [4]
and [20]) and proved for certain power and logarithmic-type weights ¢ (see [5,
Ch. 1, Sec. 1.2 and Ch. 5] about the conditions imposed on ¢) the equivalence

loc

(L.7) K(fit"; Ly, AC,. 0" D7)~ wi(f, ),

Finally, let us note that Ditzian-Totik moduli are useful in estimating the rate of
approximation by algebraic polynomials and some well known linear operators.

On the other hand, the second author introduced the following moduli of
smoothness

(1.8) 7 (f50)gp = llwr(fs 59 )l »



where the local moduli are given by
Y(t,)

—(t,2)
wr(f;239(t, @)oo = sup{| Ay f ()]« [h] < o(t,2)}
and 1 is a continuous function connected with ¢ in a certain way ([11], [12]).

Under the conditions to which the weight ¢ is subdued given in [12], Ivanov
proved

1/q
wr(fyz39(t x))g = ((2¢(t7$))_1/ |ALf (@) dh) ; 1< g < oo,

K(f,"; Ly, ACJ,. 1 0" D) ~ 1o (f39(8))p -
The power and logarithmic-type weights ¢ are covered. These moduli were

introduced in 1980 (see e.g. [11]) for characterizing the rate of convergence of
the best approximations by algebraic polynomials.

In the present paper we utilize an approach that differs from the above men-

tioned one for finding equivalent moduli to the weighted Peetre K-functionals
(1.9)
K(f,#7; Ly(w), ACzY, " D7) = it {[w(f — g)l|, +t" |lwg"g ™, + g€ AC[Z'),
where the weighted L, spaces are given by L,(w) = Ly(w)[a,b] = {f wf €
Lyla, b}, L,y(1) = L,. Note that (1.9) reduces to (1.5) when w = 1 and that
K-functionals of the form (1.9) with some weights w are proved to be equivalent
to proper modifications of (1.6) in [5, Ch. 6] (see also [6]). K-functionals of the
type (1.9) with ¢ = 1 and monotonicity requirements on the bounded weight w
near the end-points are also characterized in [16]. The present approach covers
more cases than those in [5, Ch. 6] and [6] (see Remark 5.2).

The idea consists of two steps. The first step is to study conditions on the
triples (X1, Y1, D1) and (Xa,Ya, Do) under which one can find a linear operator
A : X; — X, such that

(110) K(f7t7X17}/1uD1)NK(Af7t7X27}/2aD2)

The second step is to choose (Xa,Ys, D3) in (1.10) in such way that the K-
functional has a known equivalent modulus Q(F,t), i.e.

(111) K(F,t;Xg,YQ,Dg) ~ Q(F,t)
As a consequence of (1.10) and (1.11), one gets
(1.12) K(f,t;X1,Y1,D1) ~ Q(Af, ).

In order to make (1.12) effective for computations one has to require some
additional properties of A as explicitness, simple form, easy to calculate for a
given f, etc. In our opinion the operators constructed in this article possess
these properties.

While in the second step one simply considers the known cases of equivalence
between K-functionals and moduli, the first step needs some considerations.



Let X; and X5 be Banach functional spaces and let D7 and Ds be differential
operators. (In general, we do not require the functions in X; to be defined on
the same interval as the functions in Xs.)

Definition 1.1. We say that the linear operator .4 maps continuously
(X1,Y1,Dq) onto (X2,Ys, Do) and write A : (X1,Y1, Dq) — (X2, Y3, Dy) if and
only if A: X; — X, is invertible and together with its inverse A~! : Xy — X
satisfy the conditions

() lASfllx, < Cllfllx, for any f € Xy;

(b) [ID2Aflx, < CID1flly, for any f €Y1 N D7 (Xy);

(c) ||,,4*1FHX1 < C||F|x, for any F € Xa;
(@) [[D1ATIF| ¢, < C|Da2F||y, for any F € Yo N Dyt (X2);
(e) A(Yo N DY (X)) =Yan Dy (Xy).

In Section 2 we show that A : (X1,Y7,D;) — (Xa2,Y2, Ds) is a sufficient
condition for (1.10). Note also that the dimensions of the null spaces of the K-
functionals in (1.10) have to be equal and that A is an one-to-one correspondence
between the null spaces.

There are several reasons for using triples (X, Y, D) instead of the usual for
interpolation theory pairs (X,Y’). Among them are:

e in several problems in approximation theory it is natural to vary Y, keep-
ing fixed the semi-norm ||D(-)||x (see e.g. [13]);

e the semi-norm in Y is determined only by X and D and hence we introduce
less definitions and notations for Y’s;

e as demonstrated in Section 5 the weights in the norm of X and in the dif-
ferential operator D play different role in establishing relations like (1.10).

Having in mind Definition 1.1 and Proposition 2.1 below, we introduce new
moduli by

Definition 1.2. For given (X,Y, D) we set for every f € X and t > 0
(1.13) Qf,t) =Q(f,, X,Y, D) := w,.(Af, 1)y,
where A is an operator such that A : (X,Y, D)~ (L,, W;,D").

Note that € in (1.13) also depends on the choice of A but the dependence
is not essential — varying A we get equivalent moduli.
Obviously Q(f,t) inherits all properties of w,(F,t), as (f,g € X):

o Qf +g,t) <Qf, 1) + Qg, t);
e QN[ t) = \Q(f,t), NeR;



o Q(f,t) <O fllx;
o Q(f,At) =CA"Q(f,t), A>0;
e Marchaud inequality, etc.

The idea of using operators like A is not new. Several examples of its im-
plementation are given in [3, Ch. 6], but it can be traced back even before
the invention of the K-functional. When comparing the best approximations
by trigonometric polynomials and the best approximations by algebraic poly-
nomials, several mathematicians used the mapping (Af)(y) = f(cosy) in order
to establish the so-called “effect of the end-points”. It is well known that this
mapping solves the following problem in the case r = 1 and p = oo.

Problem 1.1. Givenr € N and 1 < p < co. Find an operator A : L,[—1,1] —
L,[0, 7] such that for every t >0 and f € L,[—1,1] we have

mf{|f=gllp+t 1079l - g € ACH '} ~ it {|Af =G+ |Gl - G € Wy},
where p(x) = (1 — 22)1/2.

In the terms of Definition 1.1, we have A : (C, ACj,., 9D) — (C,WL,D)
because of (Af) (arccosz) = —(1 — 22)Y/2f’(z). But this approach has also
known difficulties when p < co or r > 2:

i) For p < co we have an additional weight:

"l AD )P dy _ 1 o) )P de ’%;
U -/

ii) For r > 2 the r-th derivative of Af contains more than one terms. For
example, for r = 2 we have

(Af)"(y) = sin® yf" (cosy) — cosy ' (cos y),
(Af)"(arccosx) = (1 — z?) f"(x) — xf'(z).

Maybe these difficulties caused the abandonment of the idea and the inven-
tion of the moduli of Ivanov and of Ditzian and Totik. In Sections 3 and 4 we
show that one can overcome both listed difficulties with proper definitions of
the operators A. In fact, we introduce in these sections commutative groups of
operators depending on a real parameter, which have several additional proper-
ties.

In Section 5 we show that the consecutive application of several of the op-
erators from Sections 3 and 4 leads to the construction of operators A such
that (1.10) holds when (X;,Y;,D;) = (Ly(w;),AC}, .t ¢5D"), j = 1,2, for
a variety of weights w; and ¢; (see e.g. Theorem 5.3) and, in particular,
K(Af,t"; Ly, W, , D") are equivalent to K-functionals (1.9) (see e.g. Corollary
5.2). In particular, a solution of Problem 1.1 with more general ¢ is given in
Corollary 5.3. Several possible generalizations are given in Section 6. Examples
of operators A are shown in Section 7, while Section 8 contains applications



to some areas of the approximation theory as best polynomial approximations,
Bernstein, Kantorovich, Durrmeyer and Szasz-Mirakjan operators.

Finally, let us mention that this investigation was motivated by the results
of the first author in [7].

2 Preliminaries

The next statement is a standard relation connecting linear operators and K-
functionals (see e.g. [3, Ch. 6, (1.14)]).

Proposition 2.1. Let the linear operator A map continuously (X1,Y1, D1) onto
(X2,Y2,Ds). Then for every f € Xy and t > 0 we have

K(f,t;Xl,Yl,Dl) ~ K(Af7t5X2aY2aD2)

Proof. For g € Y1 we set G = Ag. Then G € Y3 in view of Definition 1.1 (e).
Using (a) and (b) of the same definition we get

K(Af,t; X2,Y3, Do) = inf{||Af — Gl|x, + t|D2G||x, : G € Ya}
:inf{HA(f—g)HX2 +t||D2A9HX2 g eYl}
< Cinf{||f —glx, +tlIDrglx, : g€Yi}
= CK(f,t; X1,Y1,Dy).

The inequality
K(fvt;XhYl?Dl) S CK(AfataX27Y23D2)
is verified in the same way using the properties of A~1. O
We shall use the following generalization of Hardy’s inequalities (see [10, p.
245]) given in [18].
Proposition 2.2. Suppose U, V are non-negative measurable functions on
(0,00), 1 < p < oo andyp is the conjugate exponent of p, i.e. 1/p+1/p’ =1 with

the usual modification for either p = 1 or p = co. Then for every measurable
function f on (0,00) we have

e ([Te [ roaf ) <o [T vwmepa)’

if and only if

(2.2) sup (/:o U(z)” dx) ' </0f Vie) ™" dm) " <.

=



Also

e ([Tow [Crwaf ) ze [[w@rwras)’

if and only if

(2.4) 21;;0)(/05(](1;)%) (/ Vi de) < .

From Proposition 2.2 we get

-

Corollary 2.1. Let ¢ <n and let F be a measurable function on [¢,n].
a) If1<p<oo,3>0,y<Borp=1,6=0,v<0 then

Na-ot [ Foyayf de %gc nl(a:—()”“*%p(x)lpdx%
(] f; el ) <c(f )

b)]flgpgoo,ﬂgfy,’y>0orp:oo,ﬁ<0,'y:0then

([la-ar [Trwaf ‘”) o[-0 ira >de);.

Throughout the paper we shall use the following notations. For ¢ € R set
Xc(2) = |z—c|. Forn € NU{0} set II,, to be the set of all algebraic polynomials of
degree at most n. D = dd means first derivative and D" means r-th derivative.
We often do not indicate the dependence of the objects on the fixed r € N, which
always stays for the power of the leading term of the differential operator.

All constants denoted by C can be explicitly evaluated using algebraic ex-

pressions and the constants in the Hardy-type inequalities (which are known).

3 Operators that change the weight in both
terms of the K-functional

Let r € N be fixed. For p € R we define the operator A(p) : L1 j0c(0,00) —
Ll,loc(oa OO) by

(3.1) (Alp)f)(z) =2’ f(z +Zark

where

(3.2) wnle) = [Ty gy, k=12
and

_1\k r— r—1
(3.3) oznk(p):(l)!(k_l) H(p+7“—k—u), k=1,2,...,7

v=0



Obviously, operators of type (3.1), (3.2) preserve the smoothness properties
of the functions on intervals [a,b] C (0, c0).
We shall use the combinatorial identity for M, N,P € NU{0},M < N

C o o (A ]
Lemma 3.1. Fors—=1,2,...,r we have
(35) ;Har,mp) ~1r(0) Ew ).

Proof. Both sides of (3.5) are polynomials in p of degree r. Thus, (3.5) will
be proved if we show that both sides take one and the same values for p = i,
i=0,1,...,r. Wehave [[/_{(i+r—k—v)=0for 0<i<kand [[/_5(i+7r—
k—v) = (ia'i;)k!)! for k < i < r. Thus, both sides of (3.5) are 0 for 0 < ¢ < s. For
s <i<rusing (3.3) and (3.4) with K =k—s,P=r—s,M=r,N=r+i—s
we get

k1) = (DRt — k)
2 = k(D) = 2 (k— 8)l(r — k)i — k)!

k=s k=s

R (D)
- () = () e-»

v=0

This proves the lemma. O

Lemma 3.2. Let f € ACZTOZI(O,OO). Then for s = 1,2,...,7 and z € (0, 00)
we have

|
—

S

(3.6)(A(p) /)~ (2)

(]

(TN - e

J v=0

<.
o

s

(k-
(k—

S

—

)! o1
Tar s (p)a™ ().

)!

Proof. We proceed by induction. For s =1 (3.6) reduces to (3.1). Let (3.6) be
true for some s < r. Using that (z 75 1p(x)) = 2P~ 5 f(z) + (k — s)x*¢Yr(x)

+

»



and Lemma 3.1 we get from (3.6)
(A(P)f)(s)( )

_ Z PV o0 {0 e e 4 )

v=0

<

s O (1) + (6= )~ (o)}

+

k=s

S (1) () e

v=0

|
(]

<

+
- 1

(e )

Eod
I
@

+1
j—1

(1) <T e 1) h(p — )2’ e (@)

J v=0

1>

k=s+1

<
Il

M%(P)ﬂ”wk(m).

This proves the lemma. O

Theorem 3.1. Letr € N and p € R. Then for every f € AC!*(0,00) we have

loc

3.7) (A(p) /) (x) =" f (@) ae
and
(3.8)
s i s—i—1 4
0 =30 (1) T -0, s=12.m
Proof. Lemma 3.2 with s = r gives
r—1 j—1
AN @) = S =1)7 (o= a0 (a)
j=0 v=0
r—1 T
+ o [Jo-o [ vrrswa
v=0 1

Differentiating this equality we get (3.7). The relation (3.8) follows from
Lemma 3.2 with ¢ = s — j and & = 1 because of ¢;(1) = 0. This proves
the theorem. 0

Lemma 3.3. For 0 <m < n we have

(3.9) zm; (T’;_*’j) (;‘) mﬁ_l(x — ) ﬁ(y )= (Z) "ﬁl(m +y—u).

j= v=0 v=0 v=0



Proof. Both sides of (3.9) are polynomials in = and y of total degree m. Thus,
(3.9) will be proved if we show that both sides take one and the same values for
x=0,0=0,1,....,y=k k=0,1,..., k+ ¢ < m. Both sides of (3.9) are 0 for
0<k+/¢<m. For k+ ¢ =m only the term for j = k in the left-hand side is
not 0. Hence

m , m—j—1 i1

n—73\/(n n—=~k\/(n n
2 (- 5) ) 1L e I = (0,5 ()i = (7)o
7=0 v=0 v=0
This proves the lemma. O
Theorem 3.2. Letr € N, p,oc € R. Then A(p)A(c) = A(p+ o).
Proof. Using Theorem 3.1 for every f € ACT (0, 00) we have

loc

(A(p)A(0) /) (2) = 2 (A(0) ) (z) = 2”77 ) () = (A(p + 0) /) (2)

and for s =1,2,...,r

(AP A(@)/)70(1) = 3 (=1 (T - Z) ﬁ (0 — ) (A() )=V (1)

i=1 s v=0

s N S—t—1 % i—k—1

= e () T -0 o0 (1) 11 -
s s . s—i—1 i—k—1

- _1)3_% T (p—v (a—y)] FO=D (1)
Yot () () Me-o 1T <
s r—k s—k—1

= S (023) T o =00 = e+ ne.
k=1 v=0

where we have used Lemma 3.3 with x = p, y =0, m=s—k, n=r—k%k
and j = i — k. Now Taylor formula gives A(p)A(o)f = A(p + o)f for any
f € AC]1(0,00). We complete the proof using the boundedness of the linear

operators A(p)A(o) and A(p+o) and the density of W [a,b] in Ly [a, b] for every
0<a<b<oco. O

Corollary 3.1. {A(p)},er is a commutative group of operators with A(0) as
the identity element. In particular, A(p)~' = A(—p).

From Theorem 3.1 and Corollary 3.1 we get

Corollary 3.2. Let r € N and p € R. Then A(p)(Il,—1) = II,_1 and
A(p)(ACT"1Y = ACEY for any k € N.

loc loc

In the next statement we collect some additional combinatorial properties
of the coeflicients o (p) which will be used later.

10



Proposition 3.1. Let r € N and o,p € R. For a, ,(p) given in (3.3) we have

- ark(p) .
3.10 k) =12,
( ) Zp—k—l—i ! "
k=1
(3.11) ark(p) — ET M:ark(p—i—a), k=1,2,....m7,
’ = Pkt ’

where we define by continuity

O‘T,k(p)

. — )z —1)!
" _ (71)k+171 (T 7’)'(7’ 1) ik=1.2
P — 1

(3.12) Rk TR

p=k—i

Proof. To prove the first identity we just notice that for fi(z) = z*~!, i =
1,2,...,r,and p—k+1i #0, (3.1), (3.2) and (3.7) imply

(A()f) () = 2ot + 37 kP prict pnty ey

Hence we get (3.10) for an irrational p. But as the left-hand side of (3.10) is an
algebraic polynomial in p, we get it for any p by continuity.
Using Theorem 3.2 and applying twice (3.1), (3.2) and (3.3) we get

(A(p +0) f)(x) = (A(p)A(o) f) ()
= xp+af + Z A, z [ Z par)l;g(i)i} zPtit /1T y_i+0f(y) dy

k=1,k—i#p
)

r

+kz_:[ar,k(p) - > ar;(f ,?Ti(p)}wk‘l/l y FP f(y) dy

i=1,k—i#p

= 277 (a) +Za,, [1+Zp“”;m} ot [y ) dy

a ari(0)ark(p ph1 —k+pto
+ {ar /
; k ; pyy v fy)dy

_ o _ ar,i(a)aT;k(p) k— ‘ —k o
=750+ 3 [ara) ;ip_ ikt [y ) dy

where we have applied (3.10) in the last equality. If we let f(z) =1 in the last
relation and in (3.1) for A(p+ o) we get (3.11) for an irrational p+ ¢ and then
by continuity for any p,o € R. O

Remark 3.1. In the proof of Proposition 3.1 we have actually shown that
(3.10), (3.11) are equivalent to Theorem 3.2.

11



Now, we give some boundedness properties of A(p).

Proposition 3.2. Letr e N, 1 <p < oo, v > —1/p, p € R. Then for every
f € Ly,(xb™)[0,b] we have

IxoAlp) f o

p,[0,b] < C”XS |P7[07b]'

Also for every T € R, measurable and non-negative ¢ and g € ACI’"O;1 we have

132" (AP)9) " 10,61 = I1X6 2" 9. j0.01-

Proof. The second statement follows immediately from (3.7). From Corollary
2.1 we get |xJUkll, < ClIxGT" fll, for k =1,2,...,r. Now the first statement
follows from (3.1). O

From Proposition 3.2 applied for A(p) and A(—p), Corollary 3.2 and Propo-
sition 2.1 we get

Proposition 3.3. Let ¢ be a non-negative weight on [0,b], r € N, 1 < p < oo,
pER, v>—1/pand v+ p>—1/p. Then we have

A(p) : (Ly(X§™), ACT 10" D) = (Ly(x3), ACT Y, 0" D7).

loc

4 Operators that change the weight in the sec-
ond term of the K-functional

Let r € N be fixed. For ¢ # 0 we define the operator B(c) : Li j0c(0,00) —
Ll,loc(oa OO) by

(4.1) (B(o)f)(@) = f(27) + Y Brp(o)vu(@),
k=1

where

(4.2) o) =t [ SRy dy, k=12,

and

_1\r—k r— r—1
(4.3) Bra(0) =0, Bri(o) = ((7‘1—)2)'(k - ;) H(k;—l—ia), k=2.3,...,r

Obviously, operators of type (4.1), (4.2) preserve the smoothness properties
of the functions on intervals [a,b] C (0, 00).

In this section we apply an alternative method for studying the properties
of the operator than the one in the previous section.

12



Theorem 4.1. Letr € N and o € R\{0}. Then for every f € AC]*(0,00) we
have

(4.4) (B(o)f)"(z) = o"2" @V (27)  ae.
In order to prove Theorem 4.1 we need two auxiliary statements.

Lemma 4.1. For o # 0 there are unique numbers By = Bri(0), k=1,.
such that B(c) defined in (4.1), (4.2) satisfies (4.4) for any f € AC] 1(O oo)

loc

Moreover, ;1 (c) are continuous functions of o € R\{0} and 5,1 = 0.

Proof. Tt is enough to show that there exist unique numbers 3, ; = 3. ;(0), i =
1,...,r, which are continuous functions of ¢ # 0, such that
(4.5) (B(o)f)(x) = f(7) +)_ B Vi)
i=1
satisfies (4.4), where
1 v L (=1 -1
U, — _ 1—1, —1 fod dy = i
)= gy [ e =30 (D)

fori=1,2,.... Then

Prie = ; <(i 1)1)].@ (11 _ 11) Pr

We use the following formula for the k-th derivative (k > 1) of a composition
of functions

k ; jfl
(4.6) (foB)® :Zf Z ( ) gI-HRgt,
j=1

1=0

Using the above formula we have

v (@) = (¥ @) (‘Zf(a:"))(“"_”ZZ_:(T;Z>( )R (f @)™
k=0
— () )
— (T —i T (e T O B a f(])(z”)]_l_ (7 LoD\ (k) yol
+;< 1] > (7))
r—i k j—1 . k—1
_ r—i—k+l1 r—=1 J (T_k_l)! _ —nlxiT )
DRI (k )(2) Sy Lot =0 = nia g9
_’_(_1)7“—1((::;))' —rf ZGTLJ 2% Tf(])( )
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where we have put a,;o(c) = (—=1)"" ((::11)),' and

trislo) = 5 Sy (0 sy ’ﬁw )]

k=j 1=0

for j=1,...,r —i. Hence we get from (4.5) and (4.6)

(B(o) /) (z) = (F(27)" + Zﬂ;,iwi” (x)

@) (z A ,
Zf S0 () ot -0 -
=0 n=0

+ Z B Z ari (o) 9 (2)
i—1 j=0

— bT,T(J)xr(o—l)Jc(r) (LUU)

r—1 ,7—j

+Z<Zarz,] ﬁrz+bT]( ))xaj—rf(j)(xa),

where we have used the notation

jz '(4) TG -1 —nl

n=0

Next we observe that b, ,(c) = rlo”/r! = ¢” as the sum above with m = j =r
turns into the r-th finite difference with step 1 of the r-th degree algebraic poly-
nomial ox(ox —1)--- (ox —r+1) at the point 0. Further, we have a,,_; ;(0) =
bj (o) =07 #0for j =0,...,r—1 and then 3.,, i =1,...,r, are the unique
solution of the triangular linear system

71"

r—j
> arij(0)B; = ~bpj(0), j=0,...,r =1L
=1

Moreover, Crammer’s formulae imply that the solution of the linear system
above consists of rational functions of o, as a,;;(c), i = 1,...,7r — 4, j =
0,...,r—1land b, (o), j=0,...,7—1 are polynomials of ¢ and the determinant
of the system is o”("=1/2_ Thus, 57’071- and hence 3, ; exist, they are unique and
they are continuous functions of o # 0.

Finally, in order to prove §,1 = 0 we let in (4.1) f = 1. Then, in view of (4.4)
and (4.2), (4.1) implies 5,191 is an algebraic polynomial of degree r — 1. But
1(z) = logx. Hence B,1(c) = 0. This completes the proof of the lemma. O
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Lemma 4.2. Let a; # ap and b; # by fori#k,i,k=1,...,n. Ifa; +b; #0
fori,j=1,...,n then the linear system of equations

"oz
J
= 1=1,...,n,
jz:; a; + b
has a unique solution given by
n n
;= Ha,er H (b; — b;) ji=1,...,n.
i=1 i=1,i7#j

Proof. Set

1 n
A(a, - an:by, . by) = det .
(a1 an; b1 ) = de (ai+bj>m._1

The following relation, known as Cauchy theorem, holds (see for example [19,
p. 327])

(4.7) A(ar,...,an;b1,...,by) = H [(ar — a;)(by, — b;)] H a; +bg)”

1<i<k<n i,k=1

(4.7) shows that the system has a unique solution. The proof of (4.7) is by
induction. In order to obtain a recursive relation for the determinants one
subtracts the last row from the previous ones, takes the common multipliers
out of the determinant and repeat the same with the last column. Crammer’s
formulae (with similar computations for the numerators) yield that the solution

xj, 7 =1,...,n of the system is given by
n—1 n
vj=[]lan—a) ] (an+00)7(=1)""
i=1 k=1,k#j

A(al, .. .,(Lnfl;bl, .. .,bjfl,bj+1, .. ,bn)
Alar, ..., an;b1, ..., by) ’

O

which proves the lemma in view of (4.7).

Proof of Theorem 4.1. Let 3, 1, be the coefficients from Lemma 4.1. Set f;(x) =
2=t for i = 2,3,...,7. Then (4.1), (4.2) for (i — 1)o —k + 1 # 0 and (4.4)

implies

o’(z 1) k—1

_ 0o(i—1) X
(B(U)fl)( =z +Zﬂrk_1—_k_'_1 GHT_l.
Hence for irrational o we have
(4.8) Z B’”’“ =1, i=23,...,m
k—1-(i—1)o ’ ’
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From Lemma 4.2 with j =k —1, n=r—1, a; = —(i — 1)o, b; = j we get
that B, x(0), k =2,...,r, from (4.3) are the solution of (4.8). This proves the
theorem for irrational ¢ in view of the uniqueness in Lemma 4.1 and Lemma
4.2. For rational o # 0 the statement follows from the continuous dependance
of B, x(0) on o in (4.3) and Lemma 4.1. O

Remark 4.1. In the proof we have established that 5, (o), k =2,...,r, from
(4.3) satisfy (4.8) for every o # 0 if we understand that the ratio in (4.8) is
defined by continuity when o = (k —1)/(i — 1) for some i,k = 2,3,...,r, i.e.

L(O’) ki (r—alG— 2)'(k — 1)r—2
k—1—(i—1)o =R — 2= 1) 2

(4.9) =(-1)

o=(k—1)/(i—1)

Theorem 4.2. Letr € N, p,o € R\{0}. Then B(o)B(p) = B(op).

Proof. Applying twice (4.1) we have for every f € L1 joc(0, 00)
(B(o)B(p)f)(x)
— BENE)+ Y ferl@)a ™ [y BN dy
k=2 1

r

= 1@+ Y Al D [ ) dy

=2

r z r y°
+Zﬂnk(0)wk’1/ y " <f(y"p)+25r,z(p)y"(”)/ ulf(up)dU) dy
k=2 ! 1=2 1
= 1)+ 3 o) [0 )
1=2 1

1

3 0Bk (0) () [ ( [ e e du) dy.
1

k=2 1=2 1

+Zﬁr,k(0)w’“‘1/ y " f(y7") dy
k=2

Ifo(l—1)=k—1then 3, x(0c) =0and if 0(l — 1) # k — 1 then

xk—l/ ya(l—l)—k (/ u—a(l—l)—lf u’P du) dy _
1 1 ) dT—D— -1
X (m"(ll)/ u*“(lfl)*lf(u”p)dukafl/ u*kf(u”p) du).

1 1
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- Bra(p)Bri(o)
o(l-1) ¢ —o(l-1)-1 op
x /1 u fw?)du

k—17#0(l-1)
y " Bu@Bal) N s [T ko
+kz_2(ﬁr,k(0')_0' lz_: U(l _kl)_(llﬂ_l)>xk 1/1 u kf(u )du

=2
o(i—1)#k—1

Adding and subtracting in the above the terms for k = o(l — 1) + 1 with the
convention (4.9) and applying (4.8) afterwards, we get for every f € L1 0.(0, 00)

(4.10)
(B(o)B(p)f)(x)

= f(z°P) + Z(ﬂr,k - UZ Zﬁr_kl )Pri(p )1)>xk1 /1 u* f(u°?) du.
k=2 1

On the other hand for any f € AC; 1(0,00) (4.4) implies

loc

(B(0)B(p) /)" (x) = 02"~V (B(p) /) (27) = 072"~V a0 f ) (g7)
= (op)"2" 7P~V [0 (27%) = (B(op) /)" ().
Hence B(o)B(p)f — B(op)f € II,_1. Thus, (4.10) and (4.1) imply

r

52 (rsl0) = X2 P — st )t [

k=2

is an algebraic polynomial of degree at most 7 — 1 for any f € ACT (0, 00). If

loc

we put f(z) = 2"/7? exp(x/°?), f € AC]1(0,00), in the above relation and

loc
use that the system of functions {z*}; U {z*~1 [ u"~Fe" du}y_, is linearly

independent we get

(4.11) Brx (o —O’Z lﬁr—kl ﬁrl( ) ):ﬁr’k(op), k=2,...,m.

Finally, using (4.11) in (4.10) and comparing with (4.1), we prove the theorem.
O

As an immediate corollary of the last theorem, we get the following important
property of the linear operators B(o).
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Corollary 4.1. {B(0)}scr\j0} and {B(0)}se(0,00) are commutative groups of
operators with B(1) as the identity element. In particular B(o)~ = B(o™1).

From Theorem 4.1 and Corollary 4.1 we get

Corollary 4.2. Let r € N and 0 # 0. Then B(o)(Il,—1) = II,_; and
B(o)(ACF 1 = ACF~Y for any k € N.

loc loc
We can change the order of applying the operators A and B as follows.
Proposition 4.1. Letr € N, p € R and 0 # 0. Then B(o)A(p) = A(po)B(o).
Proof. As in the proof of Theorem 4.2 using (3.10), we get for any
f S Ll,loc(07 OO)

(4.12)  (A(po)B(0)f)(x) = =7 f(27)

T

" Z (O[T . pO’ Z ar}l)co(.pf)k/@:,—zia) )xkfl /1 ypafkf(yo) dy.

i=2
Similarly, using (4.8), we get
(4.13)
(B A )w) =07 1)+ rana(p) (132 24T [Tty ay

+ Z(ﬁr,k + OZ koil ir(’f(a)l))xk_l / v  f(y7) dy.
k=2 1

For any f € AC}*(0,00) (3.7) and (4.4) imply

loc

(A(po)B(0) /) (@) = 2”7 (B(0) /)" () = 0”27+~ 1 {1 (27)
= o"a" TV (A(p) ) (27) = (B(0) A(p) /) ().

Hence A(po)B(o)f —B(o)A(p)f € II,_1. Thus, as in the proof of Theorem 4.2,
if we put f(x) = 2~/ exp(2/?) then (4.12) and (4.13) imply

G o) -3 IO oy zﬁ;;)

and for k =2,3,...,r

. ar,k(pg)ﬁr,i( ) (07 AV4 ﬂrk )
(4.15) Ozr,k(PU)*i:2 Ry e Z—k ol D)

Now, replacing (4.14) and (4.15) in (4.12) and (4.13) we complete the proof. [

Now, we give some boundedness properties of B(o).
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Proposition 4.2. Letr € N, 1 <p < oo,y > —-1—1/p, 0 > 0. Then with
A=1—1/o for every f € Lp(ng’\(wl/p))[o, b7] we have

-
X3 B(@) fllp 0. < ClIxg 2 L 10.001-

Also for every T € R and g € AC" ' we have

loc

T T r— T—A(T+1 T T
X3 (B(@)9) ™ lp 0.6 = "2 Ixg TP 10.00)-

Proof. The second statement follows immediately from (4.4). From Corollary
2.1 we get [xquell, < Clxg TS|, for v+ k=1 > —1/p k=2,...r.

Now the first statement follows from (4.1) and (4.3). O

From Proposition 4.2 applied for B(o), 7 =~ and for B(1/o), 7 =v— (v +
1/p)(1 —1/0), Corollary 4.2 and Proposition 2.1 we get

Proposition 4.3. Letr € N, 1 <p < o0, 0 >0,7>—-1—-1/p and v >
—o —1/p. Then with A\=1—1/c we have

B(o) : (Ly(x3X0TP), ACT QD7) = (Lp(xQ), ACL, D).

loc loc

5 Compositions of operators

In this section we combine the results from the previous two sections and con-
struct operators acting on spaces of functions defined on a given finite interval
[a, b].

First, we observe that one can replace the point 1 in the definitions of ¢ in
(3.2) and (4.2) by any other point ¢ inside (0, oo) without affecting the properties
of operators A and B. Indeed, such a change adds r — 1-st degree polynomials
to A(p)f and B(o)f and hence Theorem 3.1 and Theorem 4.1 remain true. On
the other hand the group properties are also valid because they depend only on
combinatorial identities (one only has to replace (3.8) with (3.6) for x = &).

Second, Proposition 4.2 shows that it is convenient (but not necessary) to
work with changes of the variable that keep unchanged the domain of the func-
tions.

Definition 5.1. Let » € N. For a given finite interval [a,b] let s be one of the
points a or b, let e be the other point and let £ € [a,b], £ # s be fixed. For
every function f which is integrable on any [c,d] C [a,b], ¢ # s # d, and every
x € [a,b] we set

(5.1) (s, cs)) = (22 sio)

€—S

1 — r—s\*t [ y—s —kte
+e_skz_:1ar,k(p)<e_s> /§<6_8> f(y)dy,
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where a,. ;(p) are given in (3.3), p € R, and

(5.2) (B(o;s,e;6)f)(x) = f(5+ (e - s)(i_ 8)0)
(i) () deremat=) )

where G, (o) are given in (4.3), 0 > 0.

Thus, the operators in (5.1) and (5.2) are designed to treat singularities of
the weights at the point s (which is not necessarily the left end of the interval)
starting the integration from any point £ # s. For s = 0,e > 1,£ = 1 operators
A(p; s,e;€) and B(o; s, e;€) reduce to A(p) and B(o) from Sections 3 and 4. If,
for example, we would like to treat a singularity at 1 for a function defined in
[0,1] then for a fixed £ € (0,1) (5.1) and (5.2) become

(Al 1,0:))(x) = (1 — 1) f(x Zark (1 — 2t /5 (1) p(y)dy,
(B(o:1,0:6)f)(x)
—f0— (-2 Zm (1) 1/5w<1—y>’“f<1—<1—y>0>dy.

The main algebraic properties of A and B are given by

Theorem 5.1. Letr € N, p,o € R. Then:
a) for every f € AC] . 1(a b) we have

loc

(A(p; 5,e:6) ) (x) = (:) @) e

b) Alp; s,e;8)A(0s s, €;:8) = Alp + 055, €5€).

Theorem 5.2. Letr € N, 0,p > 0. Then:
a) for every f € AC; 1(a b) we have

loc

(B(ois.c50) ) = (22 S)T(U_Ufm (s =9 (2= ))

e—Ss e—s

b) B(p;s, e;€)B(oss,e;§) = B(po s, €;€).
From Theorem 5.1 and Theorem 5.2 we get

Corollary 5.1. Letr €N, p e R and o > 0. Then
Alp;s,e; &) (1) =T,—1;  A(p;s,e:6)(ACE") = ACE,", Yk €N;

loc loc >

B(o;s,e;&),1) =,_1;  B(o;s,e;€)(ACE ) = ACE Y, VkeN.

loc
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In addition to the group properties from Sections 3 and 4 we observe that
operators (5.1) commute in the following way.

Proposition 5.1. Letr € N, p,oc € R and £ € (a,b). Then
A(p; a,b;§) Ao b, a5 §) = Ao b, a5 §) A(p; a, b; €).

Proof. For every f € ACT '(a,b) applying twice Theorem 5.1 a) we get

loc

(Al ) = (72 ) (12) 10,

—a b—a
Hence

(5:3)  (Alpa,b;)A(03,0:6) 1) (@) = (A(03b,a;€) Ap; a,b:€) ) ().
Set v[F,&] = (F(€&), F'(€),..., F"=(¢)T. Then Lemma 3.2 and (5.1) give

v[A(p;a,b;€) f, €] = M(p;a,b;§)v[f, €],
where M (p;a,b;&) = (pri(p;a,b;€))} =15 pri(p;a,b;€) = 0 for k < [ and

k—1—-1

uk,z(p;a,b;£)=(—1)kl(,:_é) Vl;[ (p—l/)<§_z)p_k+l(b—a)”“, 1<k

Hence

v[A(p;a,b;)A(0;b,a;€) f,&] = M(p;a,b;§)M(0; b, a; )v(f, ]

From the definition of j;; we observe that:

1) frin(p3a,058) pin (03 0,0;6) =0 if n < jori <mn;

i) pin(p;a,0;8)pn(030,a;8) = piivj—n(03b,a;8) ivj—nj(p;a,b;€) if j <
n <71.
Hence

D tin (30,0 )i (03 6,0:) =D ppin (05 b, 05 €) i, (5 0, 5 €)

n=1 n=1
and
M(p;a,b;§)M(03b,a;8) = M(o;b,a; )M (p; a, b; §).

Therefore

v[A(p; a,b;§) A(o; b, a;§) f,§] = v[A(o3 b, a;§) A(p; a, b;€) f, &].

Thus, for every f € AC{;l(a,b) applying (5.3) and the above equality in
the Taylor formula we get A(p;a,b;&)A(o;b,a;8)f = A(o;b,a;€)A(p;a,b;€)f.
Now we complete the proof using the boundedness of the linear operators
A(p;a,b;€)A(o;b,a;€) and A(o;b,a;€)A(p;a,b;€) and the density of W[, d|
in Ly[ec,d] for any a < ¢ < d < b. O
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Remark 5.1. Analogues of Proposition 5.1 with operators B cannot be true
because we have for smooth f

(B(p:a,b:€)B(o;b,a;€) 1) (@) # (B(o3b,0:€) B(p3 0,b:6) ) ()

and
(A(p;a,b;€)B(0;b,a;€) f) ) (x) # (Blos b, a;€) A(p; a, b;€) ) ().

In order to combine several operators of type (5.1) and (5.2) we have to prove
their boundedness in weighted L, spaces with more general weights than those
in Proposition 3.2 and Proposition 4.2. In order to describe some conditions on
the weight powers we give

Definition 5.2. T';(p) = (—1/p,+o0) for 1 < p < oo and '} (00) = [0, 4+00).
I'_(p)=(—00,1=1/p) for 1 <p<ooand I'_(1) = (—o0,0].

Note that I'_(p) NT'1(p) is a (semi-)open interval of length 1 for fixed p and
0 € T4 (p) for every p.

Proposition 5.2. Letr € N, 1 < p < oo, w(z) = xJ*(2)x;"(z) = (x —a)"(b—
x)" with v, > —1/p, 7 € R and p € R. Then for every f € L,(x%w)|a,b] we
have

(5.4) lw(A(p; a,b:8) fllp, o) < Cllwxafllpap,

where £ € (a,b) if v» € T1(p) and/or & = b if v, € T_(p). Also for every
non-negative measurable ¢ in (a,b) and every g € AC;. *[a,b] we have

loc
lwo(A(p; a,b;€)g) ™|

Proof. The second statement follows immediately from Theorem 5.1 a).

In order to prove the first statement we multiply (5.1) by w, take L, norm
and apply Minkowski’s inequality according to the terms on the right-hand side
of (5.1). The first norm is the norm on the right-hand side of (5.4). Every of
the other norms ||[wirp, (a5, k¥ = 1,2,...,r, where

= (120 [ (=) ro

is estimated by applying twice Corollary 2.1 — for the subintervals [a,c] and
[c,b], where ¢ = £ if v, € T (p) or ¢ = “E2 if 4, € T'_(p).

In [a,c] we have w(z) ~ (x — a)? and Corollary 2.1 b) with 8 = v =
Ya +k —141/p > 0 estimates |[wir||p,[a,¢ With the norm on the right-hand
side of (5.4).

In [c,b] we have w(x) ~ (b —xz)". If 7, € I';(p) then Corollary 2.1 b) with
Y=w+1/p>0, B=7y—1gives [[wkpct) < Cllwfllp e < Clwxtflpap-
If 44 € T_(p) then Corollary 2.1 a) with f = —y,+1—1/p > 0, vy = 8—1 gives
lwrlp,iep) < Cllwfllpes) < Cllwxt fllp.ja,p)- This completes the proof. O

pia) = (0= a) P lwxt69" .0y
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Proposition 5.3. Letr € N, 1 < p < oo, w(z) = xJ*(z)x)" (z) = (x —a)*(b—
)" with v, > =1 —=1/p, v € R and 0 > 0. Then with A =1—1/c for every
fe Lp(xg(%ﬂ/p))‘w)[a,b] we have

|p7[a,b] < CHwX;(FyaJrl/p))\f||p7[a,b]7

(5.5) lw(B(o; a,b;€) )

where £ € (a,b) if v» € T (p) and/or & = b if v, € T_(p). Also for every
o € B, 9(z) = X7 (@)X (@) = (2 — @) (b — 2)" and g € AC]z'[a,b] we
have

[wd(B(o5a,b;€)9) | 0 ~ lwxg T THPAox =X g,

Proof. The second statement follows from Theorem 5.2 a) by applying the
change of the variable ((z — a)/(b — a))? = (y — a)/(b — a) and taking into
account that (b —a)'/? — (y — a)'/? ~ b —y for y € [a, b].

In order to prove the first statement we multiply (5.2) by w, take L, norm
and apply Minkowski’s inequality according to the terms on the right-hand side
of (5.2). The first norm is directly evaluated by the above mentioned change of
the variable with the norm on the right-hand side of (5.5). Every of the other
norms || wikp (ap), k¥ =2,3,...,7, where

T—a k-1 _a —k —a o
o= (=2) [ (1) s(aro-a(i=2) )m

is estimated by applying twice Corollary 2.1 — for the subintervals [a,c| and
[b,c], where ¢ = £ if v, € [ (p) or ¢ = “E if 4, € T'_(p).

In [a,c] we have w(xz) ~ (x — a)’s and Corollary 2.1 b) with g = v =
Ya +k —141/p > 0 estimates ||wir||p,[a,¢ With the norm on the right-hand
side of (5.5).

In [c,b] we have w(z) ~ (b — x)". If v, € T';(p) then Corollary 2.1 b)
with Y= "+ 1/p > 03 ﬂ = 7= 1 giVGS wak p,[e,b] < Owa”p,[E,b] <

C’wa;waﬂ/p))‘f||p,[a’b] where ¢ = a+ (b —a)!=(c — a)?. If 4, € T_(p) then
Corollary 2.1 a) with 3 = —y, +1—1/p >0, v = 3 — 1 gives [|wig|lp e <
Cllwfllp,zp < C’HwX;(%H/p))‘ﬂ p[a,p]- This completes the proof. O

Proposition 5.2 shows the operator A(p) clears the multiplier x? from the
weights in both terms of the K-functional, where the weight in the first term is
restricted by Hardy’s inequality and there are practically no restrictions on the
second term weight.

Proposition 5.3 shows the operator B(o) clears the multiplier Xt(lrfT“)(lfl/ )

from the second term of the K-functional, but also clears yg (/= T/P0=1/9) 59
an additional weight in both terms. Once more the weight in the first term is
restricted by Hardy’s inequality and there are practically no restrictions on the
second term weight.

From Proposition 5.2 applied for A(p) and A(—p) (with weight w(z) =
(z — a)¥eTP(b — z)"), Corollary 5.1 and Proposition 2.1 we get
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Proposition 5.4. Letr € N, 1 <p < o0, p € R, w(z) = (x —a)’(b—z)"
with ¥4 > —1/p, Yo +p > —1/p, 7 € R and let ¢ be measurable non-negative
on [a,b]. Then we have

A(p7 CL, b7 5) : (LP(XZw)v Aclrozla ¢DT) = (LIJ(U})’ AO[To;17 ¢DT)7

where £ € (a,b) if v € T4 (p) and/or £ =b if v, € T_(p).

From Proposition 5.3 applied for B(o) and B(1/0) (with v,/c—(1—1/0)/p
in the place of 7,), Corollary 5.1 and Proposition 2.1 we get

Proposition 5.5. Let r € N, 1 < p < o0, 0 > 0, w(z) = (x —a)¥(b—x)"
with v > —1—1/p, v > —0 —1/p, 1 € R and ¢(z) = (& — a)™ (b — x)™ with
TasTo € R. Then we have with A=1—1/c

B(o;a,b;€) : (Lp(xg 0= tYPw), ACT-1, ox T DT i (Ly(w), AC, ¢D7),

loc
where £ € (a,b) if v» € T4 (p) and/or & =b if v, € T_(p).

The previous statements show that one can treat separately the weight sin-
gularities at both ends of the domain. Of course, the propositions remain true
if we interchange the places of a and b.

Remark 5.2. Comparing Proposition 5.5 (and Proposition 2.1) from one side
with Theorem 6.5.1 in [5] and the results in [6] from another side one can find
several advantages of the first statement:

e no additional terms in the equivalence relation;

e the use of K-functionals (or equivalent moduli) instead of main-part mod-
uli (in Theorem 6.5.1);

e taking the restrictions on the parameters to natural boundaries. In the
notations of Proposition 5.5 (with 7, = 7, = 0), the main restrictions in
Theorem 6.5.1 and Theorem 1 in [6] are v, > 7 —1—1/p, r = 2,3,...,
provided o > 1. It should be compared with the restriction v, > —1—1/p
in Proposition 5.5.

Now we are ready to combine operators (5.1) and (5.2) and to prove our
main result.

Theorem 5.3. Let r € N, 1 < p < 00, Ka, Kby Ay Aby fhas by Va, Vo € R, p(x) =

)
(x —a) (b — )", p(x) = (x — a)’* (b — x)** with (1 — X\)(1 —vy) > 0 and
IT=X)A=w) >0, wz) =(r—a)(b—x)* with —1/p < Kq, kp, W(x) =
(x — a)t=(b—x)" with —1/p < pq, pp- Set
A= Alpy; b, a;§) B(ov; b, a;§) Apa; a, b; ) B(oa; a, b; §),

where € (a,b) and

1—u, 1—u ( JRI et Doy )
Oq = , Op = 5 o = RaT=)0a——— la, =R —)0b— — —Hb-

1— X, bl*)\bp P pM P bpbpub
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Then
At (Ly(w)la, b], ACj ", 9" D) = (Ly(w)[a, b, AT ", ¢"D").
Hence fort >0 and f € L,(w)|a,b] we have
K(f,17; Ly(w), ACj. " " D7) ~ K (Af, 17 Ly(w), ACj,. ", ¢ D").

Proof. First, note that o, 0p > 0. From Proposition 5.5 with 7, = rv,, 7, = A,
Ya = Pa + Ha, Vb = Kb, O = 04 We get

B(og;a,b;€) : (Lp(xg“_p“_”axp“+”ax "), AC’ITOCI,XZ)‘“ T)‘bDT)
(L), AT G D)
because kg — pa — fta = —(pa + pa + 1/p)(1 — o) and py + po + 1/p =

(ko +1/p)oa > 0.
From Proposition 5.4 with ¢ = X”’“XZAZ’, Ya = Has Vb = Kb, P = Pg WE get

A(pai a,b;€) = (Lp(xb e xp?), ACT . x5 Xy D7)
= (LX), ACh X D7),
because p, + pq > —1/p.

From Proposition 5.5 with 7, = rv,, 7, = rvp, Yo = fha, Yo = Pb + b, 0 = 0p
we get

B(Ub;b7(l;§) . ( (Xa an Pb— MbXPb'HJ«b) ACT™ 17X;Va r)\hD'r‘)

loc

r—>(L (X#apr+ﬂb) ACT— 17)(21/& rVg,Dr)7

loc

because ry—py—pu, = —(pp++1/p)(1—0y, 1) and py+um+1/p = (kp+1/p)oy, >
0.

TV

From Proposition 5.4 with ¢ = x3"* X}, Ya = Has V6 = He, p = pp We get

Alpriba: &) = (Lp (exg” ™) ACT XX D)
= (LP(XZ‘QXIZ;”))7 Cloc ’XZDG TVbDT)7

because py + up > —1/p.
Combining the four mappings we prove the theorem. O

If we decide to use only operators of type B we get

Theorem 5.4. Let r € N, 1 < p < 00, Ka, kb, Aas Moy Va, Vo € R, p(x) =
(x —a)*(b—z)™, ¢(x) = (x — a)’* (b — x)" with (1 — X\g)(1 —v,) > 0 and
(I=X)(1 =) >0, w(x) = (x—a)(b— )™ with kq, ks € T4(p). Set

B = B(oy; b,a;€)B(0q; a,b;€)
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and w(z) = (x — a)= (b — z)*, where € (a,b),

1-y 1- 1 1 1 1 1
= B = 1_)\b, ,ua:(’ﬂ:a_kzz)oa_;a ub:(/‘ﬂb"';))gb_;)'

B : (Ly(w)la, b, ACT,. " D") = (Ly(@)a, bl AC, ", @7 D").

loc +¥

Hence fort >0 and f € L,(w)|a,b] we have
K (f,t"; Ly(w), AC,. ' " D") ~ K (Bf,1"; Ly(w), AC},. ', @7 D").

loc »P

Proof. First, note that o, 0, > 0. From Proposition 5.5 with 7, = rv,, 7, = s,
Ya = HasVb = Kp, 0 = 04 We get

B(O’a; (1, ba f) : (LP(XZai'U‘aXIaLa Xb ) ACloc 7Xa T)\bDT)
= (LP(Xga ) ACloc ’XZVQ )\bDT>7

because kg — ftg = —(pa + 1/p)(1 — o, 1) and pg + 1/p = (kq + 1/p)0a, ie.
Ha S F+ (p) iff Ka € F+ (p)

From Proposition 5.5 with 7, = rv,, 7% = TV, Yo = ta, Vo = U, T = T We
get

Blowib,a:€) ¢ (Ly(xiox” ™) ACT X x ™ D)
= (L (X x4 ), AC L XG x; " D),

because kp — pup = —(up + 1/p)(1 — oy ') and wp, + 1/p = (kp + 1/p)o, ie.
up € Ty (p) iff kp € T4 (p).
Combining the two mappings we prove the theorem. O

The Jacobean weights w = x5*X;", Ka,kp > —1/p are covered by Theo-
rem 5.3 and Theorem 5.4. The restriction on the x’s cannot be weaken because
in general one cannot expect to get equivalence of the K-functionals of func-
tions in L, and L,(w) provided k, < —1/p or k; < —1/p. But Proposition 5.5
still lives room for varying the weight in the differential operator when L,(w)
is compared with L,(w) under the restriction kg, Kb, fta, o < —1/p. Then the
proof of Theorem 5.4 gives

Theorem 5.5. Let r € N, 1 < p < 00, K, Kb, Aa, Aoy Va, Vb € R, @(x) =
(x —a) (b — )", ¢(x) = (x — a)’ (b — x)** with (1 — X\)(1 —vy) > 0 and
(1=X)(1 =) >0, w(x) = (x —a)(b—x)* with |k, + 1/p| < min{l, (1 —
Xa)/(L—va)}, [k +1/p| < min{1,(1 — Xp)/(1 —wp)}. Set

B = B(op; b,a;a)B(0g;a,b;b)
and w(z) = (x — a)#= (b — x)*, where
1—u, 1—u 1 1 1 1

a1 uaz(maJr];)aa—];, Mb:(’@b+§)0'b_§-

Oq =
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Then
B+ (Lp(w)la, ], AC].", ¢" D7) = (Ly(w)[a, b], AC] ", @7 D").
Hence fort >0 and f € L,(w)|a,b] we have

K (f,t"; Ly(w), AC},. " D7) ~ K(Bf,1"; Ly (@), AC},. ', ¢"D").

loc ¥

Note that in Theorem 5.5 we have sgn(k, + 1/p) = sgn(pq + 1/p), sgn(kpy +
1/p) = sgn(up + 1/p) and not all restrictions on kg, Ky are sharp.

Considering the case w = 1, ¢ = 1, from Theorem 5.3 and Theorem 5.4 we
get

Corollary 5.2. Letr € N, 1 < p < o0, p(x) = (z—a)** (b—z)* with A\a, \p < 1,
w(z) = (x —a)® (b —x)" with —1/p < Ke,kp if p < 00 and kg = kp = 0 if
p=o00. Set

A = A(py; b, a;§) B(oy; b, a; §) A(pa; a, b;§) B(oa; a, b; ),
where £ € (a,b) and

_fatlp 1 _ 1 _fptl/p 1 _ !
Pa=T0 p T T1oa TN TN
Then
A: (LP( )[ ] ACloc ’QPTDT) = (L [ ] ACZTOCI7D7)

Hence fort >0 and f € L,(w)|a,b] we have

K(f,t"; Ly(w), AC], 1 " D") ~ K(Af,t"; L,, AC]> 1, D7)

loc >

~wr(Af, 1)y = Qf, t; Lp(w), AC], ., 0" D").

Proof. The case p < oo follows from Theorem 5.3 with p, = up = v = v = 0.
In the case p = co we have kK, = Ky = g = p = 0 and hence Theorem 5.4 is
applicable. O

Remark 5.3. The case p = o0, £, > 0 and/or k; > 0 is not covered by
Corollary 5.2. In fact, A is not a continuous mapping under such assumptions.
In such cases one can apply Theorem 5.3 with some pg, up > 0, v, = v = 0 and
get

K(f.t"; Ly(w), AC 9" D") ~ K(AF17s Ly(@), AC],. ", D7),

loc

The last K-functional is equivalent to proper moduli defined in [5, Ch. 6] or
[16].
From Corollary 5.2 with k, = kK, = 0 we get

Corollary 5.3. Let r € N, 1 < p < 00, p(z) = (z — a)’a(b — 2)* with
Aa, Ay < 1. Set

A = A(pp; b,a;§)B(ow; b, a;§) Apas a, b;§) B(og; a, b; ),
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where & € (a,b) and
Ao 1 1 A 1 1

1o T ion PPTionp Ty

Pa

Then
A (Lypla,b), AC] - @™ D) v (Ly[a, b], AC] Y, D7),

loc loc

Hence fort >0 and f € L,[a,b] we have

K(f,t"; Ly, AC]: -1 " D") ~ K(Af,t"; L, ACy- 1 D")

loc >

~ wr(Af, 1), = Q(f, t; Ly, AC] 1 0" D7),

loc

Remark 5.4. The family of operators .4 in Corollary 5.3 is uniformly bounded
from L, to L,, 1 < p < oo regardless of the two parts (for p < oo and for p = o)
of the proof of Corollary 5.2. The reason is that we have ||x2*¢1|, ~ pl f|, in
(3.1) and a;.1(pa) ~ pa ~ 1/p in (3.3) when p — oo.

Remark 5.5. In principal, there are 24 permutations of the 4 operators used in
Theorem 5.3. But Propositions 4.1 and 5.1 tell us that some of these permuta-
tions give one and the same operator A. In fact, the permutations give no more
than 8 slightly different operators (see Remark 5.1): A; = A (the operator from
Theorem 5.3);

A2 = A(pa;a,b;€)A(pe; b, a;§)B(ow; b, a;£) B(og; a, by €);
As = A(pa;a,b;€)B(oy; b, a;€)B(0q;a,b;6)A(py/0ov; b, a; §);
Ay = B(ow;b,a;8)A(pa; a,b;8)B(og;a,b;8)A(py/0ov; b, a; )

and those obtained by changing the places of a and b in A;, Az, A3, A4. Note
that Aj, As, As, Ay differ in form but they do one and the same job.

In order to demonstrate how the parameters change if we commute operators
A and B for one and the same singularity we apply Proposition 4.1 in Corollary
5.2 and get

Corollary 5.4. Letr € N, 1 < p < o0, p(x) = (x—a)** (b—z) with Ay, \p < 1,
w(z) = (x — a)® (b — x)" with —1/p < K, kp if p < 00 and kg = Kp = 0 if
p=o00. Set

A= B(oy; b, a; §) A(pys; b, a3 €) B(oa; a, b; §) Aps a, b; €)
where § € (a,b) and

Aa 1 Ap 1
Kq + —, Oq = =Kp+ —, Oy = .
p P 1—/\b

(A

Pa

Then
A (Ly(w)la. b, AC] 7 D7) o (Lo, b, ACT, D).
Hence fort >0 and f € L,(w)|a,b] we have

K(f,t"; Ly(w), ACJ, .7 D) ~ K (Af, 175 Ly, ACY, ! D)

loc
~ wr(Af, 1)y = Qf t; Ly(w), AC[ 1 0" D7),

loc

Note that the operators A in Corollary 5.2 and Corollary 5.4 coincide.
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6 Generalizations

First, the operators from Sections 3 and 4 can be applied to spaces of functions
with a domain different than the finite interval [a,b]. Observe that operators
(3.1), (4.1) map L1 o[, 00) to itself and treat singularities at +o00. Also, B(o)
with o < 0 maps L1 joc[1,00) to L1 10c(0, 1] and vice versa. Using these operators
we can treat both other domains and other powers in the weights than those in
Theorem 5.3 (see e.g. Theorem 8.1 below).

Second, operators (5.1), (5.2) are design for transforming the first argument
of K-functionals with power-type weights. But the same ideas work with more
general classes of weights.

The generalization of A(p) when z? is replaced by a smooth ¢(x) is

xz) = ¢(x)f(x s —ni(" Ig(x_y)i_l ()
61w =ewse+ () [t wma

Using (3.4) one gets (Af)") = ¢ f().

The generalization of B(c) is more complicated. Here we only sketch it
for r = 2 and B(0;0,1;1/2). Let ¢ be a non-negative measurable function on
[0,1] and 1/¢ € L1[0,1]. Set ®(z) = c [ ¢(y)~* dy where the constant c is
determined by the condition ®(1) = 1. Choose the smooth function 6 so that

9/(1_) ~ 90(9(‘%))7 S [07 1]
(one possible choice is § = ®~1). With the notation n(z) = 0" (x)/0'(x) we set

x x

() + v )] £0(w)) dy + / 7 ()£ (8(y)) dy.

1/2

(Bf)(x) = (6(x)) - /

1/2

Then

(Bf)"(x) = (¢'(2))* f"(O(x)) ~ ¢*(0(x)) f" (6(x))-
Applying the generalization of Hardy’s inequality in Proposition 2.2 we get
boundedness of B under suitable restrictions on 6.

For power-type weights ¢ (i.e. ¢(z) = 27 and hence 0(z) = z° with ¢ =
1/(1 — 7)) we have n(x) = const - x=1. Thus, n(z) + 2n'(x) = 0 and hence
the first integral in the definition of B vanishes. For more general weights this
integral does not vanish but still B may be a bounded operator.

Consider two examples:

i) o(z) = 2Y/%(log1/z)"/2. We can take 6(x) = x2(1 + 2log1/x). Then
(@) =2~ =2~ (log1/2)~", n(y) +yn'(y) = —y~*(log 1/y)~* and

/ ;my) @Oy = - [ / y (log 1/y) " F(0()) dy,

which, for example, is a bounded operator from C0,1/2] to C[0,1/2].

ii) p(r) = 27 (log1/x)?=%, v < 1. With o = 1/(1 —7) we can take 0(z) =
27 (302(log1/x)* + olog1/x + 1). Then n(z) = (0 — 1)z~ — 2z~ (log 1/z)~*
and n(y) +yn'(y) = =2y~ ' (log 1/y) ™.
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Such generalizations will appear in a forthcoming paper.

Finally, let us consider the more general form (1.2) of the differential operator
D. One trivially gets equivalent K-functionals for the triples (X,Y, D;) and
(X,Y,Dy) when ||D1f|lx ~ ||D2fllx, Vf € Y. In many non-trivial cases the
following operator

— - i(r Tz —y)t .
52 (AN = #EE) + 3D () [ oo
r—1 k , ® ki 7;
+;§§<_1)l(§>/5 Mil)!‘bl(c)(y)f(y) dy

can help reducing the general case (1.2) to D = ¢D" because of D"(Af) =
> o @D f. Note that (6.1) is a partial case of (6.2) when ®, = ¢; ¥}, =
0,k < r. Of course, one has to ensure boundedness of A and A~! which is not
likely to be true provided ®,. has a singularity. But, the setting ®,. = 1; &, =
©r/pr, k < rin (6.2) gives in several cases a linear operator A which is bounded
together with its inverse and possesses the property ¢, D" (Af) = > _, opDFf.
Tt is shown in [13] that such approach can work (see also Subsection 8.4).

7 Examples

First we give an explicit form of the operators from Sections 3 and 4 for r =
1,2,3.
For r = 1 we have

(A(p) ) (@) = 27 () — p / S dy: (B(o)f)(x) = F(a°).
For » = 2 we have

(A(p)f)(x) = f(x) — (p+ 1)p /m Y f(y)dy + plp — /x y* 2 fy) dy;

1 1

(B@) D) = 167)+ (1= o) [ 4721 dy
For r = 3 we have

(A(p)f)(x) = =" ()

T (p+2)(p+Dp  (p+Dplp—1Dz  plp—1)(p —2)z? .
+/1 <_ oylr T Y2 - Sy57 )f (y) dy;

1—20)x 2—0)(2 - 20)z?
U3, (2=0)2-20)

BNE =16+ [ (-5 )16 as
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Example 7.1. Let r = 1, 1 < p < 00, p(x) = /= and w(z) = x'/P. Then for
every f € L,[0,1] and every ¢ > 0 we have

K(fvt;vaACloca(pD) NK(B( )fat'L (w)vACloch)
(A(l/p) ()fat;LimAOlomD)

wi(A(1/p)B(2)f,t)p
Q(f,t; Ly, ACioc, D),

2

(B@S)(@) = f&2), (AQ/p)B@)f) () = 27 f(a?) - % / YR dy

The inverse of B(2) is

(B(2)7'F)(x) = (B(1/2)F)(z) = F(V=).

Example 7.2. Let r =2, 1 < p < 00, p(x) = /= and w(z) = '/P. Then for
every f € L,[0,1] and every ¢ > 0 we have

i

K(f7t2;Lp7ACllom§02D2) K( (2)f7t2;LP(w)7AClloc7D2)
~ K(A(1/p)B(2)f,t*; Ly, AC,., D)
~ w2 (A(1/p)B(2)f,1)p

- Q(fv tv va ACloca 302D2)7

where

The inverse of B(2) is

X

(B F)@) = (BU/DF)@) = PV + 5 [ 5Py

Example 7.3. Let r = 3, 1 < p < o0, ¢(z) = v/ and w(x) = x'/P. Then for
every f € Lp[0,1] and every t > 0 we have

2

K(f,£%; Ly, ACle, ¢°D°) ~ K(B(2)f,t% Ly(w), AC,, D)
K( (1/p) ()f7t3;LP’ACZQOC>D3)
~ wy(A(1/p)B(2)f,t)p

= Q(f7 tv va ACloca ¢3D3)7
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where

and
(A(L/p)B@) () = 2 f( / K, 0) £ (52) dy,
2+ 1Ddp+1) 1_ -DBp+1) 1_ 4p? — 1 1
K(o,y) = — 22 )(317 )it (> = 1)(3p b 2+(p - ) 253
2p p? 2p

The inverse of B(2) is

(B F)w) = (BU/2R@) = FWD + 25 [y Ry

Example 7.4. Let r € N, 1 < p < 00, ¢(x) = V1 — 22 and w(z) = (1 —22)'/7.
Then for every f € L,[—1,1] and every ¢t > 0 we have

(fatr LPvACloc ’QOTDT) NK(vatr’L ( ) ACZ“0017D7")

where B = B(2;1,—1;0)B(2; —1,1;0) and

2

(BE1L-L0)@) = fo+5)
—[Tfﬁr% (-0 [0 f%f;)‘f:) .
(B: 1, 1,0))a) = fa ‘f)
+[§ﬂr2k 1+m)2k1/0$]mdy,
where Brok(2) = (_1)k21 T(% —20 k<.

(k= D)I(r — k)l(r — 2k)!"

The operators in Theorem 5.3 are based on the change of the variable of the
type 6(x) = x” but, as mentioned in Section 6 our method allows a broader
class of “equivalent” in a certain sense changes of the variable. In the next
example we show that four different operators, based on the four changes of the
variable 61 (z) = (3z — 23)/2 + (1 — 22)?/8, O3(x) = (3z — 23)/2 — (1 — 2?)?/8,
03(z) = (3z — 23)/2 and 4(x) = cos x, produce equivalent K-functionals.
Example 7.5. Let r =2, 1 < p < o0, p(z) = V1 — 22, w(z) = (1 — 22)'/? and
w(z) = (sinx)/P. Then for every f € L,[—1,1] and every ¢ > 0 we have

K(f,t% Ly, AC},., 9> D?)
~ K(Byf, 1% Lp(w)[-1,1], ACj,., D?) ~ K (B f, t*; Ly(w)[—1, 1], ACj,, D?)
~ K(Bsf,t% Ly(w)[~1,1], ACj,, D?) ~ K(Byf, 1% Ly(w)[0, 7], ACy, ., D?),
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where
Bif(z) = (B(2;1,-1;0)B(2;-1,1;1/2) f)(x)

= f(3x_m3 L _8x2)2) +/OI Icl(ac,y)f(gy;”3 L a —8y2)2) dy;

Baf(z) = (B(2;-1,1;0)B(2;1, -1; =1/2) f)(z)
(3 —at (1-— x2)2 * 3y—y*  (1-9¢*)? .
= f( - +/0 /Cz(w,y)f( - )dy,

2 8 2 8
3r—=x ril1l—ua 1+ 3y — 1> )
oo =15 [l 25
Bif(z) = f(cosx) //2 Ty :H?H;y “BY f(cosy) dy, = € [0,7]
with
o 1+2)B3—-2)(1-1y) 1—2
B (e A (e
L)@ —y+d) (@ et (Ll —y)
(1+y)2( —y)? 7
Ko, y) = (I-2)B3+z)(1+y) 14

(1 -9)%(3+y)? (1+y)?
A+2)(y*+y+4)— (a:2+x+4)(1+y).

2 TEEEEE

The inverse operators are given by

By'F(x) = (B(1/2;-1,1;1/2) B(1/2;1, = 1;0) F) ();
By 'F(x) = (B(1/2;1,—1;-1/2) B(1/2; —1,1;0) F) (x);
By 'F(x) = F(n(x))

+ g /;[3@ =)L+ 30 W) (' (1))* = 2n(w))(0' (v)* F(n(y)) dy;
14z _ 1—=z
1+62 (1-1)2

B, 'F(x) = F(arccosx) + % /OZ <( )F(arccos y) dy,

where 7)(z) is the inverse of 3(x) = (3x —x3)/2 in the interval [—1, 1] and hence
' (y) =31 —n*(y)~"

Note that Bs has probably the simplest form, but we cannot write down
explicitly its inverse (without using inverse functions or cubic roots). By and its
inverse have also simple forms but a change of the variable, mapping [0, 7] onto
[—1,1], is used. Additional difficulties occur when we study the analogues of By
for 7 > 2. The form of B; and By is the most complicated. Moreover, they are
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defined by non-symmetric changes of the variable (with respect to the domain).
Also we took £ # 0 in one of the operators B forming By and B in order to get
one and the same bounds in the integrals. But these operators and their inverse
are easier to work with and they allow separate treatment of the singularities.

Of course, one can write many other operators by choosing other changes of
the variable or varying ¢, e.g. Bf = B(2;1,—1;0)B(2; —1,1;0)f which equals
B1 f modulus a linear function.

Example 7.6. The operators from Example 7.5 transformed for the interval
[0,1] (r=2,1<p< o0, p(x) =+/z(l —x)) are

Bif(x) = (B(2;1,0;1/2)B

( 2;0,1;3/4) f)(2);
Bof(x) = (B(2:0,1;1/2)B
(

(
(2'1 0;1/4) f)();

1 -
Baf(x) = f(3x / ( Ay )6 — 2 dy:
1/2
1 + cos 7rx mx — Yy +sinwycosmy /14 cosmy
Buf(x) = (5T / TR (LG

8 Applications

In this section we discuss some examples of approximation processes whose rate
of approximation is estimated by a K-functional of the form (1.1).

8.1 Best algebraic polynomial approximation

The best approximation of a function f € L,[—1,1], 1 < p < co by algebraic
polynomials of degree n is given by E,(f), = inf{||f — Q|l, : Q € II,}.

In 1980 the second author proved a characterization (strong direct and weak
inverse theorems, see e.g. [11]) for any » € N and 1 < p < oo of the best
algebraic approximations in terms of moduli (1.8) with ¥ (¢, ) = tv/1 — 22 +¢2.
Later it was proved in [12] that these moduli and the K-functionals (1.5) with
p(z) = V1 — 22 are equivalent. Meanwhile, Ditzian and Totik introduced the
weighted moduli (1.6) and proved both equivalence with the K-functionals (1.5)
and characterization of the best algebraic approximations.

Now Corollary 5.3 with A_; = Ay = 1/2, ¢ = v/1 — 22 gives a new charac-
teristic of the best algebraic approximations:

En(f)p < CTOJT(Af, n_l)p = CrQ(fa n_1§ Lp[ ] AClOC 7<PTDT)7 n>r,
Q(f, t; Lp[-1,1], Acloc 0" D") = wp(Af, 1), < Crt” Z (k+ 1>T_1Ek(f)pv
0<k<1/t

where A is defined in Corollary 5.3.

Let us note that w,(Af,t)s turns out to be a solution (in a certain sense
because Af is not periodic) of the following problem posed by S. Gal in [§]
(which is a variant of Problem 1.1):
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Find a 2m-periodic continuous function F, depending on f € C[-1,1] and
r, such that
w;(f, ) oo ~ Wry (F

as not necessarily r = ry.

G. Mastroianni and P. Vértesi also gave a solution of the above mentioned
problem for r = 1. For f € C[—1,1] they define g¢() = f(cosf) and show in
[17]

0,27]; oo, 0 <t < to,

(81> wg,lo(fvt)oo Nwl(gfat)ooa 0 <t <tp.

J. Bustamante noticed in [1] that a relation like (8.1) is not valid for r > 1
though a weaker one holds.

8.2 Bernstein polynomials

The Bernstein polynomials B, f are probably the most studied approximation
operators.
Totik in [21] and H.-B. Knoop and X.-1. Zhou in [15] proved

1f = Buflloo ~ K(f,n™"C[0,1), A, @’ D?) ~ W2 (f,n ™ ?)oc,
where ¢(z) = \/m Corollary 5.3 yields another characterization
1f = Buflloo ~ Qf,n~%,C10,1], AC,e, ¢° D?) = wa(Bf,n /%) o
~ K(Bf,n~*;C0,1],AC. ., D?),

where B is any of the operators in Example 7.6.

8.3 Szasz-Mirakjan operators

For the Szasz-Mirakjan operators S, f defined for f € C[0,00) V. Totik proved
in [21]

(82) ||f - SanOO ~ (.di(f, nil/Q)OO ~ K(fa nil; C[Oa OO), Acllow @2D2)a
where ¢(z) = v/z. Using the method demonstrated in Section 4 we get
Theorem 8.1. Let f € C[0,00) and n € N. Then

(8:3) [If = Snflloo ~w2(B(2)f, n_1/2)00 = Q(f, n_1/25 €10, c0), ACllom QOQDQ)?
where B(2) : C[0,00) — C[0,00) is defined as (see Example 7.2)
(BOIN)@) = 1)+ [y

Although we have not discussed in the present article unbounded domains,
we have all the ingredients to give a simple proof of (8.3).
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Proof. The inverse of B(2) is

BN = 16D -5 [ (5 iy

x

From the definitions of B(2) and B(1/2) we get ||B(2)flloc < 2||f]lo and

1B(1/2) flloc < 2||flloc, which, together with Theorem 4.1 and Corollary 4.2,
imply
B(2) : (C[()? OO), Aclloca 902D2) = (C[Ov OO), Acllocv D2)

In view of Proposition 2.1, this continuous mapping together with (8.2) proves
(8.3). O

8.4 Kantorovich and Durrmeyer operators

K(f,t; L,[0,1],C% D¢D) with ¢(z) = z(1—x) is the K-functional that is equiv-
alent to the approximation errors of Kantorovich P, f and Durrmeyer M, f op-
erators. Note that the differential operator D@D differs from the usual ¢.D?.
The set on which the infimum is taken is Y = C?, which gives here a different
K-functional than the usual Y = AC} ..

Chen, Ditzian and Ivanov in [2] and Gonska and Zhou in [9] proved for every
ferLy0,1,1<p<occandneN

If = Mnfllp ~ K(f, n_l;LP[O’ 1]702aD¢D> ~|If = PanP'
Gonska and Zhou also proved in [9]
K(f,1% Ly[0,1],C%, D¢D) ~ w?(f, 1) + w1 (f,8%)p, 1 <p < oo.

The above equivalence is not true for p = 1. Using the idea of [7] the second
author proved in [13] that

K(f7t2;Ll[Oa 1]7027D¢D) ~ K(Afa tQ;Ll[Ov 1}702a¢D2) +w1(f7 t2)17

where

AN = 1@+ [ / (5 qos) S

This equivalence together with the equivalence relations for the second K-
functional gives

If = Muflly ~If = Paflls ~ wz(BAfanflﬂ)l +wi(f,n M),

where B is the operator from Corollary 5.3 with r =2, p =1, \g = A\ = 1/2.
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