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Abstract

The purpose of this paper is to present a characterization of certain
types of generalized weighted Peetre K-functionals by means of a modulus
of smoothness. This new modulus is based on the classical one taken on
a certain linear transform of the function. A new modulus of smoothness
which describes the best algebraic approximation is introduced.
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1 Introduction

In a number of approximation processes the error is estimated by means of an
appropriate K-functional. Generally it is of the form

(1.1) K(f, t) = K(f, t;X,Y,D) = inf
{
‖f − g‖X + t ‖Dg‖X : g ∈ Y

}
,

where X is a Banach space, D is a differential operator of the form

(1.2) Dg(x) =
r∑

k=0

ϕk(x)g(k)(x), ϕk ∈ X, k = 0, . . . , r, ϕr > 0 a. e.

with a given r ∈ N and Y ⊆ D−1(X) = {g ∈ X : Dg ∈ X} (note that
D−1(X) ⊂ X) is a dense subspace of X. Given X, Y and D the quantity (1.1)
is considered for every f ∈ X and t > 0.

We shall also use the notation (1.1) when Y \D−1(X) 6= ∅, assuming
‖f − g‖X + t ‖Dg‖X = +∞ for g ∈ Y \D−1(X). In such cases the infimum
in the definition of the K-functional is actually taken on Y ∩ D−1(X).

As the class of functions f for which we can estimate the infimum in (1.1)
for any t ∈ (0, 1] is quite narrow (because Y is large), it is useful to have an
easier to calculate modulus of smoothness Ω(f, t) equivalent to the K-functional
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above, namely that there exists a constant C > 0 independent of f and t such
that

C−1Ω(f, t) ≤ K(f, t) ≤ CΩ(f, t),

which we denote in short by K(f, t) ∼ Ω(f, t). (We shall denote by C constants
of this kind which may differ at each occurrence.) Our goal is to define such
a modulus of smoothness for a number of X, Y and D, where X is a space of
functions defined on a fixed finite or infinite interval [a, b] on the real line.

In the unweighted case, i.e. weights equal to 1, it is well known (see [14] and
the references cited there) that for Dg = Drg := g(r) and X = Lp = Lp[a, b]
with the usual Lp-norm denoted by ‖·‖p for 1 ≤ p < ∞ or X = C = C[a, b]
with the uniform norm denoted by ‖·‖∞ for p = ∞, we have

K(f, tr;Lp,W r
p , D

r) ∼ ωr(f, t)p,

where ωr(f, t)p are the classical moduli of smoothness defined by

(1.3) ωr(f, t)p = sup
0<h≤t

‖∆r
hf(·)‖p ,

and the finite difference with a fixed step h is given by

(1.4) ∆r
hf(x) =

{∑r
k=0(−1)r−k

(
r
k

)
f(x+ kh), if x, x+ rh ∈ [a, b],

0, otherwise.

Two important solutions of the considered problem are presented so far for
weighted Peetre K-functionals (D = ϕrDr with a proper weight ϕ, which inside
(a, b) is equivalent to 1)

(1.5) K(f, tr;Lp, ACr−1
loc , ϕ

rDr) = inf
{
‖f − g‖p + tr‖ϕrg(r)‖p : g ∈ ACr−1

loc

}
,

where ACkloc = ACkloc(a, b) =
{
g : g, g′, . . . , g(k) ∈ AC[c, d] ∀a < c < d < b

}
and AC[c, d] is the set of the absolutely continuous functions on [c, d].

On one hand Ditzian and Totik introduced in [5] the varying step moduli

(1.6) ωrϕ(f, t)p = sup
0<h≤t

‖∆̄r
hϕ(·)f(·)‖p,

where the centered finite difference with (varying) step θ is given by ∆̄r
θf(x) =

∆r
θf(x − rθ/2). They generalized in [5] some earlier results of theirs (see [4]

and [20]) and proved for certain power and logarithmic-type weights ϕ (see [5,
Ch. 1, Sec. 1.2 and Ch. 5] about the conditions imposed on ϕ) the equivalence

(1.7) K(f, tr;Lp, ACr−1
loc , ϕ

rDr) ∼ ωrϕ(f, t)p.

Finally, let us note that Ditzian-Totik moduli are useful in estimating the rate of
approximation by algebraic polynomials and some well known linear operators.

On the other hand, the second author introduced the following moduli of
smoothness

(1.8) τr(f ;ψ(t))q,p = ‖ωr(f, ·;ψ(t, ·))q‖p ,
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where the local moduli are given by

ωr(f, x;ψ(t, x))q =

(
(2ψ(t, x))−1

∫ ψ(t,x)

−ψ(t,x)

|∆r
hf(x)|q dh

)1/q

, 1 ≤ q <∞,

ωr(f, x;ψ(t, x))∞ = sup{|∆r
hf(x)| : |h| ≤ ψ(t, x)}

and ψ is a continuous function connected with ϕ in a certain way ([11], [12]).
Under the conditions to which the weight ϕ is subdued given in [12], Ivanov
proved

K(f, tr;Lp, ACr−1
loc , ϕ

rDr) ∼ τr(f ;ψ(t))p,p.

The power and logarithmic-type weights ϕ are covered. These moduli were
introduced in 1980 (see e.g. [11]) for characterizing the rate of convergence of
the best approximations by algebraic polynomials.

In the present paper we utilize an approach that differs from the above men-
tioned one for finding equivalent moduli to the weighted Peetre K-functionals
(1.9)
K(f, tr;Lp(w), ACr−1

loc , ϕ
rDr) = inf

{
‖w(f − g)‖p+t

r‖wϕrg(r)‖p : g ∈ ACr−1
loc

}
,

where the weighted Lp spaces are given by Lp(w) = Lp(w)[a, b] =
{
f : wf ∈

Lp[a, b]
}
, Lp(1) = Lp. Note that (1.9) reduces to (1.5) when w ≡ 1 and that

K-functionals of the form (1.9) with some weights w are proved to be equivalent
to proper modifications of (1.6) in [5, Ch. 6] (see also [6]). K-functionals of the
type (1.9) with ϕ ≡ 1 and monotonicity requirements on the bounded weight w
near the end-points are also characterized in [16]. The present approach covers
more cases than those in [5, Ch. 6] and [6] (see Remark 5.2).

The idea consists of two steps. The first step is to study conditions on the
triples (X1, Y1, D1) and (X2, Y2, D2) under which one can find a linear operator
A : X1 → X2 such that

(1.10) K(f, t;X1, Y1, D1) ∼ K(Af, t;X2, Y2, D2).

The second step is to choose (X2, Y2, D2) in (1.10) in such way that the K-
functional has a known equivalent modulus Ω(F, t), i.e.

(1.11) K(F, t;X2, Y2, D2) ∼ Ω(F, t).

As a consequence of (1.10) and (1.11), one gets

(1.12) K(f, t;X1, Y1, D1) ∼ Ω(Af, t).

In order to make (1.12) effective for computations one has to require some
additional properties of A as explicitness, simple form, easy to calculate for a
given f , etc. In our opinion the operators constructed in this article possess
these properties.

While in the second step one simply considers the known cases of equivalence
between K-functionals and moduli, the first step needs some considerations.
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Let X1 and X2 be Banach functional spaces and let D1 and D2 be differential
operators. (In general, we do not require the functions in X1 to be defined on
the same interval as the functions in X2.)

Definition 1.1. We say that the linear operator A maps continuously
(X1, Y1, D1) onto (X2, Y2, D2) and write A : (X1, Y1, D1) 7→ (X2, Y2, D2) if and
only if A : X1 → X2 is invertible and together with its inverse A−1 : X2 → X1

satisfy the conditions

(a) ‖Af‖X2
≤ C ‖f‖X1

for any f ∈ X1;

(b) ‖D2Af‖X2
≤ C ‖D1f‖X1

for any f ∈ Y1 ∩D−1
1 (X1);

(c)
∥∥A−1F

∥∥
X1

≤ C ‖F‖X2
for any F ∈ X2;

(d)
∥∥D1A−1F

∥∥
X1

≤ C ‖D2F‖X2
for any F ∈ Y2 ∩D−1

2 (X2);

(e) A(Y1 ∩D−1
1 (X1)) = Y2 ∩D−1

2 (X2).

In Section 2 we show that A : (X1, Y1, D1) 7→ (X2, Y2, D2) is a sufficient
condition for (1.10). Note also that the dimensions of the null spaces of the K-
functionals in (1.10) have to be equal and thatA is an one-to-one correspondence
between the null spaces.

There are several reasons for using triples (X,Y,D) instead of the usual for
interpolation theory pairs (X,Y ). Among them are:

• in several problems in approximation theory it is natural to vary Y , keep-
ing fixed the semi-norm ‖D(·)‖X (see e.g. [13]);

• the semi-norm in Y is determined only byX and D and hence we introduce
less definitions and notations for Y ’s;

• as demonstrated in Section 5 the weights in the norm of X and in the dif-
ferential operator D play different role in establishing relations like (1.10).

Having in mind Definition 1.1 and Proposition 2.1 below, we introduce new
moduli by

Definition 1.2. For given (X,Y,D) we set for every f ∈ X and t > 0

(1.13) Ω(f, t) = Ω(f, t;X,Y,D) := ωr(Af, t)p,

where A is an operator such that A : (X,Y,D) 7→ (Lp,W r
p , D

r).

Note that Ω in (1.13) also depends on the choice of A but the dependence
is not essential – varying A we get equivalent moduli.

Obviously Ω(f, t) inherits all properties of ωr(F, t)p as (f, g ∈ X):

• Ω(f + g, t) ≤ Ω(f, t) + Ω(g, t);

• Ω(λf, t) = |λ|Ω(f, t), λ ∈ R;
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• Ω(f, t) ≤ C‖f‖X ;

• Ω(f, λt) = CλrΩ(f, t), λ > 0;

• Marchaud inequality, etc.

The idea of using operators like A is not new. Several examples of its im-
plementation are given in [3, Ch. 6], but it can be traced back even before
the invention of the K-functional. When comparing the best approximations
by trigonometric polynomials and the best approximations by algebraic poly-
nomials, several mathematicians used the mapping (Af)(y) = f(cos y) in order
to establish the so-called “effect of the end-points”. It is well known that this
mapping solves the following problem in the case r = 1 and p = ∞.
Problem 1.1. Given r ∈ N and 1 ≤ p ≤ ∞. Find an operator A : Lp[−1, 1] →
Lp[0, π] such that for every t > 0 and f ∈ Lp[−1, 1] we have

inf{‖f−g‖p+tr‖ϕrg(r)‖p : g ∈ ACr−1
loc } ∼ inf{‖Af−G‖p+tr‖G(r)‖p : G ∈W r

p },

where ϕ(x) = (1− x2)1/2.
In the terms of Definition 1.1, we have A : (C,ACloc, ϕD) 7→ (C,W 1

∞, D)
because of (Af)′(arccosx) = −(1 − x2)1/2f ′(x). But this approach has also
known difficulties when p <∞ or r ≥ 2:

i) For p <∞ we have an additional weight:{∫ π

0

|(Af)(y)|p dy
} 1

p

=
{∫ 1

−1

|(1− x2)−
1
2p f(x)|p dx

} 1
p

;

ii) For r ≥ 2 the r-th derivative of Af contains more than one terms. For
example, for r = 2 we have

(Af)′′(y) = sin2 yf ′′(cos y)− cos yf ′(cos y),

(Af)′′(arccosx) = (1− x2)f ′′(x)− xf ′(x).

Maybe these difficulties caused the abandonment of the idea and the inven-
tion of the moduli of Ivanov and of Ditzian and Totik. In Sections 3 and 4 we
show that one can overcome both listed difficulties with proper definitions of
the operators A. In fact, we introduce in these sections commutative groups of
operators depending on a real parameter, which have several additional proper-
ties.

In Section 5 we show that the consecutive application of several of the op-
erators from Sections 3 and 4 leads to the construction of operators A such
that (1.10) holds when (Xj , Yj , Dj) = (Lp(wj), ACr−1

loc , ϕ
r
jD

r), j = 1, 2, for
a variety of weights wj and ϕj (see e.g. Theorem 5.3) and, in particular,
K(Af, tr;Lp,W r

p , D
r) are equivalent to K-functionals (1.9) (see e.g. Corollary

5.2). In particular, a solution of Problem 1.1 with more general ϕ is given in
Corollary 5.3. Several possible generalizations are given in Section 6. Examples
of operators A are shown in Section 7, while Section 8 contains applications
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to some areas of the approximation theory as best polynomial approximations,
Bernstein, Kantorovich, Durrmeyer and Szász-Mirakjan operators.

Finally, let us mention that this investigation was motivated by the results
of the first author in [7].

2 Preliminaries

The next statement is a standard relation connecting linear operators and K-
functionals (see e.g. [3, Ch. 6, (1.14)]).

Proposition 2.1. Let the linear operator A map continuously (X1, Y1, D1) onto
(X2, Y2, D2). Then for every f ∈ X1 and t > 0 we have

K(f, t;X1, Y1, D1) ∼ K(Af, t;X2, Y2, D2).

Proof. For g ∈ Y1 we set G = Ag. Then G ∈ Y2 in view of Definition 1.1 (e).
Using (a) and (b) of the same definition we get

K(Af, t;X2, Y2, D2) = inf
{
‖Af −G‖X2 + t‖D2G‖X2 : G ∈ Y2

}
= inf

{
‖A(f − g)‖X2

+ t ‖D2Ag‖X2
: g ∈ Y1

}
≤ C inf

{
‖f − g‖X1

+ t ‖D1g‖X1
: g ∈ Y1

}
= CK(f, t;X1, Y1, D1).

The inequality

K(f, t;X1, Y1, D1) ≤ CK(Af, t;X2, Y2, D2)

is verified in the same way using the properties of A−1.

We shall use the following generalization of Hardy’s inequalities (see [10, p.
245]) given in [18].

Proposition 2.2. Suppose U , V are non-negative measurable functions on
(0,∞), 1 ≤ p ≤ ∞ and p′ is the conjugate exponent of p, i.e. 1/p+1/p′ = 1 with
the usual modification for either p = 1 or p = ∞. Then for every measurable
function f on (0,∞) we have

(2.1)
(∫ ∞

0

∣∣∣U(x)
∫ x

0

f(y) dy
∣∣∣p dx) 1

p

≤ C

(∫ ∞

0

|V (x)f(x)|p dx
) 1

p

if and only if

(2.2) sup
ξ>0

(∫ ∞

ξ

U(x)p dx
) 1

p
(∫ ξ

0

V (x)−p
′
dx

) 1
p′

<∞.
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Also

(2.3)
(∫ ∞

0

∣∣∣U(x)
∫ ∞

x

f(y) dy
∣∣∣p dx) 1

p

≤ C

(∫ ∞

0

|V (x)f(x)|p dx
) 1

p

if and only if

(2.4) sup
ξ>0

(∫ ξ

0

U(x)p dx
) 1

p
(∫ ∞

ξ

V (x)−p
′
dx

) 1
p′

<∞.

From Proposition 2.2 we get

Corollary 2.1. Let ζ < η and let F be a measurable function on [ζ, η].
a) If 1 ≤ p ≤ ∞, β > 0, γ ≤ β or p = 1, β = 0, γ < 0 then(∫ η

ζ

∣∣∣(x− ζ)−γ−
1
p

∫ x

ζ

F (y) dy
∣∣∣p dx) 1

p

≤ C

(∫ η

ζ

|(x− ζ)−β+1− 1
pF (x)|p dx

) 1
p

.

b) If 1 ≤ p ≤ ∞, β ≤ γ, γ > 0 or p = ∞, β < 0, γ = 0 then(∫ η

ζ

∣∣∣(x− ζ)γ−
1
p

∫ η

x

F (y) dy
∣∣∣p dx) 1

p

≤ C

(∫ η

ζ

|(x− ζ)β+1− 1
pF (x)|p dx

) 1
p

.

Throughout the paper we shall use the following notations. For c ∈ R set
χc(x) = |x−c|. For n ∈ N∪{0} set Πn to be the set of all algebraic polynomials of
degree at most n. D = d

dx means first derivative and Dr means r-th derivative.
We often do not indicate the dependence of the objects on the fixed r ∈ N, which
always stays for the power of the leading term of the differential operator.

All constants denoted by C can be explicitly evaluated using algebraic ex-
pressions and the constants in the Hardy-type inequalities (which are known).

3 Operators that change the weight in both
terms of the K-functional

Let r ∈ N be fixed. For ρ ∈ R we define the operator A(ρ) : L1,loc(0,∞) →
L1,loc(0,∞) by

(3.1) (A(ρ)f)(x) = xρf(x) +
r∑

k=1

αr,k(ρ)ψk(x),

where

(3.2) ψk(x) = xk−1

∫ x

1

y−k+ρf(y)dy, k = 1, 2, . . .

and

(3.3) αr,k(ρ) =
(−1)k

(r − 1)!

(
r − 1
k − 1

) r−1∏
ν=0

(ρ+ r − k − ν), k = 1, 2, . . . , r.
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Obviously, operators of type (3.1), (3.2) preserve the smoothness properties
of the functions on intervals [a, b] ⊂ (0,∞).

We shall use the combinatorial identity for M,N,P ∈ N ∪ {0},M ≤ N

(3.4)
min{P,N−M}∑

K=0

(−1)K
(
N −K

M

)(
P

K

)
=
(
N − P

M − P

)
.

Lemma 3.1. For s = 1, 2, . . . , r we have

(3.5)
r∑
k=s

(k − 1)!
(k − s)!

αr,k(ρ) = (−1)s
(
r

s

) s−1∏
ν=0

(ρ− ν).

Proof. Both sides of (3.5) are polynomials in ρ of degree r. Thus, (3.5) will
be proved if we show that both sides take one and the same values for ρ = i,
i = 0, 1, . . . , r. We have

∏r−1
ν=0(i+ r−k− ν) = 0 for 0 ≤ i < k and

∏r−1
ν=0(i+ r−

k−ν) = (i+r−k)!
(i−k)! for k ≤ i ≤ r. Thus, both sides of (3.5) are 0 for 0 ≤ i < s. For

s ≤ i ≤ r using (3.3) and (3.4) with K = k− s, P = r− s,M = r,N = r+ i− s
we get

r∑
k=s

(k − 1)!
(k − s)!

αr,k(i) =
i∑

k=s

(−1)k(i+ r − k)!
(k − s)!(r − k)!(i− k)!

=
r!

(r − s)!

i∑
k=s

(−1)k
(
r − s

k − s

)(
r + i− k

r

)

= (−1)s
r!

(r − s)!

(
i

s

)
= (−1)s

(
r

s

) s−1∏
ν=0

(i− ν).

This proves the lemma.

Lemma 3.2. Let f ∈ ACr−1
loc (0,∞). Then for s = 1, 2, . . . , r and x ∈ (0,∞)

we have

(A(ρ)f)(s−1)(x) =
s−1∑
j=0

(−1)j
(
r + j − s

j

) j−1∏
ν=0

(ρ− ν)xρ−jf (s−j−1)(x)(3.6)

+
r∑
k=s

(k − 1)!
(k − s)!

αr,k(ρ)x−s+1ψk(x).

Proof. We proceed by induction. For s = 1 (3.6) reduces to (3.1). Let (3.6) be
true for some s < r. Using that (x−s+1ψk(x))′ = xρ−sf(x) + (k − s)x−sψk(x)
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and Lemma 3.1 we get from (3.6)

(A(ρ)f)(s)(x)

=
s−1∑
j=0

(−1)j
(
r + j − s

j

) j−1∏
ν=0

(ρ− ν)
{

(ρ− j)xρ−j−1f (s−j−1)(x) + xρ−jf (s−j)(x)
}

+
r∑
k=s

(k − 1)!
(k − s)!

αr,k(ρ)
{
xρ−sf(x) + (k − s)x−sψk(x)

}
=

s∑
j=0

(−1)j
{(

r + j − s

j

)
−
(
r + j − 1− s

j − 1

)} j−1∏
ν=0

(ρ− ν)xρ−jf (s−j)(x)

+
r∑

k=s+1

(k − 1)!
(k − s− 1)!

αr,k(ρ)x−sψk(x)

=
s∑
j=0

(−1)j
(
r + j − s− 1

j

) j−1∏
ν=0

(ρ− ν)xρ−jf (s−j)(x)

+
r∑

k=s+1

(k − 1)!
(k − s− 1)!

αr,k(ρ)x−sψk(x).

This proves the lemma.

Theorem 3.1. Let r ∈ N and ρ ∈ R. Then for every f ∈ ACr−1
loc (0,∞) we have

(3.7) (A(ρ)f)(r)(x) = xρf (r)(x) a.e.

and
(3.8)

(A(ρ)f)(s−1)(1) =
s∑
i=1

(−1)s−i
(
r − i

s− i

) s−i−1∏
ν=0

(ρ− ν)f (i−1)(1), s = 1, 2, . . . , r.

Proof. Lemma 3.2 with s = r gives

(A(ρ)f)(r−1)(x) =
r−1∑
j=0

(−1)j
j−1∏
ν=0

(ρ− ν)xρ−jf (r−j−1)(x)

+ (−1)r
r−1∏
ν=0

(ρ− ν)
∫ x

1

y−r+ρf(y)dy.

Differentiating this equality we get (3.7). The relation (3.8) follows from
Lemma 3.2 with i = s − j and x = 1 because of ψk(1) = 0. This proves
the theorem.

Lemma 3.3. For 0 ≤ m ≤ n we have

(3.9)
m∑
j=0

(
n− j

m− j

)(
n

j

)m−j−1∏
ν=0

(x− ν)
j−1∏
ν=0

(y − ν) =
(
n

m

)m−1∏
ν=0

(x+ y − ν).
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Proof. Both sides of (3.9) are polynomials in x and y of total degree m. Thus,
(3.9) will be proved if we show that both sides take one and the same values for
x = `, ` = 0, 1, . . ., y = k, k = 0, 1, . . ., k + ` ≤ m. Both sides of (3.9) are 0 for
0 ≤ k + ` < m. For k + ` = m only the term for j = k in the left-hand side is
not 0. Hence

m∑
j=0

(
n− j

m− j

)(
n

j

)m−j−1∏
ν=0

(`−ν)
j−1∏
ν=0

(k−ν) =
(
n− k

m− k

)(
n

k

)
(m−k)!k! =

(
n

m

)
m!.

This proves the lemma.

Theorem 3.2. Let r ∈ N, ρ, σ ∈ R. Then A(ρ)A(σ) = A(ρ+ σ).

Proof. Using Theorem 3.1 for every f ∈ ACr−1
loc (0,∞) we have

(A(ρ)A(σ)f)(r)(x) = xρ(A(σ)f)(r)(x) = xρ+σf (r)(x) = (A(ρ+ σ)f)(r)(x)

and for s = 1, 2, . . . , r

(A(ρ)A(σ)f)(s−1)(1) =
s∑
i=1

(−1)s−i
(
r − i

s− i

) s−i−1∏
ν=0

(ρ− ν)(A(σ)f)(i−1)(1)

=
s∑
i=1

(−1)s−i
(
r − i

s− i

) s−i−1∏
ν=0

(ρ− ν)
i∑

k=1

(−1)i−k
(
r − k

i− k

) i−k−1∏
ν=0

(σ − ν)f (k−1)(1)

=
s∑

k=1

(−1)s−k
[

s∑
i=k

(
r − i

s− i

)(
r − k

i− k

) s−i−1∏
ν=0

(ρ− ν)
i−k−1∏
ν=0

(σ − ν)

]
f (k−1)(1)

=
s∑

k=1

(−1)s−k
(
r − k

s− k

) s−k−1∏
ν=0

(ρ+ σ − ν)f (k−1)(1) = (A(ρ+ σ)f)(s−1)(1),

where we have used Lemma 3.3 with x = ρ, y = σ, m = s − k, n = r − k
and j = i − k. Now Taylor formula gives A(ρ)A(σ)f = A(ρ + σ)f for any
f ∈ ACr−1

loc (0,∞). We complete the proof using the boundedness of the linear
operators A(ρ)A(σ) and A(ρ+σ) and the density of W r

1 [a, b] in L1[a, b] for every
0 < a < b <∞.

Corollary 3.1. {A(ρ)}ρ∈R is a commutative group of operators with A(0) as
the identity element. In particular, A(ρ)−1 = A(−ρ).

From Theorem 3.1 and Corollary 3.1 we get

Corollary 3.2. Let r ∈ N and ρ ∈ R. Then A(ρ)(Πr−1) = Πr−1 and
A(ρ)(ACk−1

loc ) = ACk−1
loc for any k ∈ N.

In the next statement we collect some additional combinatorial properties
of the coefficients αr,k(ρ) which will be used later.
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Proposition 3.1. Let r ∈ N and σ, ρ ∈ R. For αr,k(ρ) given in (3.3) we have

(3.10)
r∑

k=1

αr,k(ρ)
ρ− k + i

= −1, i = 1, 2, . . . , r,

(3.11) αr,k(ρ)−
r∑
i=1

αr,i(σ)αr,k(ρ)
ρ− k + i

= αr,k(ρ+ σ), k = 1, 2, . . . , r,

where we define by continuity

(3.12)
αr,k(ρ)
ρ− k + i

∣∣∣∣
ρ=k−i

= (−1)k+i−1 (r − i)!(i− 1)!
(r − k)!(k − 1)!

, i, k = 1, 2, . . . , r.

Proof. To prove the first identity we just notice that for fi(x) = xi−1, i =
1, 2, . . . , r, and ρ− k + i 6= 0, (3.1), (3.2) and (3.7) imply

(A(ρ)fi)(x) = xρ+i−1 +
r∑

k=1

αr,k(ρ)
ρ− k + i

(xρ+i−1 − xk−1) ∈ Πr−1.

Hence we get (3.10) for an irrational ρ. But as the left-hand side of (3.10) is an
algebraic polynomial in ρ, we get it for any ρ by continuity.

Using Theorem 3.2 and applying twice (3.1), (3.2) and (3.3) we get

(A(ρ+ σ)f)(x) = (A(ρ)A(σ)f)(x)

= xρ+σf(x) +
r∑
i=1

αr,i(σ)
[
1 +

r∑
k=1,k−i 6=ρ

αr,k(ρ)
ρ− k + i

]
xρ+i−1

∫ x

1

y−i+σf(y) dy

+
r∑

k=1

[
αr,k(ρ)−

r∑
i=1,k−i 6=ρ

αr,i(σ)αr,k(ρ)
ρ− k + i

]
xk−1

∫ x

1

y−k+ρ+σf(y) dy

= xρ+σf(x) +
r∑
i=1

αr,i(σ)
[
1 +

r∑
k=1

αr,k(ρ)
ρ− k + i

]
xρ+i−1

∫ x

1

y−i+σf(y) dy

+
r∑

k=1

[
αr,k(ρ)−

r∑
i=1

αr,i(σ)αr,k(ρ)
ρ− k + i

]
xk−1

∫ x

1

y−k+ρ+σf(y) dy

= xρ+σf(x) +
r∑

k=1

[
αr,k(ρ)−

r∑
i=1

αr,i(σ)αr,k(ρ)
ρ− k + i

]
xk−1

∫ x

1

y−k+ρ+σf(y) dy,

where we have applied (3.10) in the last equality. If we let f(x) = 1 in the last
relation and in (3.1) for A(ρ+ σ) we get (3.11) for an irrational ρ+ σ and then
by continuity for any ρ, σ ∈ R.

Remark 3.1. In the proof of Proposition 3.1 we have actually shown that
(3.10), (3.11) are equivalent to Theorem 3.2.
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Now, we give some boundedness properties of A(ρ).

Proposition 3.2. Let r ∈ N, 1 ≤ p ≤ ∞, γ > −1/p, ρ ∈ R. Then for every
f ∈ Lp(χρ+γ0 )[0, b] we have

‖χγ0A(ρ)f‖p,[0,b] ≤ C‖χρ+γ0 f‖p,[0,b].

Also for every τ ∈ R, measurable and non-negative ϕ and g ∈ ACr−1
loc we have

‖χτ0ϕr(A(ρ)g)(r)‖p,[0,b] = ‖χτ+ρ0 ϕrg(r)‖p,[0,b].

Proof. The second statement follows immediately from (3.7). From Corollary
2.1 we get ‖χγ0ψk‖p ≤ C‖χρ+γ0 f‖p for k = 1, 2, . . . , r. Now the first statement
follows from (3.1).

From Proposition 3.2 applied for A(ρ) and A(−ρ), Corollary 3.2 and Propo-
sition 2.1 we get

Proposition 3.3. Let ϕ be a non-negative weight on [0, b], r ∈ N, 1 ≤ p ≤ ∞,
ρ ∈ R, γ > −1/p and γ + ρ > −1/p. Then we have

A(ρ) : (Lp(χ
ρ+γ
0 ), ACr−1

loc , ϕ
rDr) 7→ (Lp(χ

γ
0), ACr−1

loc , ϕ
rDr).

4 Operators that change the weight in the sec-
ond term of the K-functional

Let r ∈ N be fixed. For σ 6= 0 we define the operator B(σ) : L1,loc(0,∞) →
L1,loc(0,∞) by

(4.1) (B(σ)f)(x) = f(xσ) +
r∑

k=1

βr,k(σ)ψk(x),

where

(4.2) ψk(x) = xk−1

∫ x

1

y−kf(yσ) dy, k = 1, 2, . . .

and

(4.3) βr,1(σ) ≡ 0, βr,k(σ) =
(−1)r−k

(r − 2)!

(
r − 2
k − 2

) r−1∏
i=1

(k−1−iσ), k = 2, 3, . . . , r.

Obviously, operators of type (4.1), (4.2) preserve the smoothness properties
of the functions on intervals [a, b] ⊂ (0,∞).

In this section we apply an alternative method for studying the properties
of the operator than the one in the previous section.
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Theorem 4.1. Let r ∈ N and σ ∈ R\{0}. Then for every f ∈ ACr−1
loc (0,∞) we

have

(4.4) (B(σ)f)(r)(x) = σrxr(σ−1)f (r)(xσ) a.e.

In order to prove Theorem 4.1 we need two auxiliary statements.

Lemma 4.1. For σ 6= 0 there are unique numbers βr,k = βr,k(σ), k = 1, . . . , r,
such that B(σ) defined in (4.1), (4.2) satisfies (4.4) for any f ∈ ACr−1

loc (0,∞).
Moreover, βr,k(σ) are continuous functions of σ ∈ R\{0} and βr,1 ≡ 0.

Proof. It is enough to show that there exist unique numbers β′r,i = β′r,i(σ), i =
1, . . . , r, which are continuous functions of σ 6= 0, such that

(4.5) (B(σ)f)(x) = f(xσ) +
r∑
i=1

β′r,iΨi(x)

satisfies (4.4), where

Ψi(x) =
1

(i− 1)!

∫ x

1

(x− y)i−1y−if(yσ) dy =
i∑

k=1

(−1)i−k

(i− 1)!

(
i− 1
k − 1

)
ψk(x)

for i = 1, 2, . . . . Then

βr,k =
r∑
i=k

(−1)i−k

(i− 1)!

(
i− 1
k − 1

)
β′r,i.

We use the following formula for the k-th derivative (k ≥ 1) of a composition
of functions

(4.6) (f ◦ θ)(k) =
k∑
j=1

f (j)(θ)
j!

j−1∑
l=0

(−1)l
(
j

l

)
(θj−l)(k)θl.

Using the above formula we have

Ψ(r)
i (x) =

(
Ψ(i)
i (x)

)(r−i) = (x−if(xσ))(r−i) =
r−i∑
k=0

(
r − i

k

)
(x−i)(r−i−k)(f(xσ))(k)

= (−1)r−i
(r − 1)!
(i− 1)!

x−rf(xσ)

+
r−i∑
k=1

(
r − i

k

)
(−1)r−i−k

(r − k − 1)!
(i− 1)!

xk−r
k∑
j=1

f (j)(xσ)
j!

j−1∑
l=0

(−1)l
(
j

l

)
(xσ(j−l))(k)xσl

=
r−i∑
k=1

k∑
j=1

j−1∑
l=0

(−1)r−i−k+l
(
r − i

k

)(
j

l

)
(r − k − 1)!
j! (i− 1)!

k−1∏
n=0

[σ(j − l)− n]xσj−rf (j)(xσ)

+ (−1)r−i
(r − 1)!
(i− 1)!

x−rf(xσ) =
r−i∑
j=0

ar,i,j(σ)xσj−rf (j)(xσ),
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where we have put ar,i,0(σ) = (−1)r−i (r−1)!
(i−1)! and

ar,i,j(σ) =
r−i∑
k=j

j−1∑
l=0

(−1)r−i−k+l
(
r − i

k

)(
j

l

)
(r − k − 1)!
j! (i− 1)!

k−1∏
n=0

[σ(j − l)− n]

for j = 1, . . . , r − i. Hence we get from (4.5) and (4.6)

(B(σ)f)(r)(x) = (f(xσ))(r) +
r∑
i=1

β′r,iΨ
(r)
i (x)

=
r∑
j=1

f (j)(xσ)
j!

j−1∑
l=0

(−1)l
(
j

l

) r−1∏
n=0

[σ(j − l)− n]xσj−r

+
r∑
i=1

β′r,i

r−i∑
j=0

ar,i,j(σ)xσj−rf (j)(xσ)

= br,r(σ)xr(σ−1)f (r)(xσ)

+
r−1∑
j=1

(r−j∑
i=1

ar,i,j(σ)β′r,i + br,j(σ)
)
xσj−rf (j)(xσ),

where we have used the notation

bm,j(σ) =
1
j!

j−1∑
l=0

(−1)l
(
j

l

)m−1∏
n=0

[σ(j − l)− n].

Next we observe that br,r(σ) = r!σr/r! = σr as the sum above with m = j = r
turns into the r-th finite difference with step 1 of the r-th degree algebraic poly-
nomial σx(σx−1) · · · (σx−r+1) at the point 0. Further, we have ar,r−j,j(σ) =
bj,j(σ) = σj 6= 0 for j = 0, . . . , r − 1 and then β′r,i, i = 1, . . . , r, are the unique
solution of the triangular linear system

r−j∑
i=1

ar,i,j(σ)β′r,i = −br,j(σ), j = 0, . . . , r − 1.

Moreover, Crammer’s formulae imply that the solution of the linear system
above consists of rational functions of σ, as ar,i,j(σ), i = 1, . . . , r − j, j =
0, . . . , r−1 and br,j(σ), j = 0, . . . , r−1 are polynomials of σ and the determinant
of the system is σr(r−1)/2. Thus, β′r,i and hence βr,i exist, they are unique and
they are continuous functions of σ 6= 0.

Finally, in order to prove βr,1 ≡ 0 we let in (4.1) f ≡ 1. Then, in view of (4.4)
and (4.2), (4.1) implies βr,1ψ1 is an algebraic polynomial of degree r − 1. But
ψ1(x) = log x. Hence βr,1(σ) ≡ 0. This completes the proof of the lemma.
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Lemma 4.2. Let ai 6= ak and bi 6= bk for i 6= k, i, k = 1, . . . , n. If ai + bj 6= 0
for i, j = 1, . . . , n then the linear system of equations

n∑
j=1

xj
ai + bj

= 1, i = 1, . . . , n,

has a unique solution given by

xj =
n∏
i=1

(ai + bj)
n∏

i=1,i 6=j

(bj − bi)−1, j = 1, . . . , n.

Proof. Set

∆(a1, . . . , an; b1, . . . , bn) = det
(

1
ai + bj

)n
i,j=1

.

The following relation, known as Cauchy theorem, holds (see for example [19,
p. 327])

(4.7) ∆(a1, . . . , an; b1, . . . , bn) =
∏

1≤i<k≤n

[(ak − ai)(bk − bi)]
n∏

i,k=1

(ai + bk)−1.

(4.7) shows that the system has a unique solution. The proof of (4.7) is by
induction. In order to obtain a recursive relation for the determinants one
subtracts the last row from the previous ones, takes the common multipliers
out of the determinant and repeat the same with the last column. Crammer’s
formulae (with similar computations for the numerators) yield that the solution
xj , j = 1, . . . , n of the system is given by

xj =
n−1∏
i=1

(an − ai)
n∏

k=1,k 6=j

(an + bk)−1(−1)n+j

× ∆(a1, . . . , an−1; b1, . . . , bj−1, bj+1, . . . , bn)
∆(a1, . . . , an; b1, . . . , bn)

,

which proves the lemma in view of (4.7).

Proof of Theorem 4.1. Let βr,k be the coefficients from Lemma 4.1. Set fi(x) =
xi−1 for i = 2, 3, . . . , r. Then (4.1), (4.2) for (i − 1)σ − k + 1 6= 0 and (4.4)
implies

(B(σ)fi)(x) = xσ(i−1) +
r∑

k=2

βr,k
xσ(i−1) − xk−1

(i− 1)σ − k + 1
∈ Πr−1.

Hence for irrational σ we have

(4.8)
r∑

k=2

βr,k
k − 1− (i− 1)σ

= 1, i = 2, 3, . . . , r.
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From Lemma 4.2 with j = k − 1, n = r − 1, ai = −(i − 1)σ, bj = j we get
that βr,k(σ), k = 2, . . . , r, from (4.3) are the solution of (4.8). This proves the
theorem for irrational σ in view of the uniqueness in Lemma 4.1 and Lemma
4.2. For rational σ 6= 0 the statement follows from the continuous dependance
of βr,k(σ) on σ in (4.3) and Lemma 4.1.

Remark 4.1. In the proof we have established that βr,k(σ), k = 2, . . . , r, from
(4.3) satisfy (4.8) for every σ 6= 0 if we understand that the ratio in (4.8) is
defined by continuity when σ = (k − 1)/(i− 1) for some i, k = 2, 3, . . . , r, i.e.

(4.9)
βr,k(σ)

k − 1− (i− 1)σ

∣∣∣∣
σ=(k−1)/(i−1)

= (−1)k+i
(r − i)!(i− 2)!(k − 1)r−2

(r − k)!(k − 2)!(i− 1)r−2
.

Theorem 4.2. Let r ∈ N, ρ, σ ∈ R\{0}. Then B(σ)B(ρ) = B(σρ).

Proof. Applying twice (4.1) we have for every f ∈ L1,loc(0,∞)

(B(σ)B(ρ)f)(x)

= (B(ρ)f)(xσ) +
r∑

k=2

βr,k(σ)xk−1

∫ x

1

y−k(B(ρ)f)(yσ) dy

= f(xσρ) +
r∑
l=2

βr,l(ρ)xσ(l−1)

∫ xσ

1

y−lf(yρ) dy

+
r∑

k=2

βr,k(σ)xk−1

∫ x

1

y−k
(
f(yσρ) +

r∑
l=2

βr,l(ρ)yσ(l−1)

∫ yσ

1

u−lf(uρ) du
)
dy

= f(xσρ) +
r∑
l=2

σβr,l(ρ)xσ(l−1)

∫ x

1

u−σ(l−1)−1f(uσρ) du

+
r∑

k=2

βr,k(σ)xk−1

∫ x

1

y−kf(yσρ) dy

+
r∑

k=2

r∑
l=2

σβr,k(σ)βr,l(ρ)xk−1

∫ x

1

yσ(l−1)−k
(∫ y

1

u−σ(l−1)−1f(uσρ) du
)
dy.

If σ(l − 1) = k − 1 then βr,k(σ) = 0 and if σ(l − 1) 6= k − 1 then

xk−1

∫ x

1

yσ(l−1)−k
(∫ y

1

u−σ(l−1)−1f(uσρ) du
)
dy =

1
σ(l − 1)− (k − 1)

×
(
xσ(l−1)

∫ x

1

u−σ(l−1)−1f(uσρ) du− xk−1

∫ x

1

u−kf(uσρ) du
)
.
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Hence

(B(σ)B(ρ)f)(x) = f(xσρ)

+
r∑
l=2

(
σβr,l(ρ) + σ

r∑
k=2

k−1 6=σ(l−1)

βr,l(ρ)βr,k(σ)
σ(l − 1)− (k − 1)

)

xσ(l−1)

∫ x

1

u−σ(l−1)−1f(uσρ) du

+
r∑

k=2

(
βr,k(σ)− σ

r∑
l=2

σ(l−1) 6=k−1

βr,k(σ)βr,l(ρ)
σ(l − 1)− (k − 1)

)
xk−1

∫ x

1

u−kf(uσρ) du.

Adding and subtracting in the above the terms for k = σ(l − 1) + 1 with the
convention (4.9) and applying (4.8) afterwards, we get for every f ∈ L1,loc(0,∞)

(B(σ)B(ρ)f)(x)

(4.10)

= f(xσρ) +
r∑

k=2

(
βr,k(σ)− σ

r∑
l=2

βr,k(σ)βr,l(ρ)
σ(l − 1)− (k − 1)

)
xk−1

∫ x

1

u−kf(uσρ) du.

On the other hand for any f ∈ ACr−1
loc (0,∞) (4.4) implies

(B(σ)B(ρ)f)(r)(x) = σrxr(σ−1)(B(ρ)f)(r)(xσ) = σrxr(σ−1)ρrxσr(ρ−1)f (r)(xσρ)

= (σρ)rxr(σρ−1)f (r)(xσρ) = (B(σρ)f)(r)(x).

Hence B(σ)B(ρ)f −B(σρ)f ∈ Πr−1. Thus, (4.10) and (4.1) imply

r∑
k=2

(
βr,k(σ)− σ

r∑
l=2

βr,k(σ)βr,l(ρ)
σ(l − 1)− (k − 1)

− βr,k(σρ)
)
xk−1

∫ x

1

u−kf(uσρ) du

is an algebraic polynomial of degree at most r − 1 for any f ∈ ACr−1
loc (0,∞). If

we put f(x) = xr/σρ exp(x1/σρ), f ∈ ACr−1
loc (0,∞), in the above relation and

use that the system of functions {xk}r−1
k=0∪ {xk−1

∫ x
1
ur−keu du}rk=2 is linearly

independent we get

(4.11) βr,k(σ)− σ
r∑
l=2

βr,k(σ)βr,l(ρ)
σ(l − 1)− (k − 1)

= βr,k(σρ), k = 2, . . . , r.

Finally, using (4.11) in (4.10) and comparing with (4.1), we prove the theorem.

As an immediate corollary of the last theorem, we get the following important
property of the linear operators B(σ).
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Corollary 4.1. {B(σ)}σ∈R\{0} and {B(σ)}σ∈(0,∞) are commutative groups of
operators with B(1) as the identity element. In particular B(σ)−1 = B(σ−1).

From Theorem 4.1 and Corollary 4.1 we get

Corollary 4.2. Let r ∈ N and σ 6= 0. Then B(σ)(Πr−1) = Πr−1 and
B(σ)(ACk−1

loc ) = ACk−1
loc for any k ∈ N.

We can change the order of applying the operators A and B as follows.

Proposition 4.1. Let r ∈ N, ρ ∈ R and σ 6= 0. Then B(σ)A(ρ) = A(ρσ)B(σ).

Proof. As in the proof of Theorem 4.2 using (3.10), we get for any
f ∈ L1,loc(0,∞)

(4.12) (A(ρσ)B(σ)f)(x) = xρσf(xσ)

+
r∑

k=1

(
αr,k(ρσ)−

r∑
i=2

αr,k(ρσ)βr,i(σ)
ρσ − k + i

)
xk−1

∫ x

1

yρσ−kf(yσ) dy.

Similarly, using (4.8), we get

(4.13)

(B(σ)A(ρ)f)(x) = xρσf(xσ) + σαr,1(ρ)
(
1−

r∑
i=2

βr,i(σ)
i− 1

)∫ x

1

yρσ−1f(yσ) dy

+
r∑

k=2

(
βr,k(σ) + σ

r∑
i=1

αr,i(ρ)βr,k(σ)
k − 1− σ(i− 1)

)
xk−1

∫ x

1

yρσ−kf(yσ) dy.

For any f ∈ ACr−1
loc (0,∞) (3.7) and (4.4) imply

(A(ρσ)B(σ)f)(r)(x) = xρσ(B(σ)f)(r)(x) = σrxρσ+r(σ−1)f (r)(xσ)

= σrxr(σ−1)(A(ρ)f)(r)(xσ) = (B(σ)A(ρ)f)(r)(x).

Hence A(ρσ)B(σ)f−B(σ)A(ρ)f ∈ Πr−1. Thus, as in the proof of Theorem 4.2,
if we put f(x) = x−ρ+r/σ exp(x1/σ) then (4.12) and (4.13) imply

(4.14) αr,1(ρσ)−
r∑
i=2

αr,1(ρσ)βr,i(σ)
ρσ − 1 + i

= σαr,1(ρ)
(
1−

r∑
i=2

βr,i(σ)
i− 1

)
and for k = 2, 3, . . . , r

(4.15) αr,k(ρσ)−
r∑
i=2

αr,k(ρσ)βr,i(σ)
ρσ − k + i

= βr,k(σ) + σ
r∑
i=1

αr,i(ρ)βr,k(σ)
k − 1− σ(i− 1)

.

Now, replacing (4.14) and (4.15) in (4.12) and (4.13) we complete the proof.

Now, we give some boundedness properties of B(σ).
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Proposition 4.2. Let r ∈ N, 1 ≤ p ≤ ∞, γ > −1 − 1/p, σ > 0. Then with
λ = 1− 1/σ for every f ∈ Lp(χγ−λ(γ+1/p)

0 )[0, bσ] we have

‖χγ0B(σ)f‖p,[0,b] ≤ C‖χγ−λ(γ+1/p)
0 f‖p,[0,bσ ].

Also for every τ ∈ R and g ∈ ACr−1
loc we have

‖χτ0(B(σ)g)(r)‖p,[0,b] = σr−1/p‖χτ−λ(τ+1/p)
0 χλr0 g(r)‖p,[0,bσ ].

Proof. The second statement follows immediately from (4.4). From Corollary
2.1 we get ‖χγ0ψk‖p ≤ C‖χγ−λ(γ+1/p)

0 f‖p for γ + k − 1 > −1/p, k = 2, . . . , r.
Now the first statement follows from (4.1) and (4.3).

From Proposition 4.2 applied for B(σ), τ = γ and for B(1/σ), τ = γ − (γ +
1/p)(1− 1/σ), Corollary 4.2 and Proposition 2.1 we get

Proposition 4.3. Let r ∈ N, 1 ≤ p ≤ ∞, σ > 0, γ > −1 − 1/p and γ >
−σ − 1/p. Then with λ = 1− 1/σ we have

B(σ) : (Lp(χ
γ−λ(γ+1/p)
0 ), ACr−1

loc , χ
λr
0 Dr) 7→ (Lp(χ

γ
0), ACr−1

loc , D
r).

5 Compositions of operators

In this section we combine the results from the previous two sections and con-
struct operators acting on spaces of functions defined on a given finite interval
[a, b].

First, we observe that one can replace the point 1 in the definitions of ψk in
(3.2) and (4.2) by any other point ξ inside (0,∞) without affecting the properties
of operators A and B. Indeed, such a change adds r − 1-st degree polynomials
to A(ρ)f and B(σ)f and hence Theorem 3.1 and Theorem 4.1 remain true. On
the other hand the group properties are also valid because they depend only on
combinatorial identities (one only has to replace (3.8) with (3.6) for x = ξ).

Second, Proposition 4.2 shows that it is convenient (but not necessary) to
work with changes of the variable that keep unchanged the domain of the func-
tions.

Definition 5.1. Let r ∈ N. For a given finite interval [a, b] let s be one of the
points a or b, let e be the other point and let ξ ∈ [a, b], ξ 6= s be fixed. For
every function f which is integrable on any [c, d] ⊂ [a, b], c 6= s 6= d, and every
x ∈ [a, b] we set

(A(ρ; s, e; ξ)f)(x) =
(
x− s

e− s

)ρ
f(x)(5.1)

+
1

e− s

r∑
k=1

αr,k(ρ)
(
x− s

e− s

)k−1 ∫ x

ξ

(
y − s

e− s

)−k+ρ
f(y)dy,
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where αr,k(ρ) are given in (3.3), ρ ∈ R, and

(B(σ; s, e; ξ)f)(x) = f

(
s+ (e− s)

(
x− s

e− s

)σ)
(5.2)

+
1

e− s

r∑
k=2

βr,k(σ)
(
x− s

e− s

)k−1 ∫ x

ξ

(
y − s

e− s

)−k
f

(
s+ (e− s)

(
y − s

e− s

)σ)
dy,

where βr,k(σ) are given in (4.3), σ > 0.

Thus, the operators in (5.1) and (5.2) are designed to treat singularities of
the weights at the point s (which is not necessarily the left end of the interval)
starting the integration from any point ξ 6= s. For s = 0, e ≥ 1, ξ = 1 operators
A(ρ; s, e; ξ) and B(σ; s, e; ξ) reduce to A(ρ) and B(σ) from Sections 3 and 4. If,
for example, we would like to treat a singularity at 1 for a function defined in
[0, 1] then for a fixed ξ ∈ (0, 1) (5.1) and (5.2) become

(A(ρ; 1, 0; ξ)f)(x) = (1− x)ρf(x)−
r∑

k=1

αr,k(ρ)(1− x)k−1

∫ x

ξ

(1− y)−k+ρf(y)dy,

(B(σ; 1, 0; ξ)f)(x)

= f(1− (1− x)σ)−
r∑

k=2

βr,k(σ)(1− x)k−1

∫ x

ξ

(1− y)−kf(1− (1− y)σ) dy.

The main algebraic properties of A and B are given by

Theorem 5.1. Let r ∈ N, ρ, σ ∈ R. Then:
a) for every f ∈ ACr−1

loc (a, b) we have

(A(ρ; s, e; ξ)f)(r)(x) =
(
x− s

e− s

)ρ
f (r)(x) a.e.

b) A(ρ; s, e; ξ)A(σ; s, e; ξ) = A(ρ+ σ; s, e; ξ).

Theorem 5.2. Let r ∈ N, σ, ρ > 0. Then:
a) for every f ∈ ACr−1

loc (a, b) we have

(B(σ; s, e; ξ)f)(r)(x) = σr
(
x− s

e− s

)r(σ−1)

f (r)

(
s+ (e− s)

(
x− s

e− s

)σ)
a.e.

b) B(ρ; s, e; ξ)B(σ; s, e; ξ) = B(ρσ; s, e; ξ).

From Theorem 5.1 and Theorem 5.2 we get

Corollary 5.1. Let r ∈ N, ρ ∈ R and σ > 0. Then

A(ρ; s, e; ξ)(Πr−1) = Πr−1; A(ρ; s, e; ξ)(ACk−1
loc ) = ACk−1

loc , ∀k ∈ N;

B(σ; s, e; ξ)(Πr−1) = Πr−1; B(σ; s, e; ξ)(ACk−1
loc ) = ACk−1

loc , ∀k ∈ N.
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In addition to the group properties from Sections 3 and 4 we observe that
operators (5.1) commute in the following way.

Proposition 5.1. Let r ∈ N, ρ, σ ∈ R and ξ ∈ (a, b). Then

A(ρ; a, b; ξ)A(σ; b, a; ξ) = A(σ; b, a; ξ)A(ρ; a, b; ξ).

Proof. For every f ∈ ACr−1
loc (a, b) applying twice Theorem 5.1 a) we get

(A(ρ; a, b; ξ)A(σ; b, a; ξ)f)(r)(x) =
(
x− a

b− a

)ρ(
b− x

b− a

)σ
f (r)(x).

Hence

(5.3) (A(ρ; a, b; ξ)A(σ; b, a; ξ)f)(r)(x) = (A(σ; b, a; ξ)A(ρ; a, b; ξ)f)(r)(x).

Set v[F, ξ] = (F (ξ), F ′(ξ), . . . , F (r−1)(ξ))T . Then Lemma 3.2 and (5.1) give

v[A(ρ; a, b; ξ)f, ξ] = M(ρ; a, b; ξ)v[f, ξ],

where M(ρ; a, b; ξ) = (µk,l(ρ; a, b; ξ))rk,l=1, µk,l(ρ; a, b; ξ) = 0 for k < l and

µk,l(ρ; a, b; ξ) = (−1)k−l
(
r − l

k − l

) k−l−1∏
ν=0

(ρ− ν)
(
ξ − a

b− a

)ρ−k+l
(b− a)l−k, l ≤ k.

Hence

v[A(ρ; a, b; ξ)A(σ; b, a; ξ)f, ξ] = M(ρ; a, b; ξ)M(σ; b, a; ξ)v[f, ξ].

From the definition of µk,l we observe that:
i) µi,n(ρ; a, b; ξ)µn,j(σ; b, a; ξ) = 0 if n < j or i < n;
ii) µi,n(ρ; a, b; ξ)µn,j(σ; b, a; ξ) = µi,i+j−n(σ; b, a; ξ)µi+j−n,j(ρ; a, b; ξ) if j ≤

n ≤ i.
Hence

r∑
n=1

µi,n(ρ; a, b; ξ)µn,j(σ; b, a; ξ) =
r∑

n=1

µi,n(σ; b, a; ξ)µn,j(ρ; a, b; ξ)

and
M(ρ; a, b; ξ)M(σ; b, a; ξ) = M(σ; b, a; ξ)M(ρ; a, b; ξ).

Therefore

v[A(ρ; a, b; ξ)A(σ; b, a; ξ)f, ξ] = v[A(σ; b, a; ξ)A(ρ; a, b; ξ)f, ξ].

Thus, for every f ∈ ACr−1
loc (a, b) applying (5.3) and the above equality in

the Taylor formula we get A(ρ; a, b; ξ)A(σ; b, a; ξ)f = A(σ; b, a; ξ)A(ρ; a, b; ξ)f .
Now we complete the proof using the boundedness of the linear operators
A(ρ; a, b; ξ)A(σ; b, a; ξ) and A(σ; b, a; ξ)A(ρ; a, b; ξ) and the density of W r

1 [c, d]
in L1[c, d] for any a < c < d < b.
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Remark 5.1. Analogues of Proposition 5.1 with operators B cannot be true
because we have for smooth f

(B(ρ; a, b; ξ)B(σ; b, a; ξ)f)(r)(x) 6= (B(σ; b, a; ξ)B(ρ; a, b; ξ)f)(r)(x)

and

(A(ρ; a, b; ξ)B(σ; b, a; ξ)f)(r)(x) 6= (B(σ; b, a; ξ)A(ρ; a, b; ξ)f)(r)(x).

In order to combine several operators of type (5.1) and (5.2) we have to prove
their boundedness in weighted Lp spaces with more general weights than those
in Proposition 3.2 and Proposition 4.2. In order to describe some conditions on
the weight powers we give

Definition 5.2. Γ+(p) = (−1/p,+∞) for 1 ≤ p < ∞ and Γ+(∞) = [0,+∞).
Γ−(p) = (−∞, 1− 1/p) for 1 < p ≤ ∞ and Γ−(1) = (−∞, 0].

Note that Γ−(p)∩Γ+(p) is a (semi-)open interval of length 1 for fixed p and
0 ∈ Γ±(p) for every p.

Proposition 5.2. Let r ∈ N, 1 ≤ p ≤ ∞, w(x) = χγa
a (x)χγb

b (x) = (x−a)γa(b−
x)γb with γa > −1/p, γb ∈ R and ρ ∈ R. Then for every f ∈ Lp(χρaw)[a, b] we
have

(5.4) ‖w(A(ρ; a, b; ξ)f)‖p,[a,b] ≤ C‖wχρaf‖p,[a,b],

where ξ ∈ (a, b) if γb ∈ Γ+(p) and/or ξ = b if γb ∈ Γ−(p). Also for every
non-negative measurable φ in (a, b) and every g ∈ ACr−1

loc [a, b] we have

‖wφ(A(ρ; a, b; ξ)g)(r)‖p,[a,b] = (b− a)−ρ‖wχρaφg(r)‖p,[a,b].

Proof. The second statement follows immediately from Theorem 5.1 a).
In order to prove the first statement we multiply (5.1) by w, take Lp norm

and apply Minkowski’s inequality according to the terms on the right-hand side
of (5.1). The first norm is the norm on the right-hand side of (5.4). Every of
the other norms ‖wψk‖p,[a,b], k = 1, 2, . . . , r, where

ψk(x) =
(
x− a

b− a

)k−1 ∫ x

ξ

(
y − a

b− a

)−k+ρ
f(y)dy,

is estimated by applying twice Corollary 2.1 – for the subintervals [a, c] and
[c, b], where c = ξ if γb ∈ Γ+(p) or c = a+b

2 if γb ∈ Γ−(p).
In [a, c] we have w(x) ∼ (x − a)γa and Corollary 2.1 b) with β = γ =

γa + k − 1 + 1/p > 0 estimates ‖wψk‖p,[a,c] with the norm on the right-hand
side of (5.4).

In [c, b] we have w(x) ∼ (b− x)γb . If γb ∈ Γ+(p) then Corollary 2.1 b) with
γ = γb + 1/p > 0, β = γ− 1 gives ‖wψk‖p,[c,b] ≤ C‖wf‖p,[c,b] ≤ C‖wχρaf‖p,[a,b].
If γb ∈ Γ−(p) then Corollary 2.1 a) with β = −γb+1−1/p > 0, γ = β−1 gives
‖wψk‖p,[c,b] ≤ C‖wf‖p,[c,b] ≤ C‖wχρaf‖p,[a,b]. This completes the proof.
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Proposition 5.3. Let r ∈ N, 1 ≤ p ≤ ∞, w(x) = χγa
a (x)χγb

b (x) = (x−a)γa(b−
x)γb with γa > −1 − 1/p, γb ∈ R and σ > 0. Then with λ = 1 − 1/σ for every
f ∈ Lp(χ−(γa+1/p)λ

a w)[a, b] we have

(5.5) ‖w(B(σ; a, b; ξ)f)‖p,[a,b] ≤ C‖wχ−(γa+1/p)λ
a f‖p,[a,b],

where ξ ∈ (a, b) if γb ∈ Γ+(p) and/or ξ = b if γb ∈ Γ−(p). Also for every
τa, τb ∈ R, φ(x) = χτa

a (x)χτb

b (x) = (x − a)τa(b − x)τb and g ∈ ACr−1
loc [a, b] we

have

‖wφ(B(σ; a, b; ξ)g)(r)‖p,[a,b] ∼ ‖wχ−(γa+1/p)λ
a φχ(r−τa)λ

a g(r)‖p,[a,b].

Proof. The second statement follows from Theorem 5.2 a) by applying the
change of the variable ((x − a)/(b − a))σ = (y − a)/(b − a) and taking into
account that (b− a)1/σ − (y − a)1/σ ∼ b− y for y ∈ [a, b].

In order to prove the first statement we multiply (5.2) by w, take Lp norm
and apply Minkowski’s inequality according to the terms on the right-hand side
of (5.2). The first norm is directly evaluated by the above mentioned change of
the variable with the norm on the right-hand side of (5.5). Every of the other
norms ‖wψk‖p,[a,b], k = 2, 3, . . . , r, where

ψk(x) =
(
x− a

b− a

)k−1 ∫ x

ξ

(
y − a

b− a

)−k
f

(
a+ (b− a)

(
y − a

b− a

)σ)
dy,

is estimated by applying twice Corollary 2.1 – for the subintervals [a, c] and
[b, c], where c = ξ if γb ∈ Γ+(p) or c = a+b

2 if γb ∈ Γ−(p).
In [a, c] we have w(x) ∼ (x − a)γa and Corollary 2.1 b) with β = γ =

γa + k − 1 + 1/p > 0 estimates ‖wψk‖p,[a,c] with the norm on the right-hand
side of (5.5).

In [c, b] we have w(x) ∼ (b − x)γb . If γb ∈ Γ+(p) then Corollary 2.1 b)
with γ = γb + 1/p > 0, β = γ − 1 gives ‖wψk‖p,[c,b] ≤ C‖wf‖p,[c̄,b] ≤
C‖wχ−(γa+1/p)λ

a f‖p,[a,b] where c̄ = a + (b − a)1−σ(c − a)σ. If γb ∈ Γ−(p) then
Corollary 2.1 a) with β = −γb + 1 − 1/p > 0, γ = β − 1 gives ‖wψk‖p,[c,b] ≤
C‖wf‖p,[c̄,b] ≤ C‖wχ−(γa+1/p)λ

a f‖p,[a,b]. This completes the proof.

Proposition 5.2 shows the operator A(ρ) clears the multiplier χρa from the
weights in both terms of the K-functional, where the weight in the first term is
restricted by Hardy’s inequality and there are practically no restrictions on the
second term weight.

Proposition 5.3 shows the operator B(σ) clears the multiplier χ(r−τa)(1−1/σ)
a

from the second term of the K-functional, but also clears χ−(γa+1/p)(1−1/σ)
a as

an additional weight in both terms. Once more the weight in the first term is
restricted by Hardy’s inequality and there are practically no restrictions on the
second term weight.

From Proposition 5.2 applied for A(ρ) and A(−ρ) (with weight w(x) =
(x− a)γa+ρ(b− x)γb), Corollary 5.1 and Proposition 2.1 we get
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Proposition 5.4. Let r ∈ N, 1 ≤ p ≤ ∞, ρ ∈ R, w(x) = (x − a)γa(b − x)γb

with γa > −1/p, γa + ρ > −1/p, γb ∈ R and let φ be measurable non-negative
on [a, b].Then we have

A(ρ; a, b; ξ) : (Lp(χρaw), ACr−1
loc , φD

r) 7→ (Lp(w), ACr−1
loc , φD

r),

where ξ ∈ (a, b) if γb ∈ Γ+(p) and/or ξ = b if γb ∈ Γ−(p).

From Proposition 5.3 applied for B(σ) and B(1/σ) (with γa/σ− (1−1/σ)/p
in the place of γa), Corollary 5.1 and Proposition 2.1 we get

Proposition 5.5. Let r ∈ N, 1 ≤ p ≤ ∞, σ > 0, w(x) = (x − a)γa(b − x)γb

with γa > −1− 1/p, γa > −σ − 1/p, γb ∈ R and φ(x) = (x− a)τa(b− x)τb with
τa, τb ∈ R. Then we have with λ = 1− 1/σ

B(σ; a, b; ξ) : (Lp(χ−(γa+1/p)λ
a w), ACr−1

loc , φχ
(r−τa)λ
a Dr) 7→ (Lp(w), ACr−1

loc , φD
r),

where ξ ∈ (a, b) if γb ∈ Γ+(p) and/or ξ = b if γb ∈ Γ−(p).

The previous statements show that one can treat separately the weight sin-
gularities at both ends of the domain. Of course, the propositions remain true
if we interchange the places of a and b.

Remark 5.2. Comparing Proposition 5.5 (and Proposition 2.1) from one side
with Theorem 6.5.1 in [5] and the results in [6] from another side one can find
several advantages of the first statement:

• no additional terms in the equivalence relation;

• the use of K-functionals (or equivalent moduli) instead of main-part mod-
uli (in Theorem 6.5.1);

• taking the restrictions on the parameters to natural boundaries. In the
notations of Proposition 5.5 (with τa = τb = 0), the main restrictions in
Theorem 6.5.1 and Theorem 1 in [6] are γa > r − 1 − 1/p, r = 2, 3, . . . ,
provided σ ≥ 1. It should be compared with the restriction γa > −1−1/p
in Proposition 5.5.

Now we are ready to combine operators (5.1) and (5.2) and to prove our
main result.

Theorem 5.3. Let r ∈ N, 1 ≤ p ≤ ∞, κa, κb, λa, λb, µa, µb, νa, νb ∈ R, ϕ(x) =
(x − a)λa(b − x)λb , ϕ̄(x) = (x − a)νa(b − x)νb with (1 − λa)(1 − νa) > 0 and
(1 − λb)(1 − νb) > 0, w(x) = (x − a)κa(b − x)κb with −1/p < κa, κb, w̄(x) =
(x− a)µa(b− x)µb with −1/p < µa, µb. Set

A = A(ρb; b, a; ξ)B(σb; b, a; ξ)A(ρa; a, b; ξ)B(σa; a, b; ξ),

where ξ ∈ (a, b) and

σa =
1− νa
1− λa

, σb =
1− νb
1− λb

, ρa = (κa+
1
p
)σa−

1
p
−µa, ρb = (κb+

1
p
)σb−

1
p
−µb.
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Then

A : (Lp(w)[a, b], ACr−1
loc , ϕ

rDr) 7→ (Lp(w̄)[a, b], ACr−1
loc , ϕ̄

rDr).

Hence for t > 0 and f ∈ Lp(w)[a, b] we have

K(f, tr;Lp(w), ACr−1
loc , ϕ

rDr) ∼ K(Af, tr;Lp(w̄), ACr−1
loc , ϕ̄

rDr).

Proof. First, note that σa, σb > 0. From Proposition 5.5 with τa = rνa, τb = rλb,
γa = ρa + µa, γb = κb, σ = σa we get

B(σa; a, b; ξ) : (Lp(χκa−ρa−µa
a χρa+µa

a χκb

b ), ACr−1
loc , χ

rλa
a χrλb

b Dr)

7→ (Lp(χρa+µa
a χκb

b ), ACr−1
loc , χ

rνa
a χrλb

b Dr),

because κa − ρa − µa = −(ρa + µa + 1/p)(1 − σ−1
a ) and ρa + µa + 1/p =

(κa + 1/p)σa > 0.
From Proposition 5.4 with φ = χrνa

a χrλb

b , γa = µa, γb = κb, ρ = ρa we get

A(ρa; a, b; ξ) : (Lp(χρa+µa
a χκb

b ), ACr−1
loc , χ

rνa
a χrλb

b Dr)

7→ (Lp(χµa
a χκb

b ), ACr−1
loc , χ

rνa
a χrλb

b Dr),

because ρa + µa > −1/p.
From Proposition 5.5 with τa = rνa, τb = rνb, γa = µa, γb = ρb + µb, σ = σb

we get

B(σb; b, a; ξ) : (Lp(χµa
a χκb−ρb−µb

b χρb+µb

b ), ACr−1
loc , χ

rνa
a χrλb

b Dr)

7→ (Lp(χµa
a χρb+µb

b ), ACr−1
loc , χ

rνa
a χrνb

b Dr),

because κb−ρb−µb = −(ρb+µb+1/p)(1−σ−1
b ) and ρb+µb+1/p = (κb+1/p)σb >

0.
From Proposition 5.4 with φ = χrνa

a χrνb

b , γa = µa, γb = µb, ρ = ρb we get

A(ρb; b, a; ξ) : (Lp(χµa
a χρb+µb

b ), ACr−1
loc , χ

rνa
a χrνb

b Dr)

7→ (Lp(χµa
a χµb

b ), ACr−1
loc , χ

rνa
a χrνb

b Dr),

because ρb + µb > −1/p.
Combining the four mappings we prove the theorem.

If we decide to use only operators of type B we get

Theorem 5.4. Let r ∈ N, 1 ≤ p ≤ ∞, κa, κb, λa, λb, νa, νb ∈ R, ϕ(x) =
(x − a)λa(b − x)λb , ϕ̄(x) = (x − a)νa(b − x)νb with (1 − λa)(1 − νa) > 0 and
(1− λb)(1− νb) > 0, w(x) = (x− a)κa(b− x)κb with κa, κb ∈ Γ+(p). Set

B = B(σb; b, a; ξ)B(σa; a, b; ξ)
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and w̄(x) = (x− a)µa(b− x)µb , where ξ ∈ (a, b),

σa =
1− νa
1− λa

, σb =
1− νb
1− λb

, µa = (κa +
1
p
)σa −

1
p
, µb = (κb +

1
p
)σb −

1
p
.

Then

B : (Lp(w)[a, b], ACr−1
loc , ϕ

rDr) 7→ (Lp(w̄)[a, b], ACr−1
loc , ϕ̄

rDr).

Hence for t > 0 and f ∈ Lp(w)[a, b] we have

K(f, tr;Lp(w), ACr−1
loc , ϕ

rDr) ∼ K(Bf, tr;Lp(w̄), ACr−1
loc , ϕ̄

rDr).

Proof. First, note that σa, σb > 0. From Proposition 5.5 with τa = rνa, τb = rλb,
γa = µa, γb = κb, σ = σa we get

B(σa; a, b; ξ) : (Lp(χκa−µa
a χµa

a χκb

b ), ACr−1
loc , χ

rλa
a χrλb

b Dr)

7→ (Lp(χµa
a χκb

b ), ACr−1
loc , χ

rνa
a χrλb

b Dr),

because κa − µa = −(µa + 1/p)(1 − σ−1
a ) and µa + 1/p = (κa + 1/p)σa, i.e.

µa ∈ Γ+(p) iff κa ∈ Γ+(p).
From Proposition 5.5 with τa = rνa, τb = rνb, γa = µa, γb = µb, σ = σb we

get

B(σb; b, a; ξ) : (Lp(χµa
a χκb−µb

b χµb

b ), ACr−1
loc , χ

rνa
a χrλb

b Dr)

7→ (Lp(χµa
a χµb

b ), ACr−1
loc , χ

rνa
a χrνb

b Dr),

because κb − µb = −(µb + 1/p)(1 − σ−1
b ) and µb + 1/p = (κb + 1/p)σb, i.e.

µb ∈ Γ+(p) iff κb ∈ Γ+(p).
Combining the two mappings we prove the theorem.

The Jacobean weights w = χκa
a χκb

b , κa, κb > −1/p are covered by Theo-
rem 5.3 and Theorem 5.4. The restriction on the κ’s cannot be weaken because
in general one cannot expect to get equivalence of the K-functionals of func-
tions in Lp and Lp(w) provided κa < −1/p or κb < −1/p. But Proposition 5.5
still lives room for varying the weight in the differential operator when Lp(w)
is compared with Lp(w̄) under the restriction κa, κb, µa, µb < −1/p. Then the
proof of Theorem 5.4 gives

Theorem 5.5. Let r ∈ N, 1 ≤ p ≤ ∞, κa, κb, λa, λb, νa, νb ∈ R, ϕ(x) =
(x − a)λa(b − x)λb , ϕ̄(x) = (x − a)νa(b − x)νb with (1 − λa)(1 − νa) > 0 and
(1 − λb)(1 − νb) > 0, w(x) = (x − a)κa(b − x)κb with |κa + 1/p| < min{1, (1 −
λa)/(1− νa)}, |κb + 1/p| < min{1, (1− λb)/(1− νb)}. Set

B = B(σb; b, a; a)B(σa; a, b; b)

and w̄(x) = (x− a)µa(b− x)µb , where

σa =
1− νa
1− λa

, σb =
1− νb
1− λb

, µa = (κa +
1
p
)σa −

1
p
, µb = (κb +

1
p
)σb −

1
p
.
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Then

B : (Lp(w)[a, b], ACr−1
loc , ϕ

rDr) 7→ (Lp(w̄)[a, b], ACr−1
loc , ϕ̄

rDr).

Hence for t > 0 and f ∈ Lp(w)[a, b] we have

K(f, tr;Lp(w), ACr−1
loc , ϕ

rDr) ∼ K(Bf, tr;Lp(w̄), ACr−1
loc , ϕ̄

rDr).

Note that in Theorem 5.5 we have sgn(κa + 1/p) = sgn(µa + 1/p), sgn(κb +
1/p) = sgn(µb + 1/p) and not all restrictions on κa, κb are sharp.

Considering the case w̄ ≡ 1, ϕ̄ ≡ 1, from Theorem 5.3 and Theorem 5.4 we
get

Corollary 5.2. Let r ∈ N, 1 ≤ p ≤ ∞, ϕ(x) = (x−a)λa(b−x)λb with λa, λb < 1,
w(x) = (x − a)κa(b − x)κb with −1/p < κa, κb if p < ∞ and κa = κb = 0 if
p = ∞. Set

A = A(ρb; b, a; ξ)B(σb; b, a; ξ)A(ρa; a, b; ξ)B(σa; a, b; ξ),

where ξ ∈ (a, b) and

ρa =
κa + 1/p
1− λa

− 1
p
, σa =

1
1− λa

, ρb =
κb + 1/p
1− λb

− 1
p
, σb =

1
1− λb

.

Then
A : (Lp(w)[a, b], ACr−1

loc , ϕ
rDr) 7→ (Lp[a, b], ACr−1

loc , D
r).

Hence for t > 0 and f ∈ Lp(w)[a, b] we have

K(f, tr;Lp(w), ACr−1
loc , ϕ

rDr) ∼ K(Af, tr;Lp, ACr−1
loc , D

r)

∼ ωr(Af, t)p = Ω(f, t;Lp(w), ACr−1
loc , ϕ

rDr).

Proof. The case p <∞ follows from Theorem 5.3 with µa = µb = νa = νb = 0.
In the case p = ∞ we have κa = κb = µa = µb = 0 and hence Theorem 5.4 is
applicable.

Remark 5.3. The case p = ∞, κa > 0 and/or κb > 0 is not covered by
Corollary 5.2. In fact, A is not a continuous mapping under such assumptions.
In such cases one can apply Theorem 5.3 with some µa, µb > 0, νa = νb = 0 and
get

K(f, tr;Lp(w), ACr−1
loc , ϕ

rDr) ∼ K(Af, tr;Lp(w̄), ACr−1
loc , D

r).

The last K-functional is equivalent to proper moduli defined in [5, Ch. 6] or
[16].

From Corollary 5.2 with κa = κb = 0 we get

Corollary 5.3. Let r ∈ N, 1 ≤ p ≤ ∞, ϕ(x) = (x − a)λa(b − x)λb with
λa, λb < 1. Set

A = A(ρb; b, a; ξ)B(σb; b, a; ξ)A(ρa; a, b; ξ)B(σa; a, b; ξ),
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where ξ ∈ (a, b) and

ρa =
λa

1− λa

1
p
, σa =

1
1− λa

, ρb =
λb

1− λb

1
p
, σb =

1
1− λb

.

Then
A : (Lp[a, b], ACr−1

loc , ϕ
rDr) 7→ (Lp[a, b], ACr−1

loc , D
r).

Hence for t > 0 and f ∈ Lp[a, b] we have

K(f, tr;Lp, ACr−1
loc , ϕ

rDr) ∼ K(Af, tr;Lp, ACr−1
loc , D

r)

∼ ωr(Af, t)p = Ω(f, t;Lp, ACr−1
loc , ϕ

rDr).

Remark 5.4. The family of operators A in Corollary 5.3 is uniformly bounded
from Lp to Lp, 1 ≤ p ≤ ∞ regardless of the two parts (for p <∞ and for p = ∞)
of the proof of Corollary 5.2. The reason is that we have ‖χρa

a ψ1‖p ∼ p‖f‖p in
(3.1) and αr,1(ρa) ∼ ρa ∼ 1/p in (3.3) when p→∞.
Remark 5.5. In principal, there are 24 permutations of the 4 operators used in
Theorem 5.3. But Propositions 4.1 and 5.1 tell us that some of these permuta-
tions give one and the same operator A. In fact, the permutations give no more
than 8 slightly different operators (see Remark 5.1): A1 = A (the operator from
Theorem 5.3);

A2 = A(ρa; a, b; ξ)A(ρb; b, a; ξ)B(σb; b, a; ξ)B(σa; a, b; ξ);
A3 = A(ρa; a, b; ξ)B(σb; b, a; ξ)B(σa; a, b; ξ)A(ρb/σb; b, a; ξ);
A4 = B(σb; b, a; ξ)A(ρa; a, b; ξ)B(σa; a, b; ξ)A(ρb/σb; b, a; ξ)

and those obtained by changing the places of a and b in A1,A2,A3,A4. Note
that A1,A2,A3,A4 differ in form but they do one and the same job.

In order to demonstrate how the parameters change if we commute operators
A and B for one and the same singularity we apply Proposition 4.1 in Corollary
5.2 and get

Corollary 5.4. Let r ∈ N, 1 ≤ p ≤ ∞, ϕ(x) = (x−a)λa(b−x)λb with λa, λb < 1,
w(x) = (x − a)κa(b − x)κb with −1/p < κa, κb if p < ∞ and κa = κb = 0 if
p = ∞. Set

A = B(σb; b, a; ξ)A(ρ′b; b, a; ξ)B(σa; a, b; ξ)A(ρ′a; a, b; ξ)

where ξ ∈ (a, b) and

ρ′a = κa +
λa
p
, σa =

1
1− λa

, ρ′b = κb +
λb
p
, σb =

1
1− λb

.

Then
A : (Lp(w)[a, b], ACr−1

loc , ϕ
rDr) 7→ (Lp[a, b], ACr−1

loc , D
r).

Hence for t > 0 and f ∈ Lp(w)[a, b] we have

K(f, tr;Lp(w), ACr−1
loc , ϕ

rDr) ∼ K(Af, tr;Lp, ACr−1
loc , D

r)

∼ ωr(Af, t)p = Ω(f, t;Lp(w), ACr−1
loc , ϕ

rDr).

Note that the operators A in Corollary 5.2 and Corollary 5.4 coincide.
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6 Generalizations

First, the operators from Sections 3 and 4 can be applied to spaces of functions
with a domain different than the finite interval [a, b]. Observe that operators
(3.1), (4.1) map L1,loc[1,∞) to itself and treat singularities at +∞. Also, B(σ)
with σ < 0 maps L1,loc[1,∞) to L1,loc(0, 1] and vice versa. Using these operators
we can treat both other domains and other powers in the weights than those in
Theorem 5.3 (see e.g. Theorem 8.1 below).

Second, operators (5.1), (5.2) are design for transforming the first argument
of K-functionals with power-type weights. But the same ideas work with more
general classes of weights.

The generalization of A(ρ) when xρ is replaced by a smooth φ(x) is

(6.1) (Af)(x) = φ(x)f(x) +
r∑
i=1

(−1)i
(
r

i

)∫ x

ξ

(x− y)i−1

(i− 1)!
φ(i)(y)f(y) dy.

Using (3.4) one gets (Af)(r) = φf (r).
The generalization of B(σ) is more complicated. Here we only sketch it

for r = 2 and B(σ; 0, 1; 1/2). Let ϕ be a non-negative measurable function on
[0, 1] and 1/ϕ ∈ L1[0, 1]. Set Φ(x) = c

∫ x
0
ϕ(y)−1 dy where the constant c is

determined by the condition Φ(1) = 1. Choose the smooth function θ so that

θ′(x) ∼ ϕ(θ(x)), x ∈ [0, 1]

(one possible choice is θ = Φ−1). With the notation η(x) = θ′′(x)/θ′(x) we set

(Bf)(x) = f(θ(x))−
∫ x

1/2

[η(y) + yη′(y)]f(θ(y)) dy + x

∫ x

1/2

η′(y)f(θ(y)) dy.

Then
(Bf)′′(x) = (θ′(x))2f ′′(θ(x)) ∼ ϕ2(θ(x))f ′′(θ(x)).

Applying the generalization of Hardy’s inequality in Proposition 2.2 we get
boundedness of B under suitable restrictions on θ.

For power-type weights ϕ (i.e. ϕ(x) = xγ and hence θ(x) = xσ with σ =
1/(1 − γ)) we have η(x) = const · x−1. Thus, η(x) + xη′(x) ≡ 0 and hence
the first integral in the definition of B vanishes. For more general weights this
integral does not vanish but still B may be a bounded operator.

Consider two examples:
i) ϕ(x) = x1/2(log 1/x)1/2. We can take θ(x) = x2(1 + 2 log 1/x). Then

η(x) = x−1 − x−1(log 1/x)−1, η(y) + yη′(y) = −y−1(log 1/y)−2 and∫ x

1/2

[η(y) + yη′(y)]f(θ(y)) dy = −
∫ x

1/2

y−1(log 1/y)−2f(θ(y)) dy,

which, for example, is a bounded operator from C[0, 1/2] to C[0, 1/2].
ii) ϕ(x) = xγ(log 1/x)2−2γ , γ < 1. With σ = 1/(1 − γ) we can take θ(x) =

xσ( 1
2σ

2(log 1/x)2 + σ log 1/x + 1). Then η(x) = (σ − 1)x−1 − 2x−1(log 1/x)−1

and η(y) + yη′(y) = −2y−1(log 1/y)−2.

29



Such generalizations will appear in a forthcoming paper.
Finally, let us consider the more general form (1.2) of the differential operator

D. One trivially gets equivalent K-functionals for the triples (X,Y,D1) and
(X,Y,D2) when ‖D1f‖X ∼ ‖D2f‖X , ∀f ∈ Y . In many non-trivial cases the
following operator

(6.2) (Af)(x) = Φr(x)f(x) +
r∑
i=1

(−1)i
(
r

i

)∫ x

ξ

(x− y)i−1

(i− 1)!
Φ(i)
r (y)f(y) dy

+
r−1∑
k=0

k∑
i=0

(−1)i
(
k

i

)∫ x

ξ

(x− y)r−k+i−1

(r − k + i− 1)!
Φ(i)
k (y)f(y) dy

can help reducing the general case (1.2) to D = φDr because of Dr(Af) =∑r
k=0 ΦkDkf . Note that (6.1) is a partial case of (6.2) when Φr = φ; Φk =

0, k < r. Of course, one has to ensure boundedness of A and A−1 which is not
likely to be true provided Φr has a singularity. But, the setting Φr = 1; Φk =
ϕk/ϕr, k < r in (6.2) gives in several cases a linear operator A which is bounded
together with its inverse and possesses the property ϕrDr(Af) =

∑r
k=0 ϕkD

kf .
It is shown in [13] that such approach can work (see also Subsection 8.4).

7 Examples

First we give an explicit form of the operators from Sections 3 and 4 for r =
1, 2, 3.

For r = 1 we have

(A(ρ)f)(x) = xρf(x)− ρ

∫ x

1

yρ−1f(y) dy; (B(σ)f)(x) = f(xσ).

For r = 2 we have

(A(ρ)f)(x) = xρf(x)− (ρ+ 1)ρ
∫ x

1

yρ−1f(y) dy + ρ(ρ− 1)x
∫ x

1

yρ−2f(y) dy;

(B(σ)f)(x) = f(xσ) + (1− σ)x
∫ x

1

y−2f(yσ) dy.

For r = 3 we have

(A(ρ)f)(x) = xρf(x)

+
∫ x

1

(
− (ρ+ 2)(ρ+ 1)ρ

2y1−ρ +
(ρ+ 1)ρ(ρ− 1)x

y2−ρ − ρ(ρ− 1)(ρ− 2)x2

2y3−ρ

)
f(y) dy;

(B(σ)f)(x) = f(xσ) +
∫ x

1

(
− (1− σ)(1− 2σ)x

y2
+

(2− σ)(2− 2σ)x2

y3

)
f(yσ) dy.
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Example 7.1. Let r = 1, 1 ≤ p ≤ ∞, ϕ(x) =
√
x and w(x) = x1/p. Then for

every f ∈ Lp[0, 1] and every t > 0 we have

K(f, t;Lp, ACloc, ϕD) ∼ K(B(2)f, t;Lp(w), ACloc, D)
∼ K(A(1/p)B(2)f, t;Lp, ACloc, D)
∼ ω1(A(1/p)B(2)f, t)p
= Ω(f, t;Lp, ACloc, ϕD),

where

(B(2)f)(x) = f(x2), (A(1/p)B(2)f)(x) = x1/pf(x2)− 1
p

∫ x

1

y
1
p−1f(y2) dy

The inverse of B(2) is

(B(2)−1F )(x) = (B(1/2)F )(x) = F (
√
x).

Example 7.2. Let r = 2, 1 ≤ p ≤ ∞, ϕ(x) =
√
x and w(x) = x1/p. Then for

every f ∈ Lp[0, 1] and every t > 0 we have

K(f, t2;Lp, AC1
loc, ϕ

2D2) ∼ K(B(2)f, t2;Lp(w), AC1
loc, D

2)

∼ K(A(1/p)B(2)f, t2;Lp, AC1
loc, D

2)
∼ ω2(A(1/p)B(2)f, t)p
= Ω(f, t;Lp, AC1

loc, ϕ
2D2),

where
(B(2)f)(x) = f(x2)− x

∫ x

1

y−2f(y2) dy

and

(A(1/p)B(2)f)(x) = x
1
p f(x2)−

∫ x

1

[p2 − 1
p2

y
1
p−2x+

2p+ 1
p2

y
1
p−1
]
f(y2) dy.

The inverse of B(2) is

(B(2)−1F )(x) = (B(1/2)F )(x) = F (
√
x) +

x

2

∫ x

1

y−2F (
√
y) dy.

Example 7.3. Let r = 3, 1 ≤ p ≤ ∞, ϕ(x) =
√
x and w(x) = x1/p. Then for

every f ∈ Lp[0, 1] and every t > 0 we have

K(f, t3;Lp, AC2
loc, ϕ

3D3) ∼ K(B(2)f, t3;Lp(w), AC2
loc, D

3)

∼ K(A(1/p)B(2)f, t3;Lp, AC2
loc, D

3)
∼ ω3(A(1/p)B(2)f, t)p
= Ω(f, t;Lp, AC2

loc, ϕ
3D3),
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where
(B(2)f)(x) = f(x2)− 3x

∫ x

1

y−2f(y2) dy

and

(A(1/p)B(2)f)(x) = x
1
p f(x2) +

∫ x

1

K(x, y)f(y2) dy,

K(x, y) = − (2p+ 1)(4p+ 1)
2p3

y
1
p−1 − (p2 − 1)(3p+ 1)

p3
xy

1
p−2 +

(4p2 − 1)
2 p3

x2y
1
p−3.

The inverse of B(2) is

(B(2)−1F )(x) = (B(1/2)F )(x) = F (
√
x) +

3x2

2

∫ x

1

y−3F (
√
y) dy.

Example 7.4. Let r ∈ N, 1 ≤ p ≤ ∞, ϕ(x) =
√

1− x2 and w(x) = (1−x2)1/p.
Then for every f ∈ Lp[−1, 1] and every t > 0 we have

K(f, tr;Lp, ACr−1
loc , ϕ

rDr) ∼ K(Bf, tr;Lp(w), ACr−1
loc , D

r)

where B = B(2; 1,−1; 0)B(2;−1, 1; 0) and

(B(2; 1,−1; 0)f)(x) = f(x+
1− x2

2
)

−
[r/2]∑
k=1

βr,2k(2)(1− x)2k−1

∫ x

0

f(y + 1−y2

2 )
(1− y)2k

dy,

(B(2;−1, 1; 0)f)(x) = f(x− 1− x2

2
)

+
[r/2]∑
k=1

βr,2k(2)(1 + x)2k−1

∫ x

0

f(y − 1−y2

2 )
(1 + y)2k

dy,

where βr,2k(2) =
(−1)k21−r(2r − 2k)!

(k − 1)!(r − k)!(r − 2k)!
, 1 ≤ k ≤ [r/2].

The operators in Theorem 5.3 are based on the change of the variable of the
type θ(x) = xσ but, as mentioned in Section 6 our method allows a broader
class of “equivalent” in a certain sense changes of the variable. In the next
example we show that four different operators, based on the four changes of the
variable θ1(x) = (3x− x3)/2 + (1− x2)2/8, θ2(x) = (3x− x3)/2− (1− x2)2/8,
θ3(x) = (3x− x3)/2 and θ4(x) = cosx, produce equivalent K-functionals.

Example 7.5. Let r = 2, 1 ≤ p ≤ ∞, ϕ(x) =
√

1− x2, w(x) = (1− x2)1/p and
w̄(x) = (sinx)1/p. Then for every f ∈ Lp[−1, 1] and every t > 0 we have

K(f, t2;Lp, AC1
loc, ϕ

2D2)
∼ K(B1f, t

2;Lp(w)[−1, 1], AC1
loc, D

2) ∼ K(B2f, t
2;Lp(w)[−1, 1], AC1

loc, D
2)

∼ K(B3f, t
2;Lp(w)[−1, 1], AC1

loc, D
2) ∼ K(B4f, t

2;Lp(w̄)[0, π], AC1
loc, D

2),
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where

B1f(x) = (B(2; 1,−1; 0)B(2;−1, 1; 1/2)f)(x)

= f
(3x− x3

2
+

(1− x2)2

8

)
+
∫ x

0

K1(x, y)f
(3y − y3

2
+

(1− y2)2

8

)
dy;

B2f(x) = (B(2;−1, 1; 0)B(2; 1,−1;−1/2)f)(x)

= f
(3x− x3

2
− (1− x2)2

8

)
+
∫ x

0

K2(x, y)f
(3y − y3

2
− (1− y2)2

8

)
dy;

B3f(x) = f
(3x− x3

2

)
+
∫ x

0

[ 1− x

(1− y)2
− 1 + x

(1 + y)2
]
f
(3y − y3

2

)
dy;

B4f(x) = f(cosx)−
∫ x

π/2

x− y + sin y cos y
sin2 y

f(cos y) dy, x ∈ [0, π]

with

K1(x, y) = −2
(1 + x)(3− x)(1− y)

(1 + y)2(3− y)2
+

1− x

(1− y)2

+ 2
(1− x)(y2 − y + 4)− (x2 − x+ 4)(1− y)

(1 + y)2(3− y)2
,

K2(x, y) = 2
(1− x)(3 + x)(1 + y)

(1− y)2(3 + y)2
− 1 + x

(1 + y)2

− 2
(1 + x)(y2 + y + 4)− (x2 + x+ 4)(1 + y)

(1− y)2(3 + y)2
.

The inverse operators are given by

B−1
1 F (x) = (B(1/2;−1, 1; 1/2)B(1/2; 1,−1; 0)F )(x);

B−1
2 F (x) = (B(1/2; 1,−1;−1/2)B(1/2;−1, 1; 0)F )(x);

B−1
3 F (x) = F (η(x))

+
3
2

∫ x

0

[3(x− y)(1 + 3η2(y))(η′(y))2 − 2η(y)](η′(y))2F (η(y)) dy;

B−1
4 F (x) = F (arccosx) +

1
2

∫ x

0

( 1 + x

(1 + t)2
− 1− x

(1− t)2
)
F (arccos y) dy,

where η(x) is the inverse of θ3(x) = (3x−x3)/2 in the interval [−1, 1] and hence
η′(y) = 2

3 (1− η2(y))−1.

Note that B3 has probably the simplest form, but we cannot write down
explicitly its inverse (without using inverse functions or cubic roots). B4 and its
inverse have also simple forms but a change of the variable, mapping [0, π] onto
[−1, 1], is used. Additional difficulties occur when we study the analogues of B4

for r > 2. The form of B1 and B2 is the most complicated. Moreover, they are
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defined by non-symmetric changes of the variable (with respect to the domain).
Also we took ξ 6= 0 in one of the operators B forming B1 and B2 in order to get
one and the same bounds in the integrals. But these operators and their inverse
are easier to work with and they allow separate treatment of the singularities.

Of course, one can write many other operators by choosing other changes of
the variable or varying ξ, e.g. Bf = B(2; 1,−1; 0)B(2;−1, 1; 0)f which equals
B1f modulus a linear function.

Example 7.6. The operators from Example 7.5 transformed for the interval
[0, 1] (r = 2, 1 ≤ p ≤ ∞, ϕ(x) =

√
x(1− x)) are

B1f(x) = (B(2; 1, 0; 1/2)B(2; 0, 1; 3/4)f)(x);
B2f(x) = (B(2; 0, 1; 1/2)B(2; 1, 0; 1/4)f)(x);

B3f(x) = f(3x2 − 2x3)−
∫ x

1/2

( x
y2
− 1− x

(1− y)2
)
f(3y2 − 2y3) dy;

B4f(x) = f
(1 + cosπx

2

)
− π

∫ x

1/2

πx− πy + sinπy cosπy
sin2 πy

f
(1 + cosπy

2

)
dy.

8 Applications

In this section we discuss some examples of approximation processes whose rate
of approximation is estimated by a K-functional of the form (1.1).

8.1 Best algebraic polynomial approximation

The best approximation of a function f ∈ Lp[−1, 1], 1 ≤ p ≤ ∞ by algebraic
polynomials of degree n is given by En(f)p = inf{‖f −Q‖p : Q ∈ Πn}.

In 1980 the second author proved a characterization (strong direct and weak
inverse theorems, see e.g. [11]) for any r ∈ N and 1 ≤ p ≤ ∞ of the best
algebraic approximations in terms of moduli (1.8) with ψ(t, x) = t

√
1− x2 + t2.

Later it was proved in [12] that these moduli and the K-functionals (1.5) with
ϕ(x) =

√
1− x2 are equivalent. Meanwhile, Ditzian and Totik introduced the

weighted moduli (1.6) and proved both equivalence with the K-functionals (1.5)
and characterization of the best algebraic approximations.

Now Corollary 5.3 with λ−1 = λ1 = 1/2, ϕ =
√

1− x2 gives a new charac-
teristic of the best algebraic approximations:

En(f)p ≤ Crωr(Af, n−1)p = CrΩ(f, n−1;Lp[−1, 1], ACr−1
loc , ϕ

rDr), n > r,

Ω(f, t;Lp[−1, 1], ACr−1
loc , ϕ

rDr) = ωr(Af, t)p ≤ Crt
r
∑

0≤k≤1/t

(k + 1)r−1Ek(f)p,

where A is defined in Corollary 5.3.
Let us note that ωr(Af, t)∞ turns out to be a solution (in a certain sense

because Af is not periodic) of the following problem posed by S. Gal in [8]
(which is a variant of Problem 1.1):
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Find a 2π-periodic continuous function F , depending on f ∈ C[−1, 1] and
r, such that

ωrϕ(f, t)∞ ∼ ωr1(F |[0,2π]; t)∞, 0 ≤ t ≤ t0,

as not necessarily r = r1.
G. Mastroianni and P. Vértesi also gave a solution of the above mentioned

problem for r = 1. For f ∈ C[−1, 1] they define gf (θ) = f(cos θ) and show in
[17]

(8.1) ω1
ϕ(f, t)∞ ∼ ω1(gf , t)∞, 0 ≤ t ≤ t0.

J. Bustamante noticed in [1] that a relation like (8.1) is not valid for r > 1
though a weaker one holds.

8.2 Bernstein polynomials

The Bernstein polynomials Bnf are probably the most studied approximation
operators.

Totik in [21] and H.-B. Knoop and X.-l. Zhou in [15] proved

‖f −Bnf‖∞ ∼ K(f, n−1;C[0, 1], AC1
loc, ϕ

2D2) ∼ ω2
ϕ(f, n−1/2)∞,

where ϕ(x) =
√
x(1− x). Corollary 5.3 yields another characterization

‖f −Bnf‖∞ ∼ Ω(f, n−1/2;C[0, 1], AC1
loc, ϕ

2D2) = ω2(Bf, n−1/2)∞
∼ K(Bf, n−1;C[0, 1], AC1

loc, D
2),

where B is any of the operators in Example 7.6.

8.3 Szász-Mirakjan operators

For the Szász-Mirakjan operators Snf defined for f ∈ C[0,∞) V. Totik proved
in [21]

(8.2) ‖f − Snf‖∞ ∼ ω2
ϕ(f, n−1/2)∞ ∼ K(f, n−1;C[0,∞), AC1

loc, ϕ
2D2),

where ϕ(x) =
√
x. Using the method demonstrated in Section 4 we get

Theorem 8.1. Let f ∈ C[0,∞) and n ∈ N. Then

(8.3) ‖f − Snf‖∞ ∼ ω2(B(2)f, n−1/2)∞ = Ω(f, n−1/2;C[0,∞), AC1
loc, ϕ

2D2),

where B(2) : C[0,∞) → C[0,∞) is defined as (see Example 7.2)

(B(2)f)(x) = f(x2) + x

∫ ∞

x

y−2f(y2) dy.

Although we have not discussed in the present article unbounded domains,
we have all the ingredients to give a simple proof of (8.3).
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Proof. The inverse of B(2) is

(B(1/2)f)(x) = f(
√
x)− x

2

∫ ∞

x

y−2f(
√
y) dy.

From the definitions of B(2) and B(1/2) we get ‖B(2)f‖∞ ≤ 2‖f‖∞ and
‖B(1/2)f‖∞ ≤ 3

2‖f‖∞, which, together with Theorem 4.1 and Corollary 4.2,
imply

B(2) : (C[0,∞), AC1
loc, ϕ

2D2) 7→ (C[0,∞), AC1
loc, D

2).

In view of Proposition 2.1, this continuous mapping together with (8.2) proves
(8.3).

8.4 Kantorovich and Durrmeyer operators

K(f, t;Lp[0, 1], C2, DφD) with φ(x) = x(1−x) is the K-functional that is equiv-
alent to the approximation errors of Kantorovich Pnf and Durrmeyer Mnf op-
erators. Note that the differential operator DφD differs from the usual φD2.
The set on which the infimum is taken is Y = C2, which gives here a different
K-functional than the usual Y = AC1

loc.
Chen, Ditzian and Ivanov in [2] and Gonska and Zhou in [9] proved for every

f ∈ Lp[0, 1], 1 ≤ p ≤ ∞ and n ∈ N

‖f −Mnf‖p ∼ K(f, n−1;Lp[0, 1], C2, DφD) ∼ ‖f − Pnf‖p.

Gonska and Zhou also proved in [9]

K(f, t2;Lp[0, 1], C2, DφD) ∼ ω2√
φ(f, t)p + ω1(f, t2)p, 1 < p ≤ ∞.

The above equivalence is not true for p = 1. Using the idea of [7] the second
author proved in [13] that

K(f, t2;L1[0, 1], C2, DφD) ∼ K(Af, t2;L1[0, 1], C2, φD2) + ω1(f, t2)1,

where

(Af)(x) = f(x) +
∫ x

1/2

(
x

y2
− 1− x

(1− y)2

)
f(y)dy.

This equivalence together with the equivalence relations for the second K-
functional gives

‖f −Mnf‖1 ∼ ‖f − Pnf‖1 ∼ ω2(BAf, n−1/2)1 + ω1(f, n−1)1,

where B is the operator from Corollary 5.3 with r = 2, p = 1, λ0 = λ1 = 1/2.
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