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Abstract

We present upper estimates of the approximation rate of combina-
tions Br,n of iterates of the Bernstein operator Bn, defined by I −Br,n =
(I − Bn)r, r ∈ N. The treatment is based on (weighted) simultaneous
approximation by the Bernstein operator. We give a sufficient condition
on the smoothness of the function that implies approximation rate of n−r.
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1 Main results

Probably the most investigated linear approximating operator is the Bernstein
polynomial, defined for f ∈ C[0, 1] and x ∈ [0, 1] by

Bnf(x) =

n∑
k=0

f

(
k

n

)
pn,k(x), pn,k(x) =

(
n

k

)
xk(1− x)n−k.

It is known (see [1, Chapter 10, § 7] and [5, Chapter 9]) that there exists
n0 ∈ N such that for all f ∈ C[0, 1] and n ≥ n0 there holds

(1.1) ‖Bnf − f‖ ≤ c ω2
ϕ(f, n−1/2),

where ‖ ◦ ‖ stands for the uniform norm on the interval [0, 1], c is an absolute
constant and ω2

ϕ(f, t) is the Ditzian-Totik modulus of smoothness of second

order with step-weight ϕ(x) =
√
x(1− x), defined by (see [5, Chapter 1])

ω2
ϕ(f, t) = sup

0<h≤t
‖∆2

hϕf‖
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and

∆2
hϕ(x)f(x) =

{
f(x+ hϕ(x))− 2f(x) + f(x− hϕ(x)), x± hϕ(x) ∈ [0, 1],

0, otherwise.

For f ∈ AC1
loc(0, 1) and n ∈ N we have

(1.2) ‖Bnf − f‖ ≤
c

n
‖ϕ2f ′′‖.

Moreover, Bnf cannot tend to f in C[0, 1] faster than n−1 unless f is a linear
function, in which case we have Bnf = f for all n (see e.g. [1, Chapter 10, § 5]).

One way to modify the Bernstein operator in order to get larger approxima-
tion rate is to form an appropriate linear combination of its iterates. Here we
shall consider the bounded linear operator Br,n : C[0, 1]→ C[0, 1], defined by

Br,n = I − (I −Bn)r,

where I stands for the identity and r ∈ N. Our main objective is to establish
the following upper estimate of the error of Br,n.

Theorem 1.1. For f ∈ C2r−2[0, 1] and r ≥ 2, there holds

‖Br,nf − f‖ ≤
c

nr−1

(
ω2
ϕ(ϕ2r−2f (2r−2), n−1/2) +

1

n
‖f (2r−2)‖+

1

n
‖f (2)‖

)
.

The value of the constant c is independent of f and n.

The above implies a sufficient condition on the smoothness of the function,
which yields an approximation order of n−r.

Corollary 1.2. Let f ∈ C[0, 1] and n, r ∈ N as r ≥ 2. Then:

(a) ‖Br,nf − f‖ ≤
c

nr−1/2

(
‖ϕ2r−1f (2r−1)‖+ ‖f (2r−2)‖+ ‖f (2)‖

)
,

f ∈ AC2r−2
loc (0, 1);

(b) ‖Br,nf − f‖ ≤
c

nr

(
‖ϕ2rf (2r)‖+ ‖f (2r−2)‖+ ‖f (2)‖

)
, f ∈ AC2r−1

loc (0, 1).

The value of the constant c is independent of f and n.

In order to extend the estimates above for every continuous functions we can
introduce the K-functional

Kr(f, t) = inf
g∈AC2r−1

loc

{
‖f − g‖+ t

(
‖ϕ2rg(2r)‖+ ‖g(2r−2)‖+ ‖g(2)‖

)}
.

for f ∈ C[0, 1], t > 0 and r ∈ N with r ≥ 2. Standard considerations imply the
following Jackson-type inequality from Corollary 1.2 (b).
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Theorem 1.3. Let f ∈ C[0, 1] and n, r ∈ N as r ≥ 2. Then

‖Br,nf − f‖ ≤ cKr(f, n
−r).

The value of the constant c is independent of f and n.

Let us note that

(1.3) Kr(f, t
2r) ≤ c

(
ω2r(f, t) + t2r‖f‖

)
, f ∈ C[0, 1], t > 0,

where ω`(f, t) is the classical fixed-step modulus of smoothness of order `, de-
fined by

ω`(f, t) = sup
0<h≤t

‖∆`
hf‖

and ∆`
h is the `th symmetric finite difference

∆`
hf(x) =


∑̀
k=0

(−1)k
(
`

k

)
f

(
x+

(
`

2
− k
)
h

)
, x± `h

2
∈ [0, 1],

0, otherwise.

The inequality (1.3) follows from the embedding inequality

(1.4) ‖f (m)‖ ≤ c
(
‖f‖+ ‖f (`)‖

)
, m = 0, . . . , `,

and the well-known result of Johnen (see e.g. [1, Chapter 6, Theorem 2.4])

inf
g∈AC`−1[0,1]

{
‖f − g‖+ t`‖g(`)‖

}
≤ c ω`(f, t), f ∈ C[0, 1].

All estimates with the Ditzian-Totik modulus are established for n ≥ n0
with some absolute constant n0. However, the assertions of Corollary 1.2 and
Theorem 1.3 are valid for all n (see Remark 3.1 at the end).

We base our proof of Theorem 1.1 on upper estimates for simultaneous ap-
proximation by Bernstein polynomials. They are established in the next section.
This approach lays stronger conditions on the function than necessary but pro-
vides us with a simple proof. We verify Theorem 1.1 (and its corollary) in the
third and final section.

2 Simultaneous approximation by Bernstein
polynomials

There is a simple method for deriving upper estimates for combinations of it-
erates of a linear operator by iterating the estimate for the operator (see [4,
Theorem 10.2 and Corollary 10.3]). However, it is not applicable in the case
of the Bernstein operator because it does not commute with the associated dif-
ferential operator Dg = ϕ2g′′. Another difficulty of a technical character lies
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with the fact that Br,n is not generally a positive operator. In order to get
round the latter, we shall establish upper estimates that are similar to (1.1) for
simultaneous approximation. This will allow us to get the result about Br,n still
by a certain iteration. This approach has a shortcoming. It misses the point
that Br,n provides better approximation near the ends of the interval [0, 1] (it
interpolates f at 0 and 1). The simultaneous approximation by Bn does not
possess this property.

Our first result concerns the unweighted simultaneous approximation by Bn.

Theorem 2.1. For f ∈ Cs[0, 1] there holds

‖(Bnf − f)(s)‖ ≤ c
(
ω2
ϕ(f (s), n−1/2) + ω(f (s), n−1) +

1

n
‖f (s)‖

)
.

The value of the constant c is independent of f and n.

Proof. The assertion is trivial for n < s. For n ≥ s it is known (see [14] or [1,
Chapter 10, (2.3)], [5, p. 125]) that

(2.1) (Bnf)(s)(x) =
n!

(n− s)!

n−s∑
k=0

−→
∆s

1/nf

(
k

n

)
pn−s,k(x),

where
−→
∆s
hf(x) = ∆s

hf(x+ sh/2) are the forward differences of order s.
Now, for n = s the above formula immediately implies the assertion of the

theorem. Let n > s. We set

D̃s,nf(x) = ns
−→
∆s

1/nf

(
n− s
n

x

)
, x ∈ [0, 1].

Then by (2.1)

(2.2) (Bnf)(s)(x) =
n!

ns(n− s)!
Bn−s(D̃s,nf)(x), x ∈ [0, 1].

Hence ∥∥∥∥ns(n− s)!n!
(Bnf)(s) −Bn−s(f (s))

∥∥∥∥ ≤ ‖D̃s,nf − f (s)‖.

Consequently,

(2.3) ‖(Bnf − f)(s)‖ ≤
(
ns(n− s)!

n!
− 1

)
‖(Bnf)(s)‖

+ ‖D̃s,nf − f (s)‖+ ‖Bn−s(f (s))− f (s)‖.

We shall estimate the three quantities on the right above separately.
First, due to (2.2), we have

(2.4)

(
ns(n− s)!

n!
− 1

)
‖(Bnf)(s)‖ =

(
1− n!

ns(n− s)!

)
‖Bn−s(D̃s,nf)‖

≤ c

n
‖D̃s,nf‖ ≤

c

n
‖f (s)‖.
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The finite forward difference of order s of F ∈ ACs−1[a, b] can be represented
in the integral form

(2.5)
−→
∆s
hF (x) = hs−1

∫ sh

0

Ms(u/h)F (s)(x+ u) du, x ∈ [a, b− sh],

where Ms is the s-fold convolution of the characteristic function of [0, 1] with
itself (see e.g. [1, p. 45]). Consequently,

D̃s,nf(x) = n

∫ s/n

0

Ms(nu)f (s)
(
n− s
n

x+ u

)
du, x ∈ [0, 1],

and

|D̃s,nf(x)− f (s)(x)| ≤ n
∫ s/n

0

Ms(nu)

∣∣∣∣f (s)(n− sn x+ u

)
− f (s)(x)

∣∣∣∣ du
≤ c ω(f (s), n−1), x ∈ [0, 1].

(2.6)

Above we have used that ∫ s

0

Ms(u) du = 1.

Finally, by (1.1) and [5, Theorem 4.1.2] we get that there exists n0 ∈ N such
that for n ≥ n0

(2.7) ‖Bn−s(f (s))− f (s)‖ ≤ c ω2
ϕ(f (s), (n− s)−1/2) ≤ c ω2

ϕ(f (s), n−1/2).

Now, (2.3), (2.4), (2.6) and (2.7) imply the assertion of the theorem.

Remark 2.2. Based on Ditzian [3], Jiang and Xie [11] (or see [12, (16)]) gave
a pointwise generalization of∥∥∥∥ns(n− s)!n!

(Bnf)(s) − f (s)
∥∥∥∥ ≤ c(ω2

ϕ(f (s), n−1/2) + ω(f (s), n−1)
)
.

Theorem 2.1, the property of the moduli (see [5, Theorem 2.1.1] or [1, Chap-
ter 6, Theorem 6.1])

ω2
ϕ(f, t) ≤ c t2‖ϕ2f ′′‖, f ∈ AC1

loc(0, 1),

and (1.4) imply the following estimate for the simultaneous approximation by
the Bernstein polynomials (cf. [7]).

Corollary 2.3. For f ∈ Cs+2[0, 1] and n ∈ N there holds

‖(Bnf − f)(s)‖ ≤ c

n

(
‖f (s+2)‖+ ‖f (s)‖

)
.

The value of the constant c is independent of f and n.
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Let us mention that Gonska, Heilmann and Raşa [9] established a quanti-
tative Voronovskaya-type theorem about simultaneous approximation by Bn.
They also gave an account of other similar results.

Inequalities like the one in Theorem 2.1 but in terms of the classical moduli
of smoothness were earlier established in [8] and [13].

A somewhat neater upper estimate holds in terms of the differential operator
ϕ2s(d/dx)2s.

Theorem 2.4. For f ∈ C2s[0, 1] there holds

‖ϕ2s(Bnf − f)(2s)‖ ≤ c
(
ω2
ϕ(ϕ2sf (2s), n−1/2) +

1

n
‖f (2s)‖

)
.

The value of the constant c is independent of f and n.

Proof. The assertion is trivial for n < 2s. Let n ≥ 2s. Using (2.1) we get

ϕ2s(x)(Bnf)(2s)(x) =

n−s∑
k=s

∆2s
1/nf

(
k

n

)
k! (n− k)!

(k − s)! (n− k − s)!
pn,k(x)

= Bn(Ds,nf)(x),

(2.8)

where we have set

Ds,nf(xn,k) = ϕs,n(xn,k)n2s∆2s
1/nf(xn,k), xn,k =

k

n
, k = 0, 1, . . . , n,

and

ϕs,n(x) =

s−1∏
i=0

(
x− i

n

)(
1− x− i

n

)
,

as Ds,nf(xn,k) is defined to be 0 for k = 0, . . . , s− 1, n− s+ 1, . . . , n.
Next, we get by means of (1.1) and (2.8) that for n ≥ n0 with some n0 ∈ N

‖ϕ2s(Bnf − f)(2s)‖
≤ ‖Bn(ϕ2sf (2s))− ϕ2sf (2s)‖+ ‖ϕ2s(Bnf)(2s) −Bn(ϕ2sf (2s))‖

≤ c
(
ω2
ϕ(ϕ2sf (2s), n−1/2) + max

k=0,...,n
|Ds,nf(xn,k)− ϕ2s(xn,k)f (2s)(xn,k)|

)
.

For k = 0 and k = n, we have Ds,nf(xn,k) = ϕ2s(xn,k) = 0. For k = 1, . . . , s−
1, n− s+ 1, . . . , n− 1, s ≥ 2, we directly get

|Ds,nf(xn,k)− ϕ2s(xn,k)f (2s)(xn,k)| = ϕ2s(xn,k)|f (2s)(xn,k)|

≤ c

ns
‖f (2s)‖.

Further, for k = s, . . . , n− s we use the representation (see (2.5))

∆2s
h f(x) = h2s−1

∫ sh

−sh
M2s(u/h+ s)f (2s)(x+ u) du

= h2s−1
∫ sh

0

M2s(u/h+ s)[f (2s)(x+ u) + f (2s)(x− u)] du, x ∈ [sh, 1− sh],
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to get for x ∈ [s/n, 1− s/n]

|Ds,nf(x)− ϕ2s(x)f (2s)(x)| ≤ n
∫ s/n

0

M2s(nu+ s)|∆2
u(ϕ2sf (2s))(x)| du

+ n

∫ s/n

−s/n
M2s(nu+ s)|ϕs,n(x)− ϕ2s(x+ u)| |f (2s)(x+ u)| du

≤ c
(
ω2(ϕ2sf (2s), n−1) +

1

n
‖f (2s)‖

)
.

Above we have also taken into account the trivial estimate

|ϕs,n(x)− ϕ2s(x+ u)| ≤ |ϕs,n(x)− ϕ2s(x)|+ |ϕ2s(x)− ϕ2s(x+ u)|

≤ c

n
+ c |u| ≤ c

n
, x ∈ [0, 1], u ∈

[
− s
n
,
s

n

]
.

To complete the proof of the theorem, we apply [5, Theorem 3.1.1], which gives
that there exists t0 such that

ω2(F, t2) ≤ c ω2
ϕ(F, t), 0 < t ≤ t0,

for every F ∈ C[0, 1].

Just as in the unweighted case, but using the embedding inequality (see [6,
Lemma 1])

‖χα+mf (m)‖ ≤ c
(
‖χαf‖+ ‖χα+`f (`)‖

)
, m = 0, . . . , `,

where χ(x) = x and α ∈ R, we derive the following estimate.

Corollary 2.5. For f ∈ C[0, 1] such that f ∈ AC2s+1
loc (0, 1) and n ∈ N there

holds
‖ϕ2s(Bnf − f)(2s)‖ ≤ c

n

(
‖ϕ2s+2f (2s+2)‖+ ‖f (2s)‖

)
.

The value of the constant c is independent of f and n.

3 Proof of Theorem 1.1

The estimates of the error of Br,n can now be quite straightforwardly established
by means of the results on simultaneous approximation of the previous section.

Proof of Theorem 1.1. First, the estimate (1.2) implies

‖Br,nf − f‖ = ‖(Bn − I)rf‖ ≤ c

n
‖ϕ2[(Bn − I)r−1f ]′′‖.

For r = 2 we estimate above the right side of this inequality by means of
Theorem 2.4 and get the assertion in this case. For r ≥ 3 we apply instead
Corollary 2.5 and arrive at

‖Br,nf − f‖ ≤
c

n2

(
‖ϕ4[(Bn − I)r−2f ](4)‖+ ‖[(Bn − I)r−2f ](2)‖

)
.
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Further, we estimate the first term on the right above by Corollary 2.5 and the
second by Corollary 2.3 and continue in this way, applying also (1.4), until we
get

‖Br,nf − f‖ ≤
c

nr−1

(
‖ϕ2r−2[(Bn − I)f ](2r−2)‖

+ ‖[(Bn − I)f ](2r−4)‖+ ‖[(Bn − I)f ](2)‖
)
.

Now, the assertion of the theorem follows from Theorem 2.4, Corollary 2.3 and
(1.4).

Proof of Corollary 1.2. Assertion (a) follows from Theorem 1.1 and the prop-
erty (see [5, Theorems 2.1.1 and 4.1.3] or [1, Chapter 6, Theorem 6.1])

ω2
ϕ(f, t) ≤ c t ‖ϕf ′‖, f ∈ ACloc(0, 1), 0 < t ≤ t0.

Assertion (b) follows from Theorem 1.1 just as Corollary 2.5 from Theo-
rem 2.4.

Remark 3.1. Let us note that in all estimates with the Ditzian-Totik modulus
we had to assume that n ≥ n0 with some absolute constant n0 since (1.1) was
proved under this restriction and some of the properties of the modulus we used
are known only for t small enough. However, (1.2) as well as its analogue with
n−1/2‖ϕf ′‖ on the right are valid for all n ∈ N and hence all the corollaries as
well as Theorem 1.3 are valid for all n.

Note added in proof. After submission I learned of the papers of H.
Gonska and X.-l. Zhou [10], and of C. Ding and F. Cao [2], where results that
are similar to and somewhat stronger than Theorem 1.3 were established. The
techniques used there are different. Also, I learned of a paper by Sevy [15] who
established upper estimates for the unweighted simultaneous approximation by
such combinations of iterates of an operator, following just the same idea like
the one used in the proof of Theorem 1.1. I am thankful to Prof. G. Tachev
(University of Architecture, Civil Engineering and Geodesy, Sofia) for helping
me find out those papers. In a subsequent publication I am going to show how
the results proved in the present paper can be improved to include those in the
above-mentioned works (in the univariate case).
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