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Abstract

The paper presents upper estimates of the error of weighted and un-
weighted simultaneous approximation by the Bernstein operators and
their iterated Boolean sums. The estimates are stated in terms of the
Ditzian-Totik modulus of smoothness or appropriate K-functionals.
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1 Main results

One of the most investigated linear approximating operators is the Bernstein
polynomial, defined for f ∈ C[0, 1] and x ∈ [0, 1] by

Bnf(x) =

n∑
k=0

f

(
k

n

)
pn,k(x), pn,k(x) =

(
n

k

)
xk(1− x)n−k.

It is known (see [1, Chapter 10, § 7] and [4, Chapter 9]) that there exists
n0 ∈ N such that for all f ∈ C[0, 1] and n ≥ n0 we have

(1.1) ‖Bnf − f‖ ≤ c ω2
ϕ(f, n−1/2),

where ‖ ◦ ‖ stands for the uniform norm on the interval [0, 1], c is an absolute
constant and ω2

ϕ(f, t) is the Ditzian-Totik modulus of smoothness of second order

with step-weight ϕ(x) =
√
x(1− x). To recall, the Ditzian-Totik modulus of

order r with step-weight ϕ is defined by (see [4, Chapter 1])

ωrϕ(f, t) = sup
0<h≤t

‖∆r
hϕf‖
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and

∆r
hϕ(x)f(x) =


r∑

k=0

(−1)k
(
r

k

)
f
(
x+

(r
2
− k
)
hϕ(x)

)
, x± rhϕ(x)/2 ∈ [0, 1],

0, otherwise.

For f ∈ AC1
loc(0, 1) and n ∈ N we have

(1.2) ‖Bnf − f‖ ≤
c

n
‖ϕ2f ′′‖.

Moreover, Bnf cannot tend to f in C[0, 1] faster than n−1 unless f is a linear
function, in which case we have Bnf = f for all n (see e.g. [1, Chapter 10, § 5]).

One way to modify the Bernstein operator in order to get higher approxi-
mation rate is to form an appropriate linear combination of its iterates. Here
we shall consider the bounded linear operator Br,n : C[0, 1] → C[0, 1], defined
by

Br,n = I − (I −Bn)r,

where I stands for the identity and r ∈ N. These operators can be regarded as
iterated Boolean sums (see [11]).

An important and nice characterization of the error of Br,n was given by
Gonska ans Zhou [11]. They established the following upper estimate

(1.3) ‖Br,nf − f‖ ≤ c
(
ω2r
ϕ (f, n−1/2) +

1

nr
‖f‖

)
.

A Stechkin-type converse inequality was also proved. That enabled them to
deduce the trivial class of the operator and a big O equivalence characterization
of the error.

Replacing in (1.3) f with f − p1, where p1 is the polynomial of degree 1 of
best approximation of f , we immediately arrive at

(1.4) ‖Br,nf − f‖ ≤ c
(
ω2r
ϕ (f, n−1/2) +

1

nr
E1(f)

)
,

where E1(f) denotes the best approximation of f by algebraic polynomials of
degree 1 in uniform norm on [0, 1].

One of our main goals is to extend (1.3) to simultaneous approximation. We
shall establish the following upper estimate.

Theorem 1.1. Let r, s, ` ∈ N and ` < s. Then for all f ∈ C[0, 1] such that
f ∈ ACs−1loc (0, 1) and all n ∈ N there holds

‖ϕ2`(Br,nf − f)(s)‖ ≤ c
(
ω2r
ϕ (f (s), n−1/2)ϕ2` +

1

nr
‖ϕ2`f (s)‖

)
.
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Above ωrϕ(f, t)w is the weighted Ditzian-Totik modulus of smoothness in
uniform norm on the interval [0, 1], defined in [4, Appendix B]. Instead, we can
use the modification of this modulus considered in [7, Chapter 3, Section 10]
and [13].

Several years ago Ding and Cao [2] proved the Jackson-type estimate

(1.5) ‖Br,nf − f‖ ≤ cKr(f, n
−r), n ∈ N,

where the K-functional Kr(f, t) is defined by

Kr(f, t) = inf
g∈C2r[0,1]

{‖f − g‖+ t‖Drg‖},

and Dg = ϕ2g′′. A corresponding strong converse inequality of type D (accord-
ing to the terminology of [3]) was also established. Actually, C. Ding and F.
Cao proved their characterization in the multivariate case.

Let us point out that though (1.5) seems more precise than (1.4) both esti-
mates are equivalent. We shall consider this below.

We shall establish a generalization of (1.5) in the case of simultaneous
approximation. In particular, we shall show that if f ∈ C2(r+`−1)[0, 1] ∩
AC

2(r+`)−1
loc (0, 1), then for all n ∈ N there holds

‖D`(Br,nf − f)‖ ≤ c

nr
‖Dr+`f‖.

This extends estimate (1.2).
The contents of the paper are organized as follows. In the next section

we collect a number of embedding inequalities, which we shall use. In Section
3 we establish upper estimates of the error in simultaneous approximation by
the Bernstein polynomials in weighted and unweighted uniform norm. Then in
Section 4 we use them to derive upper estimates about weighted and unweighted
simultaneous approximation by Br,n and, in particular, Theorem 1.1. Finally,
in Section 5 we consider the equivalence of the upper estimates of Gonska-Zhou
and Ding-Cao.

The results presented here improve and generalize estimates established in
[6].

2 Embedding inequalities

Here we recall and extend several embedding inequalities, which we shall use
frequently in the proofs. We begin with the very well-known inequality

(2.1) ‖f (j)‖J ≤ c
(
‖f‖J + ‖f (m)‖J

)
, j = 0, . . . ,m,

where ‖ ◦ ‖J denotes the sup norm on the interval J .
Through (2.1) it can be shown that (see [5, Lemma 1])

‖χα+jf (j)‖ ≤ c
(
‖χαf‖+ ‖χα+mf (m)‖

)
, j = 0, . . . ,m,

where χ(x) = x and α ∈ R. It directly implies the following inequalities.
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Proposition 2.1. For f ∈ ACm−1loc (0, 1) and i ∈ N0, there hold

‖ϕ2(i+j)f (j)‖ ≤ c
(
‖ϕ2if‖+ ‖ϕ2(i+m)f (m)‖

)
, j = 0, . . . ,m.

The following assertion is a modification of [4, p. 135, (a) and (b)] in the
case of uniform norm.

Proposition 2.2. Let i,m, p, q ∈ N0 as p < q. Let also f ∈ ACq−1loc (0, 1). The
following inequalities hold true:

(a) If p ≤ q −m, then

‖ϕ2f (j)‖ ≤ c
(
‖ϕ2if (p)‖+ ‖ϕ2mf (q)‖

)
, j = p, . . . , q −m;

(b) If j0 = max{p, q −m+ 1}, then

‖ϕ2(j+m−q)f (j)‖ ≤ c
(
‖ϕ2if (p)‖+ ‖ϕ2mf (q)‖

)
, j = j0, . . . , q.

Proof. We follow the argument in [4, pp. 136-137].
Let p < j ≤ q. For any α > 1 and x ∈ (0, 1/2] we have

|f (j−1)(x)| ≤ |f (j−1)(1/2)|+
∫ 1/2

x

|f (j)(u)| du

≤ c
(
|f (j−1)(1/2)|+ x1−α‖χαf (j)‖[0,1/2]

)
.

By (2.1) we have

|f (j−1)(1/2)| ≤ c
(
‖f (p)‖[1/4,3/4] + ‖f (q)‖[1/4,3/4]

)
≤ c

(
‖ϕ2if (p)‖+ ‖ϕ2mf (q)‖

)
.

Consequently,

‖ϕ2(α−1)f (j−1)‖[0,1/2] ≤ c
(
‖ϕ2if (p)‖+ ‖ϕ2mf (q)‖+ ‖ϕ2αf (j)‖[0,1/2]

)
.

By symmetry we get the analogue of the last inequality on the interval [1/2, 1].
Thus we establish

‖ϕ2(α−1)f (j−1)‖ ≤ c
(
‖ϕ2if (p)‖+ ‖ϕ2mf (q)‖+ ‖ϕ2αf (j)‖

)
.

Hence (b) follows by induction.
To establish (a) we observe that

(2.2) |f (j−1)(x)| ≤ c| log x|
(
|f (j−1)(1/2)|+ ‖ϕ2f (j)‖

)
, x ∈ (0, 1/2];
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hence
‖ϕ2f (j−1)‖[0,1/2] ≤ c

(
‖ϕ2if (p)‖+ ‖ϕ2f (j)‖

)
and, by symmetry, such an inequality holds on [1/2, 1] too.

Then we proceed by induction to get for j = p, . . . , q −m

‖ϕ2f (j)‖ ≤ c
(
‖ϕ2if (p)‖+ ‖ϕ2f (q−m+1)‖

)
.

Now, (a) follows from (b) with j = j0 = q −m+ 1.

Let us especially note the following corollary of the last result.

Corollary 2.3. Let i ∈ N0 and r ∈ N. Let also f ∈ AC2r−1
loc (0, 1). Then

‖ϕ2(k+i)f (2k)‖ ≤ c
(
‖ϕ2if‖+ ‖ϕ2(r+i)f (2r)‖

)
, k = 0, . . . , r.

Proof. We apply Proposition 2.2 with m = r + i, p = 0 and q = 2r. Then (a)
and (b) imply respectively

‖ϕ2(k+i)f (2k)‖ ≤ ‖ϕ2f (2k)‖ ≤ c
(
‖ϕ2if‖+ ‖ϕ2(r+i)f (2r)‖

)
,

1 ≤ k ≤ (r − i)/2, r − i ≥ 2,

and

‖ϕ2(k+i)f (2k)‖ ≤ ‖ϕ2(2k−r+i)f (2k)‖

≤ c
(
‖ϕ2if‖+ ‖ϕ2(r+i)f (2r)‖

)
, max{0, (r − i)/2} < k ≤ r,

where we have also used that 2k − r + i ≤ k + i for k ≤ r.

Remark 2.4. (a) As it is seen from the proof, Proposition 2.2 actually holds
true with ‖f (p)‖[1/4,3/4] in the place of ‖ϕ2if (p)‖.

(b) Similarly to [4, p. 135, (a)] Proposition 2.2(a) is even valid with ‖f (j)‖
on the left provided that j < q −m.

The last inequalities are due to Gonska and Zhou [11, (1), (2) and (4)].

Proposition 2.5. For f ∈ C2r[0, 1] there hold:

(a) ‖Drf‖ ≤ c
(
‖f‖+ ‖ϕ2rf (2r)‖

)
;

(b) ‖ϕ2rf (2r)‖ ≤ c ‖Drf‖;

(c) ‖Djf‖ ≤ c ‖Drf‖, j = 1, . . . , r.

Actually, Gonska and Zhou [11] stated the assertions above only for algebraic
polynomials since that was what they needed, but the same considerations verify
them for all functions in C2r[0, 1].
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Remark 2.6. There is an elegant Taylor-type formula through which the em-
bedding inequalities in Proposition 2.5 can be verified.

Let f ∈ AC1
loc(0, 1) be such that

lim
x→0

f(x) = lim
x→1

f(x) = 0 and lim
x→0

ϕ2(x)f ′(x) = lim
x→1

ϕ2(x)f ′(x) = 0.

Then

(2.3) f(x) =

∫ 1

0

[xu−min{x, u}]f ′′(u) du, x ∈ [0, 1].

This formula is verified by integration by parts.
If f ∈ C[0, 1] is such that f(0) = f(1) = 0, f ∈ AC1

loc(0, 1) and ϕ2f ′′ ∈
L∞[0, 1], then (2.2) with j = 2 implies limx→0 ϕ

2(x)f ′(x) = limx→1 ϕ
2(x)f ′(x)

= 0. Formula (2.3) is applicable and yields

|f(x)| ≤
∫ 1

0

min{x, u} − xu
ϕ2(u)

du ‖Df‖, x ∈ [0, 1].

Hence, taking into account that,∫ 1

0

min{x, u} − xu
ϕ2(u)

du = −x log x− (1− x) log(1− x) ≤ log 2, x ∈ (0, 1),

we arrive at the inequality

‖f‖ ≤ log 2 ‖Df‖.

Iterating it, we get Proposition 2.5(c) for f ∈ C2r−2[0, 1] such that f (2r−2) ∈
AC1

loc(0, 1).
Formula (2.3) can be extended. Let r ∈ N and f ∈ C2r−2[0, 1] be such that

f (2r−2) ∈ AC1
loc(0, 1) and f(0) = f(1) = 0. Then

(2.4) f(x) =

∫ 1

0

Kr(x, u)Drf(u) du, x ∈ [0, 1],

where the kernel is defined by the recurrence relation

K1(x, u) =
xu−min{x, u}

ϕ2(u)
, Kj+1(x, u) =

∫ 1

0

Kj(x, v)K1(v, u) dv.

The kernel possesses various properties. They include the symmetries

Kj(x, u) = Kj(u, x), Kj(x, u) = Kj(1− x, 1− u)

and the relation

ϕ2(x)
∂2Kj+1

∂x2
(x, u) = Kj(x, u).

However, its explicit form is quite complicated even for j = 2. So it is easier to
verify Proposition 2.5 (a) and (b) by the method used by H. Gonska and X.-l.
Zhou rather than by (2.4).
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3 Simultaneous approximation by Bernstein
polynomials

The weighted upper estimates for simultaneous approximation by Bernstein
polynomials given below enable us to derive analogous estimates for their it-
erated Boolean sums Br,n just by iteration. Before we proceed to our results
on simultaneous approximation by Bn we shall mention one straightforward
property of the derivatives of Bnf and one simple auxiliary inequality.

Throughout c denotes constants whose value is independent of f , n and x. It
is not necessarily the same at each occurrence. For convenience we set B0 = I.

Proposition 3.1. Let `, s ∈ N0 and ` < s. Then for all f ∈ ACs−1loc (0, 1) and
n ∈ N there holds

‖ϕ2`(Bnf)(s)‖ ≤ c ‖ϕ2`f (s)‖.

Proof. The inequality is trivial for n < s. For n ≥ s it is known (see [14], or [1,
Chapter 10, (2.3)], or [4, p. 125]) that

(Bnf)(s)(x) =
n!

(n− s)!

n−s∑
k=0

−→
∆s

1/nf

(
k

n

)
pn−s,k(x),

where
−→
∆m
h f(x) = ∆m

h f(x+mh/2) is the forward difference of order m. Hence

ϕ2`(x)(Bnf)(s)(x) =
n!

ñ!

ñ−∑̀
k=`

−→
∆s

1/nf

(
k − `
n

)
k! (ñ− k)!

(k − `)! (ñ− k − `)!
pñ,k(x)

=
n! ñ2`

ñ!ns
Bñ(D`,s,nf)(x),

(3.1)

where we have put

(3.2) ñ = n− s+ 2`,

D`,s,nf(xñ,k) = ϕ`,ñ(xñ,k)ns
−→
∆s

1/nf

(
ñxñ,k − `

n

)
, xñ,k =

k

ñ
, k = 0, . . . , ñ,

and

(3.3) ϕ`,ñ(x) =

`−1∏
i=0

(
x− i

ñ

)(
1− x− i

ñ

)
,

as D`,s,nf(xñ,k) is defined to be 0 for k = 0, . . . , `−1, ñ− `+1, . . . , ñ. As usual,
we assume that an empty product equals 1.

Identity (3.1) implies

‖ϕ2`(Bnf)(s)‖ ≤ c max
k=0,...,ñ

|D`,s,nf(xñ,k)|.
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It remains to show that

(3.4) |D`,s,nf(xñ,k)| ≤ c ‖ϕ2`f (s)‖, k = 0, . . . , ñ.

To verify it we first note that D`,s,nf(xñ,k) = 0 for k = 0, . . . , `− 1, ñ− `+
1, . . . , ñ. For k = `, . . . , ñ− ` we use the following representation of the forward
finite difference of order s and step h (see e.g. [1, p. 45])

(3.5)
−→
∆s
hf(x) = hs

∫ s

0

Ms(u)f (s)(x+ hu) du, x ∈ [0, 1− sh],

where Ms is the s-fold convolution of the characteristic function of [0, 1] with
itself.

This formula implies for x ∈ [`/ñ, 1− `/ñ]

|D`,s,nf(x)| ≤ ϕ`,ñ(x)

∫ s

0

Ms(u)

∣∣∣∣f (s)( ñx− `+ u

n

)∣∣∣∣ du
≤ ϕ2`(x)

∫ s

0

Ms(u)

ϕ2`
(
ñx−`+u

n

) du ‖ϕ2`f (s)‖.

Thus, to complete the proof of (3.4) for k = `, . . . , ñ−`, it remains to show that

ϕ2`(x)

∫ s

0

Ms(u)

ϕ2`
(
ñx−`+u

n

) du ≤ c, x ∈ [`/ñ, 1− `/ñ], n ∈ N.

Since
0 ≤Ms(u) ≤ c [u(s− u)]s−1, 0 ≤ u ≤ s,

it reduces to the estimate

(3.6) ϕ2`(x)

∫ s

0

[u(s− u)]s−1

ϕ2`
(
ñx−`+u

n

) du ≤ c, x ∈ [`/ñ, 1− `/ñ], n ∈ N.

Relation (3.6) is trivial for n = s since then ñ = 2` and hence x = 1/2. To
verify it for n > s, we just need to observe that for ñx ∈ [`, `+ 1/2] we have

ϕ2`(x)

∫ s

0

[u(s− u)]s−1

ϕ2`
(
ñx−`+u

n

) du ≤ c(ñx)`
∫ s

0

us−1

u`
du ≤ c

and for ñx ∈ [`+ 1/2, ñ/2]

ϕ2`(x)

∫ s

0

[u(s− u)]s−1

ϕ2`
(
ñx−`+u

n

) du ≤ c (ñx)`

(ñx− `)`

∫ s

0

[u(s− u)]s−1 du ≤ c.

Thus (3.6) is established for x ∈ [`/ñ, 1/2]. On the interval [1/2, 1 − `/ñ] it
follows by symmetry since ϕ(1−x) = ϕ(x) and (ñ(1−x)− `+u)/n = 1− (ñx−
`+ (s− u))/n.
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Lemma 3.2. Let `, s ∈ N and ` ≥ 2. Then for all n ≥ s there hold

0 ≤ ϕ2`(x)− ϕ`,ñ(x) ≤ c

n
ϕ2`−2(x), x ∈ [`/ñ, 1− `/ñ],

where ñ and ϕ`,ñ are given in (3.2) and (3.3), respectively.

Proof. The first inequality is trivial. For the second one we first observe that(
x− i

ñ

)(
1− x− i

ñ

)
= ϕ2(x)− ϕ2(i/ñ)

and hence

`−1∏
i=0

(
x− i

ñ

)(
1− x− i

ñ

)
= ϕ2(x)

`−1∏
i=1

(
ϕ2(x)− ϕ2(i/ñ)

)
= ϕ2`(x) +

`−1∑
k=1

(−1)k−1σk
(
ϕ2(1/ñ), . . . ϕ2((`− 1)/ñ)

)
ϕ2(`−k)(x),

where σk are the elementary symmetric polynomials.
Now, since

0 < σk
(
ϕ2(1/ñ), . . . ϕ2((`− 1)/ñ)

)
≤ 1

ñk
≤ c

n
ϕ2k−2(x), x ∈ [1/ñ, 1− 1/ñ],

we get the second inequality in the lemma.

Now, we are ready to establish an estimate concerning weighted simultaneous
approximation by the Bernstein polynomials. For the sake of completeness we
include also an estimate in the unweighted case.

Theorem 3.3. Let `, s ∈ N and ` ≤ s. Then the following assertions hold true
for all f ∈ C[0, 1] such that f ∈ ACs+1

loc (0, 1) and all n ∈ N :

(a) ‖(Bnf − f)(s)‖ ≤ c

n

(
‖f (s)‖+ ‖f (s+1)‖+ ‖ϕ2f (s+2)‖

)
;

(b) ‖ϕ2`(Bnf − f)(s)‖ ≤ c

n

(
‖ϕ2`f (s)‖+ ‖ϕ2`+2f (s+2)‖

)
.

Proof. The assertions are trivial for n < s. Let n ≥ s. We get by means of (1.2)
and (3.1) that

‖ϕ2`(Bnf − f)(s)‖

≤ ‖Bñ(ϕ2`f (s))− ϕ2`f (s)‖+

(
1− n! ñ2`

ñ!ns

)
‖Bñ(ϕ2`f (s))‖

+

∥∥∥∥ϕ2`(Bnf)(s) − n! ñ2`

ñ!ns
Bñ(ϕ2`f (s))

∥∥∥∥
≤ c
( 1

n
‖ϕ2(ϕ2`f (s))′′‖+

1

n
‖ϕ2`f (s)‖

+ max
k=0,...,ñ

|D`,s,nf(xñ,k)− ϕ2`(xñ,k)f (s)(xñ,k)|
)
.

(3.7)
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For the first term above with ` = 1 we have

‖ϕ2(ϕ2f (s))′′‖ ≤ c
(
‖ϕ2f (s)‖+ ‖ϕ2f (s+1)‖+ ‖ϕ4f (s+2)‖

)
≤ c

(
‖ϕ2f (s)‖+ ‖ϕ4f (s+2)‖

)
,

where for the second inequality we have applied Proposition 2.2(b) with i = 1,
m = 2, p = s, q = s+ 2 and j = s+ 1 to get

(3.8) ‖ϕ2f (s+1)‖ ≤ c
(
‖ϕ2f (s)‖+ ‖ϕ4f (s+2)‖

)
.

For ` ≥ 2 we have

‖ϕ2(ϕ2`f (s))′′‖ ≤ c
(
‖ϕ2`−2f (s)‖+ ‖ϕ2`f (s+1)‖+ ‖ϕ2`+2f (s+2)‖

)
≤ c

(
‖ϕ2`−2f (s)‖+ ‖ϕ2`+2f (s+2)‖

)
,

where for the second inequality we have applied Proposition 2.1 with f (s) in the
place of f , i = `− 1, m = 2 and j = 1 to get

(3.9) ‖ϕ2`f (s+1)‖ ≤ c
(
‖ϕ2`−2f (s)‖+ ‖ϕ2`+2f (s+2)‖

)
.

Next, Proposition 2.2(b) with i = `, m = ` + 1, j = p = s and q = s + 2
yields

(3.10) ‖ϕ2`−2f (s)‖ ≤ c
(
‖ϕ2`f (s)‖+ ‖ϕ2`+2f (s+2)‖

)
.

So we have

(3.11) ‖ϕ2(ϕ2`f (s))′′‖ ≤ c
(
‖ϕ2`f (s)‖+ ‖ϕ2`+2f (s+2)‖

)
, ` ∈ N.

Further, we shall show that

(3.12) |D0,s,nf(xñ,k)− f (s)(xñ,k)| ≤ c

n
‖f (s+1)‖

and

(3.13) |D`,s,nf(xñ,k)− ϕ2`(xñ,k)f (s)(xñ,k)|

≤ c

n

(
‖ϕ2`f (s)‖+ ‖ϕ2`+2f (s+2)‖

)
, ` ∈ N,

for k = 0, 1 . . . , ñ.
Then assertion (a) follows from (3.7) and (3.12), and assertion (b) from (3.7),

(3.11) and (3.13).
Thus to complete the proof of the theorem it remains to establish (3.12) and

(3.13). For k = 0 and k = ñ, we have D`,s,nf(xñ,k) = ϕ2`(xñ,k) = 0 and for
k = 1, . . . , `− 1, ñ− `+ 1, . . . , ñ− 1, ` ≥ 2, we directly get

|D`,s,nf(xñ,k)− ϕ2`(xñ,k)f (s)(xñ,k)| = ϕ2`(xñ,k)|f (s)(xñ,k)|

≤ c

n
‖ϕ2`−2f (s)‖.

(3.14)
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For k = `, . . . , ñ− ` we again use (3.5) and∫ s

0

Ms(u) du = 1

to get for x ∈ [`/ñ, 1− `/ñ]

|D`,s,nf(x)−ϕ2`(x)f (s)(x)| ≤
(
ϕ2`(x)− ϕ`,ñ(x)

)
|f (s)(x)|

+ ϕ2`(x)

∫ s

0

Ms(u)

∣∣∣∣f (s)( ñx− `+ u

n

)
− f (s)(x)

∣∣∣∣ du.(3.15)

Next, we shall show that

(3.16) ϕ2`(x)

∫ s

0

Ms(u)

∣∣∣∣f (s)( ñx− `+ u

n

)
− f (s)(x)

∣∣∣∣ du
≤ c

n
‖ϕ2`f (s+1)‖, x ∈ [`/ñ, 1− `/ñ].

We have with x′s,` = (s− 2`)x+ `∫ s

0

Ms(u)

∣∣∣∣f (s)( ñx− `+ u

n

)
− f (s)(x)

∣∣∣∣ du
≤ c

n

∫ s

0

[u(s− u)]s−1

∣∣∣∣∣
∫ u

x′s,`

∣∣∣∣f (s+1)

(
ñx− `+ v

n

)∣∣∣∣ dv
∣∣∣∣∣ du

=
c

n

∫ x′s,`

0

[u(s− u)]s−1

(∫ x′s,`

u

∣∣∣∣f (s+1)

(
ñx− `+ v

n

)∣∣∣∣ dv
)
du

+
c

n

∫ s

x′s,`

[u(s− u)]s−1

(∫ u

x′s,`

∣∣∣∣f (s+1)

(
ñx− `+ v

n

)∣∣∣∣ dv
)
du.

(3.17)

Let us note that x′s,` is between ` and s − `; hence it is bounded away from 0
and s for all x ∈ [0, 1] unless ` = 0 or ` = s. Estimate (3.16) for ` = 0 follows
directly from (3.17). For 0 < ` < s we interchange the order of integration in
each of the iterated integrals above. Thus we arrive at the estimates∫ x′s,`

0

[u(s− u)]s−1

(∫ x′s,`

u

∣∣∣∣f (s+1)

(
ñx− `+ v

n

)∣∣∣∣ dv
)
du

=

∫ x′s,`

0

∣∣∣∣f (s+1)

(
ñx− `+ v

n

)∣∣∣∣ (∫ v

0

[u(s− u)]s−1 du

)
dv

≤ c
∫ x′s,`

0

[u(s− u)]s

ϕ2`
(
ñx−`+u

n

) du ‖ϕ2`f (s+1)‖

≤ c
∫ s

0

[u(s− u)]s

ϕ2`
(
ñx−`+u

n

) du ‖ϕ2`f (s+1)‖

(3.18)
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and ∫ s

x′s,`

[u(s− u)]s−1

(∫ u

x′s,`

∣∣∣∣f (s+1)

(
ñx− `+ v

n

)∣∣∣∣ dv
)
du

=

∫ s

x′s,`

∣∣∣∣f (s+1)

(
ñx− `+ v

n

)∣∣∣∣ (∫ s

v

[u(s− u)]s−1 du

)
dv

≤ c
∫ s

x′s,`

[u(s− u)]s

ϕ2`
(
ñx−`+u

n

) du ‖ϕ2`f (s+1)‖

≤ c
∫ s

0

[u(s− u)]s

ϕ2`
(
ñx−`+u

n

) du ‖ϕ2`f (s+1)‖.

(3.19)

Just similarly to (3.6) we verify that

(3.20) ϕ2`(x)

∫ s

0

[u(s− u)]s

ϕ2`
(
ñx−`+u

n

) du ≤ c, x ∈ [`/ñ, 1− `/ñ], n ≥ s, ` ≤ s.

Inequalities (3.17)-(3.20) yield (3.16) for ` = 1, . . . , s− 1 and s ≥ 2.
For ` = s we get just as above∫ x′s,s

0

[u(s− u)]s−1

(∫ x′s,s

u

∣∣∣∣f (s+1)

(
ñx− s+ v

n

)∣∣∣∣ dv
)
du

≤ c
∫ s(1−x)

0

us

ϕ2s
(
ñx−s+u

n

) du ‖ϕ2sf (s+1)‖

and∫ s

x′s,s

[u(s− u)]s−1

(∫ u

x′s,s

∣∣∣∣f (s+1)

(
ñx− s+ v

n

)∣∣∣∣ dv
)
du

≤ c
∫ s

s(1−x)

(s− u)s

ϕ2s
(
ñx−s+u

n

) du ‖ϕ2sf (s+1)‖.

For x ∈ [s/ñ, 1− s/ñ] inequality (3.20) with ` = s yields

ϕ2s(x)

∫ min{s/2,s(1−x)}

0

us

ϕ2s
(
ñx−s+u

n

) du ≤ c ϕ2s(x)

∫ s

0

[u(s− u)]s

ϕ2s
(
ñx−s+u

n

) du ≤ c.
Also, for x ∈ [s/ñ, 1/2] and u ∈ [s/2, s(1 − x)] we have (ñx − s + u)/n ≤ 1/2;
consequently,

ϕ2s(x)

∫ s(1−x)

s/2

us

ϕ2s
(
ñx−s+u

n

) du ≤ c (ñx)s

(ñx− s/2)s
≤ c.

These considerations show that

ϕ2s(x)

∫ s(1−x)

0

us

ϕ2s
(
ñx−s+u

n

) du ≤ c, x ∈ [s/ñ, 1− s/ñ], n ≥ s.

12



For the other integral we need only observe that∫ s

s(1−x)

(s− u)s

ϕ2s
(
ñx−s+u

n

) du =

∫ s(1−(1−x))

0

us

ϕ2s
(
ñ(1−x)−s+u

n

) du.
This completes the proof of (3.16) for ` = s.

Now, we are ready to complete the proof. Inequalities (3.15) and (3.16) with
` = 0 imply (3.12). Inequalities (3.15) and (3.16) with ` = 1 yield

|D1,s,nf(xñ,k)− ϕ2(xñ,k)f (s)(xñ,k)| ≤ c

n
‖ϕ2f (s+1)‖, k = 0, . . . , ñ,

Taking into account (3.8), we establish (3.13) for ` = 1.
Finally, for ` ≥ 2, inequalities (3.14)-(3.16) and Lemma 3.2 imply

|D`,s,nf(xñ,k)− ϕ2`(xñ,k)f (s)(xñ,k)|

≤ c

n

(
‖ϕ2`−2f (s)‖+ ‖ϕ2`f (s+1)‖

)
, k = 0, . . . , ñ,

which, along with (3.9) and (3.10), gives (3.13) for ` ≥ 2.

Remark 3.4. For functions of lower smoothness, similarly we can verify that

‖ϕ2`(Bnf − f)(s)‖ ≤ c√
n

(
‖ϕ2`f (s)‖+ ‖ϕ2`f (s+1)‖

)
,

where ` ∈ N0 and ` ≤ s.
To see that we only need to use instead of (1.2) the estimate

‖Bnf − f‖ ≤
c√
n
‖ϕf ′‖

valid for f ∈ ACloc(0, 1) and all n. For large n it follows from (1.1) and (see [4,
Theorems 2.1.1 and 4.1.3])

ω2
ϕ(f, t) ≤ c ω1

ϕ(f, t) ≤ c t ‖ϕf ′‖, f ∈ ACloc(0, 1), 0 < t ≤ t0,

with some t0 > 0. Whereas for small n it is verified directly by means of Taylor’s
formula.

Remark 3.5. In view of (2.1), Theorem 3.3(a) implies (cf. [8])

‖(Bnf − f)(s)‖ ≤ c

n

(
‖f (s)‖+ ‖f (s+2)‖

)
.

Inequalities like the one in Theorem 3.3 but in unweighted norm and in terms of
the classical moduli of smoothness were earlier established in [9] and [12]. Also,
Gonska, Heilmann and Raşa [10] established a quantitative Voronovskaya-type
theorem about simultaneous approximation by the Bernstein operator.

A very neat though generally less practical upper estimate of the error of
simultaneous approximation by the Bernstein operator can be stated in terms
of the differential operator D = ϕ2(d/dx)2.
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Theorem 3.6. Let ` ∈ N0. Then for all f ∈ C2`+2[0, 1] and n ∈ N there holds

‖D`(Bnf − f)‖ ≤ c

n
‖D`+1f‖.

Proof. For ` = 0 the estimate reduces to (1.2). Otherwise, it is a direct corollary
of Theorem 3.3(b) and Proposition 2.5. Indeed, applying consecutively Propo-
sition 2.5(a), Theorem 3.3(b) with s = 2`, (1.2), and Proposition 2.5 (b) and
(c), we get

‖D`(Bnf − f)‖ ≤ c
(
‖Bnf − f‖+ ‖ϕ2`(Bnf − f)(2`)‖

)
≤ c

n

(
‖Df‖+ ‖ϕ2`f (2`)‖+ ‖ϕ2`+2f (2`+2)‖

)
≤ c

n
‖D`+1f‖.

Thus the assertion of the theorem is verified.

4 Simultaneous approximation by Br,n
Here we shall formulate and prove our main results about simultaneous approx-
imation by iterated Boolean sums of Bernstein polynomials.

First, we shall show how the result of Gonska and Zhou (1.3) can be derived
from the upper estimates on simultaneous approximation by Bn, presented in
the previous section. In my opinion, such an approach is more elementary and
more straightforward (though not shorter) than the one used by H. Gonska
and X.-l. Zhou. It is more elementary because essentially it uses only Taylor’s
formula and simple integral estimates, whereas highly non-trivial results on best
approximation by algebraic polynomials are applied in [11]. Besides that it is
more straightforward because it is independent on the close relation between
best algebraic approximation and approximation by the Bernstein polynomials,
as in both cases the weight ϕ(x) =

√
x(1− x) plays an important role. However,

it should be noted, the method used by H. Gonska and X.-l. Zhou enabled them
to prove also an important converse inequality. The approach of Ding and Cao
[2] was similar to that of H. Gonska and X-l. Zhou.

Theorem 4.1. Let r ∈ N. Then for all f ∈ C[0, 1] such that f ∈ AC2r−1
loc (0, 1)

and all n ∈ N there holds

‖Br,nf − f‖ ≤
c

nr

(
‖f‖+ ‖ϕ2rf (2r)‖

)
.

Proof. Let us set Fρ = (Bnf − f)ρ. We first apply (1.2) to get

‖Fr‖ ≤
c

n
‖ϕ2F ′′r−1‖.

Next, if r ≥ 2, we estimate the norm on the right above by Theorem 3.3(b) with
` = 1 and s = 2 and thus arrive at

‖Fr‖ ≤
c

n2

(
‖ϕ2F

(2)
r−2‖+ ‖ϕ4F

(4)
r−2‖

)
.
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If r ≥ 3, we proceed in a similar fashion, i.e. we estimate above each of the two
terms on the right by means of Theorem 3.3(b). Note that at each such step:

(i) The power of n increases by one,

(ii) The number of iterates of Bn − I decreases by one,

(iii) The range of the index ` of the terms ‖ϕ2`F
(2`)
ρ ‖ increases by one.

The inequality between the power of ϕ2 and the order of the derivative in
Theorem 3.3 is always satisfied.

Thus we arrive at the upper estimate

(4.1) ‖Br,nf − f‖ ≤
c

nr

r∑
k=1

‖ϕ2kf (2k)‖.

To complete the proof, we need only apply Corollary 2.3 with i = 0.

By a standard argument we derive from Theorem 4.1 the estimate

(4.2) ‖Br,nf − f‖ ≤ c
(
K2r,ϕ(f, n−r) +

1

nr
‖f‖

)
.

where Km,ϕ(f, t) is the K-functional defined for f ∈ C[0, 1] and t > 0 by

Km,ϕ(f, t) = inf
g∈ACm−1

loc (0,1)

{
‖f − g‖+ t‖ϕmg(m)‖

}
.

As Ditzian and Totik showed in [4, Theorem 2.1.1],

(4.3) Km,ϕ(f, tm) ∼ ωmϕ (f, t), 0 < t ≤ t0,

with some t0. Here the relation ψ1(f, t) ∼ ψ2(f, t) means that there exists a
constant c such that for all f and t under consideration

c−1ψ1(f, t) ≤ ψ2(f, t) ≤ c ψ1(f, t).

Relations (4.2) and (4.3) imply (1.3) for n ≥ n0 with some fixed n0 ∈ N. For
n ≤ n0 it is trivial.

Remark 4.2. Let us set for f ∈ C[0, 1] and t > 0

K̃r(f, t) = inf
g∈AC2r−1

loc (0,1)

{
‖f − g‖+ t

(
E1(g) + ‖ϕ2rg(2r)‖

)}
.

By means of this K-functional estimate (1.4) can be stated in the equivalent
form

‖Br,nf − f‖ ≤ c K̃r(f, n
−r), n ∈ N.
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It may seem that the seminorm on the right hand-side of (4.1) is essentially

smaller than the seminorm ‖ϕ2rg(2r)‖+E1(g) in the definition of K̃r(f, t). Recall
that by Corollary 2.3 we have, for all g ∈ AC2r−1

loc (0, 1), the estimate

r∑
k=1

‖ϕ2kg(2k)‖ ≤ c
(
‖g‖+ ‖ϕ2rg(2r)‖

)
;

hence
r∑

k=1

‖ϕ2kg(2k)‖ ≤ c
(
E1(g) + ‖ϕ2rg(2r)‖

)
.

But the converse inequality is also valid since by (1.2) we have

(4.4) E1(g) ≤ ‖B1g − g‖ ≤ c ‖ϕ2g′′‖, g ∈ AC1
loc(0, 1).

Now, let us proceed to simultaneous approximation by Br,n. We shall prove
the following two estimates. The first one concerns the unweighted case, the
other the weighted.

Theorem 4.3. Let r, s, ` ∈ N and ` ≤ s. Then for all f ∈ C[0, 1] such that
f ∈ AC2r+s−1

loc (0, 1) and all n ∈ N the following assertions hold true:

(a) ‖(Br,nf − f)(s)‖ ≤ c

nr

(
‖f (s)‖+ ‖f (s+r)‖+ ‖ϕ2rf (2r+s)‖

)
;

(b) ‖ϕ2`(Br,nf − f)(s)‖ ≤ c

nr

(
‖ϕ2`f (s)‖+ ‖ϕ2r+2`f (2r+s)‖

)
.

Proof. Iterating the estimates of Theorem 3.3 we get

‖(Br,nf − f)(s)‖ ≤ c

nr

(
r∑

k=0

‖f (k+s)‖+

r∑
k=1

‖ϕ2kf (k+s+r)‖

)
.

The embedding inequality (2.1) implies

‖f (k+s)‖ ≤ c
(
‖f (s)‖+ ‖f (s+r)‖

)
, k = 1, . . . , r − 1,

whereas Proposition 2.1 with f (s+r) in the place of f , i = 0 and m = r yields

‖ϕ2kf (k+s+r)‖ ≤ c
(
‖f (s+r)‖+ ‖ϕ2rf (2r+s)‖

)
, k = 1, . . . , r − 1.

Thus assertion (a) is established.
To verify (b) we proceed just in the same way as in the proof of Theorem 4.1

but we skip the initial application of (1.2). Thus we arrive at

‖ϕ2`(Br,nf − f)(s)‖ ≤ c

nr

r∑
k=0

‖ϕ2(k+`)f (2k+s)‖.

Then we complete the proof by means of Corollary 2.3 with i = ` and f (s) in
the place of f .
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Remark 4.4. In view of Remark 2.4, even the following estimate holds true

‖ϕ2`(Br,nf − f)(s)‖ ≤ c

nr

(
‖f (s)‖[1/4,3/4] + ‖ϕ2r+2`f (2r+s)‖

)
,

where ` ∈ N.

Now, we are ready to establish our main result. Let us recall that by [4,
Theorem 6.1.1] there exists t0 such that

(4.5) Km,ϕ(f, tm)ϕ2` ∼ ωmϕ (f, t)ϕ2` , 0 < t ≤ t0,

where the K-functional Km,ϕ(f, t)w with a weight w is defined for locally con-
tinuous functions f such that wf ∈ C[0, 1] by

Km,ϕ(f, t)w = inf
g∈ACm−1

loc (0,1)
{‖w(f − g)‖+ t‖wϕmg(m)‖}.

Proof of Theorem 1.1. We follow the same standard argument we used to derive
(4.2) from Theorem 4.1.

First, let us observe that Proposition 3.1 implies

‖ϕ2`(Bjnf)(s)‖ ≤ c‖ϕ2`f (s)‖, n ∈ N;

hence

(4.6) ‖ϕ2`(Br,nf)(s)‖ ≤ c‖ϕ2`f (s)‖, n ∈ N.

Let g∈AC2r−1
loc (0, 1) and g̃ be any of its s-fold integrals. Then g̃∈AC2r+s−1

loc (0, 1)
and we have by (4.6) and Theorem 4.3(b)

‖ϕ2`(Br,nf − f)(s)‖ ≤ c
(
‖ϕ2`(f − g̃)(s)‖+ ‖ϕ2`(Br,ng̃ − g̃)(s)‖

)
≤ c

(
‖ϕ2`(f − g̃)(s)‖+

1

nr
‖ϕ2`g̃(s)‖+

1

nr
‖ϕ2r+2`g̃(2r+s)‖

)
≤ c

(
‖ϕ2`(f (s) − g)‖+

1

nr
‖ϕ2r+2`g(2r)‖

)
+

c

nr
‖ϕ2`f (s)‖.

Taking an infimum over g we arrive at

‖ϕ2`(Br,nf − f)(s)‖ ≤ c
(
K2r,ϕ(f (s), n−r)ϕ2` +

1

nr
‖ϕ2`f (s)‖

)
.

Now, for large n the assertion of the theorem follows from (4.5), and for small
n from (4.6).

Similar estimates can be stated in terms of the differential operator D. They
are given in the next theorem.

Theorem 4.5. Let `, r ∈ N. Then:
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(a) For all f ∈ C2(r+`)[0, 1] and n ∈ N there holds

‖D`(Br,nf − f)‖ ≤ c

nr
‖Dr+`f‖.

(b) For all f ∈ C2`[0, 1] and n ∈ N there holds

‖D`(Br,nf − f)‖ ≤ cKr,`(D
`f, n−r),

where
Kr,`(F, t) = inf

g∈C2(r+`)[0,1]
{‖F −D`g‖+ t‖Dr+`g‖}.

Proof. Assertion (a) follows directly from Theorem 3.6.
To establish (b) we proceed as in the proof of Theorem 1.1. We need to

show that

(4.7) ‖D`Br,nf‖ ≤ c ‖D`f‖, n ∈ N.

To this end, we apply consecutively Proposition 2.5(a), (4.6) with s = 2` and
Proposition 2.5(b) to derive

‖D`Br,nf‖ ≤ c (‖Br,nf‖+ ‖ϕ2`(Br,nf)(2`)‖)
≤ c (‖f‖+ ‖ϕ2`f (2`)‖)
≤ c (‖f‖+ ‖D`f‖);

hence
‖D`Br,nf‖ ≤ c (‖E1(f)‖+ ‖D`f‖).

To complete the proof of (4.7), we need only apply (4.4) and Proposition 2.5(c).

Remark 4.6. Let us note that, in view of Remark 2.6, assertion (a) above holds

under the weaker restriction f ∈ C2(r+`−1)[0, 1] ∩ AC2(r+`)−1
loc (0, 1). Moreover,

the latter cannot be really relaxed. For example, if ` = 0 and r = 2, then for
f(x) = x log x we have D2f = 0, whereas B2,nf 6= f .

5 Relations between K-functionals associated
with Br,n

In this section we shall show that the upper estimates (1.4) and (1.5) are equiva-
lent. More precisely, we shall establish that the quantities on the right hand-side
of (1.5) and (4.2) with ‖f‖ replaced by E1(f) are equivalent.

Theorem 5.1. For all f ∈ C[0, 1] and 0 < t ≤ 1 we have

Kr(f, t) ∼ K2r,ϕ(f, t) + t E1(f).
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Proof. The assertion of the theorem follows from the inequalities:

K2r,ϕ(f, t) ≤ cKr(f, t),

t E1(f) ≤ cKr(f, t)

and

Kr(f, t) ≤ c (K2r,ϕ(f, t) + t E1(f)) .

The first one follows directly from Proposition 2.5(b). The second one follows
from the estimate

t E1(f) ≤ E1(f − g) + t E1(g) ≤ c (‖f − g‖+ t ‖Dg‖)
≤ c (‖f − g‖+ t ‖Drg‖) , g ∈ C2r[0, 1], 0 < t ≤ 1,

where at the second step we have applied (4.4) and at the third Proposition
2.5(c).

In order to verify the third inequality, we apply Proposition 2.5(a) to get for
any g ∈ C2r[0, 1] and t ≤ 1 that

t ‖Drg‖ ≤ c t
(
‖ϕ2rg(2r)‖+ E1(g)

)
≤ c

(
‖f − g‖+ t ‖ϕ2rg(2r)‖+ t E1(f)

)
.

Consequently,

Kr(f, t) ≤ c
(

inf
g∈C2r[0,1]

{
‖f − g‖+ t‖ϕ2rg(2r)‖

}
+ t E1(f)

)
.

It remains to observe that

(5.1) inf
g∈C2r[0,1]

{
‖f − g‖+ t‖ϕ2rg(2r)‖

}
≤ cK2r,ϕ(f, t).

To justify the latter, we recall that the Steklov-type function used in [4, Chapter
2] to establish the inequality

K2r,ϕ(f, t) ≤ c ω2r
ϕ (f, t)

belongs to C2r[0, 1] (or see [1, Chapter 6, § 6], where a spline was used). There-
fore the K-functional on the left hand-side of (5.1) is estimated above by
ω2r
ϕ (f, t) (at least for t ≤ t0); and hence, in view of (4.3), by K2r,ϕ(f, t).
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