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Strong estimates of the weighted simultaneous

approximation by the Bernstein and Kantorovich

operators and their iterated Boolean sums
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Abstract

We establish matching direct and two-term strong converse estimates
of the rate of weighted simultaneous approximation by the Bernstein op-
erator and its iterated Boolean sums for smooth functions in Lp-norm,
1 < p ≤ ∞. We consider Jacobi weights. The characterization is stated
in terms of appropriate moduli of smoothness or K-functionals. Also,
analogous results concerning the generalized Kantorovich operators are
derived.
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1 Main results

The Bernstein operator is defined for f ∈ C[0, 1] and x ∈ [0, 1] by

Bnf(x) =

n∑
k=0

f

(
k

n

)
pn,k(x), pn,k(x) =

(
n

k

)
xk(1− x)n−k.

As is known its saturation order is n−1 and the differential operator which de-
scribes its rate of approximation is Df(x) = ϕ2(x)f ′′(x) with ϕ(x) =

√
x(1− x)

(see e.g. [4, Chapter 10, Theorems 3.1 and 5.1]). More precisely, Voronovskaya’s
classic result states

(1.1) lim
n→∞

n (Bnf(x)− f(x)) =
1

2
Df(x) uniformly on [0, 1]
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for f ∈ C2[0, 1].
One way to increase the approximation rate of Bn is to form its iterated

Boolean sums Br,n : C[0, 1]→ C[0, 1], defined by

Br,n = I − (I −Bn)r,

where I stands for the identity and r ∈ N. In [27] it was shown that their
saturation order is n−r. Gonska and Zhou [18] established a neat direct estimate
for Br,n and a Stechkin-type inverse inequality. Also, they made a historical
overview of the study of that kind of operators and explained why they can be
regarded as iterated Boolean sums. Later on Ding and Cao [5] characterized
the error of the multivariate generalization of Br,n on the simplex and further
improved the lower estimate. They used a K-functional with a differential
operator that reduces in the univariate case to Dr, i.e. exactly the rth iterate
of the differential operator associated with Bn as it should be expected.

Here we shall consider simultaneous approximation by Br,n. It is known that
the derivatives of the Bernstein polynomial of a smooth function approximate
the corresponding derivatives of the function (see [4, Chapter 10, Theorem 2.1]).
López-Moreno, Mart́ınez-Moreno and Muñoz-Delgado [24] and Floater [14] ex-
tended (1.1) showing that for f ∈ Cs+2[0, 1] we have

(1.2) lim
n→∞

n
(

(Bnf(x))(s) − f (s)(x)
)

=
1

2
(Df(x))(s) uniformly on [0, 1].

Hence the differential operator that describes the simultaneous approximation
by Bn is (d/dx)sD. Results about the rate of convergence in (1.2) were estab-
lished in [15, 16, 17].

So, it is reasonable to expect that the differential operator related to the
simultaneous approximation by Br,n is (d/dx)sDr and the saturation order is
n−r. That turns out to be indeed so. Before stating our main results let us note
that, since the derivative of the Bernstein polynomial is closely related to the
Kantorovich polynomial, it makes sense to consider approximation not only in
the uniform norm but also in the Lp-norm. Moreover, weights of the form ϕ2`

with ` ∈ N appear naturally in the study of the approximation rate of Br,n (see
the proof of [18, Theorem 1(i)] we gave in [9, pp. 35-36]). So, it is appropriate
to consider simultaneous approximation by Br,n with Jacobi weights. We set

(1.3) w(x) = w(γ0, γ1;x) = xγ0(1− x)γ1 , x ∈ (0, 1),

where γ0, γ1 > −1/p for 1 ≤ p <∞ or γ0, γ1 ≥ 0 for p =∞. To characterize the
rate of the simultaneous approximation by Br,n, we shall use the K-functional

Kr,s(f, t)w,p = inf
g∈C2r+s[0,1]

{
‖w(f − g(s))‖p + t‖w(Drg)(s)‖p

}
.

We denote by ‖f‖p the Lp-norm of the function f on the interval [0, 1]. When
the norm is taken on a subinterval J ⊂ [0, 1], we shall write ‖f‖p(J). As usual,

ACk[a, b] stands for the set of all functions, which along with their derivatives
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up to order k ∈ N0 are absolutely continuous on [a, b]; ACkloc(0, 1) is the set of
the functions, which are in ACk[a, b] for all 0 < a < b < 1 (see e.g. [23] for
the basic properties of these and related spaces). By c we shall denote positive
constants, not necessarily the same at each occurrence, which are independent
of the functions involved or the degree n of the operators.

We shall establish the following characterization of the error of simultaneous
approximation by Br,n.

Theorem 1.1. Let r, s ∈ N, 1 < p ≤ ∞ and w = w(γ0, γ1) be given by (1.3) as

−1/p <γ0, γ1 < s− 1/p if 1 < p <∞,
0 ≤γ0, γ1 < s if p =∞.

Then for all f ∈ C[0, 1] such that f ∈ ACs−1
loc (0, 1) and wf (s) ∈ Lp[0, 1], and all

n ∈ N there holds

‖w(Br,nf − f)(s)‖p ≤ cKr,s(f
(s), n−r)w,p.

Conversely, there exists R ∈ N such that for all f ∈ C[0, 1] with f ∈ ACs−1
loc (0, 1)

and wf (s) ∈ Lp[0, 1], and all k, n ∈ N with k ≥ Rn there holds

Kr,s(f
(s), n−r)w,p ≤ c

(
k

n

)r (
‖w(Br,nf − f)(s)‖p + ‖w(Br,kf − f)(s)‖p

)
.

In particular,

Kr,s(f
(s), n−r)w,p ≤ c

(
‖w(Br,nf − f)(s)‖p + ‖w(Br,Rnf − f)(s)‖p

)
.

This characterization is valid for p = 1 as well. However, the proof requires
additional considerations, which would make the exposition even longer (see
Remark 4.6 below). That is why we shall omit this case despite its importance.

The estimates in Theorem 1.1 can be simplified. The involved K-functional
Kr,s(f, t)w,p can be characterized by the simpler ones given by

Km,ϕ(f, t)w,p = inf
g∈ACm−1

loc

{
‖w(f − g)‖p + t‖wϕmg(m)‖p

}
and

Km(f, t)w,p = inf
g∈ACm−1

loc

{
‖w(f − g)‖p + t‖wg(m)‖p

}
.

For the unweighted case w = 1 we set Km,ϕ(f, t)∞ = Km,ϕ(f, t)1,∞ and
Km(f, t)∞ = Km(f, t)1,∞. We say that Φ(f, t) and Ψ(f, t) are equivalent
and write Φ(f, t) ∼ Ψ(f, t) if there exists a constant c such that c−1Φ(f, t) ≤
Ψ(f, t) ≤ cΦ(f, t) for all f and t under consideration. There follows the char-
acterization of Kr,s(f, t)w,p by means of Km,ϕ(f, t)w,p and Km(f, t)w,p.
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Theorem 1.2. Let 1 < p ≤ ∞, r, s ∈ N and w = w(γ0, γ1) be given by (1.3)
with −1/p < γ0, γ1 < s − 1/p. Then for all wf ∈ Lp[0, 1] and 0 < t ≤ 1 there
holds

Kr,s(f, t)w,p ∼

K2r,ϕ(f, t)w,p +K1(f, t)w,p, s = 1,

K2r,ϕ(f, t)w,p + t ‖wf‖p, s ≥ 2.

The result in the case w = 1 and p =∞ is of a different form.

Theorem 1.3. Let r, s ∈ N. Then for all f ∈ C[0, 1] and 0 < t ≤ 1 there holds

Kr,s(f, t)1,∞ ∼

K2r,ϕ(f, t)∞ +Kr(f, t)∞ +K1(f, t)∞, s = 1,

K2r,ϕ(f, t)∞ +Kr(f, t)∞ + t ‖f‖∞, s ≥ 2.

Remark 1.4. Let us note that the assertion of Theorem 1.2 in the case p =∞
and r = s = 1 actually holds for all 0 ≤ γ0, γ1 < 1, as it will be briefly shown in
its proof.

Further, we can take into account that K2r,ϕ(f, t2r)w,p is equivalent to the
weighted Ditzian-Totik modulus of smoothness ω2r

ϕ (f, t)w,p [8, Chapter 6] pro-
vided that γ0, γ1 ≥ 0, and to its modification introduced and considered in [13,
Chapter 3, Section 10] and [22] if w = ϕs. Generally, for γ0, γ1 > −1/p we can
use the modulus defined in [10, 11, 12].

Theorems 1.1-1.3 and the equivalence between the K-functionals and the
moduli of smoothness imply the following Jackson-type estimates.

Corollary 1.5. Let r, s ∈ N, 1 < p ≤ ∞ and w = w(γ0, γ1) be given by (1.3)
as

0 ≤γ0, γ1 < s− 1/p if 1 < p <∞,
0 <γ0, γ1 < s if p =∞.

Then for all f ∈ C[0, 1] such that f ∈ ACs−1
loc (0, 1) and wf (s) ∈ Lp[0, 1], and all

n ∈ N there holds

‖w(Br,nf − f)(s)‖p ≤ c


ω2r
ϕ (f ′, n−1/2)w,p + ω1(f ′, n−r)w,p, s = 1,

ω2r
ϕ (f (s), n−1/2)w,p +

1

nr
‖wf (s)‖p, s ≥ 2.

Corollary 1.6. Let r, s ∈ N. Then for all f ∈ Cs[0, 1] and n ∈ N there holds

‖(Br,nf − f)(s)‖∞

≤ c


ω2r
ϕ (f ′, n−1/2)∞ + ωr(f

′, n−1)∞ + ω1(f ′, n−r)∞, s = 1,

ω2r
ϕ (f (s), n−1/2)∞ + ωr(f

(s), n−1)∞ +
1

nr
‖f (s)‖∞, s ≥ 2.
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Here ωr(f, t)∞ denotes the unweighted fixed-step modulus of smoothness of
order r in the uniform norm and ωr(f, t)w,p its analogue in weighted Lp-spaces
(see e.g. [8, Appendix B]). We shall give brief details about the proof of the two
corollaries in the last section.

In particular, for the weighted simultaneous approximation by the Bernstein
operator (i.e. r = 1) in weighted uniform norm we have

‖w(Bnf − f)(s)‖∞

≤ c



ω2
ϕ(f ′, n−1/2)w,∞ + ω1(f ′, n−1)w,∞, s = 1, 0 ≤ γ0, γ1 < 1,

ω2
ϕ(f (s), n−1/2)∞ + ω1(f (s), n−1)∞ +

1

n
‖f (s)‖∞, s ≥ 2, γ0 = γ1 = 0,

ω2
ϕ(f (s), n−1/2)w,∞ +

1

n
‖wf (s)‖∞, s ≥ 2, 0 < γ0, γ1 < s.

Remark 1.7. The middle term on the right-hand side in the characteriza-
tion in Theorem 1.3 cannot be omitted. Indeed, if f (s)(x) = xr log x, then
f (s), ϕ2rf (2r+s) ∈ L∞[0, 1] and f (s+1) ∈ L∞[0, 1] (the latter in the case r ≥ 2),
but f (r+s) 6∈ L∞[0, 1].

Results about the simultaneous approximation by the Bernstein operator
can be easily transferred to the Kantorovich operator. Let 1 ≤ p ≤ ∞. The
Kantorovich polynomials are defined for f ∈ Lp[0, 1] and x ∈ [0, 1] by

Knf(x) =

n∑
k=0

(n+1)

∫ (k+1)/(n+1)

k/(n+1)

f(t) dt pn,k(x), pn,k(x) =

(
n

k

)
xk(1−x)n−k.

They are related to the Bernstein polynomials as follows

Knf(x) = (Bn+1F (x))
′
, F (x) =

∫ x

0

f(t) dt.

More generally, we set for f ∈ Lp[0, 1], 1 ≤ p ≤ ∞, and m ∈ N (see [29])

K〈m〉n f(x) = (Bn+mFm(x))
(m)

,

where

Fm(x) =
1

(m− 1)!

∫ x

0

(x− t)m−1f(t) dt.

The operator K
〈m〉
n is referred to as the generalized Kantorovich operator of

order m. That generalization of the Kantorovich polynomials or similar modi-
fications of related operators are studied in [2, 3, 15, 16, 17, 20].

Further, we set
K〈m〉r,n = I − (I −K〈m〉n )r.

Using that Bn is degree reducing w.r.t. the algebraic polynomials, it can be
verified by induction on j that(

K〈m〉n

)j
f =

(
Bjn+mFm

)(m)

;
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hence
K〈m〉r,n f = (Br,n+mFm)

(m)
.

This enables us to transfer all the above results about simultaneous approxima-
tion by Br,n to Kr,n.

Theorem 1.8. Let m, r ∈ N, s ∈ N0, 1 < p ≤ ∞ and w = w(γ0, γ1) be given
by (1.3) as

−1/p <γ0, γ1 < s+m− 1/p if 1 < p <∞,
0 ≤γ0, γ1 < s+m if p =∞.

(1.4)

Then for all f ∈ Lp[0, 1] such that f ∈ ACs−1
loc (0, 1) and wf (s) ∈ Lp[0, 1], and

all n ∈ N there holds

‖w(K〈m〉r,n f − f)(s)‖p ≤ cKr,s+m(f (s), n−r)w,p.

Conversely, there exists R ∈ N such that for all f ∈ Lp[0, 1] with f ∈ACs−1
loc (0, 1)

and wf (s) ∈ Lp[0, 1], and all k, n ∈ N with k ≥ Rn there holds

Kr,s+m(f (s), n−r)w,p ≤ c
(
k

n

)r (
‖w(K〈m〉r,n f − f)(s)‖p + ‖w(K〈m〉r,k f − f)(s)‖p

)
.

In particular,

Kr,s+m(f (s), n−r)w,p ≤ c
(
‖w(K〈m〉r,n f − f)(s)‖p + ‖w(K〈m〉r,Rnf − f)(s)‖p

)
.

In the statement of the last theorem the condition f ∈ ACs−1
loc (0, 1) is to be

ignored for s = 0.

Remark 1.9. As it is clear from the last theorem, the higher the order of
the generalized Kantorovich operator is, the broader the space of functions it
approximates is. More precisely, let us denote by Ws

m the set of functions, for
which Theorem 1.8 is established, i.e. Ws

m is the set of all f ∈ Lp[0, 1] such that
f ∈ ACs−1

loc (0, 1) and wf (s) ∈ Lp[0, 1] for some Jacobi weight w = w(γ0, γ1),
which satisfies (1.4). Then we have Ws

m ⊂ Ws
m+1. Or, to put it otherwise,

given an s ∈ N0 and a function f ∈ ACs−1
loc (0, 1) such that wf (s) ∈ Lp[0, 1]

for some Jacobi weight w = w(γ0, γ1), then (K〈m〉r,n f)(s) approximates f (s) in
Lp with a weight w, provided that we take m large enough, namely, m >
max{γ0, γ1} − s+ 1/p.

Remark 1.10. We can enlarge the domain of K〈m〉r,n if we replace Fm in its
definition by

fm(x) =
1

(m− 1)!

∫ x

1/2

(x− t)m−1f(t) dt.

If w̃f ∈ Lp[0, 1], where w̃ = w(γ̃0, γ̃1) with γ̃0, γ̃1 < m− 1/p, then fm ∈ C[0, 1]
(see the proof of Lemma 5.1 below). Theorem 1.8 holds for that modification

of K〈m〉r,n as the condition f ∈ Lp[0, 1] is replaced with w̃f ∈ Lp[0, 1], γ̃0, γ̃1 <
m− 1/p.
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The upper estimate for the Kantorovich operator (i.e. r = m = 1) in the
case w = 1 and s = 0 is due to Berens and Xu [1, Theorem 6]. There a weak
converse inequality was established as well. The corresponding one-term strong
converse inequality (R = 1 in Theorem 1.8) and the characterization of the
K-functional by the Ditzian-Totik modulus for all 1 ≤ p ≤ ∞ were proved
by Gonska and Zhou [19]. Mache [26] established the direct estimate for the
Kantorovich operator and a weak converse one in the case w = ϕ2` and s = 2`,
` ∈ N.

It seems quite plausible that the technique introduced by Knoop and Zhou to
prove [21, Theorem 1.2] and further developed by Gonska and Zhou [19] can lead
to such one-term strong inequality for the weighted simultaneous approximation
by Br,n. We have checked that this method works at least for p = ∞ and
0 ≤ γ0, γ1 ≤ s/2 but we shall not include that result here.

Finally, let us mention one general feature of the approach we adopt. As we
noted above, the differential operator associated with the simultaneous approxi-
mation by Br,n is (d/dx)sDr. However, it is rather involved. It is much easier to
establish estimates in terms of the norms of the components into which (Drg)(s)

expands. They are of the form qϕ2ig(j), where q is an algebraic polynomial,
which can be ignored, and i, j ∈ N. Due to the validity of certain embedding
inequalities their number can be reduced to two or three and the sum of their
weighted Lp-norms is equivalent to the norm of (Drg)(s). That allows us not
only to get round the technical difficulties of dealing with (d/dx)sDr, but also
to derive almost simultaneously both characterizations of ‖w(Br,nf − f)(s)‖p:
the more natural one by Kr,s(f, t)w,p and the more useful one by Km,ϕ(f, t)w,p.
However, this method has a disadvantage—it fails to cover the cases when the
error is characterized by Kr,s(f, t)w,p but not by Km,ϕ(f, t)w,p, that is, when
the above mentioned semi-norms are not equivalent. It seems that this occurs
only when p = 1 and γ0 or γ1 is equal to s− 1 (see [19, Theorem 1.1]).

The contents of the paper are organized as follows. In Section 2 we es-
tablish several embedding inequalities, which play a crucial role in simplify-
ing estimates and finding relations between different K-functionals. Section 3
is devoted to technical identities concerning the Bernstein polynomial and its
derivatives. Then in Section 4 we establish the main inequalities which consti-
tute the proof of the error characterization stated in Theorem 1.1. We establish
the direct estimate by means of a standard argument based on the boundedness
of the operator and a Jackson-type inequality. For the converse estimate we
apply the method developed by Ditzian and Ivanov [7]. Finally, in Section 5 we
characterize Kr,s(f, t)w,p by K2r,ϕ(f, t)w,p as stated in Theorems 1.2 and 1.3.
There we also make a couple of comments about the proof of Corollaries 1.5
and 1.6.

The results established here extend and complement those in [9]. There we
included more references to similar works.
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2 Embedding inequalities

We shall extensively use embedding inequalities in order to simplify estimates
or show that certain integrals are well-defined. Such inequalities are typical for
that setting; see e.g. [1, Lemmas 2, 3 and 4], [8, p. 135], [18, Lemma 2] and [19,
pp. 127-128].

First, we recall the well-known inequality

(2.1) ‖f (j)‖p(J) ≤ c
(
‖f‖p(J) + ‖f (m)‖p(J)

)
, j = 0, . . . ,m,

where J is an interval on the real line.
Next, we shall establish a generalization of [8, p. 135, (a) and (b)] and [9,

Proposition 2.2] by means of an argument similar to the one used there.

Proposition 2.1. Let 1 ≤ p ≤ ∞ and j,m ∈ N0 as j < m. Let wµ =
w(γµ,0, γµ,1) be given by (1.3) with γµ,0, γµ,1 > −1/p for µ = 1, 2 and let γ2,ν ≤
γ1,ν +m− j for ν = 0, 1. Let also g ∈ ACm−1

loc (0, 1). Then

‖w1g
(j)‖p ≤ c

(
‖g‖p[1/4,3/4] + ‖w2g

(m)‖p
)
.

The constant c is independent of g.

Proof. By Taylor’s formula we have

g(j)(x) =

m−j−1∑
i=0

g(i+j)(1/2)

i!

(
x− 1

2

)i
+

1

(m− j − 1)!

∫ x

1/2

(x− u)m−j−1g(m)(u) du.

Consequently, for x ∈ (0, 1/2] we have

(2.2) xγ1,0 |g(j)(x)| ≤ xγ1,0
m−j−1∑
i=0

∣∣∣∣g(i+j)

(
1

2

)∣∣∣∣+

m−j−1∑
k=0

ψk(x),

where we have set

ψk(x) = xk+γ1,0

∫ 1/2

x

um−j−k−1|g(m)(u)| du, k = 0, . . . ,m− j − 1.

Next, we shall show that

(2.3)

∣∣∣∣g(j)

(
1

2

)∣∣∣∣ ≤ c(‖g‖p[1/4,1/2] + ‖g(m)‖p[1/4,1/2]

)
, j = 0, . . . ,m− 1.
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For p = ∞ that follows immediately from (2.1). For p < ∞ we introduce the
function ψ(x) = 4x− 1 and observe that∣∣∣∣g(j)

(
1

2

)∣∣∣∣ =

∣∣∣∣(ψg(j))

(
1

2

)
− (ψg(j))

(
1

4

)∣∣∣∣
≤
∫ 1/2

1/4

|(ψg(j))′(u)| du

≤ c
(
‖g(j)‖1[1/4,1/2] + ‖g(j+1)‖1[1/4,1/2]

)
≤ c

(
‖g(j)‖p[1/4,1/2] + ‖g(j+1)‖p[1/4,1/2]

)
≤ c

(
‖g‖p[1/4,1/2] + ‖g(m)‖p[1/4,1/2]

)
,

where at the last two steps we have applied Hölder’s inequality and (2.1), re-
spectively.

In order to estimate above the terms of the second sum on the right side
of (2.2), we shall use Hardy’s inequality (with the appropriate modification for
p =∞)

(2.4)

(∫ 1/2

0

∣∣∣∣∣xγ
∫ 1/2

x

F (u) du

∣∣∣∣∣
p

dx

)1/p

≤ c

(∫ 1/2

0

|xγ+1F (x)|p dx

)1/p

provided that γ > −1/p.
We set χ(x) = x. By (2.4) we get

‖ψk‖p[0,1/2] ≤ c ‖χm+γ1,0−jg(m)‖p[0,1/2]

≤ c ‖χγ2,0g(m)‖p[0,1/2], k = 0, . . . ,m− j − 1,
(2.5)

as for the second estimate above we have used that γ2,0 ≤ γ1,0 +m− j.
Now, (2.2), (2.3) and (2.5) imply the inequality

(2.6) ‖χγ1,0g(j)‖p[0,1/2] ≤ c
(
‖g‖p[1/4,1/2] + ‖χγ2,0g(m)‖p[0,1/2]

)
.

By symmetry, we get

(2.7) ‖(1− χ)γ1,1g(j)‖p[1/2,1] ≤ c
(
‖g‖p[1/2,3/4] + ‖(1− χ)γ2,1g(m)‖p[1/2,1]

)
.

The last two estimates yield the assertion of the proposition.

Remark 2.2. As a corollary of (2.1) and Proposition 2.1 we get the following
embedding inequalities:

‖wϕ2jg(j)‖p ≤ c
(
‖wg‖p + ‖wϕ2mg(m)‖p

)
, j = 0, . . . ,m,(2.8)

‖wϕ2jg(2j)‖p ≤ c
(
‖wg‖p + ‖wϕ2mg(2m)‖p

)
, j = 0, . . . ,m,(2.9)
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and

‖wg(j)‖p ≤ c
(
‖wg‖p + ‖wg(m)‖p

)
, j = 0, . . . ,m,(2.10)

where w = w(γ0, γ1) is given by (1.3) with γ0, γ1 > −1/p if 1 ≤ p < ∞ or
γ0, γ1 ≥ 0 if p =∞.

We proceed to several embedding inequalities, which will enable us to trans-
fer estimates in terms of the semi-norms ‖wϕ2ig(j)‖p to such in terms of the
more complicated one ‖w(Drg)(s)‖p. Their proof is based on the following
Taylor-type formulas.

Lemma 2.3. Let s ∈ N and g ∈ ACs+1[0, 1].

(a) If s ≥ 2, then

g(s)(x) =

∫ 1

0

Ks(x, u) (Dg)(s)(u) du, x ∈ [0, 1],

where

Ks(x, u) = − 1

s− 1


(u
x

)s−1

, u ≤ x,(
1− u
1− x

)s−1

, x ≤ u.

(b) If s ≥ 1, then

g(s+1)(x) =

∫ 1

0

Ls(x, u) (Dg)(s)(u) du, x ∈ [0, 1],

where

Ls(x, u) =


us−1

xs
, u ≤ x,

− (1− u)s−1

(1− x)s
, x < u.

Proof. Assertion (a) is verified by integration by parts. More precisely, we
expand (Dg)(s)(u) to get

(2.11) (Dg)(s)(u) = −s(s− 1)g(s)(u) + s(1− 2u)g(s+1)(u) + u(1− u)g(s+2)(u).

Next, we evaluate the integral∫ 1

0

Ks(x, u)
[
s(1− 2u)g(s+1)(u) + u(1− u)g(s+2)(u)

]
du.

We get by integration by parts∫ x

0

us−1
[
s(1− 2u)g(s+1)(u) + u(1− u)g(s+2)(u)

]
du

= xs(1− x)g(s+1)(x)− (s− 1)

∫ x

0

usg(s+1)(u) du

= xs(1− x)g(s+1)(x)− (s− 1)xsg(s)(x) + s(s− 1)

∫ x

0

us−1g(s)(u) du
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and ∫ 1

x

(1− u)s−1
[
s(1− 2u)g(s+1)(u) + u(1− u)g(s+2)(u)

]
du

= −x(1− x)sg(s+1)(x) + (s− 1)

∫ 1

x

(1− u)sg(s+1)(u) du

= −x(1− x)sg(s+1)(x)− (s− 1)(1− x)sg(s)(x)

+ s(s− 1)

∫ 1

x

(1− u)s−1g(s)(u) du.

Consequently,∫ 1

0

Ks(x, u)
[
s(1− 2u)g(s+1)(u) + u(1− u)g(s+2)(u)

]
du

= g(s)(x) + s(s− 1)

∫ 1

0

Ks(x, u) g(s)(u) du,

which, in view of (2.11), completes the proof of (a).
Assertion (b) for s ≥ 2 is directly verified by differentiating the formula in

(a). If s = 1, we just have

1

x

∫ x

0

(Dg)′(u) du =
Dg(x)

x
= (1− x)g′′(x)

and

− 1

1− x

∫ 1

x

(Dg)′(u) du =
Dg(x)

1− x
= xg′′(x).

Hence (b) for s = 1 follows.

Proposition 2.4. Let 1 ≤ p ≤ ∞, r, s ∈ N and w = w(γ0, γ1) be given by (1.3)
as

−1/p <γ0, γ1 < s− 1/p if 1 ≤ p <∞,
0 ≤γ0, γ1 < s if p =∞.

Set js = 1 if s = 1, and js = 0 otherwise. Then for all g ∈ AC2r+s−1[0, 1] there
hold

‖wg(j+s)‖p ≤ c ‖w(Drg)(s)‖p, j = js, . . . , r,(2.12)

and

‖wϕ2rg(2r+s)‖p ≤ c ‖w(Drg)(s)‖p.(2.13)

The constant c is independent of g.
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Proof. We shall establish the assertions by induction on r. In order to verify
them for r = 1 we apply Lemma 2.3 and Hardy’s inequality (with the appropri-
ate modification for p =∞)

(2.14)

(∫ 1/2

0

∣∣∣∣xγ ∫ x

0

F (u) du

∣∣∣∣p dx
)1/p

≤ c

(∫ 1/2

0

|xγ+1F (x)|p dx

)1/p

provided that γ < −1/p.
We shall estimate the integrals in the formulas in Lemma 2.3. We set χ(x) =

x and

Ψ1(x) = x−s+1

∫ x

0

us−1(Dg)(s)(u) du,

Ψ2(x) = x−s
∫ x

0

us−1(Dg)(s)(u) du.

Clearly,

(2.15) ‖wΨ1‖p ≤ ‖wΨ2‖p.

We shall estimate the Lp-norm of wΨ2 separately on the intervals [0, 1/2] and
[1/2, 1].

For the estimate on [0, 1/2] we use that γ0 − s < −1/p and apply (2.14),
which yields

(2.16) ‖χγ0Ψ2‖p[0,1/2] ≤ c‖χγ0(Dg)(s)‖p[0,1/2] ≤ c‖w(Dg)(s)‖p.

For the estimate on [1/2, 1] we observe that for 0 ≤ u ≤ x ≤ 1 we have

(1− u)γ1 ≥

{
(1− x)γ1 if γ1 ≥ 0,

1 if γ1 < 0.

Then, using Hölder’s inequality, we get

(1− x)γ1 |Ψ2(x)| ≤ c max{1, (1− x)γ1}‖χs−γ0−1‖q ‖w(Dg)(s)‖p
≤ c max{1, (1− x)γ1} ‖w(Dg)(s)‖p,

where q is the conjugate exponent to p. At the last estimate above we have
again taken into account that s− γ0 − 1 > −1/q = 1/p− 1.

Since γ1 > −1/p if 1 ≤ p < ∞, and γ1 ≥ 0 if p = ∞, then the Lp-norm on
[1/2, 1] of max{1, (1− x)γ1} is finite and we deduce that

(2.17) ‖(1− χ)γ1Ψ2‖p[1/2,1] ≤ c ‖w(Dg)(s)‖p.

Inequalities (2.15)-(2.17) imply

‖wΨ1‖p ≤ ‖wΨ2‖p ≤ c ‖w(Dg)(s)‖p.
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By symmetry, we get the analogue of the last estimates for the terms

(1− x)−s+i
∫ 1

x

(1− u)s−1(Dg)(s)(u) du, i = 0, 1.

Thus, we establish that∥∥∥∥w ∫ 1

0

Ks(◦, u) (Dg)(s)(u) du

∥∥∥∥
p

≤ c ‖w(Dg)(s)‖p, s ≥ 2,

and ∥∥∥∥w ∫ 1

0

Ls(◦, u) (Dg)(s)(u) du

∥∥∥∥
p

≤ c ‖w(Dg)(s)‖p, s ≥ 1.

Now, we complete the proof of inequalities (2.12) for r = 1 by Lemma 2.3. Then
(2.13) follows from (2.11). The proposition is established for r = 1.

We proceed by induction on r, so let us assume that (2.12)-(2.13) are valid
for some r. Then applying (2.12) with Dg in place of g, we arrive at

(2.18) ‖w(Dg)(j+s)‖p ≤ c ‖w(Dr+1g)(s)‖p, j = js, . . . , r.

On the other hand, by what we have already shown in the case r = 1, we have

(2.19) ‖wg(j′+j+s)‖p ≤ c ‖w(Dg)(j+s)‖p, j′ = 0, 1.

Let us note that jj+s = 0 because j + s ≥ 2 for j ≥ js.
Now, (2.18)-(2.19) yield

‖wg(j+s)‖p ≤ c ‖w(Dr+1g)(s)‖p, j = js, . . . , r + 1.

Thus (2.12) is verified for r + 1 in place of r.
To complete the proof of (2.13), we need to show that

‖wϕ2r+2g(2r+s+2)‖p ≤ c ‖w(Dr+1g)(s)‖p.

In view of (2.11) with 2r+ s in place of s, that will follow from the inequalities

‖wϕ2r(Dg)(2r+s)‖p ≤ c ‖w(Dr+1g)(s)‖p(2.20)

and

‖wϕ2rg(j+2r+s)‖p ≤ c ‖w(Dr+1g)(s)‖p, j = 0, 1.(2.21)

Inequality (2.20) follows from (2.13) with Dg in place of g. To establish (2.21)
we first apply (2.12) with r = 1, wϕ2r in place of w, and 2r + s in place of s
and thus get

(2.22) ‖wϕ2rg(j+2r+s)‖p ≤ c ‖wϕ2r(Dg)(2r+s)‖p, j = 0, 1.

Inequalities (2.20) and (2.22) imply (2.21).
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3 Auxiliary identities concerning the Bernstein
operator

In this section we shall present some of the basic properties of the Bernstein
operator, which we shall use.

Direct computation yields the following formulas for the derivatives of the
polynomials pn,k, k = 0, . . . , n (see e.g. [4, Chapter 10, (2.1)]):

p′n,k(x) = n[pn−1,k−1(x)− pn−1,k(x)](3.1)

and

p′n,k(x) = ϕ−2(x)(k − nx)pn,k(x),(3.2)

where we have set for convenience pn,k = 0 if k < 0 or k > n.
For a sequence {ak}k∈Z we set ∆ak = ak − ak−1. Now, if we put pk(n, x) =

pn,k(x), then iterating (3.1) we get

(3.3) p
(s)
n,k(x) = (−1)s

n!

(n− s)!
∆spk(n− s, x).

Similarly, using (3.2), it is verified by induction that (cf. [8, (9.4.8)])

p
(s)
n,k(x) = ϕ−2s(x) pn,k(x)

s∑
j=0

(k − nx)j
∑

0≤i≤(s−j)/2

qs,j,i(x)
(
nϕ2(x)

)i
,

where qs,j,i(x) are polynomials, whose coefficients are independent of n. Rear-
ranging the summands, we get

(3.4) p
(s)
n,k(x) = ϕ−2s(x) pn,k(x)

∑
0≤i≤s/2

(
nϕ2(x)

)i s−2i∑
j=0

qs,j,i(x)(k − nx)j .

We shall often use the quantities

Tn,`(x) =

n∑
k=0

(k − nx)`pn,k(x).

It is known (see [4, Chapter 10, Theorem 1.1]) that

(3.5) Tn,`(x) =
∑

1≤ρ≤`/2

t`,ρ(x)
(
nϕ2(x)

)ρ
, ` ∈ N,

where t`,ρ(x) are polynomials, whose coefficients are independent of n.
In particular (see e.g. [4, p. 304] and [25, p. 14]),

Tn,0(x) = 1, Tn,1(x) = 0, Tn,2(x) = nϕ2(x),

Tn,3(x) = (1− 2x)nϕ2(x), Tn,4(x) = 3n2ϕ4(x) + nϕ2(x)(1− 6ϕ2(x)).
(3.6)
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Identity (3.5) implies (see also [8, Lemma 9.4.4]) that

(3.7) 0 ≤ Tn,2m(x) ≤ c

{
nϕ2(x), nϕ2(x) ≤ 1,(
nϕ2(x)

)m
, nϕ2(x) ≥ 1.

Let α > 0. We fix m ∈ N such that 2m/α > 1. Then Hölder’s inequality, (3.7)
and the identity

∑n
k=0 pn,k(x) ≡ 1 imply

(3.8) 0 ≤
n∑
k=0

|k−nx|αpn,k(x) ≤ Tα/(2m)
n,2m (x) ≤ c

{
1, nϕ2(x) ≤ 1,(
nϕ2(x)

)α/2
, nϕ2(x) ≥ 1.

We shall need the analogue of Tn,` associated with the differentiated Bern-
stein polynomial. We set

Ts,n,`(x) =

n∑
k=0

(k − nx)`p
(s)
n,k(x).

The following formula, similar to (3.5), holds.

Lemma 3.1. Let `, n, s ∈ N. Then

Ts,n,`(x) =

s∑
ρ=1

t̃s,`,ρ(x)nρ + ns
∑

1≤ρ≤(`−s)/2

ts,`,ρ(x)
(
nϕ2(x)

)ρ
,

where ts,`,ρ(x) and t̃s,`,ρ(x) are polynomials, whose coefficients are independent
of n.

Above we follow the usual convention that an empty sum is considered to
be equal to 0.

Proof of Lemma 3.1. Let ` ≥ 2. We apply (3.4). Then we sum on k, use (3.5)
and finally reorder the summands to get

Ts,n,`(x) = ns
∑

0≤i≤s/2

(
nϕ2(x)

)i−s s−2i∑
j=0

qs,j,i(x)Tn,j+`(x)

= ns
∑

0≤i≤s/2

∑
1≤ρ≤(s+`−2i)/2

ts,i,`,ρ(x)
(
nϕ2(x)

)i+ρ−s
,

where we have set

ts,i,`,ρ(x) =

s−2i∑
j=max{0,2ρ−`}

qs,j,i(x) tj+`,ρ(x).

Let us note that ts,i,`,ρ(x) are polynomials, whose coefficients are independent
of n.
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Consequently,

Ts,n,`(x) = ns
∑

1−s≤ρ≤(`−s)/2

ts,`,ρ(x)
(
nϕ2(x)

)ρ
with some polynomials ts,`,ρ(x), whose coefficients are independent of n. To get
the assertion of the lemma for ` ≥ 2, we need only take into account that the
left-hand side of the last identity is a polynomial in x; hence so is ϕ2ρ(x)ts,`,ρ(x)
for each negative ρ. Here we also use that ts,`,ρ(x) are independent of n.

Minor changes in the above argument establish the lemma for ` = 1 too.

We proceed to several identities concerning the derivatives of the error of the
Bernstein operators. We shall use them to establish Jackson- and Voronovskaya-
type estimates. We denote the set of the algebraic polynomials of degree at most
j by πj .

Lemma 3.2. Let s ∈ N, f ∈ C[0, 1], f ∈ ACs+1
loc (0, 1) and ϕ2s+2f (s+2) ∈ L[0, 1].

Then

(3.9) (Bnf(x)− f(x))(s) =
1

n
As,nf

(s)(x) +
1

n
Bs,n(x)f (s+1)(x)

+
1

(s+ 1)!

n∑
k=0

p
(s)
n,k(x)

∫ k/n

x

(
k

n
− u
)s+1

f (s+2)(u) du, x ∈ (0, 1),

where

As,n =

s−2∑
ν=0

as,ν n
−ν , Bs,n(x) =

s−1∑
ν=0

bs,ν(x)n−ν ,

and as,ν and bs,ν(x) are respectively constants and linear functions, which are
independent of n.

Above we again use the usual convention that an empty sum is zero. Note
that the order of the derivatives on the right of (3.9) is at least max{2, s}.

Proof of Lemma 3.2. Let us make two observations that will justify our usage
of Taylor’s expansions, integration by parts and induction on s below.

First, if f ∈ ACσ+1
loc (0, 1) and ϕ2σ+2f (σ+2) ∈ L[0, 1] for some σ ∈ N, then

(3.10) ϕ2σf (σ+1) ∈ L[0, 1].

That follows from Proposition 2.1 with p = 1, g = f , j = σ + 1, m = σ + 2,
w1 = ϕ2σ and w2 = ϕ2σ+2.

Further, using the representation

uσ+1f (σ+1)(u) =
1

2σ+1
f (σ+1)

(
1

2

)
− (σ + 1)

∫ 1/2

u

vσf (σ+1)(v) dv

−
∫ 1/2

u

vσ+1f (σ+2)(v) dv, u ∈ (0, 1),
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we deduce that limu→0+0 u
σ+1f (σ+1)(u) exists as a finite limit. Moreover, if we

assume that it is not 0, then we shall get that uσ|f (σ+1)(u)| ≥ C/u for u ∈ (0, δ)
with some positive constants C and δ, which contradicts ϕ2σf (σ+1) ∈ L[0, 1].
Consequently,

(3.11) lim
u→0+0

uσ+1f (σ+1)(u) = 0.

By symmetry, we get

(3.12) lim
u→1−0

(1− u)σ+1f (σ+1)(u) = 0.

Let us proceed to the proof of the lemma. We shall establish it by means of
induction on s. To check it for s = 1 we note that by (3.10) with σ = 1 we have
ϕ2f ′′ ∈ L[0, 1] and we can expand f(t) at x ∈ (0, 1) by Taylor’s formula to get

f(t) = f(x) + (t− x)f ′(x) +

∫ t

x

(t− u)f ′′(u) du, t ∈ [0, 1].

Then we apply the operator Bn to both sides of the above identity, take into
account that it preserves the linear functions and arrive at

(3.13) Bnf(x)− f(x) =

n∑
k=0

pn,k(x)

∫ k/n

x

(
k

n
− u
)
f ′′(u) du.

We differentiate (3.13), integrate by parts as we take into account (3.11)-(3.12)
with σ = 1 and use (3.2) and (3.6) to derive

(Bnf(x)− f(x))′ = − 1

n
Tn,1(x)f ′′(x) +

n∑
k=0

p′n,k(x)

∫ k/n

x

(
k

n
− u
)
f ′′(u) du

=
ϕ−2(x)

2n2
Tn,3(x)f ′′(x)

+
1

2

n∑
k=0

p′n,k(x)

∫ k/n

x

(
k

n
− u
)2

f ′′′(u) du

=
1− 2x

2n
f ′′(x) +

1

2

n∑
k=0

p′n,k(x)

∫ k/n

x

(
k

n
− u
)2

f ′′′(u) du.

Thus the lemma is verified for s = 1.
Next, let us assume that the assertion of the lemma is true for some s and

let f ∈ C[0, 1], f ∈ ACs+2
loc (0, 1) and ϕ2s+4f (s+3) ∈ L[0, 1]. Then by (3.10) with

σ = s+1 we have ϕ2s+2f (s+2) ∈ L[0, 1]. Therefore, by the induction hypothesis,
formula (3.9) is valid for that s. We differentiate it and integrate by parts using
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(3.11)-(3.12) with σ = s+ 1. Thus we arrive at

(Bnf(x)− f(x))(s+1) =
1

n

(
As,n +B′s,n(x)

)
f (s+1)(x)

+
1

n
Bs,n(x)f (s+2)(x)

− 1

(s+ 1)!

n∑
k=0

p
(s)
n,k(x)

(
k

n
− x
)s+1

f (s+2)(x)

+
1

(s+ 2)!

n∑
k=0

p
(s+1)
n,k (x)

(
k

n
− x
)s+2

f (s+2)(x)

+
1

(s+ 2)!

n∑
k=0

p
(s+1)
n,k (x)

∫ k/n

x

(
k

n
− u
)s+2

f (s+3)(u) du.

(3.14)

According to the induction hypothesis the expression As+1,n = As,n+B′s,n(x) is

of the form
∑s−1
ν=0 as+1,ν n

−ν with some constants as+1,ν , which are independent
of n.

Let us denote by Bs+1,n(x) the factor of f (s+2)(x)/n in the expansion (3.14).
From the induction hypothesis and Lemma 3.1 with ` = s+ 1 it follows that it
is of the form

(3.15) Bs+1,n(x) =

s∑
ν=0

bs+1,ν(x)n−ν ,

where bs+1,ν(x) are polynomials, whose coefficients are independent of n. To
show that they are of degree 1, we set in (3.14) f(x) = xs+2. We get

(Bnf(x)− f(x))(s+1) =
As+1,n (s+ 2)!

n
x+

(s+ 2)!

n
Bs+1,n(x).

Since Bnf ∈ πs+2, we deduce that Bs+1,n ∈ π1; hence bs+1,ν ∈ π1 because their
coefficients are independent of n.

This completes the proof of the lemma.

Lemma 3.3. Let s ∈ N, f ∈ C[0, 1], f ∈ ACs+2
loc (0, 1) and ϕ2s+4f (s+3) ∈ L[0, 1].

Then(
Bnf(x)− f(x)− 1

2n
Df(x)

)(s)

=
1

n2
Ãs,nf

(s)(x) +
1

n2
B̃s,n(x)f (s+1)(x)

+
1

n2
C̃s,n(x)f (s+2)(x) +

1

(s+ 2)!

n∑
k=0

p
(s)
n,k(x)

∫ k/n

x

(
k

n
− u
)s+2

f (s+3)(u) du,

x ∈ (0, 1),

where

Ãs,n =

s−3∑
ν=0

ãs,ν n
−ν , B̃s,n(x) =

s−2∑
ν=0

b̃s,ν(x)n−ν , C̃s,n(x) =

s−1∑
ν=0

c̃s,ν(x)n−ν
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and ãs,ν , b̃s,ν(x) and c̃s,ν(x) are polynomials of degree respectively 0, 1 and 2,
whose coefficients are independent of n.

Let us note that the order of the derivatives on the right of the formula in
the lemma is at least max{3, s}.

Proof of Lemma 3.3. We verify the lemma just similarly to the previous one.
To check it for s = 1 we apply (3.10) with σ = 2 and get ϕ4f ′′′ ∈ L[0, 1].

Then

f(t) = f(x) + (t−x)f ′(x) +
1

2
(t−x)2f ′′(x) +

1

2

∫ t

x

(t−u)2f ′′′(u) du, t ∈ [0, 1].

We apply the operator Bn to both sides of the above identity, take into account
that it preserves the linear functions and also that Tn,2(x) = nϕ2(x) (see (3.6))
and arrive at

(3.16) Bnf(x)− f(x)− 1

2n
Df(x) =

1

2

n∑
k=0

pn,k(x)

∫ k/n

x

(
k

n
− u
)2

f (3)(u) du.

We set

(3.17) Vnf(x) = Bnf(x)− f(x)− 1

2n
Df(x).

We differentiate (3.16), integrate by parts, taking into account (3.11)-(3.12) with
σ = 2, and apply (3.2). Thus we arrive at

(Vnf)′(x) = − 1

2n2
Tn,2(x)f (3)(x) +

1

2

n∑
k=0

p′n,k(x)

∫ k/n

x

(
k

n
− u
)2

f (3)(u) du

=
1

6n2

(
ϕ−2(x)

n
Tn,4(x)− 3Tn,2(x)

)
f (3)(x)

+
1

3!

n∑
k=0

p′n,k(x)

∫ k/n

x

(
k

n
− u
)3

f (4)(u) du.

To complete the proof for s = 1 we apply (3.6), which yields

ϕ−2(x)

n
Tn,4(x)− 3Tn,2(x) = 1− 6ϕ2(x).

Next, let us assume that the lemma is valid for some s. Let f ∈ C[0, 1],
f ∈ ACs+3

loc (0, 1) and ϕ2s+6f (s+4) ∈ L[0, 1]. Then by (3.10) with σ = s + 2 we
have ϕ2s+4f (s+3) ∈ L[0, 1]; hence the formula of the lemma is true for that s.
We differentiate it and integrate by parts as we use (3.11)-(3.12) with σ = s+2.
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Thus we arrive at

(Vnf)(s+1) =
1

n2

(
Ãs,n + B̃′s,n(x)

)
f (s+1)(x)

+
1

n2

(
B̃s,n(x) + C̃ ′s,n(x)

)
f (s+2)(x)

+
1

n2

(
C̃s,n(x) + D̃s,n(x)

)
f (s+3)(x)

+
1

(s+ 3)!

n∑
k=0

p
(s+1)
n,k (x)

∫ k/n

x

(
k

n
− u
)s+3

f (s+4)(u) du,

(3.18)

where we have set

D̃s,n(x) =
n2

(s+ 3)!

(
n∑
k=0

p
(s)
n,k(x)

(
k

n
− x
)s+3

)′
.

The induction hypothesis implies that the factors of f (s+1)(x) and f (s+2)(x) are
of the stated form. To establish that for the factor of f (s+3)(x), we use Lemma
3.1 with ` = s+ 3 to deduce that

D̃s,n(x) =

s∑
ν=0

d̃s,ν(x)n−ν

with some polynomials d̃s,ν , whose coefficients do not depend on n. Conse-
quently, if we set

C̃s+1,n(x) = C̃s,n(x) + D̃s,n(x),

then

C̃s+1,n(x) =

s∑
ν=0

c̃s+1,ν(x)n−ν

with some polynomials c̃s+1,ν , whose coefficients do not depend on n. To prove
that they are of degree 2, we set f(x) = xs+3 in (3.18) and argue as in the proof
of Lemma 3.2.

4 Basic estimates for the simultaneous approx-
imation by Bn and Br,n

In this section we shall establish the basic inequalities which imply the charac-
terization of the error of the simultaneous approximation by means of Br,n. We
use techniques, which have already become standard for this set of problems
(see [8, Chapters 9 and 10]). To establish the converse estimate we apply the
general method given in [7, Theorem 3.2]. At the end we shall be able to prove
Theorem 1.1.

We begin with the following basic estimates concerning the boundedness of
the weighted Lp-norms of (Bnf)(s) and (Br,nf)(s).
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Proposition 4.1. Let 1 ≤ p ≤ ∞, r, s ∈ N and w = w(γ0, γ1) be given by (1.3)
as

−1 < γ0, γ1 ≤ s− 1 if p = 1,

−1/p < γ0, γ1 < s− 1/p if 1 < p <∞,
0 ≤ γ0, γ1 < s if p =∞.

Then for all f ∈ C[0, 1] such that f ∈ ACs−1
loc (0, 1) and wf (s) ∈ Lp[0, 1], and all

n ∈ N there hold:

(a) ‖w(Bnf)(s)‖p ≤ c ‖wf (s)‖p;

(b) ‖w(Br,nf)(s)‖p ≤ c ‖wf (s)‖p.

Proof. Let us establish assertion (a). The inequality is trivial for n < s. For
n ≥ s it is known (see [28], or [4, Chapter 10, (2.3)], or [8, p. 125]) that

(4.1) (Bnf)(s)(x) =
n!

(n− s)!

n−s∑
k=0

−→
∆s

1/nf

(
k

n

)
pn−s,k(x),

where
−→
∆hf(x) = f(x+ h)− f(x), x ∈ [0, 1− h], and

−→
∆s
h =
−→
∆h(
−→
∆s−1
h ); hence

−→
∆s
hf(x) =

s∑
i=0

(−1)i
(
s

i

)
f(x+ (s− i)h), x ∈ [0, 1− sh].

Formula (4.1) can be established by means of (3.3) and Abel’s transform.
It is also known that (see e.g. [4, p. 45])

−→
∆s
hf(x) = hs

∫ s

0

Ms(u)f (s)(x+ hu) du, x ∈ [0, 1− sh],

where Ms is the s-fold convolution of the characteristic function of [0, 1] with
itself. Hence, by Hölder’s inequality, we arrive at

(4.2)

∣∣∣∣−→∆s
1/nf

(
k

n

)∣∣∣∣ ≤ wp,n,k
ns

‖wf (s)‖p[k/n,(k+s)/n], k = 0, . . . , n− s,

where

(4.3) wp,n,k = n

∥∥∥∥Ms(n ◦ −k)

w

∥∥∥∥
q[k/n,(k+s)/n]

and q is the conjugate exponent to p.
Relations (4.1)-(4.2) yield

(4.4) |w(x)(Bnf)(s)(x)| ≤ cw(x)

n−s∑
k=0

wp,n,k pn−s,k(x) ‖wf (s)‖p[k/n,(k+s)/n].
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We shall show that the Lp-norm of the right-hand side of (4.4) is bounded above
by c ‖wf (s)‖p. In view of the Riesz-Thorin interpolation theorem, we need only
do that for p = 1 and p =∞. Also, due to symmetry it is sufficient to consider
only the summands for k = 0, . . . , [(n − s)/2] on the right-hand side of (4.4).
Indeed, for w̄(x) = w(1− x), f̄(x) = f(1− x), and w̄p,n,k, defined by (4.3) with
w̄ in place of w, we have

wp,n,n−s−k = w̄p,n,k, ‖wf (s)‖p = ‖w̄f̄ (s)‖p,
‖wf (s)‖p[(n−s−k)/n,(n−k)/n] = ‖w̄f̄ (s)‖p[k/n,(k+s)/n],

(4.5)

as for the first relation above we have taken into account thatMs(s−u) = Ms(u).
Consequently, with y = 1− x we have

(4.6)
∑

(n−s)/2≤k≤n−s

wp,n,k pn−s,k(x) ‖wf (s)‖p[k/n,(k+s)/n]

=
∑

0≤k≤(n−s)/2

w̄p,n,k pn−s,k(y) ‖w̄f̄ (s)‖p[k/n,(k+s)/n].

Thus it is sufficient to consider only the summands for k = 0, . . . , [(n− s)/2] on
the right-hand side of (4.4).

It is known that

0 ≤Ms(u) ≤ c[u(s− u)]s−1, 0 ≤ u ≤ s.

Hence (a) follows for n = s. Let n > s. We have

Ms(nu)

w(u)
≤ c nγ0 (nu)s−γ0−1, u ∈ (0, s/n],

and

Ms(nu− k)

w(u)
≤ c nγ0k−γ0 , u ∈ [k/n, (k + s)/n], 1 ≤ k ≤ (n− s)/2;

hence, under the assumptions on γ0, we get

(4.7) wp,n,k ≤ c n1/p

(
n

k + 1

)γ0
, 0 ≤ k ≤ (n− s)/2.

Let p =∞. Inequality (4.7) and Hölder’s inequality imply

[(n−s)/2]∑
k=0

w∞,n,k pn−s,k(x) ≤ c
n−s∑
k=0

(
n

k + 1

)γ0
pn−s,k(x)

≤ c

(
n−s∑
k=0

(
n

k + 1

)s
pn−s,k(x)

)γ0/s
.

(4.8)
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There holds (see [8, (10.2.4)])

(4.9)

n∑
k=0

(
n

k + 1

)s
pn,k(x) ≤ c x−s, x ∈ (0, 1].

Consequently,

(4.10) w(x)

[(n−s)/2]∑
k=0

w∞,n,k pn−s,k(x) ≤ c, x ∈ [0, 1].

Now, (4.4), (4.6) and (4.10) imply (a) for p =∞ and n > s.
For p = 1 we use instead the estimate (see [8, (10.2.6)])∫ 1

0

xγ0pn,k(x) dx ≤ c

n

(
k + 1

n

)γ0
, k = 0, . . . , n,

which implies

(4.11)

∫ 1

0

w(x)pn−s,k(x) dx ≤ c

n

(
k + 1

n

)γ0
, 0 ≤ k ≤ (n− s)/2.

Now, (a) for p = 1 and n > s follows from (4.4), (4.6) and (4.7).
Assertion (b) follows from (a) by iteration.

Now, we shall establish Jackson-type estimates for the operators (Bnf)(s)

and (Br,nf)(s). We shall use the following technical result.

Lemma 4.2. Let α, β, δ ∈ R be such that 0 ≤ α, β ≤ δ. Set γ = min{α, β}.
Then for x, t ∈ (0, 1) and u between x and t there holds

|t− u|δ

uα(1− u)β
≤ 2|γ−1| |t− x|δ

xα(1− x)β
.

Proof. For u between t and x such that x, t ∈ (0, 1) we have the inequalities:

(4.12)
|t− u|
u

≤ |t− x|
x

,
|t− u|
1− u

≤ |t− x|
1− x

.

The first one is checked directly and the second one follows from it by symmetry.
Next, we shall show that under the same conditions on x, t and u we have

(4.13)
|t− u|µ

[u(1− u)]µ
≤ 2|µ−1| |t− x|µ

[x(1− x)]µ
, µ ≥ 0.

To establish that we raise each of the inequalities in (4.12) to the power of µ
and sum them up. Thus we arrive at

|t− u|µ u
µ + (1− u)µ

[u(1− u)]µ
≤ |t− x|µ x

µ + (1− x)µ

[x(1− x)]µ
.
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To get (4.13), it remains to observe that min{1, 21−µ} ≤ xµ + (1 − x)µ ≤
max{1, 21−µ} for x ∈ [0, 1].

Further, we set γ̂ = max{α, β} and

φ(x) =

{
x, α ≥ β,
1− x, β > α.

Now, to prove the lemma we need only multiply the inequalities:

|t− u|γ

[u(1− u)]γ
≤ 2|γ−1| |t− x|γ

[x(1− x)]γ
,(4.14) (

|t− u|
φ(u)

)γ̂−γ
≤
(
|t− x|
φ(x)

)γ̂−γ
(4.15)

and

|t− u|δ−γ̂ ≤ |t− x|δ−γ̂ .(4.16)

Inequality (4.14) is (4.13) with µ = γ ≥ 0, (4.15) follows from (4.12) and γ ≤ γ̂,
and (4.16) from γ̂ ≤ δ.

Proposition 4.3. Let 1 < p ≤ ∞, s ∈ N and w = w(γ0, γ1) be given by (1.3).
Set s′ = max{2, s}. If −1/p < γ0, γ1 ≤ s, then for all f ∈ C[0, 1] such that
f ∈ ACs+1

loc (0, 1) and wf (s′), wϕ2f (s+2) ∈ Lp[0, 1], and all n ∈ N there holds

(4.17) ‖w(Bnf − f)(s)‖p ≤
c

n

(
‖wf (s′)‖p + ‖wϕ2f (s+2)‖p

)
.

For p = ∞ we may allow γ0γ1 = 0, while still assuming 0 ≤ γ0, γ1 < s, and
have

(4.18) ‖w(Bnf − f)(s)‖∞ ≤
c

n

(
‖wf (s′)‖∞ + ‖wf (s+1)‖∞ + ‖wϕ2f (s+2)‖∞

)
,

provided that wf (s+1) ∈ L∞[0, 1] too.

Remark 4.4. Let us note that (4.17) is, in general, not true in the case s ≥ 2,
γ0γ1 = 0 and p = ∞. To avoid certain technical details we shall show that
for γ0 = γ1 = 0. Let f (s)(x) = x log x. Then f (s), ϕ2f (s+2) ∈ L∞[0, 1] but
f (s+1) 6∈ L∞[0, 1]. If (4.17) was true for s ≥ 2, γ0 = γ1 = 0 and p = ∞, then
the last assertion of Theorem 1.1 and Theorem 1.3, both with r = 1, would
imply K1(f (s), n−1)∞ = O(n−1); hence f (s+1) ∈ L∞[0, 1] (see [4, Chapter 2,
Theorem 9.3 and Chapter 6, Theorem 2.4]), which is a contradiction. Let us
explicitly note that the fact that (4.17) is not generally valid in the case p =∞
and γ0γ1 = 0 is not used in the proofs of Theorems 1.1 and 1.3 (see also Remark
1.7).
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Proof of Proposition 4.3. The proof is based on Lemma 3.2. We use Hölder’s
inequality and wϕ2f (s+2) ∈ Lp[0, 1] to derive ϕ2s+2f (s+2) ∈ L[0, 1]; and hence
the lemma is applicable.

We shall prove that if 1 < p < ∞ and −1/p < γ0, γ1 ≤ s, or p = ∞
and 0 ≤ γ0, γ1 ≤ s, then for all f ∈ C[0, 1] such that f ∈ ACs+1

loc (0, 1) and

wf (s′), wf (s+1), wϕ2f (s+2) ∈ Lp[0, 1], and all n ∈ N there holds

(4.19) ‖w(Bnf − f)(s)‖p ≤
c

n

(
‖wf (s′)‖p + ‖wf (s+1)‖p + ‖wϕ2f (s+2)‖p

)
.

That contains, in particular, (4.18), and estimate (4.17) follows from (4.19) and
the inequality

‖wf (s+1)‖p ≤ c
(
‖wf (s′)‖p + ‖wϕ2f (s+2)‖p

)
,

which is established by means of Proposition 2.1 with g = f (s′), j = s− s′ + 1,
m = s− s′ + 2, w1 = w and w2 = wϕ2.

Let us set

Rs,nf(x) =
1

(s+ 1)!

n∑
k=0

p
(s)
n,k(x)

∫ k/n

x

(
k

n
− u
)s+1

f (s+2)(u) du.

We shall show that

(4.20) ‖wRs,nf‖p ≤
c

n

(
‖wf (s+1)‖p + ‖wϕ2f (s+2)‖p

)
,

which verifies (4.19) in view of Lemma 3.2.
Let F (u) = |w(u)ϕ2(u)f (s+2)(u)| and let MF (x) be its Hardy-Littlewood

maximal function defined by

MF (x) = sup
t∈[0,1]

∣∣∣∣ 1

t− x

∫ t

x

F (u) du

∣∣∣∣ .
As is known, if 1 < p ≤ ∞, then

(4.21) ‖MF ‖p ≤ c ‖F‖p.

In order to simplify our argument, we shall consider two cases for the domain
of x.

Case 1. Let nϕ2(x) ≥ 1. We make use of (3.4) and Lemma 4.2 with δ = s+1,
α = γ0 + 1 and β = γ1 + 1 to get

(4.22) |w(x)Rs,nf(x)|

≤ c

n

∑
0≤i≤s/2

(
nϕ2(x)

)i−s−1
s−2i∑
j=0

n∑
k=0

pn,k(x)|k − nx|s+j+2MF (x).
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Further, we apply estimate (3.8) and get

(4.23)
∑

0≤i≤s/2

(
nϕ2(x)

)i−s−1
s−2i∑
j=0

n∑
k=0

pn,k(x)|k − nx|s+j+2

≤ c
∑

0≤i≤s/2

s−2i∑
j=0

(
nϕ2(x)

)(2i+j−s)/2 ≤ c,
as at the last inequality we have taken into account that nϕ2(x) ≥ 1 and 2i +
j − s ≤ 0.

Now, (4.21)-(4.23) imply

(4.24) ‖wRs,nf‖p(In) ≤
c

n
‖wϕ2f (s+2)‖p,

where In = {x ∈ [0, 1] : nϕ2(x) ≥ 1}.
Case 2. Let nϕ2(x) ≤ 1. Due to symmetry, we may also assume that

x ≤ 1/2. Therefore, x ≤ 2/n. By means of (3.3) and Abel’s transform we
derive for n ≥ s the relation (cf. (4.1))

Rs,nf(x) =
1

(s+ 1)!

n!

(n− s)!

n−s∑
k=0

−→
∆s

1/nrs,x

(
k

n

)
pn−s,k(x),

where we have set

rs,x(t) =

∫ t

x

(t− u)
s+1

f (s+2)(u) du.

Consequently,

(4.25) |w(x)Rs,nf(x)| ≤ c ns max
i=0,...,s

n−s∑
k=0

∣∣∣∣w(x) rs,x

(
k + i

n

)∣∣∣∣ pn−s,k(x).

Just as in Case 1 we estimate rs,x(t) by means of Lemma 4.2 and get

(4.26)

∣∣∣∣w(x) rs,x

(
k + i

n

)∣∣∣∣ ≤ c ϕ−2(x)

∣∣∣∣k + i

n
− x
∣∣∣∣s+2

MF (x).

Next, we observe that for k ≥ 1 and i = 0, . . . , s we have k + i + 1 ≥ 2 ≥ nx.
Therefore for n > s there holds

n−s∑
k=1

∣∣∣∣k + i

n
− x
∣∣∣∣s+2

pn−s,k(x) ≤ x

ns+1

n−s−1∑
k=0

|k + i+ 1− nx|s+2pn−s−1,k(x)

≤ c x

ns+1

(
1 +

n−s−1∑
k=1

(k + i+ 1− nx)s+2pn−s−1,k(x)

)

≤ c x

ns+1

(
1 +

n−s−1∑
k=1

(k + s+ 1− nx)s+2pn−s−1,k(x)

)
.
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Further, we use the binomial formula to represent (k + s + 1 − nx)s+2 in the
form

(k + s+ 1− nx)s+2 =
(
[k − (n− s− 1)x] + [(s+ 1)(1− x)]

)s+2

=

s+2∑
j=0

(
s+ 2

j

)
[k − (n− s− 1)x]j [(s+ 1)(1− x)]s−j+2.

Consequently,

n−s∑
k=1

∣∣∣∣k + i

n
− x
∣∣∣∣s+2

pn−s,k(x)

≤ c x

ns+1

1 +

s+2∑
j=0

n−s−1∑
k=1

|k − (n− s− 1)x|jpn−s−1,k(x)


≤ c x

ns+1
,

where at the last estimate, we applied (3.8). Consequently, by (4.26) we get

n−s∑
k=1

∣∣∣∣w(x) rs,x

(
k + i

n

)∣∣∣∣ pn−s,k(x) ≤ c

ns+1
MF (x), i = 0, . . . , s;

hence by (4.21) we arrive at

(4.27)

∥∥∥∥∥
n−s∑
k=1

w rs,◦

(
k + i

n

)
pn−s,k

∥∥∥∥∥
p(I′n)

≤ c

ns+1
‖F‖p, i = 0, . . . , s,

where I ′n = {x ∈ [0, 1/2] : nϕ2(x) ≤ 1}.
It remains to estimate the terms for k = 0 in (4.25). First, we observe that

by (4.26) with k = i = 0 we have

|w(x)rs,x(0)| ≤ c xs+1MF (x) ≤ c

ns+1
MF (x);

hence

(4.28) ‖w rs,◦(0)‖p(I′n) ≤
c

ns+1
‖F‖p.

To estimate w(x)rs,x(i/n) for i = 1, . . . , s, we expand (i/n − u)s+1 by the
binomial formula and get

(4.29)

∣∣∣∣w(x)rs,x

(
i

n

)∣∣∣∣ ≤ c xγ0

ns+1

s+1∑
j=0

∣∣∣∣∣
∫ i/n

x

(nu)jf (s+2)(u) du

∣∣∣∣∣ .
Further, taking into account that in the case under consideration we have nx ≤
2, we get for i = 2, . . . , s and n ≥ s but not i = n = s the inequality∣∣∣∣w(x)rs,x

(
i

n

)∣∣∣∣ ≤ c

ns+1
xγ0

∫ s/(s+1)

x

|f (s+2)(u)| du.
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In order to estimate the Lp-norm of w(x)rs,x(i/n) for γ0 > −1/p, we apply
Hardy’s inequality (2.4) with s/(s + 1) in place of 1/2 as the upper bound in
the integrals. Thus we arrive at

(4.30)

∥∥∥∥w rs,◦( in
)∥∥∥∥

p(I′n)

≤ c

ns+1
‖F‖p

for γ0 > −1/p, 1 < p ≤ ∞, i = 2, . . . , s and n ≥ s but not i = n = s.
For γ0 > −1/p, i = 1, n ≥ s but not n = s = 1 we split the interval I ′n into

two intervals. On [0, 1/n] (note that n ≥ 2), the same considerations as above
yield

(4.31)

∥∥∥∥w rs,◦( 1

n

)∥∥∥∥
p[0,1/n]

≤ c

ns+1
‖F‖p.

Let us denote the right end of the interval I ′n by xn. We have xn ≤ 2/n. Then
for x ∈ [1/n, xn] there hold∫ x

1/n

|f (s+2)(u)| du ≤ c nγ0+1

∫ x

1/n

F (u) du ≤ c x−γ0MF (x).

Consequently (with the appropriate modification for p =∞),(∫ xn

1/n

(
xγ0

∫ x

1/n

|f (s+2)(u)| du

)p
dx

)1/p

≤ c ‖MF ‖p ≤ c ‖F‖p,

as at the second step we have applied (4.21). Thus, in view of (4.29), we have
established

(4.32)

∥∥∥∥w rs,◦( 1

n

)∥∥∥∥
p[1/n,xn]

≤ c

ns+1
‖F‖p.

Combining (4.31) and (4.32), we get

(4.33)

∥∥∥∥w rs,◦( 1

n

)∥∥∥∥
p(I′n)

≤ c

ns+1
‖F‖p

for γ0 > −1/p, 1 < p ≤ ∞.
For p =∞, γ0 = 0, i = 1, . . . , s and n ≥ s but not i = n = s we apply (4.29)

to derive

∣∣∣∣w(x)rs,x

(
i

n

)∣∣∣∣ ≤ c

ns+1

∣∣∣∣∣
∫ i/n

x

f (s+2)(u) du

∣∣∣∣∣+
c

ns+1

s+1∑
j=1

∣∣∣∣∣
∫ i/n

x

(nu)j |f (s+2)(u)| du

∣∣∣∣∣
≤ c

ns+1

∣∣∣∣∣
∫ i/n

x

f (s+2)(u) du

∣∣∣∣∣+
c

ns

∣∣∣∣∣
∫ i/n

x

u|f (s+2)(u)| du

∣∣∣∣∣ .

(4.34)
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For the first term on the right above we have∣∣∣∣∣
∫ i/n

x

f (s+2)(u) du

∣∣∣∣∣ ≤ |f (s+1)(x)|+
∣∣∣∣f (s+1)

(
i

n

)∣∣∣∣
≤ 2 ‖f (s+1)‖∞[0,s/(s+1)] ≤ c ‖wf (s+1)‖∞.

(4.35)

We estimate the second term on the right of (4.34) in the following way:

(4.36)

∣∣∣∣∣
∫ i/n

x

u|f (s+2)(u)| du

∣∣∣∣∣ ≤ c

n
‖χf (s+2)‖∞[0,s/(s+1)] ≤

c

n
‖wϕ2f (s+2)‖∞.

Combining (4.34)-(4.36) we deduce that

(4.37)

∥∥∥∥w rs,◦( in
)∥∥∥∥
∞(I′n)

≤ c

ns+1

(
‖wf (s+1)‖∞ + ‖wϕ2f (s+2)‖∞

)
for γ0 = 0, i = 1, . . . , s and n ≥ s except i = n = s.

It remains to estimate the Lp-norm of w(x)rs,x(i/n) on I ′n for i = n = s. It
is enough to do so for the function xγ0rs,x(1) on [0, 1/2]. To this end we split
the integral in rs,x(1) by means of the intermediate point 1/2 and consider the
two quantities separately. To the first one we apply Hardy’s inequality (2.4)
and get (with the appropriate modification for p =∞)(∫ 1/2

0

∣∣∣∣∣xγ0
∫ 1/2

x

(1− u)s+1f (s+2)(u) du

∣∣∣∣∣
p

dx

)1/p

≤ c

(∫ 1/2

0

∣∣∣xγ0+1(1− x)γ1+1(1− x)s−γ1f (s+2)(x)
∣∣∣p dx)1/p

≤ c‖F‖p.

(4.38)

For the other one we simply have (with the appropriate modification for p =∞)(∫ 1/2

0

∣∣∣∣∣xγ0
∫ 1

1/2

(1− u)s+1f (s+2)(u) du

∣∣∣∣∣
p

dx

)1/p

≤ c

(∫ 1/2

0

∣∣∣∣∣xγ0
∫ 1

1/2

F (u) du

∣∣∣∣∣
p

dx

)1/p

≤ c‖F‖1 ≤ c‖F‖p,

(4.39)

where at the last step we have applied Hölder’s inequality.
Relations (4.38)-(4.39) show that

(4.40) ‖w rs,◦(1)‖p[0,1/2] ≤ c ‖F‖p.
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To summarize, (4.28), (4.30), (4.33), (4.37) and (4.40) yield

(4.41)

∥∥∥∥w rs,◦( in
)∥∥∥∥

p(I′n)

≤ c

ns+1

(
‖wf (s+1)‖p + ‖wϕ2f (s+2)‖p

)
for i = 0, . . . , s, n ≥ s and a weight w satisfying the assumptions in assertion
(4.19). Let us explicitly note that (4.37) is used only if γ0 = 0 and p = ∞. So
the term ‖wf (s+1)‖p in (4.41) is redundant except when γ0 = 0 and p =∞.

Now, (4.25), (4.27) and (4.41) imply

(4.42) ‖wRs,nf‖p(I′n) ≤
c

n

(
‖wf (s+1)‖p + ‖wϕ2f (s+2)‖p

)
.

Finally, estimates (4.24) and (4.42) yield (4.20). Thus (4.19) is verified.

Remark 4.5. It seems that the assertions of the proposition continue to hold
for γ0, γ1 < s + 1 − 1/p (and unchanged lower bounds). However, the proof is
much more technical. What is explicitly established above is quite enough in
view of the restrictions on w in the other propositions (especially Proposition
4.1).

Remark 4.6. The assertion of Proposition 4.3 remains valid for p = 1 too.
However, the proof is much more complicated. To get an idea of how it can be
carried out, the interested reader can refer to e.g. [8, pp. 145-147].

Corollary 4.7. Let 1 < p ≤ ∞, r, s ∈ N and w = w(γ0, γ1) be given by (1.3).
Set s′ = max{2, s}. If −1/p < γ0, γ1 ≤ s, then for all f ∈ C[0, 1] such that
f ∈ AC2r+s−1

loc (0, 1) and wf (s′), wϕ2rf (2r+s) ∈ Lp[0, 1], and all n ∈ N there
holds

‖w(Br,nf − f)(s)‖p ≤
c

nr

(
‖wf (s′)‖p + ‖wϕ2rf (2r+s)‖p

)
.

For p = ∞ we may allow γ0γ1 = 0, while still assuming 0 ≤ γ0, γ1 ≤ s, and
have

‖w(Br,nf − f)(s)‖∞ ≤
c

nr

(
‖wf (s′)‖∞ + ‖wf (r+s)‖∞ + ‖wϕ2rf (2r+s)‖∞

)
provided that wf (r+s) ∈ L∞[0, 1] too.

Proof. We shall prove that if 1 < p < ∞ and −1/p < γ0, γ1 ≤ s, or p = ∞
and 0 ≤ γ0, γ1 ≤ s, then for all f ∈ C[0, 1] such that f ∈ AC2r+s−1

loc (0, 1) and

wf (s′), wf (r+s), wϕ2rf (2r+s) ∈ Lp[0, 1], and all n ∈ N there holds

(4.43) ‖w(Br,nf − f)(s)‖p ≤
c

nr

(
‖wf (s′)‖p + ‖wf (r+s)‖p + ‖wϕ2rf (2r+s)‖p

)
.

That already contains the second assertion of the corollary; to get the first one
we apply

(4.44) ‖wf (r+s)‖p ≤ c
(
‖wf (s′)‖p + ‖wϕ2rf (2r+s)‖p

)
,
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which follows from Proposition 2.1 with g = f (s′), j = r+s−s′, m = 2r+s−s′,
w1 = w and w2 = wϕ2r.

To establish (4.43) for s ≥ 2 we use Proposition 4.3 to derive by induction
on r the estimate

(4.45) ‖w[(Bn − I)rf ](s)‖p ≤
c

nr

r∑
i=0

i+r∑
j=2i

‖wϕ2if (j+s)‖p.

In order to estimate above the terms with i = 0 on the right side of the last
relation, we apply (2.10) with g = f (s) and m = r to get for j = 0, . . . , r

(4.46) ‖wf (j+s)‖p ≤ c
(
‖wf (s)‖p + ‖wf (r+s)‖p

)
,

whereas to estimate above the terms with i > 0, we apply Proposition 2.1 with
g = f (s), m = 2r, w1 = wϕ2i and w2 = wϕ2r to get for j = 2i, . . . i+ r

(4.47) ‖wϕ2if (j+s)‖p ≤ c
(
‖wf (s)‖p + ‖wϕ2rf (2r+s)‖p

)
.

Now, (4.43) for s ≥ 2 follows from (4.45)-(4.47).
To prove (4.43) for s = 1 we first observe that Proposition 4.3 and what we

have already established yield

‖w(Br,nf − f)′‖p ≤
c

n

(
‖w(Br−1,nf − f)′′‖p + ‖wϕ2(Br−1,nf − f)′′′‖p

)
≤ c

nr

(
‖wf ′′‖p + ‖wf (r+1)‖p + ‖wϕ2r−2f (2r)‖p

+ ‖wϕ2f ′′′‖p + ‖wϕ2f (r+2)‖p + ‖wϕ2rf (2r+1)‖p
)
.

Next, to complete the proof in this case, we use that

‖wϕ2jf (r+j+1)‖p ≤ c
(
‖wf (r+1)‖p + ‖wϕ2rf (2r+1)‖p

)
, j = 1, r − 1,

and

‖wϕ2f ′′′‖p ≤ c
(
‖wf ′′‖p + ‖wϕ2rf (2r+1)‖p

)
,

which follow from Proposition 2.1 respectively with g = f (r+1), m = r, w1 =
wϕ2j , w2 = wϕ2r (or see (2.8)) and g = f ′′, j = 1, m = 2r − 1, w1 = wϕ2,
w2 = wϕ2r.

The upper estimate can be stated in a more concise form in terms of the
differential operator (d/dx)sDr. This result follows directly from Proposition
2.4 and Corollary 4.7.

Corollary 4.8. Let 1 < p ≤ ∞, r, s ∈ N and w = w(γ0, γ1) be given by (1.3)
as

−1/p <γ0, γ1 < s− 1/p if 1 < p <∞,
0 ≤γ0, γ1 < s if p =∞.
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Then for all f ∈ AC2r+s−1[0, 1] such that wϕ2rf (2r+s) ∈ Lp[0, 1], and all n ∈ N
there holds

‖w(Br,nf − f)(s)‖p ≤
c

nr
‖w(Drf)(s)‖p.

We proceed to Voronovskaya-type estimates.

Proposition 4.9. Let 1 < p ≤ ∞, s ∈ N and w = w(γ0, γ1) be given by (1.3).
Set s′′ = max{3, s}. If −1/p < γ0, γ1 ≤ s+ 1, then for all f ∈ C[0, 1] such that
f ∈ ACs+3

loc (0, 1) and wf (s′′), wϕ4f (s+4) ∈ Lp[0, 1], and all n ∈ N there holds∥∥∥∥∥w
(
Bnf − f −

1

2n
Df

)(s)
∥∥∥∥∥
p

≤ c

n2

(
‖wf (s′′)‖p + ‖wϕ4f (s+4)‖p

)
.

For p =∞ we may allow γ0γ1 = 0, while still assuming 0 ≤ γ0, γ1 ≤ s+ 1, and
have∥∥∥∥∥w

(
Bnf − f −

1

2n
Df

)(s)
∥∥∥∥∥
∞

≤ c

n2

(
‖wf (s′′)‖∞ + ‖wf (s+2)‖∞ + ‖wϕ4f (s+4)‖∞

)
provided that wf (s+2) ∈ L∞[0, 1] too.

Proof. The proof is based on Lemma 3.3 and is similar to that of the previous
proposition.

Using ‖wϕ4f (s+4)‖p <∞, we get by Proposition 2.1 with g = f , j = s+ 3,
m = s + 4, w1 = ϕ2s+4 and w2 = wϕ4 that ϕ2s+4f (s+3) ∈ L[0, 1] and we can
apply Lemma 3.3.

We shall prove that if 1 < p < ∞ and −1/p < γ0, γ1 ≤ s + 1, or p = ∞
and 0 ≤ γ0, γ1 ≤ s + 1, then for all f ∈ C[0, 1] such that f ∈ ACs+3

loc (0, 1) and

wf (s′′), wf (s+2), wϕ4f (s+4) ∈ Lp[0, 1], and all n ∈ N there holds

(4.48)

∥∥∥∥∥w
(
Bnf − f −

1

2n
Df

)(s)
∥∥∥∥∥
p

≤ c

n2

(
‖wf (s′′)‖p + ‖wf (s+2)‖p + ‖wϕ4f (s+4)‖p

)
.

That establishes the second assertion of the proposition; the first one follows
from (4.48) and

‖wf (s+2)‖p ≤ c
(
‖wf (s′′)‖p + ‖wϕ4f (s+4)‖p

)
,

which is established by Proposition 2.1 with g = f (s′′), j = s − s′′ + 2, m =
s− s′′ + 4, w1 = w and w2 = wϕ4.
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Let us set

R̃s,nf(x) =
1

(s+ 2)!

n∑
k=0

p
(s)
n,k(x)

∫ k/n

x

(
k

n
− u
)s+2

f (s+3)(u) du.

We shall show that

(4.49) ‖wR̃s,nf‖p ≤
c

n2

(
‖wf (s+2)‖p + ‖wϕ2f (s+3)‖p + ‖wϕ4f (s+4)‖p

)
.

Then Lemma 3.3 implies
(4.50)

‖w(Vnf)(s)‖p ≤
c

n2

(
s+2∑
k=s′′

‖wf (k)‖p + ‖wϕ2f (s+3)‖p + ‖wϕ4f (s+4)‖p

)
,

where Vnf(x) is defined in (3.17). By (2.10) with g = f (s), j = 1 and m = 2 we
have for s ≥ 3

(4.51) ‖wf (s+1)‖p ≤ c
(
‖wf (s′′)‖p + ‖wf (s+2)‖p

)
,

and by (2.8) with g = f (s+2), j = 1 and m = 2 we have

(4.52) ‖wϕ2f (s+3)‖p ≤ c
(
‖wf (s+2)‖p + ‖wϕ4f (s+4)‖p

)
.

Now, estimate (4.48) follows from (4.50)-(4.52).
It remains to prove (4.49). We consider two cases for the domain of x.
Case 1. Let nϕ2(x) ≥ 1. Hölder’s inequality implies that since wϕ4f (s+4) ∈

Lp[0, 1], then ϕ2s+6f (s+4) ∈ L[0, 1]; hence (3.11)-(3.12) are valid for σ = s+ 2.

Using them we integrate by parts in R̃s,nf and represent it in the form

R̃s,nf(x) = S̃s,nf(x) + R̃′s,nf(x),

where

S̃s,nf(x) =
1

(s+ 3)!

n∑
k=0

p
(s)
n,k(x)

(
k

n
− x
)s+3

f (s+3)(x)

and

R̃′s,nf(x) =
1

(s+ 3)!

n∑
k=0

p
(s)
n,k(x)

∫ k/n

x

(
k

n
− u
)s+3

f (s+4)(u) du.

We shall show that∣∣∣∣∣
n∑
k=0

p
(s)
n,k(x)

(
k

n
− x
)s+3

∣∣∣∣∣ ≤ c

n2
ϕ2(x), x ∈ In,(4.53)
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and

‖wR̃′s,nf‖p(In) ≤
c

n2
‖wϕ4f (s+4)‖p,(4.54)

where In = {x ∈ [0, 1] : nϕ2(x) ≥ 1}. Then it will follow that

(4.55) ‖wR̃s,nf‖p(In) ≤
c

n2

(
‖wϕ2f (s+3)‖p + ‖wϕ4f (s+4)‖p

)
.

Estimate (4.53) follows directly from Lemma 3.1 with ` = s + 3 and from
n−1 ≤ ϕ2(x).

To establish (4.54) we set F (u) = |w(u)ϕ4(u)f (s+4)(u)| and denote byMF (x)
its Hardy-Littlewood maximal function.

We make use of (3.4) and Lemma 4.2 with δ = s + 3, α = γ0 + 2 and
β = γ1 + 2 to get

(4.56) |w(x) R̃′s,nf(x)|

≤ c

n2

∑
0≤i≤s/2

(
nϕ2(x)

)i−s−2
s−2i∑
j=0

n∑
k=0

pn,k(x)|k − nx|s+j+4MF (x).

Further, we apply estimate (3.8) and get

(4.57)
∑

0≤i≤s/2

(
nϕ2(x)

)i−s−2
s−2i∑
j=0

n∑
k=0

pn,k(x)|k − nx|s+j+4

≤ c
∑

0≤i≤s/2

s−2i∑
j=0

(
nϕ2(x)

)(2i+j−s)/2 ≤ c.
Now, (4.21), (4.56) and (4.57) imply (4.54).
Case 2. Let nϕ2(x) ≤ 1 and, because of the symmetry, we may also assume

that x ≤ 1/2. Just as in the proof of Proposition 4.3, case 2, we represent R̃s,nf
in the form

R̃s,nf(x) =
1

(s+ 2)!

n!

(n− s)!

n−s∑
k=0

−→
∆s

1/nrs+1,x

(
k

n

)
pn−s,k(x)

and derive (cf. (4.25))

(4.58) |w(x)R̃s,nf(x)| ≤ c ns max
i=0,...,s

n−s∑
k=0

∣∣∣∣w(x) rs+1,x

(
k + i

n

)∣∣∣∣ pn−s,k(x).

Just similarly to (4.27) and (4.41) we establish the following estimates∥∥∥∥∥
n−s∑
k=1

w rs+1,◦

(
k + i

n

)
pn−s,k

∥∥∥∥∥
p(I′n)

≤ c

ns+2
‖wϕ2f (s+3)‖p
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and ∥∥∥∥w rs+1,◦

(
i

n

)∥∥∥∥
p(I′n)

≤ c

ns+2

(
‖wf (s+2)‖p + ‖wϕ2f (s+3)‖p

)
for i = 0, . . . , s and n ≥ s. Actually the second estimate follows directly from
(4.41).

Consequently,

(4.59) ‖wR̃s,nf‖p(I′n) ≤
c

n2

(
‖wf (s+2)‖p + ‖wϕ2f (s+3)‖p

)
.

Estimates (4.55) and (4.59) yield (4.49). Thus (4.48) is verified.

Remark 4.10. In Proposition 4.9 we have assumed higher degree of smoothness
than usual — wϕ4f (s+4) ∈ Lp[0, 1] rather than the weaker wϕ3f (s+3) ∈ Lp[0, 1].
However, the latter assumption yields an order of n−3/2 on the right in the
corresponding Voronovskaya-type estimate. It still can be used to prove the
converse inequality about simultaneous approximation by Bn, but the order of
n−2 as in Proposition 4.9 seems more natural in this setting and is easier to
work with (see [19, Lemma 2.1]).

Corollary 4.11. Let 1 < p ≤ ∞, r, s ∈ N and w = w(γ0, γ1) be given by (1.3).
Set s′′ = max{3, s}. If −1/p < γ0, γ1 ≤ s+ 1, then for all f ∈ C[0, 1] such that
f ∈ AC2r+s+1

loc (0, 1) and wf (s′′), wϕ2r+2f (2r+s+2) ∈ Lp[0, 1], and all n ∈ N there
holds∥∥∥∥∥w

(
Br,nf − f −

(−1)r−1

(2n)r
Drf

)(s)
∥∥∥∥∥
p

≤ c

nr+1

(
‖wf (s′′)‖p + ‖wϕ2r+2f (2r+s+2)‖p

)
.

For p =∞ we may allow γ0γ1 = 0, while still assuming 0 ≤ γ0, γ1 ≤ s+ 1, and
have∥∥∥∥∥w

(
Br,nf − f −

(−1)r−1

(2n)r
Drf

)(s)
∥∥∥∥∥
∞

≤ c

nr+1

(
‖wf (s′′)‖∞ + ‖wf (r+s+1)‖∞ + ‖wϕ2r+2f (2r+s+2)‖∞

)
.

provided that wf (r+s+1) ∈ L∞[0, 1] too.

Proof. We shall establish that if 1 < p <∞ and −1/p < γ0, γ1 ≤ s+1, or p =∞
and 0 ≤ γ0, γ1 ≤ s + 1, then for all f ∈ C[0, 1] such that f ∈ AC2r+s+1

loc (0, 1)

and wf (s′′), wf (r+s+1), wϕ2r+2f (2r+s+2) ∈ Lp[0, 1], and all n ∈ N there holds

(4.60)

∥∥∥∥∥w
(
Br,nf − f −

(−1)r−1

(2n)r
Drf

)(s)
∥∥∥∥∥
p

≤ c

nr+1

(
‖wf (s′′)‖p + ‖wf (r+s+1)‖p + ‖wϕ2r+2f (2r+s+2)‖p

)
.
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That verifies the second estimate in the corollary; to get the first one we also
use the inequality

‖wf (r+s+1)‖p ≤ c
(
‖wf (s′′)‖p + ‖wϕ2r+2f (2r+s+2)‖p

)
,

which follows from Proposition 2.1 with g = f (s′′), j = r + s − s′′ + 1, m =
2r + s− s′′ + 2, w1 = w and w2 = wϕ2r+2.

So, let us proceed to the proof of (4.60). We set

Vr,nf = Br,nf − f −
(−1)r−1

(2n)r
Drf.

For s ≥ 3 we establish by induction on r that

(4.61) ‖w(Vr,nf)(s)‖p ≤
c

nr+1

r+1∑
i=0

i+r+1∑
j=2i

‖wϕ2if (j+s)‖p.

To this end, we use the relation

(4.62) ‖w(Vr+1,nf)(s)‖p ≤ ‖w(V1,nFr,n)(s)‖p +
1

n
‖w(DVr,nf)(s)‖p,

where Fr,n = (Bn − I)rf , as we estimate ‖w(V1,nFr,n)(s)‖p by means of Propo-
sition 4.9 and (4.45), and the term ‖w(DVr,nf)(s)‖p by (see (2.11))

(4.63) ‖w(DVr,nf)(s)‖p

≤ c
(
‖w(Vr,nf)(s)‖p + ‖w(Vr,nf)(s+1)‖p + ‖wϕ2(Vr,nf)(s+2)‖p

)
and the induction hypothesis.

Next, we estimate above the terms of (4.61) with i = 0 by means of (2.10)
with g = f (s) and m = r + 1 to get for j = 0, . . . , r + 1

(4.64) ‖wf (j+s)‖p ≤ c
(
‖wf (s)‖p + ‖wf (r+s+1)‖p

)
.

For the terms with i > 0, we apply Proposition 2.1 with g = f (s), m = 2r + 2,
w1 = wϕ2i and w2 = wϕ2r+2 to get for j = 2i, . . . , i+ r + 1

(4.65) ‖wϕ2if (j+s)‖p ≤ c
(
‖wf (s)‖p + ‖wϕ2r+2f (2r+s+2)‖p

)
.

Now, estimate (4.60) for s ≥ 3 follows from (4.61)-(4.65).
The proof in the case s = 2 is similar. We verify by induction on r that

‖w(Vr,nf)′′‖p ≤
c

nr+1

r+1∑
i=0

i+r+1∑
j=max{1,2i}

‖wϕ2if (j+2)‖p,
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as besides (4.62), (4.63), Proposition 4.9 and (4.45) we also use (4.61). Then
we complete the proof by means of Proposition 2.1 just similarly as in the case
s ≥ 3.

Finally, in the case s = 1 we deduce from (4.62) with s = 1 and r − 1 in
place of r, Proposition 4.9, Corollary 4.7, the estimate

‖w(DVr−1,nf)′‖p ≤ c
(
‖w(Vr−1,nf)′′‖p + ‖wϕ2(Vr−1,nf)′′′‖p

)
and what we have already established that

‖w(Vr,nf)′‖p ≤
c

nr+1

(
‖wf (3)‖p + ‖wf (r+2)‖p + ‖wϕ4f (5)‖p + ‖wϕ2f (r+3)‖p

+ ‖wϕ2r−2f (2r+1)‖p + ‖wϕ2rf (2r+2)‖p + ‖wϕ2r+2f (2r+3)‖p
)
.

To complete the proof of (4.60) for s = 1 we need only take into account the
inequalities

‖wϕ2jf (r+j+2)‖p ≤ c
(
‖wf (r+2)‖p + ‖wϕ2r+2f (2r+3)‖p

)
, j = 1, r − 1, r,

and

‖wϕ4f (5)‖p ≤ c
(
‖wf (3)‖p + ‖wϕ2r+2f (2r+3)‖p

)
,

which follow from Proposition 2.1 respectively with g = f (r+2), m = r+1, w1 =
wϕ2j , w2 = wϕ2r+2 and g = f (3), j = 2, m = 2r, w1 = wϕ4, w2 = wϕ2r+2.

Similarly to Corollary 4.8 we get by Proposition 2.4 and Corollary 4.11 the
following Voronovskaya-type estimate.

Corollary 4.12. Let 1 < p ≤ ∞, r, s ∈ N and w = w(γ0, γ1) be given by (1.3)
as

−1/p <γ0, γ1 < s− 1/p if 1 < p <∞,
0 ≤γ0, γ1 < s if p =∞.

Then for all f ∈ AC2r+s+1[0, 1] such that wϕ2r+2f (2r+s+2) ∈ Lp[0, 1], and all
n ∈ N there holds∥∥∥∥∥w

(
Br,nf − f −

(−1)r−1

(2n)r
Drf

)(s)
∥∥∥∥∥
p

≤ c

nr+1
‖w(Dr+1f)(s)‖p.

The last several estimates, we shall need, are traditionally regarded to as
Bernstein-type inequalities.

Proposition 4.13. Let 1 ≤ p ≤ ∞, `, r, s ∈ N and w = w(γ0, γ1) be given by
(1.3) as

−1/p <γ0, γ1 < s− 1/p if 1 ≤ p <∞,
0 ≤γ0, γ1 < s if p =∞.
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Then for all f ∈ C[0, 1] such that f ∈ ACs−1
loc (0, 1) and wf (s) ∈ Lp[0, 1], and all

n ∈ N there hold:

(a) ‖wϕ2`(Bnf)(2`+s)‖p ≤ c n`‖wf (s)‖p;

(b) ‖wϕ2`(Br,nf)(2`+s)‖p ≤ c n`‖wf (s)‖p;

(c) ‖wϕ2`(Br,nf)(2`+s)‖p ≤ c n`K2`,ϕ(f (s), n−`)w,p.

Proof. Again we shall consider two cases for the domain of x.
Case 1. Let (n− s)ϕ2(x) ≥ 1. Differentiating (4.1) we get

(4.66) (Bnf)(2`+s)(x) =
n!

(n− s)!

n−s∑
k=0

−→
∆s

1/nf

(
k

n

)
p

(2`)
n−s,k(x).

Next, we express p
(2`)
n−s,k(x) by means of (3.4) and estimate

∣∣∣−→∆s
1/nf(k/n)

∣∣∣ by

(4.2). Thus we arrive at

∣∣∣w(x)ϕ2`(x)(Bnf)(2`+s)(x)
∣∣∣ ≤ c n`∑̀

i=0

2(`−i)∑
j=0

(
nϕ2(x)

)i−`
× w(x)

n−s∑
k=0

pn−s,k(x)wp,n,k ‖wf (s)‖p[k/n,(k+s)/n]|k − (n− s)x|j

≤ c n`
2∑̀
j=0

(
nϕ2(x)

)−j/2
× w(x)

n−s∑
k=0

pn−s,k(x)wp,n,k ‖wf (s)‖p[k/n,(k+s)/n]|k − (n− s)x|j ,

(4.67)

where at the last step we have used that nϕ2(x) ≥ 1 and i− ` ≤ −j/2.
We have to estimate the weighted Lp-norm of the right-hand side of the

last inequality. Moreover, due to the Riesz-Thorin interpolation theorem and
symmetry, it is sufficient to do that only for p = 1 and p =∞, and restrict the
range of summation on k to {0, . . . , [(n − s)/2]} (see (4.5)-(4.6) and note that
|k − (n− s)x| = |n− s− k − (n− s)y| with y = 1− x).

For p =∞ we apply Cauchy’s inequality to derive

(4.68) w(x)

[(n−s)/2]∑
k=0

pn−s,k(x)w∞,n,k ‖wf (s)‖∞[k/n,(k+s)/n]|k − (n− s)x|j

≤

w2(x)

[(n−s)/2]∑
k=0

w2
∞,n,k pn−s,k(x)

1/2

(Tn−s,2j(x))1/2 ‖wf (s)‖∞.
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Further, just as in (4.10) we see that

(4.69) w2(x)

[(n−s)/2]∑
k=0

w2
∞,n,k pn−s,k(x) ≤ c, x ∈ [0, 1].

Also, (3.7) yields

(4.70)
(
nϕ2(x)

)−j/2
(Tn−s,2j(x))1/2 ≤ c, (n− s)ϕ2(x) ≥ 1.

Relations (4.67)-(4.70) imply

(4.71) ‖wϕ2`(Bnf)(2`+s)‖∞(In−s) ≤ c n`‖wf (s)‖∞,

where, to recall, In = {x ∈ [0, 1] : nϕ2(x) ≥ 1}.
For p = 1 we fix m ∈ N such that αγi > −1 for i = 0, 1, where α =

2m/(2m− 1), and apply Hölder’s inequality to get

w1,n,k

∫
In−s

w(x) pn−s,k(x)
(
nϕ2(x)

)−j/2 |k − (n− s)x|jdx

≤
(
wα1,n,k

∫ 1

0

wα(x)pn−s,k(x) dx

)1/α

×

(∫
In−s

(
nϕ2(x)

)−mj
(k − (n− s)x)2mjpn−s,k(x) dx

)1/(2m)

.

(4.72)

Estimate (4.11) with wα in place of w yields∫ 1

0

wα(x)pn−s,k(x) dx ≤ c

n

(
k + 1

n

)αγ0
, 0 ≤ k ≤ (n− s)/2;

hence by (4.7) with p = 1 we get

(4.73) wα1,n,k

∫ 1

0

wα(x)pn−s,k(x) dx ≤ c nα−1, 0 ≤ k ≤ (n− s)/2.

Also, [8, Lemma 9.4.5] implies∫
In

(
nϕ2(x)

)−µ
(k − nx)2µpn,k(x) dx ≤ c

n
, µ ∈ N0.

Therefore

(4.74)

∫
In−s

(
nϕ2(x)

)−mj
(k − (n− s)x)2mjpn−s,k(x) dx ≤ c

n
.

Inequalities (4.72)-(4.74) imply for j = 0, . . . , 2` and k = 0, . . . , [(n − s)/2] the
estimates

(4.75) w1,n,k

∫
In−s

w(x) pn−s,k(x)
(
nϕ2(x)

)−j/2 |k − (n− s)x|jdx ≤ c.
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Relations (4.67) and (4.75) yield

(4.76) ‖wϕ2`(Bnf)(2`+s)‖1(In−s) ≤ c n`‖wf (s)‖1.

Case 2. Let (n − s)ϕ2(x) ≤ 1 and n ≥ 2` + s. Differentiating ` times (4.1)
with `+ s in place of s, we get

(Bnf)(2`+s)(x) =
n!

(n− `− s)!

n−`−s∑
k=0

−→
∆`+s

1/nf

(
k

n

)
p

(`)
n−`−s,k(x).

Consequently,

(4.77) |(Bnf)(2`+s)(x)|

≤ c n` max
ν=0,...,`

n!

(n− s)!

n−`−s∑
k=0

∣∣∣∣−→∆s
1/nf

(
k + ν

n

)∣∣∣∣ |p(`)
n−`−s,k(x)|.

Just as in Case 1 we estimate
∣∣∣−→∆s

1/nf((k + ν)/n)
∣∣∣ by means of (4.2) and express

p
(`)
n−`−s,k(x) by means of (3.4). Thus for each ν = 0, . . . , ` we have

n!

(n− s)!
w(x)ϕ2`(x)

n−`−s∑
k=0

∣∣∣∣−→∆s
1/nf

(
k + ν

n

)∣∣∣∣ |p(`)
n−`−s,k(x)|

≤ c
∑

0≤i≤`/2

`−2i∑
j=0

(
nϕ2(x)

)i
w(x)

n−`−s∑
k=0

pn−`−s,k(x)

× wp,n,k+ν ‖wf (s)‖p[(k+ν)/n,(k+ν+s)/n]|k − (n− `− s)x|j

≤ c
∑̀
j=0

w(x)

n−`−s∑
k=0

pn−`−s,k(x)

× wp,n,k+ν ‖wf (s)‖p[(k+ν)/n,(k+ν+s)/n]|k − (n− `− s)x|j ,

(4.78)

where at the last estimate we have taken into account that nϕ2(x) ≤ c.
We proceed as in Case 1. Again due to symmetry it is sufficient to restrict

the range of summation on k to {0, . . . , [(n − ` − s)/2]}, as now we have with
k̄ = n− `− s− k and ν̄ = `− ν (cf. (4.5)-(4.6)) the relations

wp,n,k̄+ν = w̄p,n,k+ν̄ ,

‖wf (s)‖p[(k̄+ν)/n,(k̄+ν+s)/n] = ‖w̄f̄ (s)‖p[(k+ν̄)/n,(k+ν̄+s)/n].
(4.79)

Let us note that we still have

(4.80) wp,n,k+ν ≤ c n1/p

(
n

k + 1

)γ0
, 0 ≤ k ≤ (n− `− s)/2,
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for ν = 0, . . . , `. Consequently, for p =∞ there holds

w2(x)

[(n−`−s)/2]∑
k=0

w2
∞,n,k+ν pn−`−s,k(x) ≤ c, x ∈ [0, 1].

Also, (3.7) implies

Tn−`−s,2j(x) ≤ c, (n− s)ϕ2(x) ≤ 1.

Now, just similarly to Case 1, p = ∞ we derive from (4.77), (4.78), the
symmetry on k, and the last two estimates above the inequality

(4.81) ‖wϕ2`(Bnf)(2`+s)‖∞(I′′n−s) ≤ c n`‖wf (s)‖∞,

where I ′′n = {x ∈ [0, 1] : nϕ2(x) ≤ 1}.
For p = 1 we use (cf. (4.73))

wα1,n,k+ν

∫ 1

0

wα(x)pn−`−s,k(x) dx ≤ c nα−1, 0 ≤ k ≤ (n− `− s)/2,

for ν = 0, . . . , `, which follows from (4.80) just as in Case 1.
Also, (3.7) implies∫

I′′n

pn,k(x)(k − nx)2µ dx ≤ c

n
, µ ∈ N0.

Just similarly to Case 1, p = 1 we derive from (4.77), (4.78), the symmetry on
k, and the last two estimates above the inequality

(4.82) ‖wϕ2`(Bnf)(2`+s)‖1(I′′n−s) ≤ c n`‖wf (s)‖1.

Estimates (4.71), (4.76), (4.81) and (4.82) yield

‖wϕ2`(Bnf)(2`+s)‖p ≤ c n`‖wf (s)‖p

for p = 1 and p =∞ and assertion (a) follows from the Riesz-Thorin interpola-
tion theorem.

Assertion (b) follows from (a) and Proposition 4.1 since Br,n is a linear
combination of iterates of Bn.

Finally, to prove (c) we apply (b) and Proposition 4.1 to derive for any
g ∈ AC2`+s−1

loc (0, 1) the estimate

‖wϕ2`(Br,nf)(2`+s)‖p ≤ c n`
(
‖w(f (s) − g(s))‖p + n−`‖wϕ2`g(2`+s)‖p

)
.

Taking an infimum on g we get (c).

We shall also need the following almost trivial analogue of the last proposi-
tion in the case p =∞.
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Proposition 4.14. Let `, r, s ∈ N and w = w(γ0, γ1) be given by (1.3) as
0 ≤ γ0, γ1 < s. Then for all f ∈ C[0, 1] such that f ∈ ACs−1

loc (0, 1) and wf (s) ∈
L∞[0, 1], and all n ∈ N there hold:

(a) ‖w(Bnf)(`+s)‖∞ ≤ c n`‖wf (s)‖∞;

(b) ‖w(Br,nf)(`+s)‖∞ ≤ c n`‖wf (s)‖∞.

Proof. To establish (a) we apply (4.1) with `+ s in place of s and (4.2). Thus
we get

|(Bnf)(`+s)(x)| ≤ n!

(n− `− s)!

n−`−s∑
k=0

∣∣∣∣−→∆`+s
1/nf

(
k

n

)∣∣∣∣ pn−`−s,k(x)

≤ c n`+s max
ν=0,...,`

n−`−s∑
k=0

∣∣∣∣−→∆s
1/nf

(
k + ν

n

)∣∣∣∣ pn−`−s,k(x)

≤ c n` max
ν=0,...,`

n−`−s∑
k=0

w∞,n,k+ν pn−`−s,k(x) ‖wf (s)‖∞.

To complete the proof we need only recall (4.80) with p = ∞, (4.8)-(4.9) and
use the symmetry on k, see (4.79).

Assertion (b) follows from (a) just as in the previous proposition.

Further, we shall state two analogues of the above Bernstein-type inequalities
in terms of the differential operator (Drg)s. They directly follow from them and
the embedding inequalities in Section 2.

Corollary 4.15. Let 1 ≤ p ≤ ∞, r, s ∈ N and w = w(γ0, γ1) be given by (1.3)
as

−1/p <γ0, γ1 < s− 1/p if 1 ≤ p <∞,
0 ≤γ0, γ1 < s if p =∞.

Then for all f ∈ C[0, 1] such that f ∈ ACs−1
loc (0, 1) and wf (s) ∈ Lp[0, 1], and all

n ∈ N there holds
‖w(DrBr,nf)(s)‖p ≤ c nr‖wf (s)‖p.

Proof. It can be established by induction on r that (cf. [18, p. 24])

Drg = ϕ2
r+1∑
i=2

qr,i−2 g
(i) +

r∑
i=2

ϕ2i q̃r,r−i g
(i+r),

where qr,j , q̃r,j ∈ πj . Hence we derive that

(4.83) (Drg)(s) =

r+s∑
i=s′

q̂r,s,i g
(i) +

r∑
i=1

ϕ2i q̂r,s,r+s+i g
(i+r+s),
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where s′ = max{2, s} and q̂r,s,j are polynomials. Hence

‖w(Drg)(s)‖p ≤ c
r+s∑
i=s′

‖wg(i)‖p +

r∑
i=1

‖wϕ2ig(i+r+s)‖p.

The embedding inequality (2.10) yields for i = s′, . . . , r + s

‖wg(i)‖p ≤ c
(
‖wg(s′)‖p + ‖wg(r+s)‖p

)
≤ c

(
‖wg(s)‖p + ‖wg(r+s)‖p

)
.

Similarly, by means of (2.8) we get for i = 1, . . . , r

‖wϕ2ig(i+r+s)‖p ≤ c
(
‖wg(r+s)‖p + ‖wϕ2rg(2r+s)‖p

)
.

Consequently,

‖w(Drg)(s)‖p ≤ c
(
‖wg(s′)‖p + ‖wg(r+s)‖p + ‖wϕ2rg(2r+s)‖p

)
(4.84)

≤ c
(
‖wg(s)‖p + ‖wg(r+s)‖p + ‖wϕ2rg(2r+s)‖p

)
(4.85)

and the middle term can be omitted except when p = ∞ and γ0γ1 = 0 (see
(4.44)).

Now, the assertion of the corollary follows from (4.85) with g = Br,nf and
Propositions 4.1, 4.13(b) and 4.14(b) with ` = r.

Corollary 4.16. Let 1 ≤ p ≤ ∞, r, s ∈ N and w = w(γ0, γ1) be given by (1.3)
as

−1/p <γ0, γ1 < s− 1/p if 1 ≤ p <∞,
0 ≤γ0, γ1 < s if p =∞.

Then for all f ∈ C[0, 1] such that f ∈ AC2r+s−1[0, 1] and wϕ2rf (2r+s) ∈
Lp[0, 1], and all n ∈ N there holds

‖w(Dr+1Br,nf)(s)‖p ≤ c n ‖w(Drf)(s)‖p.

Proof. Just as in the previous proof, we apply (4.84) with r + 1 in place of r
and g = Br,nf , Proposition 4.1, Proposition 4.13(b) with ` = 1, wϕ2r in place
of w, and 2r + s in place of s, and Proposition 4.14(b) with ` = 1 and r + s in
place of s to derive the estimate

‖w(Dr+1Br,nf)(s)‖p ≤ c
(
‖wf (s′)‖p + n ‖wf (r+s)‖p + n ‖wϕ2rf (2r+s)‖p

)
.

Note that the term ‖w(Br,nf)(r+s+1)‖p appears only in the case p = ∞ and
γ0γ1 = 0.

Now, the assertion of the corollary follows from Proposition 2.4.
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The estimates verified in this section enable us to prove Theorem 1.1.

Proof of Theorem 1.1. The direct estimate follows from Proposition 4.1(b) and
Corollary 4.8 via a standard argument (see e.g. [7, Theorem 3.4]). Namely, for
any g ∈ C2r+s[0, 1] we have

‖w(Br,nf − f)(s)‖p ≤ ‖w(f (s) − g(s))‖p + ‖w(Br,ng − g)(s)‖p
+ ‖w(Br,n(f − g))(s)‖p

≤ c
(
‖w(f (s) − g(s))‖p +

1

nr
‖w(Drg)(s)‖p

)
.

Taking an infimum on g ∈ C2r+s[0, 1], we arrive at

‖w(Br,nf − f)(s)‖p ≤ cKr,s(f
(s), n−r)w,p.

To establish the converse estimate we apply [7, Theorem 3.2] with the oper-
ator Qn = Br,n on the space

X = {f ∈ C[0, 1] : f ∈ ACs−1
loc (0, 1), wf (s) ∈ Lp[0, 1]}

with a semi-norm ‖f‖X = ‖wf (s)‖p. Let us note that [7, Theorem 3.2] continues
to hold for a semi-norm ‖ ◦ ‖X since in its proof the property that distinguishes
a norm from a semi-norm is not used. Let also Y = C2r+s[0, 1] and Z =
C2r+s+2[0, 1].

Proposition 4.1(b) implies that Qn is a bounded operator on X, so that [7,
(3.3)] holds.

By virtue of Corollary 4.12, we have for Φ(f) = ‖w(Dr+1f)(s)‖p and f ∈ Z∥∥∥∥∥w
(
Qnf − f −

(−1)r−1

(2n)r
Drf

)(s)
∥∥∥∥∥
p

≤ c

nr+1
Φ(f),

which shows that [7, (3.4)] is valid with (−1)r−1Dr in place of D, λ(n) = (2n)−r

and λ1(n) = c n−r−1, where the constant c is the one from Corollary 4.12.
Further, we set g = Br,nf for f ∈ X and apply Corollary 4.16 to obtain

Φ(Q2
nf) = Φ(Br,ng) ≤ c n ‖w(Drg)(s)‖p = c n ‖w(DrBr,nf)(s)‖p.

Hence [7, (3.5)] is established with m = 2 and ` = 1.
Finally, Corollary 4.15 yields for f ∈ X

‖w(DrQnf)(s)‖p ≤ c nr‖wf (s)‖p,

which is [7, (3.6)].
Now, [7, Theorem 3.2] implies the converse estimate in Theorem 1.1.

44



5 Relations between K-functionals

In this section we shall verify the assertions of Theorems 1.2 and 1.3 as well as
of Remark 1.4. First, we shall present a couple of auxiliary inequalities between
K-functionals.

It is known that in the case w = 1 in the definition of Km,ϕ(f, t)p the
infimum can be equivalently taken on Cm[0, 1]. That is evident from the proof
of [8, Theorem 2.1.1] (see also [6, p. 110]). That equivalence probably holds
for any Jacobi weight w. For our purposes weaker relations will suffice. They
are given in the lemma below. Using them one can derive the above mentioned
equivalence under the conditions of the lemma, but we shall not establish that
here.

Lemma 5.1. Let 1 < p ≤ ∞, r, s ∈ N, and w = w(γ0, γ1) be given by (1.3)
with −1/p < γ0, γ1 < s − 1/p. Then for all wf ∈ Lp[0, 1] and 0 < t ≤ 1 there
holds

(5.1) inf
g∈C2r+s[0,1]

{
‖w(f − g(s))‖p + t ‖wϕ2rg(2r+s)‖p

}
≤ c (K2r,ϕ(f, t)w,p + t ‖wf‖p) , s ≥ 2,

and

(5.2) inf
g∈C2r+1[0,1]

{
‖w(f − g′)‖p + t ‖wϕ2rg(2r+1)‖p

}
≤ c (K2r,ϕ(f, t)w,p +K1(f, t)w,p) .

Proof. For a given function f such that wf ∈ Lp[0, 1] with γ0, γ1 < s − 1/p,
s ∈ N, we set

fs(x) =
1

(s− 1)!

∫ x

1/2

(x− u)s−1f(u) du, x ∈ [0, 1].

Hölder’s inequality implies that ϕ2s−2f ∈ L[0, 1]. Hence fs(x) is well-defined
and finite at x = 0 and x = 1; moreover, fs ∈ C[0, 1]. The continuity of fs(x) at
every interior point for any s as well as at x = 0, 1 for s = 1 is clear. To see that
fs(x) is continuous at x = 0, 1 for s ≥ 2 we can apply Lebesgue’s dominated
convergence theorem.

Now, we are ready to verify the inequalities in the lemma. We set n =
[t−1/r] + 1 and gt = Br,nfs. In view of the above remarks, gt is well defined and
clearly gt ∈ C2r+s[0, 1]. To verify (5.1) and (5.2) it is enough to show that

‖w(f − g(s)
t )‖p ≤ c (K2r,ϕ(f, t)w,p + t ‖wf‖p) , s ≥ 2,(5.3)

‖w(f − g′t)‖p ≤ c (K2r,ϕ(f, t)w,p +K1(f, t)w,p)(5.4)

and

t ‖wϕ2rg
(2r+s)
t ‖p ≤ cK2r,ϕ(f, t)w,p, s ≥ 1.(5.5)
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Let G ∈ AC2r−1
loc (0, 1) with wG,wϕ2rG(2r) ∈ Lp[0, 1] be arbitrarily fixed. Then

Gs ∈ C[0, 1]. Let s ≥ 2. Applying Proposition 4.1(b), Corollary 4.7 and the
trivial estimate

(5.6) ‖wG‖p ≤ ‖w(f −G)‖p + ‖wf‖p,

we get

‖w(f − g(s)
t )‖p ≤ ‖w(f −G)‖p + ‖w(Br,nGs −Gs)(s)‖p

+ ‖w(Br,n(fs −Gs))(s)‖p

≤ c ‖w(f −G)‖p +
c

nr

(
‖wG(s)

s ‖p + ‖wϕ2rG(2r+s)
s ‖p

)
≤ c

(
‖w(f −G)‖p + t ‖wϕ2rG(2r)‖p + t ‖wf‖p

)
.

We take an infimum on G and arrive at (5.3).
For s = 1 by means of a similar argument we arrive at

(5.7) ‖w(f − g′t)‖p ≤ c
(
‖w(f −G)‖p + t ‖wϕ2rG(2r)‖p + t ‖wG′‖p

)
.

Next, we estimate the last term on the right above by means of Proposition 2.1
with j = 1, m = 2r, w1 = w and w2 = wϕ2r. Thus we get

‖wG′‖p ≤ c
(
‖wG‖p + ‖wϕ2rG(2r)‖p

)
.

Consequently, for an arbitrary real α we have

‖wG′‖p ≤ c
(
‖w(G− α)‖p + ‖wϕ2rG(2r)‖p

)
.

Setting E0(f)w,p = infα∈R ‖w(f − α)‖p, we arrive at the estimate

(5.8) t ‖wG′‖p ≤ c
(
‖w(f −G)‖p + t ‖wϕ2rG(2r)‖p

)
+ ctE0(f)w,p.

For wf ∈ Lp[0, 1], γ0, γ1 > −1/p, 1 ≤ p <∞ or γ0, γ1 ≥ 0, p =∞ and 0 < t ≤ 1
we have

(5.9) t E0(f)w,p ≤ cK1(f, t)w,p.

That easily follows from the estimate

E0(g)w,p ≤ ‖w(g − g(1/2))‖p =

∥∥∥∥∥w
∫ ◦

1/2

g′(t) dt

∥∥∥∥∥
p

≤ c ‖wg′‖p,

where g ∈ ACloc(0, 1).
Combining (5.7)-(5.9) we arrive at (5.4).
Finally, to verify (5.5) we apply Proposition 4.13(c) with ` = r to get

t ‖wϕ2rg
(2r+s)
t ‖p ≤ c tnrK2r,ϕ(f (s)

s , n−r)w,p ≤ cK2r,ϕ(f, t)w,p.
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Let us proceed now to the proof of Theorems 1.2 and 1.3.

Proof of Theorems 1.2 and 1.3. Let −1/p < γ0, γ1 < s − 1/p, 1 < p < ∞ or
0 ≤ γ0, γ1 < s, p =∞. Let g ∈ C2r+s[0, 1]. Proposition 2.4 yields

‖wf‖p ≤ ‖w(f − g(s))‖p + c ‖w(Drg)(s)‖p, s ≥ 2,(5.10)

‖wg(j+s)‖p ≤ c ‖w(Drg)(s)‖p, j = 1, r, s ≥ 1,(5.11)

and

‖wϕ2rg(2r+s)‖p ≤ c ‖w(Drg)(s)‖p, s ≥ 1.(5.12)

Taking an infimum on g ∈ C2r+s[0, 1] in (5.10) we get for 0 < t ≤ 1

t ‖wf‖p ≤ cKr,s(f, t)w,p, s ≥ 2.

Next, since g(s) ∈ ACj−1
loc (0, 1) for j = 1, r, we derive from (5.11) that

Kj(f, t)w,p ≤ c
(
‖w(f − g(s))‖p + t ‖w(Drg)(s)‖p

)
, s ≥ 1.

Taking an infimum on g ∈ C2r+s[0, 1] we arrive at

Kj(f, t)w,p ≤ cKr,s(f, t)w,p, j = 1, r, s ≥ 1.

Just similarly, using that g(s) ∈ AC2r−1
loc (0, 1) and (5.12), we establish that

K2r,ϕ(f, t)w,p ≤ cKr,s(f, t)w,p, s ≥ 1.

Thus we have shown that Kr,s(f, t)w,p estimates above the quantities on the
right-hand side of the relations in Theorems 1.2 and 1.3.

Let us proceed to the reverse inequalities. Let −1/p < γ0, γ1 < s − 1/p,
1 < p ≤ ∞. Let g ∈ C2r+s[0, 1]. By (4.84) (see also (4.44)), we have

(5.13) ‖w(Drg)(s)‖p ≤ c
(
‖wg(s′)‖p + ‖wϕ2rg(2r+s)‖p

)
,

where s′ = max{2, s}. Hence, using (5.6) with g(s) in place of G, we get for
s ≥ 2 the estimate

‖w(Drg)(s)‖p ≤ c
(
‖w(f − g(s))‖p + ‖wϕ2rg(2r+s)‖p + ‖wf‖p

)
.

Consequently, for s ≥ 2 we have

Kr,s(f, t)w,p ≤ c
(

inf
g∈C2r+s[0,1]

{
‖w(f − g(s))‖p + t ‖wϕ2rg(2r+s)‖p

}
+ t ‖wf‖p

)
≤ c (K2r,ϕ(f, t)w,p + t ‖wf‖p) .

Here we have taken into account (5.1).
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Similarly, relations (5.13) with s = 1, (5.8) with g′ in place of G, (5.9) and
(5.2) yield

Kr,1(f, t)w,p ≤ c (K2r,ϕ(f, t)w,p +K1(f, t)w,p) .

This completes the proof of Theorem 1.2.
To establish the upper estimate of Kr,s(f, t)1,∞ in Theorem 1.3 we use the

quasi-interpolant Q(f) = QT (f) constructed in the proof of [4, Chapter 6,
Theorem 6.2] but with 2r in place of r and for the interval [0, 1] instead of
[−1, 1]. It has the properties (see [4, p. 191]):

‖f −Q(f)‖∞ ≤ c ω2r
ϕ (f, t)∞

and

t2r‖ϕ2rQ(f)(2r)‖∞ ≤ c ω2r
ϕ (f, t)∞,

where t = 1/m, m ∈ N and m ≥ m0 with some fixed m0 ∈ N. Likewise, by
means of [4, Chapter 5, Proposition 4.6 and Chapter 6, Theorem 4.2] we get

t2r‖Q(f)(j)‖∞ ≤ c t2(r−j)ωj(f, t
2)∞, j = 1, r,

for t = 1/m, m ∈ N and m ≥ m0. Hence, taking into account the inequalities
ωj(f, t)∞ ≤ cKj(f, t

j)∞ and ω2r
ϕ (f, t)∞ ≤ cK2r,ϕ(f, t2r)∞, we arrive at

‖f −Q(f)‖∞ ≤ cK2r,ϕ(f, t2r)∞,

t2r‖ϕ2rQ(f)(2r)‖∞ ≤ cK2r,ϕ(f, t2r)∞,

t2r‖Q(f)(j)‖∞ ≤ cKj(f, t
2r)∞, j = 1, r,

(5.14)

for t = 1/m, m ∈ N and m ≥ m0.
Now, the upper estimate of Kr,s(f, t)1,∞ for all t ∈ (0, 1] follows from (4.84)

with p = ∞, w = 1 and g(s) = Q(f), (5.6) with Q(f) in place of G, or [4,
Chapter 5, Theorem 4.4] (if s ≥ 2), and the basic property of the K-functionals

(5.15) K(f, t1) ≤ max

{
1,
t1
t2

}
K(f, t2),

where K(f, t) stands for any of the considered here K-functionals.
Let us briefly show the validity of Remark 1.4. In view of what already has

been established, it is enough to demonstrate that

K1,1(f, t)w,∞ ≤ c (K2,ϕ(f, t)w,∞ +K1(f, t)w,∞)

for γ0 > 0 and γ1 = 0. To this end we shall apply a well-known patching
technique (see e.g. [4, p. 176]). By (2.6) with p = ∞, 3/4 instead of 1/2, g′ in
place of g, γ1,0 = γ0,γ2,0 = γ0 + 1, j = 1 and m = 2, we get

‖χγ0g′′‖∞[0,3/4] ≤ c
(
‖χγ0g′‖∞[0,3/4] + ‖χγ0+1g′′′‖∞[0,3/4]

)
.
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Then, just as above, we derive that

t ‖χγ0g′′‖∞[0,3/4]

≤ c
(
‖χγ0(f − g′)‖∞[0,3/4] + t ‖χγ0+1g′′′‖∞[0,3/4]

)
+ cK1(f, t)w,∞.

Using the last inequality and (5.2) with r = 1, we deduce that there exists
g̃t ∈ C3[0, 3/4] such that

(5.16) ‖χγ0(f − g̃′t)‖∞[0,3/4] + t2‖χγ0 g̃′′t ‖∞[0,3/4] + t2‖χγ0+1g̃′′′t ‖∞[0,3/4]

≤ c
(
K2,ϕ(f, t2)w,∞ +K1(f, t2)w,∞

)
.

Further, let Q̃(f) = Q̃T̃ (f) be the quasi-interpolant considered above for

r = 1 and modified for the interval [1/5, 1]. We set ϕ̃(x) =
√

(x− 1/5)(1− x)
and denote by K(f, t)∞(J) the modification of the K-functional K(f, t)∞, in
which the sup-norm is taken on the interval J instead of [0, 1]. Then (cf. (5.14))
we have

‖f − Q̃(f)‖∞[1/4,1] ≤ ‖f − Q̃(f)‖∞[1/5,1]

≤ cK2,ϕ̃(f, t2)∞[1/5,1] ≤ cK2,ϕ(f, t2)w,∞,

t2‖ϕ2Q̃(f)′′‖∞[1/4,1] ≤ c t2‖ϕ̃2Q̃(f)′′‖∞[1/5,1]

≤ cK2,ϕ̃(f, t2)∞[1/5,1] ≤ cK2,ϕ(f, t2)w,∞,

t2‖Q̃(f)′‖∞[1/4,1] ≤ t2‖Q̃(f)′‖∞[1/5,1]

≤ cK1(f, t2)∞[1/5,1] ≤ cK1(f, t2)w,∞

(5.17)

for t = 1/m, m ∈ N and m ≥ m0 with some fixed m0 ∈ N.

Let the function gt ∈ C3[0, 1] be such that g′t = (1 − ψ)g̃′t + ψQ̃(f), where
ψ ∈ C∞(R), ψ(x) = 0 for x ≤ 1/4 and ψ(x) = 1 for x ≥ 3/4. It can be shown
by (4.84) with r = s = 1 and p =∞, (5.16) and (5.17) that (see [4, p. 176])

‖w(f − g′t)‖∞ + t2‖w(Dgt)
′‖∞ ≤ c

(
K2,ϕ(f, t2)w,∞ +K1(f, t2)w,∞

)
for t = 1/m, m ∈ N and m ≥ m0. In view of property (5.15) that completes the
proof of Remark 1.4.

Let us explicitly note that the characterization of the weighted simultane-
ous approximation by Br,n in terms of the K-functionals K2r,ϕ(f, t)w,p and
Kj(f, t)w,p can be directly derived from Proposition 4.1, Corollaries 4.7 and
4.11, Propositions 4.13(b) and 4.14(b) by means of [7, Theorems 3.2 and 3.4].

At the end we include a few remarks about the proof of Corollaries 1.5 and
1.6.

Proof of Corollaries 1.5 and 1.6. As it is shown in [8, Theorem 6.1.1], there ex-
ists t0 such that K2r,ϕ(f, t2r)w,p ≤ c ω2r

ϕ (f, t)w,p and Kj(f, t
j)w,p ≤ c ωj(f, t)w,p
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for 0 < t ≤ t0. Hence the assertions of the corollaries follow for n ≥ n0 with
some n0 ∈ N from Theorems 1.1-1.3. For n < n0 we apply Proposition 4.1 to
get

(5.18) ‖w(Br,nf − f)(s)‖p ≤
c

nr
‖wf (s)‖p,

which completes the proof for s ≥ 2. For s = 1 we use that Br,nf preserves the
linear functions to deduce from (5.18) the estimate

‖w(Br,nf − f)′‖p ≤
c

nr
E0(f ′)w,p, n < n0.

Then we apply (5.9) with f ′ in place of f and the relation K1(f ′, t)w,p ≤
c ω1(f ′, t)w,p, 0 < t ≤ 1.
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