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1 Introduction

The approximation by trigonometric polynomials is well investigated. The rate of conver-
gence in uniform and integral norm was described by the classical modulus of smoothness
due to D. Jackson, S. N. Bernstein, A. Zygmund and S. B. Stechkin (see for example
[10]). This result was extended to any Banach space of 2π-periodic functions for which
translation is continuous isometry by H. S. Shapiro and Z. Ditzian ([16] and [5]).

Let B be a homogeneous Banach space of 2π-periodic real-valued functions. We
recall that B is a homogeneous Banach space if

(1.1) ‖f(·+ a)‖B = ‖f(·)‖B , ‖f(·+ h)− f(·)‖B → 0 as h→ 0 and ‖f‖L1 ≤ C‖f‖B ,

where a ∈ R and C is a constant independent of f . We denote by Tn the set of all
trigonometric polynomials of degree at most n and put

(1.2) ET
n (f)B = inf

τ∈Tn∩B
‖f − τ‖B

for the best trigonometric approximation, as the trigonometric polynomials are dense in
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B. It was shown by the authors mentioned above that for f ∈ B we have

ET
n (f)B ≤ Crωr(f ;n−1)B ,

ωr(f ; t)B ≤ Crt
r
∑

0≤k≤1/t

(k + 1)r−1ET
k (f)B , 0 < t ≤ t0,

where ωr(f ; t)B is the classical modulus of smoothness defined as follows

ωr(f ; t)B := sup
0<h≤t

‖∆r
hf‖B ,

∆r
hf(x) :=

r∑
k=0

(−1)k

(
r

k

)
f(x+ (r/2− k)h).

In the case of best algebraic approximation the rate of convergence has just recently
been described through appropriate moduli of smoothness. Ditzian and Totik solved
that problem in [7, Ch. 7] by means of a modulus with a varying step. Ivanov proposed
in [8] another solution through an integral modulus of smoothness. A summary on other
achievements in that area can be found in [7, Ch. 13].

Let B denote L∗p[−π, π], 1 ≤ p <∞, or C∗[−π, π], where

L∗p[−π, π] = {f : R → R : f(x+ 2π) = f(x) a.e., f |[−π,π] ∈ Lp[−π, π]}
C∗[−π, π] = {f ∈ C(R) : f(x+ 2π) = f(x)}.

It is interesting to construct a modulus-like function ωT
r (f ; t)B associated with best

trigonometric approximation such that for f ∈ B we have

(1.3) ωT
r (f ; t)B ≡ 0 ⇐⇒ f ∈ Tr−1

(here and further f ∈ Tr−1 in Lp-spaces means that f coincides a.e. with a trigonometric
polynomial of degree at most r − 1) and ωT

r (f ; t)B characterizes the best trigonometric
approximation like the classical modulus does. Thus, this new modulus of smoothness
describes more precisely (in the sense of (1.3)) the rate of convergence of best trigono-
metric approximation than the classical one. The definition of this new modulus, as
we should expect, is more complicated. We shall show that the modulus of smoothness
defined by

(1.4) ωT
r (f ; t)B := sup

0<h≤t
‖∆2r−1

h Fr−1f‖B , r = 1, 2, . . . ,

where
Fr−1(f, x) = f(x) +

∫ x

0

Kr−1(t)f(x− t) dt

and

Kr−1(t) =
r−1∑
j=1

a
(r−1)
j

(2j − 1)!
t2j−1, a

(r−1)
j =

∑
1≤l1<···<lj≤r−1

(l1 · · · lj)2,

satisfies (1.3) and the following theorem.

2



Theorem 1.1. Let f ∈ B, where B = L∗p[−π, π], 1 ≤ p <∞, or B = C∗[−π, π]. Then

ET
n (f)B ≤ Crω

T
r (f ;n−1)B , n ≥ r − 1,(1.5)

and

ωT
r (f ; t)B ≤ Crt

2r−1
∑

r−1≤k≤1/t

(k + 1)2r−2ET
k (f)B , 0 < t ≤ 1

r
.(1.6)

Let us observe that although Fr−1f is not generally a 2π-periodic function
∆2r−1

h Fr−1f is. Unlike the various moduli which describe the best algebraic approx-
imation ωT

r (f ; t)B is based on finite differences only of an odd order. Thus ωT
r (f ; t)B

is connected with the (2r − 1)th finite difference not the rth one. This is due to the
dimensions of the spaces Tr−1 and Πr−1, respectively. To state our next main result we
define the K-functional

(1.7) KT
r (f ; t)B := inf

g∈B2r−1

{
‖f − g‖B + t2r−1‖D̃rg‖B

}
,

where we have put Bs = {g ∈ B : g, g′, . . . , g(s−1) ∈ AC∗[−π, π], g(s) ∈ B}, AC∗[−π, π]
being the set of all 2π-periodic absolutely continuous functions, D̃rg = Dr−1 · · ·D1g

′

and Djg = g′′ + j2g. We write ϕ(f ; t) ∼ ψ(f ; t) if and only if there exists a constant
C > 0 independent of f and t such that C−1ϕ(f ; t) ≤ ψ(f ; t) ≤ Cϕ(f ; t). We shall prove

Theorem 1.2. For f ∈ B, where B = L∗p[−π, π], 1 ≤ p < ∞, or B = C∗[−π, π], we
have

KT
r (f ; t)B ∼ ωT

r (f ; t)B .

Hence

Theorem 1.3. Let f ∈ B, where B = L∗p[−π, π], 1 ≤ p <∞, or B = C∗[−π, π]. Then

ET
n (f)B ≤ CrK

T
r (f ; t)B , n ≥ r − 1,

and

KT
r (f ; t)B ≤ Crt

2r−1
∑

r−1≤k≤1/t

(k + 1)2r−2ET
k (f)B , 0 < t ≤ 1

r
.

Analogous problem can be posed in connection to the interpolation by trigonometric
polynomials. G. P. Nevai proved in [12] the following generalization of a result of S. M.
Nikolskii

|f(x)− tn(f, x)| ≤ 2−rωr

(
f ;

2π
2n+ 1

)
∞
λn(x̄) +O

(
ωr(f ;n−1)∞

)
,

where tn(f, x) ∈ Tn interpolates f ∈ C[−π, π] in the equidistant nodes x̄ = (x−n, . . . , xn),
xk = 2kπ/(2n+1), k = −n, . . . , n, and λn(x̄) is the Lebesgue constant for trigonometric
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Lagrange interpolation. Having verified (1.5), the well-known Lebesgue inequality for
bounded linear operators that preserves trigonometric polynomials yields

|f(x)− tn(f, x)| ≤ Cr(1 + λ(x̄))ωT
r (f ;n−1)∞

for any set of interpolation nodes x̄.
The contents of the paper are organized as follows. We investigate the rate of approx-

imation of a certain modified Riesz operator in Section 2. Next we introduce operators
that preserve the trigonometric polynomials of a given degree and characterize their
rate of approximation in Section 3. In the next section we define the modulus ωT

r (f ; t)B

for Lp and C spaces of 2π-periodic functions and prove its properties. In Section 5 we
characterize the rate of best trigonometric approximation in Lp and C norm through
it. In the same section we point out a characterization of the rate of best trigonometric
approximation in any homogeneous Banach space by an appropriate K-functional.

2 A modified Riesz operator

Let B be a Banach space of 2π-periodic functions such that

(2.1) ‖f(·+ a)‖B = ‖f‖B and ‖f‖L1 ≤ C‖f‖B ,

where a ∈ R and C is a constant independent of f .
We define the differential operators

(2.2) Djg = g′′ + j2g, j = 1, 2, . . .

for g ∈ B2, where we have put Bs = {g ∈ B : g, g′, . . . , g(s−1) ∈ AC∗[−π, π], g(s) ∈ B}
and AC∗[−π, π] is the set of all 2π-periodic absolutely continuous functions. We also
define the K-functional

(2.3) Kj(f ; t)B := inf
g∈B2

{
‖f − g‖B + t2‖Djg‖B

}
, t > 0.

Let Ak(x) = Ak(f, x) be the kth term in the Fourier expansion of f :

A0(x) =
a0

2
,

Ak(x) = ak cos kx+ bk sin kx, k = 1, 2, . . . ,

ak = ak(f) =
1
π

∫ π

−π

f(t) cos kt dt, k = 0, 1, 2, . . . ,

bk = bk(f) =
1
π

∫ π

−π

f(t) sin kt dt, k = 1, 2, . . . .

In this section we consider the approximation behaviour of the following modification
of the typical Riesz means:

(2.4) Rj,n(f, x) :=
n−1∑
k=0

(
1− k2 − j2

n2 − j2

)
Ak(x), n > j, j = 1, 2, . . . .
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Theorem 2.1. For a Banach space B satisfying (2.1), the K-functional Kj(f ; t)B and
the Riesz means Rj,n(f, x), we have

‖f −Rj,nf‖B ∼ Kj,n(f ;n−1)B , n > j.

Proof. We follow the proof of similar results of Ditzian and Ivanov in [6] and of Ditzian
in [4]. The statement of the theorem follows from the relations

‖Rj,nf‖B ≤Mj‖f‖B , f ∈ B, n > j,(2.5)

DjRj,ng = Rj,nDjg for g ∈ B2, n > j,(2.6)

and

DjRj,nf = (j2 − n2)Rj,n(f −Rj,nf), n > j.(2.7)

First we deal with (2.5). We observe that

Rj,nf =
n2

n2 − j2

n−1∑
k=0

(
1− k2

n2
Ak

)
.

But it was shown in [6] by means of an assertion in [9] that the operators

Rnf =
n−1∑
k=0

(
1− k2

n2
Ak

)
are uniformly bounded in n. Consequently, this holds for Rj,nf as well.

Next (2.6) follows from (d/dx)Ak(g, x) = Ak(g′, x), k = 0, 1, 2, . . . , for g ∈ B1.
It remains to verify (2.7). We shall prove just a little bit more general result which

we shall need later, namely we have

(2.8) DiRj,nf = (i2 − n2)Rj,n(f −Ri,nf), n > i, j.

We have

DiRj,nf =
n−1∑
k=0

(i2 − k2)
(
1− k2 − j2

n2 − j2

)
Ak

= (n2 − i2)
(n−1∑

k=0

(
1− k2 − j2

n2 − j2

)(
1− k2 − i2

n2 − i2

)
Ak −

n−1∑
k=0

(
1− k2 − j2

n2 − j2

)
Ak

)
= (i2 − n2)Rj,n(f −Ri,nf).

This establishes (2.8) and hence (2.7).
(a ) The direct result
The fact that the trigonometric polynomials are dense in B, (2.5) and the relations

lim
n→∞

Rj,nfk = lim
n→∞

(
1− k2 − j2

n2 − j2

)
fk = fk,

‖f −Rj,nf‖B ≤ ‖Rj,n(f − τ)‖B + ‖f − τ‖B + ‖τ −Rj,nτ‖B ,
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where fk(x) = cos kx or fk(x) = sin kx and τ ∈ B is a trigonometric polynomial, imply

(2.9) lim
n→∞

‖f −Rj,nf‖B = 0.

For any g ∈ B2 we have

(2.10) ‖f −Rj,nf‖B ≤ (Mj + 1)‖f − g‖B + ‖g −Rj,ng‖B .

To estimate the second term we write, using (2.5) and (2.9),

‖g −Rj,ng‖B ≤ ‖Rj,ng −R2
j,ng‖B + ‖g −R2

j,ng‖B

≤ ‖Rj,ng −R2
j,ng‖B +

∞∑
m=n

‖R2
j,mg −R2

j,m+1g‖B .
(2.11)

Next (2.6) and (2.7) yield

(2.12) ‖Rj,ng −R2
j,ng‖B ≤ Mj

n2 − j2
‖Djg‖B .

Since Rj,mRj,l = Rj,lRj,m, we have

‖R2
j,mg −R2

j,m+1g‖B ≤ ‖R2
j,mg −Rj,m+1Rj,mg‖B + ‖R2

j,m+1g −Rj,mRj,m+1g‖B .

As we established (2.8) we verify the relations

R2
j,mg −Rj,m+1Rj,mg =

2m+ 1
[(m+ 1)2 − j2](m2 − j2)

DjRj,mg

R2
j,m+1g −Rj,mRj,m+1g = − 2m+ 1

[(m+ 1)2 − j2](m2 − j2)
DjRj,m+1g

which together with (2.5) and (2.6) yield

∞∑
m=n

‖R2
j,mg −R2

j,m+1g‖B ≤ Cj‖Djg‖B

∞∑
m=n

1
m3

≤ Cj

n2
‖Djg‖B .

This and (2.12) imply from (2.11)

(2.13) ‖g −Rj,ng‖B ≤ Cj

n2
‖Djg‖B , n > j, g ∈ B2.

Finally, (2.10) and the inequality above yield the direct estimate

‖f −Rj,nf‖B ≤ CjKj(f, n−1)B .

(b ) The converse result
Relations (2.5) and (2.7) yield

‖DjRj,nf‖B ≤ Cjn
2‖f −Rj,nf‖B
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and therefore
Kj(f ;n−1)B ≤ Cj‖f −Rj,nf‖B ,

where Cj is a constant independent of f and n. This completes the proof of the theorem.

Remark 2.2. Let B = L∗p[−π, π], 1 ≤ p < ∞, the space of all 2π-periodic functions f
such that

‖f‖B =

(∫ π

−π

|f(t)|p dt

) 1
p

<∞,

or B = C∗[−π, π], the space of all continuous 2π-periodic functions with the sup-norm

‖f‖B = sup
x∈[−π,π]

|f(x)| .

Then it can be shown as in Section 4 that

(2.14) ‖f −Rj,nf‖B ∼ sup
0<h≤1/n

‖∆2
hAjf‖B , n > j,

where
∆2

hF (x) = F (x+ h)− 2F (x) + F (x− h)

and

(2.15) Aj(f, x) = f(x) + j2
∫ x

0

(x− t)f(t) dt, x ∈ R.

In passing let us note that Ajf is not 2π-periodic for every f ∈ B but ∆2
hAjf is.

3 Operators that preserve the trigonometric polyno-
mials of a given degree

In this section we consider the linear operator Lr−1,n : B → Tn−1, r, n ∈ N, 1 ≤ r ≤ n,
defined by

(3.1) Lr−1,n = I −
r−1∏
i=0

(I −Rj,n) =
r−1∑
i=0

(−1)i
∑

0≤j0<···<ji≤r−1

Rj0,n · · ·Rji,n,

where I is the identity and Rj,n is given in (2.4). We shall characterize the approximation
behaviour of Lr−1,n by means of the K-functional

(3.2) K ′
r(f ; t)B = inf

g∈B2r

{
‖f − g‖B + t2r‖D′

rg‖B

}
, t > 0,

where D′
r = Dr−1 · · ·D0 and Dj , j = 0, . . . , r − 1, are given in (2.2). The following

theorem holds.
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Theorem 3.1. For a Banach space B satisfying (2.1) we have

‖f − Lr−1,nf‖B ∼ K ′
r(f ;n−1)B ,

where Lr−1,n and K ′
r(f ; t)B are given in (3.1) and (3.2), respectively.

Proof. We follow the same steps as in the proof of Theorem 2.1.
(a ) The direct result
First let us note that due to (2.5) for j = 0, . . . , r−1 the operator Lr−1,n is bounded:

(3.3) ‖Lr−1,nf‖B ≤ Cr‖f‖B , f ∈ B, n ≥ r.

Next, as (d/dx)Ak(g, x) = Ak(g′, x), k = 0, 1, 2, . . . for g ∈ B1, we have for n > j

(3.4) DiRj,ng = Rj,nDig, g ∈ B2.

Besides, Theorem 2.1 yields

(3.5) ‖g −Rj,ng‖B ≤ cj
n2
‖Djg‖B , g ∈ B2.

Therefore, applying consecutively (3.4) and (3.5) for j = 0, . . . , r− 1, we get for g ∈ B2r

and n ≥ r

‖g − Lr−1,ng‖B =
∥∥∥∥r−1∏

j=0

(I −Rj,n)g
∥∥∥∥

B

≤ c0
n2

∥∥∥∥D0

r−1∏
j=1

(I −Rj,n)g
∥∥∥∥

B

=
c0
n2

∥∥∥∥r−1∏
j=1

(I −Rj,n)D0g

∥∥∥∥
B

. . .

≤ c0 . . . cr−1

n2r
‖Dr−1 · · ·D0g‖B .

Thus we have got

(3.6) ‖g − Lr−1,ng‖B ≤ Cr

n2r
‖D′

rg‖B , g ∈ B2r, n ≥ r,

where Cr depends only on r. Now inequalities (3.3) and (3.6) yield

‖f − Lr−1,nf‖B ≤ CrK
′
r(f ;n−1)B .

(b ) The converse result
The converse inequality follows from (2.8) and (3.3) as in the proof of Theorem 2.1.

We also use that Rj,nRi,n = Ri,nRj,n and the relation (3.4). For f ∈ B and n ≥ r, we
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have

D′
rLr−1,nf = D′

r

r−1∑
i=0

(−1)i
∑

0≤j0<···<ji≤r−1

Rj0,n · · ·Rji,nf

= D′
r−1

r−1∑
i=0

(−1)i
∑

0≤j0<···<ji≤r−1

Rj0,n · · ·Rji−1,n
Dr−1Rji,nf

= ((r − 1)2 − n2)D′
r−1

r−1∑
i=0

(−1)i
∑

0≤j0<···<ji≤r−1

Rj0,n · · ·Rji,n(I −Rr−1,n)f

. . .

=
r−1∏
l=0

(l2 − n2)
r−1∑
i=0

(−1)i
∑

0≤j0<···<ji≤r−1

Rj0,n · · ·Rji,n

r−1∏
l=0

(I −Rl,n)f.

So we have shown that, for f ∈ B and n ≥ r,

(3.7) D′
rLr−1,nf =

(r−1∏
l=0

(l2 − n2)
)
Lr−1,n(f − Lr−1,nf).

Hence, as in the proof of the converse inequality in Theorem 2.1, we get

K ′
r(f, n

−1)B ≤ Cr‖f − Lr−1,nf‖B .

Thus the proof of Theorem 3.1 is completed.

Remark 3.2. As f ∈ Tr−1 implies D′
rf = 0, we have Lr−1,nf = f for f ∈ Tr−1, n ≥ r.

4 A new periodic modulus of smoothness

Let [a, b] be an arbitrary finite subinterval of the real line such that 0 ∈ [a, b]. We
write X = X[a, b] for any of the function spaces Lp[a, b], 1 ≤ p < ∞, or C[a, b] and
Xr = Xr[a, b] for the Sobolev spaces W r

p [a, b], 1 ≤ p <∞, or Cr[a, b]. We also write B
for L∗p[−π, π], 1 ≤ p <∞, or C∗[−π, π], where, we recall,

L∗p[−π, π] = {f : R → R : f(x+ 2π) = f(x) a.e., f |[−π,π] ∈ Lp[−π, π]},
C∗[−π, π] = {f ∈ C(R) : f(x+ 2π) = f(x)}.

We write Br for W ∗r
p [−π, π], 1 ≤ p <∞ or C∗r[−π, π], where

W ∗r
p [−π, π] = {f ∈ L∗p[−π, π] : f, f ′, . . . , f (r−1) ∈ AC∗[−π, π], f (r) ∈ L∗p[−π, π]},

C∗r[−π, π] = {f ∈ C∗[−π, π] : f (k) ∈ C∗[−π, π], s = 1, . . . , r}.

We define the convolutional operator known as Duhamel’s convolution ~ : L1[a, b]×
L1[a, b] → L1[a, b],

(4.1) f ~ g(x) :=
∫ x

0

f(x− t)g(t) dt.
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It is easy to verify that it possesses the properties:

1. f ~ g = g ~ f ;

2. f ~ (g + h) = f ~ g + f ~ h;

3. f ~ (g ~ h) = (f ~ g) ~ h.

First we shall consider the linear bounded operator Aj : X → X defined by

(4.2) Aj(f, x) = f(x) + j2
∫ x

0

(x− t)f(t) dt, j = 1, 2, . . .

If we put, for f ∈ X,

(4.3) Iα(f, x) :=
1

Γ(α)

∫ x

0

(x− t)α−1f(t) dt, x ∈ [a, b], α > 0,

where Γ(α) is the gamma-function, then Aj can be represented in the form

(4.4) Aj = I + j2I2,

I being the identity. Hence, it follows that AjAk = AkAj .

Proposition 4.1. The bounded linear operator Aj is invertible and

A−1
j (g, x) = g(x)− j

∫ x

0

sin j(x− t)g(t) dt.

Hence

A−1
j (g, x) =

1
j

∫ x

0

sin j(x− t)g′′(t) dt

for g ∈ X2 with g(0) = g′(0) = 0.

Proof. By definition we have

Ajf = f + j2e1 ~ f, e1(x) = x,

and let

Bjg = g − jϕj ~ g, ϕj(x) = sin jx.

We have to show that AjBj = BjAj = I, where I is the identity. Using the properties
of ~ we get

Aj(Bjg) = Bjg + j2e1 ~Bjg = g + (j2e1 − jϕj − j3e1 ~ ϕj) ~ g

and

Bj(Ajf) = Ajf − jϕj ~Ajf = f + (j2e1 − jϕj − j3e1 ~ ϕj) ~ f.
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But since

j3e1 ~ ϕj(x) = j3
∫ x

0

(x− t) sin jt dt = j2x− j sin jx = j2e1(x)− jϕj(x),

we get that j2e1 − jϕj − j3e1 ~ ϕj = 0 and hence, AjBj = BjAj = I.
The second statement of the proposition follows from the first one by integration by

parts.

Next we define the bounded linear operator Fr : X → X by

(4.5) Fr = A1 · · ·Ar.

The following representation of Fr holds true.

Proposition 4.2. The operator Fr can be represented in the form

(4.6) Fr = I +
r∑

j=1

a
(r)
j I2j , a

(r)
j =

∑
1≤l1<···<lj≤r

(l1 · · · lj)2,

where I2j are defined in (4.3). Hence, for every f ∈ X,

(4.7) Fr(f, x) = f(x) +
∫ x

0

Kr(t)f(x− t) dt,

where

(4.8) Kr(t) =
r∑

j=1

a
(r)
j

(2j − 1)!
t2j−1.

Proof. We shall prove the assertion by induction. The representation (4.6) is trivial for
r = 1. Let us assume that

Fr−1 = I +
r−1∑
j=1

a
(r−1)
j I2j .

Then we have, using also (4.4) and the fact that IjIk = Ij+k,

Fr = Fr−1Ar = (I +
r−1∑
j=1

a
(r−1)
j I2j)(I + r2I2)

= I +
r−1∑
j=1

a
(r−1)
j I2j + r2I2 + r2

r−1∑
j=1

a
(r−1)
j I2(j+1)

= I + (a(r−1)
1 + r2)I2 +

r−1∑
j=2

(a(r−1)
j + r2a

(r−1)
j−1 )I2j + r2a

(r−1)
r−1 I2r,

11



To finish the proof we only need to observe that

a
(r−1)
1 + r2 =

r−1∑
j=1

j2 + r2 = a
(r)
1 ;

a
(r−1)
j + r2a

(r−1)
j−1 =

∑
1≤l1<···<lj≤r−1

(l1 · · · lj)2 + r2
∑

1≤l1<···<lj−1≤r−1

(l1 · · · lj−1)2

=
∑

1≤l1<···<lj≤r−1

(l1 · · · lj)2 +
∑

1≤l1<···<lj−1<r

(l1 · · · lj−1r)2

=
∑

1≤l1<···<lj≤r

(l1 · · · lj)2 = a
(r)
j

and
r2a

(r−1)
r−1 = [(r − 1)!]2r2 = (r!)2 = a(r)

r ,

hence

Fr = I +
r∑

j=1

a
(r)
j I2j .

The representation (4.7) follows immediately from (4.6) and the definition of I2j in
(4.3).

Next we point out some properties of the kernel Kr(t) defined in (4.8).

Proposition 4.3. The following recursion relation for the kernel Kr(t) holds:

Kr(t) = Kr−1(t) + r2
∫ t

0

(t− s)Kr−1(s) ds+ r2t,

K1(t) = t.

We also have

K′′r = DrKr−1 and Kr(t) =
∫ t

0

(t− s)DrKr−1(s) ds+
1
6
r(r + 1)(2r + 1)t,

hence

K′′r =
r−1∑
j=1

(j + 1)2Kj and Kr(t) =
r−1∑
j=1

(j + 1)2
∫ t

0

(t− s)Kj(s) ds+
1
6
r(r + 1)(2r + 1)t.

Remark 4.4. If we put Kr(t) = tK̃r(t) the recursion relation above can be rewritten as

K̃r(t) = K̃r−1(t) + r2t2
∫ 1

0

u(1− u)K̃r−1(tu) du+ r2,

K̃1(t) = 1.
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Proof of Proposition 4.3. We only have to verify the first part of the statement in the
proposition above. Using the notation (4.1), (4.2) and (4.7) can be written respectively
as

Arf = f + r2e1 ~ f, e1(x) = x(4.9)

and

Frf = f +Kr ~ f.(4.10)

Then, from the definition of Fr (see (4.5)) and the properties of ~, follow

Frf = Fr−1Arf = Arf +Kr−1 ~Arf

= f + (Kr−1 + r2e1 ~Kr−1 + r2e1) ~ f.

Comparing (4.7) and the above, we conclude that

(Kr −Kr−1 − r2e1 ~Kr−1 − r2e1) ~ f = 0

for any f ∈ X. Hence, it easily follows that

Kr −Kr−1 − r2e1 ~Kr−1 − r2e1 = 0,

which is exactly the first recursion relation in Proposition 4.3.

Remark 4.5. We put

Pr(x) =
r∏

j=1

(x2 + j2) = x2r +
r∑

j=1

a
(r)
j x2(r−j)

and Sr(x, t) = Pr(x)ext. We also put D̃rg = Dr−1 · · ·D1g
′ for g ∈ X2r−1, where

Dj , j = 1, . . . , r − 1, are defined in (2.2). Let us note that D̃r = Pr−1(d/dx)d/dx.
Obviously,

Sr+1(x, t) = (x2 + (r + 1)2)Sr(x, t),

S1(x, t) = (x2 + 1)ext.

It is easy to verify the relation

Kr(t) =
1

(2r − 1)!

(
∂

∂x

)2r−1

Sr(x, t)
∣∣∣∣
x=0

.

This also implies the statement of Proposition 4.3.

Next we consider the inverse operator of Fr, F−1
r = A−1

1 · · ·A−1
r . The properties

stated in the next proposition were pointed to the author by K. G. Ivanov.

Proposition 4.6. For A−1
j : X → X, the inverse operator of Aj, we have

13



(a) A−1
k A−1

j =
j2

j2 − k2
A−1

j +
k2

k2 − j2
A−1

k , k 6= j;

(b) A−1
1 · · ·A−1

r = 2
r∑

j=1

j2r−1

ω′r(j)
A−1

j , where ωr(x) =
r∏

k=1

(x2 − k2);

(c) F−1
r (g, x) = g(x)−

∫ x

0

Lr(t)g(x− t) dt,

where

(4.11) Lr(t) = 2
r∑

j=1

j2r

ω′r(j)
sin jt.

Proof. To verify (a) we use that A−1
j g = g − jϕj ~ g, where ϕj(x) = sin jx, and write

A−1
k A−1

j g = A−1
j g − kϕk ~A−1

j g

= g − jϕj ~ g − kϕk ~ g + kjϕj ~ ϕk ~ g.

Then, as ϕj ~ ϕk = (k2 − j2)−1(kϕj − jϕk), we get

A−1
k A−1

j g =
( j2

j2 − k2
+

k2

k2 − j2

)
g − j2

j2 − k2
jϕj ~ g − k2

k2 − j2
kϕk ~ g

=
j2

j2 − k2
(g − jϕj ~ g) +

k2

k2 − j2
(g − kϕk ~ g).

Thus (a) is established.
We prove (b) by induction in r but first we need to observe that

(4.12) 2
r∑

j=1

j2r−1

ω′r(j)
= 1.

The equality follows from the fact that the left-hand side is the divided difference of
the function f(x) = x2r−1 at the points −r, . . . ,−1, 1, . . . , r. Now the assertion in (b)
follows easily by induction. Indeed, for r = 1 it is trivial. Let us assume that

A−1
1 · · ·A−1

r−1 = 2
r−1∑
j=1

j2r−3

ω′r−1(j)
A−1

j .

Then, using the induction hypothesis and (a), we have

A−1
1 · · ·A−1

r = 2
r−1∑
j=1

j2r−3

ω′r−1(j)
A−1

j A−1
r

= 2
r−1∑
j=1

j2r−3

ω′r−1(j)

( j2

j2 − r2
A−1

j +
r2

r2 − j2
A−1

r

)

= 2
r−1∑
j=1

j2r−1

ω′r−1(j)(j2 − r2)
A−1

j + 2
r−1∑
j=1

j2r−3

ω′r−1(j)
r2

r2 − j2
A−1

r .
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Next we just observe that ω′r(j) = ω′r−1(j)(j
2 − r2) and

2
r−1∑
j=1

j2r−3

ω′r−1(j)
r2

r2 − j2
= 2

r−1∑
j=1

j2r−3

ω′r−1(j)

(
1− j2

j2 − r2

)

=
(
1− 2

r−1∑
j=1

j2r−1

ω′r(j)

)
= 2

r2r−1

ω′r(j)
,

where at the last two steps we have used (4.12). Therefore

A−1
1 · · ·A−1

r = 2
r−1∑
j=1

j2r−1

ω′r(j)
A−1

j + 2
r2r−1

ω′r(j)
A−1

r = 2
r∑

j=1

j2r−1

ω′r(j)
A−1

j .

Assertion (c) follows immediately from (b) , Proposition 4.1 and (4.12). The proof is
complete.

Similarly to Proposition 4.3 one can show

Proposition 4.7. The kernel Lr(t), defined in (4.11), satisfies the recursion relation

Lr(t) = Lr−1(t)− r

∫ t

0

sin r(t− s)Lr−1(t) ds+ r sin rt

L1(t) = sin t.

Next we introduce the differential operator

(4.13) D̃rg = Dr−1 · · ·D1g
′, g ∈ X2r−1,

where Dj , j = 1, . . . , r − 1, are defined in (2.2). The following fact is known.

Proposition 4.8. We have D̃rg = 0, g ∈ X2r−1, if and only if g ∈ Tr−1.

Proposition 4.9. For Fr, defined in (4.5), and D̃r, defined in (4.13), we have

(a) (Frg)(2r+1) = D̃r+1g, g ∈ X2r+1;

(b) Frτ ∈ Π2r, τ ∈ Tr;

(c) F−1
r P ∈ Tr, P ∈ Π2r.

Proof. To show (a) we only have to observe that

(4.14) (Ajg)′′ = Djg, g ∈ X2

and (Djg)′ = Djg
′. Using that we have

(Frg)(2r+1) = (ArFr−1g)(2r+1) = (DrFr−1g)(2r−1)

= Dr(Fr−1g)(2r−1)

= . . .

= Dr · · ·D1g
′ = D̃r+1g.

Assertions (b) and (c) follow immediately from (a) and Proposition 4.8.
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The next observation is due to K. G. Ivanov.

Proposition 4.10. For Fr, defined in (4.5), and its inverse F−1
r , we have:

(a) If τ ∈ TN , N > r, then Fr(τ, x) = P (x) +
N∑

k=r+1

(ak cos kx+ bk sin kx), where P ∈

Π2r and ak, bk ∈ R depend on τ and r.

(b) If P ∈ ΠN , N ≥ 2r, then F−1
r (P, x) = P (x) + τ(x), where P ∈ ΠN−2r and τ ∈ Tr

depend on P and n.

Proof. The validity of (a) follows from Proposition 4.9, (a) and (b) and

(4.15) Dr cos kx = (r2 − k2) cos kx and Dr sin kx = (r2 − k2) sin kx.

Assertion (b) follows from Proposition 4.9, (a) and (c) and the observation that for any
Ps ∈ Πs there exists Qs+1 ∈ Πs+1 such that D̃r+1Qs+1 = Ps. To prove the latter it is
enough to show that there exists qs ∈ Πs such that Djqs(x) = xs, s = 0, 1, . . . We can
put q0(x) = j−2 for s = 0 and

qs(x) =
[s/2]∑
l=0

(−1)lj−2(l+1)s(s− 1) · · · (s− 2l + 1)xs−2l

for s > 0.

After these preliminaries we can formulate and prove the main result of the section.
First we introduce the bounded linear operator F̃r−1 : B → B, r ≥ 2, by

(4.16) F̃r−1(f, x) := Fr−1(f, x) + P2r−2(f, x),

where Fr−1 is defined in (4.5) and P2r−2(f, x) = −
∑2r−2

k=1 αk(x + π)k/k! is the unique
algebraic polynomial of degree 2r − 2 whose coefficients αk = αk(f) depend on f and
are the solution of the linear system

(4.17)

2r−2∑
k=1

(2π)k

k!
αk =

∫ π

−π

Kr−1(t)f(π − t) dt

2r−2∑
k=2

(2π)k−1

(k − 1)!
αk =

∫ π

−π

K′r−1(t)f(π − t) dt

. . .

2πα2r−2 =
∫ π

−π

K(2r−3)
r−1 (t)f(π − t) dt.

The algebraic polynomial P2r−2f is constructed so that we may have (F̃r−1f)(s)(−π) =
(F̃r−1f)(s)(π), s = 0, 1, . . . , 2r − 3, for any f ∈ B2r−3. Indeed, one easily shows by
induction that ( d

dx

)2j

Fr−1(f, x) = f (2j)(x) +
j∑

l=1

K(2l−1)
r−1 (0)f (2j−2l)(x)

+
∫ x

0

K(2j)
r−1(t)f(x− t) dt, f ∈ B2j ,

(4.18)
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( d
dx

)2j+1

Fr−1(f, x) = f (2j+1)(x) +
j∑

l=1

K(2l−1)
r−1 (0)f (2j−2l+1)(x)

+
∫ x

0

K(2j+1)
r−1 (t)f(x− t) dt, f ∈ B2j+1,

(4.19)

where we have used (4.7) and the fact that the kernel Kr−1(t) is an odd algebraic
polynomial and therefore K(2j)

r−1(0) = 0. Consequently, if f ∈ B2r−3, then (4.17) is
equivalent to (F̃r−1f)(s)(−π) = (F̃r−1f)(s)(π), s = 0, 1, . . . , 2r − 3. Let us observe
that for s > 2r − 3 the last integral summand in (4.18) and (4.19), which is the only
generally non-periodic term, vanishes. Then, if f ∈ Bs, (4.17) implies (F̃r−1f)(s)(−π) =
(F̃r−1f)(s)(π) for any s ∈ N. What we actually do here can be expressed in another
way. According to (4.6) we have

Fr−1 = I +
r−1∑
j=1

a
(r−1)
j I2j , a

(r−1)
j =

∑
1≤l1<···<lj≤r−1

(l1 · · · lj)2,

where I2jf is defined in (4.3). But I2jf is not periodic for every f ∈ B. It is necessary
to use an integral operator that preserves the periodicity. We put

(4.20) S(f, x) :=
∫ x

0

f(t) dt− x

2π

∫ π

−π

f(t) dt.

Thus defined S is a bounded linear operator S : B → B, moreover, if f ∈ Bs then
Sf ∈ Bs+1. We put Sj = Sj , j = 1, 2, . . . for the iterations of the linear operator
S. We have Sjf = Ijf + P̄jf , where P̄jf ∈ Πj and P̄j(f, 0) = 0. Now, if we put
Q̄2r−2f =

∑r−1
j=1 a

(r−1)
j P̄2jf ∈ Π2r−2 (then Q̄2r−2(f, 0) = 0), we shall have

Fr−1f + Q̄2r−2f = f +
r−1∑
j=1

a
(r−1)
j I2jf +

r−1∑
j=1

a
(r−1)
j P̄2jf

= f +
r−1∑
j=1

a
(r−1)
j (I2jf + P̄2jf)

= f +
r−1∑
j=1

a
(r−1)
j S2jf.

Hence, if f ∈ Bs then Fr−1f + Q̄2r−2f ∈ Bs. Thus, observing that P2r−2(f, x) =
Q̄2r−2(f, x)−

∑2r−2
k=1 αk(f)πk/k!, we get the following important property of the operator

F̃r−1:

(4.21) F̃r−1g ∈ Bs for any g ∈ Bs, s ∈ N.

Another substantial property of F̃r−1 follows immediately from Proposition 4.9, (a). We
have

(4.22) (F̃r−1g)(2r−1) = D̃rg, g ∈ B2r−1.
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For consistency, we put F0 = I (K0 = 0) and P0 = 0 and then F̃0 = I. We shall also
need the following properties of the operator F̃r−1:

Proposition 4.11. For F̃r−1 we have

(a) F̃r−1(Tr−1) = Π0 = T0.

(b) ker F̃r−1 is (2r − 2)-dimensional subspace of Tr−1.

Proof. First, we show that F̃r−1f = const for any f ∈ Tr−1. Indeed, let f ∈ Tr−1.
Then, as we have proved in Proposition 4.9 (b), Fr−1f ∈ Π2r−2. Hence this holds for
F̃r−1f as well. On the other hand, F̃r−1f is 2π-periodic. Therefore F̃r−1f = const

for any f ∈ Tr−1. Also one can easily see that F̃r−1(e0,−π) > 0. Thus (a) is verified.
Next F̃r−1f = 0 implies Fr−1f ∈ Π2r−2 (see the definition of F̃r−1 in (4.16)), hence
Proposition 4.9 (c) yields f ∈ Tr−1. Thus ker F̃r−1 ⊆ Tr−1. Part (a) of the proposition
under consideration implies that for any f ∈ Tr−1 there exists a constant c = c(f) such
that F̃r−1(f + c) = 0. Hence dim ker F̃r−1 = 2r − 2.

We introduce the following modulus of smoothness for a function f ∈ B and t > 0:

(4.23) ωT
r (f ; t)B = ω2r−1(F̃r−1f ; t)B , r = 1, 2, . . . ,

where ω2r−1(F ; t)B is the classical periodic modulus of smoothness of order 2r − 1,
namely,

ω2r−1(F ; t)B = sup
0<h≤t

‖∆2r−1
h F‖B ,

∆2r−1
h F (x) =

2r−1∑
k=0

(−1)k

(
2r − 1
k

)
f(x+ ((2r − 1)/2− k)h).

Let us note that ∆2r−1
h Fr−1f ∈ B for any f ∈ B and

(4.24) ωT
r (f ; t)B = sup

0<h≤t
‖∆2r−1

h Fr−1f‖B , r = 1, 2, . . .

In the definition of ωT
r (f ; t)B the quantity ∆2r−1

h F̃r−1f(x) depends only on the values
of f in a neighbourhood of x whose diameter diminishes with h. The point 0 in the
integration limits of the integral operator used in the definition of F̃r−1 has been chosen
only for convenience – any other value can be fixed and the definition of ωT

r (f ; t)B is
invariant of this choice.

If f ∈ Tr−1 then Fr−1f is an algebraic polynomial of degree 2r− 2 (Proposition 4.9,
(b)) and then ∆2r−1

h Fr−1f(x) ≡ 0, hence ωT
r (f ; t)B ≡ 0. And vice versa, if ωT

r (f ; t)B ≡ 0
then ∆2r−1

h Fr−1f(x) = 0 for x ∈ [−π, π]. Consequently, Fr−1f is an algebraic polyno-
mial of degree 2r − 2 and then f ∈ Tr−1 (Proposition 4.9, (c)). So ωT

r (f ; t)B ≡ 0 if and
only if f ∈ Tr−1.

Next we define the K-functional

(4.25) KT
r (f ; t)B = inf

g∈B2r−1

{
‖f − g‖B + t2r−1‖D̃rg‖B

}
18



for f ∈ B, t > 0 and D̃r defined in (4.13). We shall use the notation Kc
s(F ; t)B for the

classical K-functional

(4.26) Kc
s(F ; t)B = inf

G∈Bs

{
‖F −G‖B + ts‖G(s)‖B .

}
The following equivalence result holds.

Theorem 4.12. For f ∈ B, where B = L∗p[−π, π], 1 ≤ p < ∞, or B = C∗[−π, π], we
have

KT
r (f ; t)B ∼ Kc

2r−1(F̃r−1f ; t)B ,

where KT
r (f ; t)B and Kc

2r−1(F ; t)B are defined in (4.25) and (4.26), respectively.

Proof. To show that there exists a positive constant Cr, independent of f and t, such
that Kc

2r−1(F̃r−1f ; t)B ≤ CrK
T
r (f ; t)B , we just write for G = F̃r−1g ∈ B2r−1, provided

that g ∈ B2r−1,

Kc
2r−1(F̃r−1f ; t)B = inf

G∈B2r−1

{
‖F̃r−1f −G‖B + t2r−1‖G(2r−1)‖B

}
≤ inf

g∈B2r−1

{
‖F̃r−1f − F̃r−1g‖B + t2r−1‖D̃rg‖B

}
≤ inf

g∈B2r−1

{
‖F̃r−1‖ ‖f − g‖B + t2r−1‖D̃rg‖B

}
≤ CrK

T
r (f ; t)B .

The verifying of the converse inequality takes more effort. We assume that r ≥ 2,
since for r = 1 the assertion is trivial. Let h1, . . . , h2r−2, hi ∈ Tr−1, i = 1, . . . , 2r− 2, be
linearly independent elements of ker F̃r−1. The matrix

M =
(∫ π

−π

K(s)
r−1(t)hk(π − t) dt

)2r−3,2r−2

s=0,k=1

is of maximal rank (namely, 2r − 2). Indeed, assuming the contrary, we get that there
exists h ∈ ker F̃r−1, h 6= 0, such that

∫ π

−π
K(s)

r−1(t)h(π − t) dt = 0 for s = 0, 1, . . . , 2r− 3.
Consequently, P2r−2h = 0, hence Fr−1h = 0, and then h = 0. So the assumption is
wrong and M is of maximal rank. Then the linear system

(4.27)
2r−2∑
k=1

∫ π

−π

K(s)
r−1(t)hk(π− t) dt . ck = −

∫ π

−π

K(s)
r−1(t)f(π− t) dt, s = 0, 1, . . . , 2r− 3

has a (unique) solution for any f ∈ B. Thus, for any f ∈ B, there exists a trigonometric
polynomial h = h(f) = c1h1 + · · ·+ c2r−2h2r−2 ∈ ker F̃r−1 of degree at most r − 1 such
that P2r−2(f + h) = 0. Then we have F̃r−1f = F̃r−1(f + h) = Fr−1(f + h). So we
can consider without loss of generality only functions f such that P2r−2f = 0 and then
F̃r−1(f, x) = Fr−1(f, x).

We define the linear operator Er−1 : B → B by

(4.28) Er−1(F, x) = F−1
r−1(F, x) +Q2r(F, x), x ∈ [−π, π],
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where Q2r(F, x) is an algebraic polynomial of the form Q2r(F, x) =
∑2r

k=1 βk(x+π)k/k!,
depending on F , such that Er−1F ∈ Bs for any F ∈ Bs for s = 0, 1, . . . , 2r − 1. The
coefficients {βk} are the solution of a linear system similar to (4.17). More precisely, the
system is

(4.29)

2r∑
k=1

(2π)k

k!
βk =

∫ π

−π

Lr−1(t)F (π − t) dt

2r∑
k=2

(2π)k−1

(k − 1)!
βk =

∫ π

−π

L′r−1(t)F (π − t) dt

. . .

2πβ2r =
∫ π

−π

L(2r−1)
r−1 (t)F (π − t) dt.

As in the case of the definition of P2r−2f , this is equivalent to (Er−1F )(s)(−π) =
(Er−1F )(s)(π), s = 0, 1, . . . , 2r − 1, for any F ∈ B2r−1 (Lr−1(t) is an odd function
alike Kr−1, (4.11)) and Er−1G ∈ Bs for any G ∈ Bs, s = 0, 1, . . . , 2r − 1. Next we write

Er−1(Fr−1f) = F−1
r−1(Fr−1f) +Q2r(Fr−1f)

= f +Q2rFr−1f.
(4.30)

Let us consider the operator Q2rFr−1 : B0 → Π2r, where B0 = {f ∈ B : P2r−2f = 0}
and Π2r is normed by the uniform norm over the interval [−π, π]. Obviously the operator
Q2r : B → Π2r is bounded, hence Q2rFr−1 is bounded too. Let Bs

0 = B0 ∩Bs. The set
Bs

0 is dense in B0. Indeed, B0 = {f + h(f) : f ∈ B} and Bs
0 = {g + h(g) : g ∈ Bs},

where h : B → Tr−1, is defined by (4.27). Let Tr−1 be normed with the same norm as
B. Then Crammer’s formulae yield

|ck| ≤ Cr max
s=0,2r−3

∣∣∣∣∫ π

−π

K(s)
r−1(t)f(π − t) dt

∣∣∣∣ , k = 1, . . . , 2r − 2,

where Cr is a positive constant independent of f . Consequently,

|ck| ≤ Cr‖f‖L1 ≤ Cr‖f‖B , k = 1, . . . , 2r − 2.

Hence
‖h(f)‖B ≤ Cr max

k=1,2k−2
|ck| ≤ Cr‖f‖B ,

where Cr is a positive constant independent of f . So h : B → Tr−1 is a bounded linear
operator and for f ∈ B and g ∈ Bs, we have

‖f + h(f)− (g + h(g))‖B ≤ ‖f − g‖B + ‖h(f − g)‖B ≤ (1 + ‖h‖)‖f − g‖B .

As Bs is dense in B, then the above implies that so is Bs
0 in B0. Having verified that,

let g ∈ B2r−1
0 . Then Fr−1g ∈ B2r−1 and then Er−1(Fr−1g) ∈ B2r−1. Therefore, bearing

in mind the definition of Q2r and (4.30), we conclude that Q2rFr−1g = 0 for every
g ∈ B2r−1

0 . But as B2r−1
0 is dense in B0 and the operator Q2rFr−1 is bounded, we get
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Q2rFr−1 = 0 in B0. Thus we have shown that Er−1Fr−1f = f for f ∈ B0. Now let
G ∈ B2r−1. Then g = Er−1G ∈ B2r−1. We have

‖f − g‖B = ‖Er−1Fr−1f − Er−1G‖B

≤ ‖Er−1‖ ‖Fr−1f −G‖B .
(4.31)

Further we need to estimate ‖D̃rg‖B . We have

D̃rg =
( d
dx

)2r−1

Fr−1g =
( d
dx

)2r−1

Fr−1Er−1G

=
( d
dx

)2r−1

Fr−1(F−1
r−1G+Q2rG)

= G(2r−1) +
( d
dx

)2r−1

Fr−1Q2rG.

We observe that Fr−1Q2rG is an algebraic polynomial of degree at most (2r−3)+2r+1 =
4r− 2 and then, obviously, there exists a constant Cr which depends on r but not on G
such that

(4.32)
∥∥∥∥( ddx)2r−1

Fr−1Q2rG

∥∥∥∥
B

≤ Cr max
k=1,2r

|βk| .

Next, since {βk} is the solution of the linear system (4.29), then there exists a constant
Cr which depends on r but not on G such that

(4.33) |βk| ≤ Cr max
s=0,2r−1

∣∣∣∣∫ π

−π

L(s)
r−1(t)G(π − t) dt

∣∣∣∣ , k = 1, . . . , 2r.

Relation (4.11) shows the kernel Lr−1(t) is a trigonometric polynomial such that
a0(Lr−1) = 0. For every trigonometric polynomial T with a0(T ) = 0 and any G ∈ B2r−1

an integration by parts yields the relation∫ π

−π

T (t)G(t) dt = −
∫ π

−π

S(t)G(2r−1)(t) dt,

where S is a trigonometric polynomial such that S(2r−1) = T . Consequently,

(4.34) |βk| ≤ Cr‖G(2r−1)‖L1 ≤ Cr‖G(2r−1)‖B , k = 1, . . . , 2r.

Inequalities (4.32) and (4.34) imply∥∥∥∥( ddx)2r−1

Fr−1Q2rG

∥∥∥∥
B

≤ Cr‖G(2r−1)‖B

and then

(4.35) ‖D̃rg‖B ≤ Cr‖G(2r−1)‖B .

To finish the proof we only have to observe that (4.31) and (4.35) imply that for any
G ∈ B2r−1 there exists g ∈ B2r−1 such that

‖f − g‖B + t2r−1‖D̃rg‖B ≤ Cr

(
‖Fr−1f −G‖B + t2r−1‖G(2r−1)‖B

)
.
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Now taking infimum first over g ∈ B2r−1 and then over G ∈ B2r−1, we get

KT
r (f ; t)B ≤ CrK

c
2r−1(F̃r−1f ; t)B ,

where Cr depends on r but not on f and t. This completes the proof of the theorem.

Now Theorem 1.2 follows from Theorem 4.12, the definition of ωT
r (f ; t)B and the

well-known characterization

Kc
s(F ; t)B ∼ ωs(F ; t)B , F ∈ B.

Remark 4.13. In a similar way it is shown that for any l ∈ N we have

inf
g∈B2r+l−1

{
‖f − g‖B + t2r+l−1‖(d/dx)lD̃rg‖B

}
∼ ω2r+l−1(F̃r−1f ; t)B .

Actually the proof is shorter as we do not need a0(Lr−1) = 0 for l > 0.

Moduli which contain integrals of f have been defined before. In Section 1 we de-
scribed briefly the modulus of Ivanov. The modulus ω∗rϕ (f ; t)p of Ditzian and Totik (see
[7, Ch. 2, Sec. 2.2]) also is an integral modulus of smoothness. Potapov (see [14] and
[15]) and Butzer, Stens and Wehrens (see [2], [3] and also [1] and the references cited in
those papers) introduce moduli based on generalized translation and integral transforms.
However, the modulus ωT

r (f ; t)B is different in construction and is based on a different
idea. It is actually the classical periodic modulus of smoothness taken not on f but on
its image under a certain linear mapping. This linear mapping is closely connected with
the differential operator which characterizes the approximating space Tr−1.

It is easy to verify, using the definition of ωT
r (f ; t)B and some properties of the

operator F̃r−1, that ωT
r (f ; t)B possesses the properties:

1. ωT
r (f + g; t)B ≤ ωT

r (f ; t)B + ωT
r (g; t)B for f, g ∈ B;

2. ωT
r (cf ; t)B = |c|ωT

r (f ; t)B , c is a constant;

3. ωT
r (f ; t)B ≤ ωT

r (f ; t′)B , t ≤ t′;

4. ωT
r (f ; t)B → 0 as t→ 0;

5. ωT
r (f ; t)B ≤ (4 + (r − 1)2t2)ωT

r−1(f ; t)B , r ≥ 2;

6. ωT
1 (f ; t)B ≤ 2‖f‖B and ωT

1 (f ; t)B ≤ t‖f ′‖B , f ∈ B1 (ωT
1 (f ; t)B coincides with the

ordinary modulus of continuity);

7. ωT
r (f ;λt)B ≤ (λ+ 1)2r−1ωT

r (f ; t)B ;

8. ωT
r (f ; t)B ≤ t2ωT

r−1(Dr−1f ; t)B , f ∈ B2; r ≥ 2;

9. Marchaud inequality

ωT
r (f ; t)B ≤ Crt

2r−1

(∫ c

t

ωT
r+1(f ;u)B

u2r
du+ ‖f‖B

)
, 0 < t ≤ c,

where c is any fixed positive constant.
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Only the proof of relations 5, 8 and 9 need somewhat more considerations. We shall
derive 9 later as a corollary from the relation between ET

n (f)B and ωT
r (f ; t)B .

Proof of Property 5. We have for f ∈ B

F̃r−1(f, x) = Fr−1(f, x) + P2r−2(f, x)
= Ar−1(Fr−2f, x) + P2r−2(f, x)

= Fr−2(f, x) + (r − 1)2
∫ x

−π

(x− t)Fr−2(f, t) dt+ P2r−2(f, x)

= Fr−2(f, x) + P2r−4(f, x)

+ (r − 1)2
(∫ x

−π

(x− t)Fr−2(f, t) dt+
1

(r − 1)2
(
P2r−2(f, x)− P2r−4(f, x)

))
= F̃r−2(f, x) + (r − 1)2Ẽ(f, x),

where we have denoted by Ẽ(f, x) the term in the parentheses above. For any f ∈
Bs, s ∈ N, we have F̃r−2f, F̃r−1f ∈ Bs. Therefore, for any f ∈ Bs, s ∈ N, we
have Ẽf ∈ Bs and then (d/dx)2Ẽf = Fr−2f + P̃2r−4f ∈ Bs−2, where P̃2r−4f ∈ Π2r−4

depends on f . Let r ≥ 3. By definition P2r−4f is the unique algebraic polynomial of
degree at most 2r− 4 up to an additive constant such that Fr−2f +P2r−4f ∈ B2r−5 for
any f ∈ B2r−5. This and the above for s ≥ 2r − 3 imply (d/dx)2Ẽf = F̃r−2f + const,
r ≥ 3. For r = 2 we have (d/dx)2Ẽf = f + const = F̃0f + const. Now, using some
well-known properties of the classical modulus of smoothness, we get

ωT
r (f, t)B = ω2r−1(F̃r−1f ; t)B ≤ ω2r−1(F̃r−2f ; t)B + (r − 1)2ω2r−1(Ẽf ; t)B

≤ 4ω2r−3(F̃r−2f ; t)B + (r − 1)2t2ω2r−3(F̃r−2f ; t)B

= (4 + (r − 1)2t2)ωT
r−1(f ; t)B .

Proof of Property 8. Similar considerations make up the proof of this property. Straight-
forward calculations and the fact that K′′r−1 = Dr−1Kr−2 (see Proposition 4.3) yield for
f ∈ B2 and r ≥ 3( d

dx

)2

F̃r−1(f, x) = Dr−1f(x) +
∫ x

0

Kr−2(x− t)Dr−1f(t) dt+ P̃2r−4(f, x)

= Fr−2(Dr−1f, x) + P̃2r−4(f, x),

where P̃2r−4f ∈ Π2r−4 depends on f . Now, as in the proof of Property 5, we get that( d
dx

)2

F̃r−1f = F̃r−2Dr−1f + const, f ∈ B2, r ≥ 3.

If r = 2 we just get (d/dx)2F̃1(f, x) = (d/dx)2A1(f, x) + const = D1f(x) + const =
F̃0(D1f, x) + const. Hence, in both cases we have

ωT
r (f, t)B = ω2r−1(F̃r−1f ; t)B ≤ t2ω2r−3(F̃r−2Dr−1f ; t)B

= t2ωT
r−1(Dr−1f ; t)B .
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We also get the following theorem as a direct corollary from the properties of the
classical modulus of smoothness and the operators F̃r−1 and D̃r.

Theorem 4.14. For ωT
r (f ; t)B, where B = L∗p[−π, π], 1 ≤ p < ∞, or B = C∗[−π, π],

we have:

(i) If B = L∗p[−π, π], 1 ≤ p < ∞, then ωT
r (f ; t)B = o(t2r−1) implies that f is

equivalent to a trigonometric polynomial of degree at most r−1 and f is equivalent
to a trigonometric polynomial of degree at most r − 1 implies ωT

r (f ; t)B ≡ 0. If
B = C∗[−π, π], then ωT

r (f ; t)B = o(t2r−1) implies f ∈ Tr−1 and f ∈ Tr−1 implies
ωT

r (f ; t)B ≡ 0.

(ii) For B = L∗p[−π, π], 1 < p < ∞, and B = C∗[−π, π], we have ωT
r (f ; t)B =

O(t2r−1) if and only if f ∈W ∗2r−1
p [−π, π], 1 < p ≤ ∞.

(iii) For B = L∗1[−π, π], we have ωT
r (f ; t)B = O(t2r−1) if and only if f (2r−3) ∈

AC∗[−π, π] and f (2r−2) is equivalent to a function of bounded variation.

5 Best trigonometric approximation

Now we can prove our main result concerning the rate of best trigonometric approxima-
tion in L∗p[−π, π], 1 ≤ p <∞, and C∗[−π, π].

Proof of Theorem 1.1. First we deal with (1.5). Clearly, for n ≥ r − 1,

ET
n (f)B ≤ ‖f − Lr−1,n+1f‖B

≤ CrK
′
r(f ; (n+ 1)−1)B ≤ CrK

′
r(f ;n−1)B

≤ Crω2r(F̃r−1f ;n−1)B ≤ Crω2r−1(F̃r−1f ;n−1)B

= Crω
T
r (f ;n−1)B ,

where we have used Theorem 3.1 and Remark 4.13 for l = 1.
We prove (1.6) using some classical methods (see for example [10, Ch. 4, Sec. 4] and

[7, Ch. 7]). First we observe that the following Bernstein-type inequality holds:

(5.1) ‖D̃rg‖B ≤ 2r−1n2r−1‖g‖B , g ∈ Tn.

Indeed, using the classical Bernstein inequality

‖g′‖B ≤ n‖g‖B , g ∈ Tn
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and the definition of Dj (see (2.2)), we get for g ∈ Tn

‖D̃rg‖B ≤ ‖(D̃r−1g)′′‖B + (r − 1)2‖D̃r−1g‖B

≤ (n2 + (r − 1)2)‖D̃r−1g‖B

. . .

≤
r−1∏
l=1

(n2 + l2)‖g′‖B

≤ 2r−1n2r−1‖g‖B .

Let Qj ∈ Tj , j = 0, 1, 2, . . . , is such that ET
j (f)B = ‖f − Qj‖B ; let also l = max{k :

2k ≤ 1/t} and s = min{k : 2k ≥ r − 1} (we suppose that 0 < t ≤ 1/r). We have, for
t > 0,

(5.2) ωT
r (f ; t)B ≤ CrK

T
r (f ; t)B ≤ Cr

(
‖f −Q2l‖B + t2r−1‖D̃rQ2l‖B

)
.

Using the representation D̃rQ2l =
∑l−1

k=s D̃r(Q2k+1 −Q2k) + D̃r(Q2s −Qr−1) and (5.1),
we get the estimate

‖D̃rQ2l‖B ≤
l−1∑
k=s

‖D̃r(Q2k+1 −Q2k)‖B + ‖D̃r(Q2s −Qr−1)‖B

≤ 2r−1
l−1∑
k=s

2(2r−1)(k+1)‖Q2k+1 −Q2k‖B + 2r−12(2r−1)s‖Q2s −Qr−1‖B

≤ 2r−1
l−1∑
k=s

2(2r−1)(k+1)
(
ET

2k(f)B + ET
2k+1(f)B

)
+ 2r−12(2r−1)s

(
ET

2s(f)B + ET
r−1(f)B

)
≤ 2r

l∑
k=s

2(2r−1)(k+1)ET
2k(f)B + 2r+(2r−1)sET

r−1(f)B .

Next, as ET
2k(f)B ≤ 2−k+1

∑2k

j=2k−1+1E
T
j (f)B , k = s+ 1, . . . , l, we have

l∑
k=s+1

2(2r−1)(k+1)ET
2k(f)B ≤

l∑
k=s

2(2r−1)(k+1)2−k+1
2k∑

j=2k−1+1

ET
j (f)B

= 24r−2
l∑

k=s+1

22(r−1)(k−1)
2k∑

j=2k−1+1

ET
j (f)B ≤ 24r−2

2l∑
j=2s+1

(j + 1)2r−2ET
j (f)B .

This estimate and the trivial ones 2r+(2r−1)(s+1) ≤ 24r−1(2s + 1)2r−2 and 2r+(2r−1)s ≤
24r−1r2r−2 imply

2r
l∑

k=s

2(2r−1)(k+1)ET
2k(f)B + 2r+(2r−1)sET

r−1(f)B ≤ 25r−2
2l∑

j=r−1

(j + 1)2r−2ET
j (f)B .
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Thus, for 0 < t ≤ 1/r, we have

(5.3) ‖D̃r−1Q2l‖B ≤ Cr

∑
r−1≤k≤1/t

(k + 1)2r−2ET
k (f)B .

Now (5.2) and (5.3) yield (1.6).

Theorem 1.2 and Theorem 1.1 immediately yield Theorem 1.3. From Theorem 1.1,
using again some classical methods, we get the following.

Corollary 5.1 (Marchaud inequality). For f ∈ B, where B = L∗p[−π, π], 1 ≤ p <

∞, or B = C∗[−π, π], and ωT
r (f ; t)B defined in (4.23), we have

ωT
r (f ; t)B ≤ Crt

2r−1

(∫ c

t

ωT
r+1(f ;u)B

u2r
du+ ‖f‖B

)
, 0 < t ≤ c,

where c is any fixed positive constant.

Proof. Using (1.5) and (1.6) we have for 0 < t ≤ 1/r

ωT
r (f ; t)B ≤ Crt

2r−1
∑

r−1≤k≤1/t

(k + 1)2r−2ET
k (f)B

≤ Crt
2r−1

( ∑
r≤k≤1/t

(k + 1)2r−2ωT
r+1(f ; k−1)B + ET

r−1(f)B

)

≤ Crt
2r−1

(∫ c

t

ωT
r+1(f ;u)B

u2r
du+ ‖f‖B

)
.

Remark 5.2. By means of considerations similar to those used in the proof of the
results stated in Theorem 1.1 we can easily get the following generalization of (1.5) and
(1.6):

ET
n (f)B ≤ Cr,lωl(F̃r−1f ;n−1)B , n ≥ r − 1,

and

ωl(F̃r−1f ; t)B ≤ Cr,lt
l

∑
r−1≤k≤1/t

(k + 1)l−1ET
k (f)B , 0 < t ≤ 1

r
, l ≥ 2r − 1,

where F̃r−1f is defined in (4.16) and B = L∗p[−π, π], 1 ≤ p <∞ or B = C∗[−π, π].

Remark 5.3. Let Ln : B → B, where B = L∗p[−π, π], 1 ≤ p < ∞, or B = C∗[−π, π],
be a bounded linear operator that preserves the trigonometric polynomials of degree n.
Then the well-known Lebesgue inequality

‖f − Lnf‖B ≤ (1 + ‖Ln‖B)ET
n (f)B
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and (1.5) imply

(5.4) ‖f − Lnf‖B ≤ Cr(1 + ‖Ln‖B)ωT
r (f, n−1)B , n ≥ r − 1.

In particular, for the partial sums of Fourier expansion Sn(f, x) =
∑n

k=0Ak(f, x) we
have

(5.5) ‖f − Snf‖B ≤ Cr(1 + ‖Sn‖B)ωT
r (f, n−1)B , n ≥ r − 1.

For B = L∗p[−π, π], 1 < p <∞, as it is known ‖Sn‖p ≤ const p2/(p− 1), and then (5.5)
reads

‖f − Snf‖p ≤ Cr,pω
T
r (f, n−1)p, n ≥ r − 1.

For B = L∗1[−π, π] and B = C∗[−π, π] Fejer’s inequality

‖Dn‖1 ≤
4
π2

lnn+ const,

where Dn is Dirichlet’s kernel, yields for p = 1 and p = ∞

‖f − Snf‖p ≤ Cr lnnωT
r (f, n−1)p, n ≥ r − 1.

For other estimates in uniform norm the interested reader can refer to [11] and [13].

At the end of this section we shall discuss briefly another K-functional, which de-
scribes the rate of best trigonometric approximation in any homogeneous Banach space
B. We define the K-functional

(5.6) K̃T
r (f ; t)B = inf

g̃∈B2r−1

{
‖f − g‖B + t2r−1‖D̃r g̃‖B

}
,

where g̃ is the conjugate function of g (one can refer to [10, Ch. 7, Sec. 4] and [6] for
its definition). Next we define the trigonometric operator L′r−1,n : B → Tn−1, r, n ∈
N, 1 ≤ r ≤ n,

(5.7) L′r−1,n = I − (I − σn)
r−1∏
j=1

(I −Rj,n),

where σn(f, x) =
∑n−1

k=0

(
1− k

n

)
Ak(x) is the Fejer operator. Ditzian and Ivanov general-

ized the Alexits-Zamanski saturation theorem in [6]. They proved

‖f − σnf‖B ∼ K̃T
1 (f ;n−1)B ,

where K̃T
1 (f ; t)B is defined in (5.6). Using this result, Theorem 2.1 and the method,

demonstrated in Section 3, we prove

Theorem 5.4. For a Banach space B satisfying (2.1) we have

‖f − L′r−1,nf‖B ∼ K̃T
r (f ;n−1)B ,

where K̃T
r (f ; t)B and L′r−1,n are given in (5.6) and (5.7), respectively.
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As an immediate corollary we get the following properties of K̃T
r (f ; t)B .

Corollary 5.5. There exists a constant Cr which depends on r ≥ 2 but not on f ∈ B
or 0 < t ≤ 1 such that

(a) K̃T
r (f ; t)B ≤ CrK̃

T
r−1(f ; t)B ;

(b) K̃T
r (f ; t)B ≤ Crt

2r−1

(∫ 1

t

K̃T
r+1(f ; t)B

u2r
du+ ‖f‖B

)
;

(c) K̃T
r (f ; t)B ≤ Crt

2K̃T
r−1(Dr−1f ; t)B , f ∈ B2.

Proof. The proof of (a) and (b) follows step by step the one given by Ditzian in [4] of
a similar statement. An analogous argument implies (c) as well. Using Theorem 5.4,
the commutativity of the operators Rj,n for different j and Rj,n and σn and also (3.4),
which holds for σn too, we get for f ∈ B2 and r ≥ 2

K̃T
r (f ;n−1)B ≤ Cr‖(I − L′r−1,n)f‖B = ‖(I −Rr−1,n)(I − L′r−2,n)f‖B

≤ Crn
−2‖Dr−1(I − L′r−2,n)f‖B

= Crn
−2‖(I − L′r−2,n)Dr−1f‖B

≤ Crn
−2K̃T

r−1(Dr−1f ;n−1)B .

To get the assertion for any 0 < t ≤ 1 we just have to put n = [1/t] and use that then
1/(n+ 1) < t ≤ 1/n.

As at the beginning of this section, making use at a certain step of the Bernstein
inequality, extended to any homogeneous Banach space by Ditzian in [5], we get the
following characterization of the rate of best trigonometric approximation in any homo-
geneous Banach space B.

Theorem 5.6. Let f ∈ B. Then

ET
n (f)B ≤ CrK̃

T
r (f ; t)B , n ≥ r − 1,

and

K̃T
r (f ; t)B ≤ Crt

2r−1
∑

r−1≤k≤1/t

(k + 1)2r−2ET
k (f)B , 0 < t ≤ 1

r
.
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