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approximation by a modulus of smoothness
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Abstract

Best trigonometric approximation in Lp, 1 ≤ p ≤ ∞, is characterized
by a modulus of smoothness, which is equivalent to zero if the function
is a trigonometric polynomial of a given degree. The characterization is
just similar to the one given by the classical modulus of smoothness. The
modulus possesses properties similar to those of the classical one.
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1 Introduction

Let Lp(T), 1 ≤ p ≤ ∞, be the space of the 2π-periodic functions with finite Lp-
norm on the circle T and Tn denote the set of the trigonometric polynomials of
degree at most n. The best trigonometric approximation of a function f ∈ Lp(T)
is given by

ET
n (f)p = inf

τ∈Tn

∥f − τ∥p,

where we have denoted by ∥ · ∥p the Lp-norm on T.
The rate of best trigonometric approximation of f ∈ Lp(T) can be nicely

estimated by the classical moduli of smoothness of order r ∈ N, defined by

ωr(f, t)p = sup
0<h≤t

∥∆r
hf∥p,(1.1)

where the centred finite difference of order r ∈ N of f is given by

∆r
hf(x) =

r∑
k=0

(−1)k
(
r

k

)
f(x+ (r/2− k)h).

D. Jackson, S. N. Bernstein, A. Zygmund and S. B. Stechkin showed that (see
for example [5, Ch. 7])

ET
n (f)p ≤ c ωr(f, n

−1)p,

ωr(f, t)p ≤ c tr
∑

0≤k≤1/t

(k + 1)r−1ET
k (f)p, 0 < t ≤ t0.(1.2)
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Above and in what follows we denote by c positive constants, which do not
depend on the functions in the relations, nor on n ∈ N or 0 < t ≤ t0; they may
differ at each occurrence.

Thus the behaviour of the modulus of smoothness reveals to a great extent
how fast the sequence of the trigonometric polynomials of best Lp-approximation
converges to the function. However, there is one discrepancy – ET

n (f)p is zero
always when f is a trigonometric polynomial of degree n, whereas ωr(f, t)p is
zero only if f is a constant, or to put it otherwise, ET

n (f)p does not change
its value when a trigonometric polynomial of degree n is added to the approxi-
mated function, whereas ωr(f, t)p does except when this polynomial is of degree
0. Naturally arises the problem of defining another modulus of smoothness,
which describes the rate of best approximation by trigonometric polynomials in
Lp like the classical one in (1.2) but in addition is equivalent to zero when the
function is a trigonometric polynomial of a given degree. In [6] one solution to
this problem was given. In this paper we shall discuss another definition of such
a modulus.

Shevaldin defined in [13] (see also [12]) a finite difference operator whose ker-
nel coincides with that of a linear differential operator with constant coefficients.
In particular, the differential operator whose kernel is the set of trigonometric
polynomials of degree r − 1 is

D̃r = Dr−1 · · ·D1
d

dx
, Dj =

d2

dx2
+ j2I,

where I is the identity. We can define a finite difference for f ∈ Lp(T) which is
identically zero only if f ∈ Tr−1 (see [13]) by

(1.3) ∆̃r,hf(x) = ∆r−1,h · · ·∆1,h∆0,hf(x),

where

∆j,hf(x) = f(x+ h)− 2 cos jh · f(x) + f(x− h), j = 1, 2, . . . ,

and ∆0,hf(x) = ∆hf(x) = f(x+h/2)−f(x−h/2) is the classical centred finite
difference of first order. (Note that a more general finite difference operator is
defined in Shevaldin [14].) Now, let us set

ω̃T
r (f, t)p = sup

0<h≤t
∥∆̃r,hf∥p.

Note that ω̃T
1 (f, t)p coincides with the classical modulus of continuity defined

in (1.1) with r = 1.
We have

ω̃T
r (f, t)p ≡ 0 ⇐⇒ f ∈ Tr−1.

The latter follows from the equivalence in Theorem 4.2 below and the fact that
D̃rf = 0 if and only if f ∈ Tr−1.

We shall establish the following characterization of ET
n (f)p by the trigono-

metric modulus of smoothness ω̃T
r (f, t)p.
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Theorem 1.1. Let f ∈ Lp(T), 1 ≤ p ≤ ∞ and r ∈ N. Then

ET
n (f)p ≤ c ω̃T

r (f, n
−1)p, n ≥ r − 1,

and

ω̃T
r (f, t)p ≤ c t2r−1

∑
r−1≤k≤1/t

(k + 1)2r−2ET
k (f)p, 0 < t ≤ 1

r
.

Relations (1.2) and Theorem 1.1 show that both ω2r−1(f, t)p and ω̃T
r (f, t)p

give the same big O rate for the best trigonometric approximation, but the
O-constant in the estimate with ω̃T

r (f, t)p (or the modulus defined in [6]) can
be substantially smaller for a particular function (see Remark 4.5). However,
this is not true in general – the smallest constant c in the first inequality of
Theorem 1.1 in L2(T) is at least as large, roughly speaking, as the one in the
classical estimate with ω2r−1(f, t)p (see Remark 4.6).

Let us note that the Jackson-type estimate of Theorem 1.1 was estab-
lished for the Hilbert space L2(T) by Babenko, Chernykh and Shevaldin [2]
as estimates for the best constant on the right side were also given, and for
p = ∞, r = 2 by Shevaldin [15]. Our proof is based on a different approach and
treats the general case.

The contents of the paper are organized as follows. In Section 2 we discuss
properties of the finite differences ∆̃r,h. In Section 3 we establish that ω̃T

r (f, t)p
has very similar properties like the classical modulus of smoothness. Finally, in
Section 4 we give a proof of Theorem 1.1.

2 The explicit form of ∆̃r,hf(x)

The definition of the finite difference ∆̃r,h in (1.3) implies that there exist real
numbers cr,ℓ(h), ℓ = 0, 1, . . . , 2r− 1, which depend on the step h (continuously)
such that

∆̃r,hf(x) =

2r−1∑
ℓ=0

(−1)ℓcr,ℓ(h) f

(
x+

2(r − ℓ)− 1

2
h

)
.

We set for technical convenience cr,ℓ(h) ≡ 0 for ℓ < 0 or ℓ > 2r − 1.

Lemma 2.1. The coefficients cr,ℓ(h) satisfy the recursion relation:

(a) cr+1,ℓ(h) = cr,ℓ(h) + 2 cos rh · cr,ℓ−1(h) + cr,ℓ−2(h), ℓ = 0, 1, . . . , 2r + 1,

(b) cr,0(h) = cr,2r−1(h) ≡ 1.

Proof. The assertion follows by induction on r directly from

∆̃r+1,hf(x) = ∆r,h

(
∆̃r,hf

)
(x)
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=

2r−1∑
ℓ=0

(−1)ℓcr,ℓ(h) f

(
x+

2(r + 1− ℓ)− 1

2
h

)

+ 2 cos rh

2r∑
ℓ=1

(−1)ℓcr,ℓ(h) f

(
x+

2(r + 1− ℓ)− 1

2
h

)

+

2r+1∑
ℓ=2

(−1)ℓcr,ℓ(h) f

(
x+

2(r + 1− ℓ)− 1

2
h

)
. □

Using the lemma above we prove by induction the following properties of
cr,ℓ(h).

Proposition 2.2. The coefficients cr,ℓ(h), ℓ = 0, 1, . . . , 2r − 1, r ∈ N, h ∈ R,
satisfy the assertions:

(i) As a function of h, cr,ℓ(h) is an even trigonometric polynomial of exact
degree ℓ(2r − 1− ℓ)/2;

(ii) cr,ℓ(h) = cr,2r−1−ℓ(h);

(iii) |cr,ℓ(h)| ≤
(
2r − 1

ℓ

)
;

(iv) cr,ℓ(0) =

(
2r − 1

ℓ

)
.

Proof. Assertion (i) is trivial for r = 1. Assume that it is true for some r ∈ N.
Then Lemma 2.1 implies that cr+1,ℓ(h) is an even trigonometric polynomial for
each ℓ = 0, 1, . . . , 2r + 1. Further, by (b) of Lemma 2.1 we have cr+1,0(h) =
cr+1,2r+1(h) ≡ 1. Next, for ℓ = 1, . . . , 2r the induction hypothesis gives that
the degrees of cr,ℓ−2(h) and cr,ℓ(h) are less than ℓ(2r + 1 − ℓ)/2, whereas the
exact degree of cr,ℓ−1(h) is (ℓ − 1)(2r − ℓ)/2. Now, relation (a) of Lemma 2.1
implies that cr+1,ℓ(h) is of exact degree r+ (ℓ− 1)(2r− ℓ)/2 = ℓ(2r+ 1− ℓ)/2.

To establish (ii) we first observe that since ∆j,−hf(x) = ∆j,hf(x) for j ∈ N0,

then ∆̃r,−hf(x) = ∆̃r,hf(x). Also, as we have already noted, cr,ℓ(−h) = cr,ℓ(h).
Hence we infer that for any continuous function f and real h there holds

2r−1∑
ℓ=0

(−1)ℓcr,ℓ(h) f

(
2(r − ℓ)− 1

2
h

)
= ∆̃r,hf(0) = ∆̃r,−hf(0)

=

2r−1∑
ℓ=0

(−1)ℓcr,ℓ(−h) f

(
−2(r − ℓ)− 1

2
h

)

=

2r−1∑
ℓ=0

(−1)ℓcr,ℓ(h) f

(
2(r − (2r − 1− ℓ))− 1

2
h

)
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=

2r−1∑
ℓ=0

(−1)ℓcr,2r−1−ℓ(h) f

(
2(r − ℓ)− 1

2
h

)
,

as at the last step we have substituted ℓ with 2r−1−ℓ. Consequently, for every
continuous function f and real h we have

2r−1∑
ℓ=0

(−1)ℓ[cr,ℓ(h)− cr,2r−1−ℓ(h)] f

(
2(r − ℓ)− 1

2
h

)
= 0.

Hence (ii) follows.
Assertions (iii) and (iv) follow by induction on r as we take into consideration

Lemma 2.1, relation (ii) and the trivial identities(
2r − 1

1

)
+ 2 =

(
2r + 1

1

)
and (

2r − 1

ℓ

)
+ 2

(
2r − 1

ℓ− 1

)
+

(
2r − 1

ℓ− 2

)
=

(
2r + 1

ℓ

)
for ℓ = 2, . . . , r.

Let us set

Pk(h) =


k∏

j=1

sin
jh

2
, k ∈ N,

1, k = 0.

The next assertion contains the explicit form of the coefficients cr,ℓ(h).

Proposition 2.3. For ℓ = 0, 1, . . . , 2r − 1, r ∈ N and h ∈ R we have

cr,ℓ(h) =
P2r−1(h)

Pℓ(h)P2r−1−ℓ(h)

as for h = 0 the right side is defined by continuity.

Proof. We use induction on r. Obviously for every r ∈ N and ℓ = 0 or ℓ = 2r−1
we have cr+1,0(h) = cr,0(h) = cr+1,2r+1(h) = cr,2r−1(h) = 1.

For ℓ = 1 we have by Lemma 2.1, (a)-(b),

cr+1,1(h) = cr,1(h) + 2 cos rh =
sin(2r − 1)h2

sin h
2

+ 2 cos rh =
sin(2r + 1)h2

sin h
2

.

Let now ℓ = 2, . . . , 2r − 1. Then, using relation (a) of Lemma 2.1, we get

cr+1,ℓ(h) = cr,ℓ(h) + 2cr,ℓ−1(h) cos rh+ cr,ℓ−2(h)
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=
P2r−1(h)

Pℓ−1(h)P2r−ℓ(h)

(
sin(2r − ℓ)h2

sin ℓh2
+ 2 cos rh+

sin(ℓ− 1)h2
sin(2r + 1− ℓ)h2

)

=
P2r−1(h)

Pℓ−1(h)P2r−ℓ(h)

sin(2r − ℓ)h2 + sin ℓh2 cos rh

sin ℓh2

+
P2r−1(h)

Pℓ−1(h)P2r−ℓ(h)

sin(ℓ− 1)h2 + sin(2r + 1− ℓ)h2 cos rh

sin(2r + 1− ℓ)h2

=
P2r(h)

Pℓ−1(h)P2r−ℓ(h)

(
cos ℓh2
sin ℓh2

+
cos(2r + 1− ℓ)h2
sin(2r + 1− ℓ)h2

)

=
P2r(h)

Pℓ−1(h)P2r−ℓ(h)

sin(2r + 1)h2
sin ℓh2 sin(2r + 1− ℓ)h2

=
P2r+1(h)

Pℓ(h)P2r+1−ℓ(h)
.

The case ℓ = 2r is symmetric to ℓ = 1 and the statement follows from the
equality cr+1,2r(h) = cr+1,1(h) (see assertion (ii) of Proposition 2.2).

Remark 2.4. Let us mention that the formula of Proposition 2.3 can also be
verified by means of the relations given in [11, Remark 10.2].

The properties above and especially the last one show that the coefficients
cr,ℓ(h) are very similar to the classical binomial coefficients but unlike them
depend on one more parameter – h.

Now we turn to integral representations of ∆j,h and ∆̃r,h. Let f ∗ g denote
the convolution of the functions f, g ∈ L1(T), defined by

f ∗ g(x) =
∫
T
f(x− y) g(y) dy, x ∈ T,

and f̂(k), k ∈ Z, denote the Fourier coefficients of f ∈ L1(T), defined by

f̂(k) =

∫
T
f(x) e−ikx dx, k ∈ Z.

We omit the constant multipliers that are usually included in the definitions
of the convolution and the Fourier transform for convenience in the subsequent
considerations.

For 0 < h < 2π we define the 2π-periodic function B0,h by setting for
x ∈ [−π, π]

B0,h(x) =


1

h
, x ∈ [−h/2, h/2],

0, x ∈ [−π, π]\[−h/2, h/2];

and for j ∈ N and 0 < h < π we define the 2π-periodic function Bj,h by setting
for x ∈ [−π, π]

Bj,h(x) =
1

jh2
sin[j(h− |x|)+].
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Next, for r ∈ N and 0 < h < 2π/(2r − 1) we define the 2π-periodic function
BT

j,h by setting

BT
r,h(x) = B0,h ∗B1,h ∗ · · · ∗Br−1,h(x).

The functions BT
r,h are trigonometric B-splines of order 2r − 1 and nodes at

jh/2, j = 1− 2r, . . . , 2r− 1. The trigonometric B-splines have been introduced
by Schoenberg [10] (see also [11, § 10.8]).

Let W s
p (T), s ∈ N, denote the Sobolev spaces of 2π-periodic functions, that

is,
W s

p (T) = {g ∈ Lp(T) : g, g′, . . . , g(s−1) ∈ AC(T), g(s) ∈ Lp(T)},
where AC(T) is the set of the 2π-periodic absolutely continuous functions. The

following representations of ∆j,h and ∆̃r,h hold true.

Proposition 2.5. Let f ∈ Lp(T), 1 ≤ p ≤ ∞ and j ∈ N. Then we have

∆j,hf(x) = h2Dj(Bj,h ∗ f)(x)(2.1)

and hence if f ∈ W 2
p (T), then

∆j,hf(x) = h2Bj,h ∗Djf(x).(2.2)

Proof. It is sufficient to verify (2.1). We just have

h2Bj,h ∗ f(x) = 1

j

∫ h

−h

sin j(h− |y|)f(x− y) dy

=
1

j

∫ 0

−h

sin j(h+ y)f(x− y) dy +
1

j

∫ h

0

sin j(h− y)f(x− y) dy

=
1

j

∫ x+h

x

sin j(x+ h− u)f(u) du+
1

j

∫ x

x−h

sin j(h− x+ u)f(u) du.

Next, we consecutively calculate

h2 d

dx
Bj,h ∗ f(x)

=

∫ x+h

x

cos j(x+ h− u)f(u) du−
∫ x

x−h

cos j(h− x+ u)f(u) du

and

h2

(
d

dx

)2

Bj,h ∗ f(x)

= f(x+ h)− cos jh · f(x)− j

∫ x+h

x

sin j(x+ h− u)f(u) du

− cos jh · f(x) + f(x− h)− j

∫ x

x−h

sin j(h− x+ u)f(u) du

= ∆j,hf(x)− j2h2Bj,h ∗ f(x).

Hence relation (2.1) follows.
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Iterating (2.1) and taking into account the trivial fact that

∆hf(x) = h
d

dx
(B0,h ∗ f)(x),

we get the following assertion.

Proposition 2.6. Let f ∈ Lp(T), 1 ≤ p ≤ ∞ and r ∈ N. Then we have

∆̃r,hf(x) = h2r−1D̃r(B
T
r,h ∗ f)(x)

and hence if f ∈ W 2r−1
p (T), then

∆̃r,hf(x) = h2r−1BT
r,h ∗ D̃rf(x).

Finally, let us also point out the representation of ∆̃r,h by a multiple integral:

∆̃r,hf(x) =
1

(r − 1)!
D̃r

∫ h/2

−h/2

∫ h

−h

· · ·
∫ h

−h

r−1∏
j=1

sin j(h− |yj |)

× f(x− (y0 + · · ·+ yr−1)) dy0 dy1 . . . dyr−1.

3 Properties of ω̃T
r (f, t)p

The modulus ω̃T
r (f, t)p retains the properties of the classical one. They are the

following:

1. ω̃T
r (f + g, t)p ≤ ω̃T

r (f, t)p + ω̃T
r (g, t)p for f, g ∈ Lp(T);

2. ω̃T
r (cf, t)p = |c| ω̃T

r (f, t)p, c is a constant;

3. ω̃T
r (f, t)p ≤ ω̃T

r (f, t
′)p, t ≤ t′;

4. ω̃T
r (f, t)p → 0 as t → 0;

5. ω̃T
r (f, t)p ≤ 4 ω̃T

r−1(f, t)p, r ≥ 2;

6. ω̃T
1 (f, t)p ≤ 2∥f∥p, f ∈ Lp(T), and ω̃T

1 (f, t)p ≤ t ∥f ′∥p, f ∈ W 1
p (T)

(ω̃T
1 (f, t)p coincides with the ordinary modulus of continuity);

7. ω̃T
r (f, λt)p ≤ (λ+ 1)2r−1ω̃T

r (f, t)p, λ > 0;

8. ω̃T
r (f, t)p ≤ t2 ω̃T

r−1(Dr−1f, t)p, f ∈ W 2
p (T), r ≥ 2;

9. The Marchaud inequality

ω̃T
r (f, t)p ≤ c t2r−1

(∫ t0

t

ω̃T
r+1(f, u)p

u2r
du+ ∥f∥p

)
, 0 < t ≤ t0.
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Only the proof of relations 7, 8 and 9 needs somewhat more considerations.

Proof of Property 7. Set for j ∈ Z and h ∈ R

∆̂j,hf(x) = f

(
x+

h

2

)
− eijhf

(
x− h

2

)
.

Let m ∈ N, as m ≥ 2. In order to get a simple representation of ∆j,mh by ∆j,h,
we shall avail ourselves of the following expression of ∆j,h in terms of the finite
differences of first order defined above (cf. [12, 13]):

(3.1) ∆j,hf(x) = ∆̂j,h∆̂−j,hf(x).

Note also that

(3.2) ∆̂0,hf(x) = ∆0,hf(x).

Direct calculations verify the relation

∆̂j,h1+h2
f(x) = ∆̂j,h2

f

(
x+

h1

2

)
+ eijh2∆̂j,h1

f

(
x− h2

2

)
.

Setting h1 = h and h2 = (m− 1)h, we get

∆̂j,mhf(x) = ∆̂j,(m−1)hf

(
x+

h

2

)
+ eij(m−1)h∆̂j,hf

(
x− (m− 1)h

2

)
.

Iterating the latter, we arrive at

(3.3) ∆̂j,mhf(x) =

m−1∑
ℓ=0

eijℓh∆̂j,hf

(
x+

m− 2ℓ− 1

2
h

)
.

Now, by means of (1.3) and (3.1)-(3.3), we derive the representation

∆̃r,mhf(x) =

m−1∑
ℓ0=0

m−1∑
ℓ1=0

· · ·
m−1∑

ℓ2r−2=0

exp

ih

r−1∑
j=1

j(ℓ2j−1 − ℓ2j)


× ∆̃r,hf

x+ h

(r − 1

2

)
(m− 1)−

2r−2∑
j=0

ℓj

 .

Consequently,

∥∆̃r,mhf∥p ≤
m−1∑
ℓ0=0

m−1∑
ℓ1=0

· · ·
m−1∑

ℓ2r−2=0

∥∆̃r,hf∥p;

hence

(3.4) ω̃T
r (f,mt)p ≤ m2r−1ω̃T

r (f, t)p.

Finally, the property under consideration follows directly from Property 3 and
(3.4) with m = [λ] + 1, where [λ] denotes the largest integer not greater than
λ.
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Proof of Property 8. By (1.3) and (2.2) we have

∆̃r,hf(x) = ∆r−1,h(∆̃r−1,hf)(x) = h2Br−1,h ∗Dr−1(∆̃r−1,hf)(x)

= h2Br−1,h ∗ ∆̃r−1,h(Dr−1f)(x).
(3.5)

Also, we have for j ∈ N

∥Bj,h∥1 =
1

jh2

∫ h

−h

| sin j(h− |x|)| dx =
2

jh2

∫ h

0

| sin j(h− x)| dx

≤ 2

jh2

∫ h

0

j(h− x) dx = 1.

(3.6)

Now, (3.5), (3.6) and Young’s inequality imply the property.

Property 9 follows from Theorem 1.1 by a standard argument (see e.g. [5,
p. 210]).

Let us also mention the following properties of the modulus ω̃T
r (f, t)p, which

can be verified by means of Theorem 4.2 below and [6, Theorems 1.2 and 4.14].

Theorem 3.1. Let f ∈ Lp(T), 1 ≤ p ≤ ∞ and r ∈ N. We have

(i) ω̃T
r (f, t)p = o(t2r−1) if and only if f ∈ Tr−1;

(ii) If 1 < p ≤ ∞, then ω̃T
r (f, t)p = O(t2r−1) if and only if f ∈ W 2r−1

p (T);

(iii) ω̃T
r (f, t)1 = O(t2r−1) if and only if f ∈ W 2r−3

1 (T) and f (2r−2) is equivalent
to a function of bounded variation.

4 Proof of the characterization of ET
n (f)p

by ω̃r(f, t)p

For f ∈ Lp(T) and t > 0 we define the K-functional

(4.1) KT
r (f, t)p = inf

g∈W 2r−1
p (T)

{
∥f − g∥p + t2r−1∥D̃rg∥p

}
.

The following characterization of ET
n (f)p in terms of KT

r (f, t)p was estab-
lished in [6].

Theorem 4.1. Let f ∈ Lp(T), 1 ≤ p ≤ ∞ and r ∈ N. Then

ET
n (f)p ≤ cKT

r (f, n
−1)p, n ≥ r − 1,

and

KT
r (f, t)p ≤ c t2r−1

∑
r−1≤k≤1/t

(k + 1)2r−2ET
k (f)p, 0 < t ≤ 1

r
.
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Thus to verify Theorem 1.1, it is sufficient to prove that the K-functional
(4.1) and the modulus ω̃T

r (f, t)p are equivalent, that is, their ratio is bounded
between two positive constants, which are independent of f and t. We shall
denote that by KT

r (f, t)p ∼ ω̃T
r (f, t)p.

Theorem 4.2. For f ∈ Lp(T), 1 ≤ p ≤ ∞, r ∈ N and 0 < t ≤ t0 we have

KT
r (f, t)p ∼ ω̃T

r (f, t)p.

For the proof we need the following auxiliary result.

Lemma 4.3. Let r ∈ N and q1, q2, . . . , q2r−1 be different prime numbers. Set
q0 = 1. For 0 ≤ t ≤ π/(2r) and x ≥ 2 we have

x4r−2
2r−1∑
m=0

1

qm

r−1∏
j=1−r

sin2
√
qm(x+ tj)

2
≥ c > 0.

Proof. Suppose that the assertion is not valid. Then, since the expression on
the left hand-side above is a positive continuous function of (x, t), there exist
sequences {xn}∞n=1 and {tn}∞n=1 and integers jm ∈ [1−r, r−1], m = 0, 1, . . . , 2r−
1, such that

lim
n→∞

xn = ∞,(4.2)

0 ≤ tn ≤ π/(4r), n ∈ N,(4.3)

and

lim
n→∞

xn sin
√
qm(xn + jmtn) = 0, m = 0, 1, . . . , 2r − 1.(4.4)

Since there are 2r− 1 integers in the interval [1− r, r− 1] and the jm’s are 2r in
number, then at least two of them are equal. Assume that jm′ = jm′′ = j and
set yn =

√
qm′(xn + jtn) and q = qm′′/qm′ . Then as we take into account (4.2),

(4.3) and (4.4) with m = m′ and m = m′′, we deduce that

lim
n→∞

yn = ∞,

lim
n→∞

yn sin yn = 0

and

lim
n→∞

yn sin yn
√
q = 0.

These relations imply that there exist two sequences of positive integers {kn}∞n=1

and {ℓn}∞n=1 and two sequences of real numbers {εn}∞n=1 and {ηn}∞n=1 such that

yn = knπ + εn =
ℓnπ√
q
+ ηn,(4.5)

11



lim
n→∞

kn = lim
n→∞

ℓn = ∞,(4.6)

lim
n→∞

ℓn
kn

=
√
q(4.7)

and

lim
n→∞

knεn = lim
n→∞

knηn = 0.(4.8)

Then, since
√
q is irrational, qk2n ̸= ℓ2n for all n ∈ N and by (4.5)-(4.8) we arrive

at the contradiction:

1 ≤ |qk2n − ℓ2n| = (kn
√
q + ℓn)|kn

√
q − ℓn| = kn o(k

−1
n ) = o(1).

Thus the validity of the lemma is verified.

Remark 4.4. For r = 1 it is sufficient to take only two summands in the
formulation of the lemma. However, this is not valid for r ≥ 2. Indeed, let√
q be an irrational. Then, as is known (see e.g. [8, Ch. 11]), there exist two

sequence of positive integers {kn}∞n=1 and {ℓn}∞n=1, tending to infinity, such that

0 <
√
q − ℓn

kn
<

1

k2n
, n ∈ N.

Set

xn = knπ +
1

k2n
→ ∞ as n → ∞

and

tn =
πkn(kn

√
q − ℓn)

kn
√
q

→ 0 as n → ∞.

Then

lim
n→∞

xn sin(xn + jtn) = jπ,

lim
n→∞

xn sin
√
q(xn − tn) = 0

and

|xn sin
√
q(xn + jtn)| ≤ c, n ∈ N.

However, it seems that we can do with three summands in the case r ≥ 2, but in
our opinion this demands more complicated considerations, which is superfluous
in the context of this paper. A similar argument shows that the power of x in
the formulation of the lemma cannot be decreased. Also, it is clear that no one
of the irrational multipliers in the argument of the sines can be replaced with a
rational one.
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We proceed to the proof of Theorem 4.2.

Proof of Theorem 4.2. Properties 1, 5, 6 and 8 imply for any g ∈ W 2r−1
p (T)

ω̃T
r (f, t)p ≤ ω̃T

r (f − g, t)p + ω̃T
r (g, t)p

≤ 22r−1
(
∥f − g∥p + t2r−1∥D̃rg∥p

)
.

Hence, taking the infimum on g ∈ W 2r−1
p (T) we get the inequality

ω̃T
r (f, t)p ≤ 22r−1KT

r (f, t)p.

To establish the converse estimate, we shall construct for f ∈ Lp(T) and 0 <
t ≤ π/(2r) a function gt ∈ W 2r−1

p (T) such that

∥f − gt∥p ≤ c ω̃T
r (f, t)p(4.9)

and

t2r−1∥D̃rgt∥p ≤ c ω̃T
r (f, t)p,(4.10)

where c is a constant whose value does not depend on f or 0 < t ≤ π/(2r).
Inequalities (4.9)-(4.10) imply immediately

(4.11) KT
r (f, t)p ≤ c ω̃T

r (f, t)p, 0 < t ≤ π/(2r).

For t0 > π/(2r) this relation is extended to 0 < t ≤ t0 by means of

KT
r (f, t)p ≤ 2rt0

π
KT

r

(
f,

πt

2rt0

)
p

≤ c ω̃T
r

(
f,

πt

2rt0

)
p

≤ c ω̃T
r (f, t)p,

as at the second estimate we have applied (4.11) and at the last one Property 3
of the modulus.

So, let 0 < t ≤ π/(2r). We define the kernel Ar,t ∈ L1(T) in such a way that
we have

(4.12) Ar,t ∗ f(x) = ar

2r−1∑
ℓ=1

(−1)ℓ−1

∫ 1

−1

(
|y|(1− |y|)

)sr
cr,ℓ(ty)f(x− ℓty) dy

with ar = (2sr + 1)!/(2[sr!]
2) and sr = 16r − 5. Note that 0 < t ≤ π/(2r)

implies (2r − 1)t < π and hence such a 2π-periodic kernel Ar,t exists. We set
gt = Ar,t ∗ f . Then

f(x)− gt(x) = ar

∫ 1

−1

(
|y|(1− |y|)

)sr
∆̃r,tyf(x− (2r − 1)y/2) dy,

and hence, applying the generalized Minkowski inequality, we conclude that
(4.9) is satisfied with c = 1.
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Further, we shall show that there exist functions Cr,t ∈ L1(T) for 0 < t ≤
π/(2r), such that

Ar,t = Cr,t ∗
2r−1∑
m=0

BT
r,t

√
qm

∗BT
r,t

√
qm

,(4.13)

where q0 = 1 and qm, m = 1, 2, . . . , 2r − 1, are different prime numbers, and

∥Cr,t∥1 ≤ c, 0 < t ≤ π/(2r).(4.14)

Then Proposition 2.6 implies

t2r−1D̃rgt(x) = Cr,t ∗
2r−1∑
m=0

q1/2−r
m BT

r,t
√
qm

∗ (t√qm)2r−1D̃r(B
T
r,t

√
qm

∗ f)(x)

= Cr,t ∗
2r−1∑
m=0

q1/2−r
m BT

r,t
√
qm

∗ ∆̃r,t
√
qmf(x);

hence, in view of (3.6) and (4.14), we get (4.10) by means of Young’s inequality.
Thus, it remains to verify that there exist kernels Cr,t ∈ L1(T) with (4.13)-

(4.14). To this end, we shall apply Fourier transform methods. The Fourier
coefficients of Bj,t are

B̂0,t(k) =
sin( t2 k)

t
2 k

,

B̂j,t(k) =
sin[ t2 (k + j)]

t
2 (k + j)

sin[ t2 (k − j)]
t
2 (k − j)

, j > 0.

(4.15)

They are calculated either directly, or, more easily, by taking the Fourier trans-
form of both sides of (2.1).

Relations (4.15) yield

(4.16) B̂T
r,t(k) =

r−1∏
j=0

B̂j,t(k) =

r−1∏
j=1−r

sin[ t2 (k + j)]
t
2 (k + j)

.

On the other hand, by applying the Fourier transform on both sides of (4.12),
we get

Âr,t(k) f̂(k) = ar

2r−1∑
ℓ=1

(−1)ℓ−1

∫ 1

−1

(
|y|(1− |y|)

)sr
cr,ℓ(ty)e

−ikℓty f̂(k) dy;

hence

Âr,t(k) = ar

2r−1∑
ℓ=1

(−1)ℓ−1

∫ 1

−1

(
|y|(1− |y|)

)sr
cr,ℓ(ty)e

−ikℓty dy

= 2ar

2r−1∑
ℓ=1

(−1)ℓ−1

∫ 1

0

(
y(1− y)

)sr
cr,ℓ(ty) cos(kℓty) dy.

(4.17)
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Above we have also taken into consideration that cr,ℓ(h) are even functions. We
set for 0 < t ≤ π/(2r)

vt(k) =
Âr,t(k)

2r−1∑
m=0

(
B̂T

r,t
√
qm

(k)
)2 , k ∈ Z.

Now, in view of (4.16)-(4.17), in order to show that there exist kernels Cr,t ∈
L1(T) with (4.13)-(4.14), it remains to establish that vt(k), k ∈ Z, are the
Fourier coefficients of summable 2π-periodic functions with norms, which are
uniformly bounded on 0 < t ≤ π/(2r). For this purpose, it is sufficient to show
that the functions vt(k), 0 < t ≤ π/(2r), satisfy the following conditions (see
e.g. [3, Corollary 6.3.9]):

(a) vt are even functions on Z for each 0 < t ≤ π/(2r),

(b) limk→∞ vt(k) = 0 for each 0 < t ≤ π/(2r),

(c) The quantities

∞∑
k=1

k|vt(k + 1)− 2vt(k) + vt(k − 1)|

are uniformly bounded for 0 < t ≤ π/(2r).

Property (a) is clearly fulfilled. To establish the other two, we observe that

vt(k) = ut(tk), k ≥ 0

with

ut(x) =

23−4rar

r−1∏
j=1−r

(x+ tj)2

2r−1∑
m=0

1

qm

r−1∏
j=1−r

sin2
√
qm(x+ tj)

2

×
2r−1∑
ℓ=1

(−1)ℓ−1

∫ 1

0

(
y(1− y)

)sr
cr,ℓ(ty) cos(ℓyx) dy.

Integration by parts gives for x ≥ 1, ℓ = 1, . . . , 2r − 1 and 0 < t ≤ π/(2r)∣∣∣∣∫ 1

0

(
y(1− y)

)sr
cr,ℓ(ty) cos(ℓyx) dy

∣∣∣∣
=

1

(ℓx)sr

∣∣∣∣∫ 1

0

((
y(1− y)

)sr
cr,ℓ(ty)

)(sr)
sin(ℓyx) dy

∣∣∣∣
≤ c

xsr
.

(4.18)
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Similarly, we have for x ≥ 1, ℓ = 1, . . . , 2r − 1 and 0 < t ≤ π/(2r)∣∣∣∣∫ 1

0

y
(
y(1− y)

)sr
cr,ℓ(ty) sin(ℓyx) dy

∣∣∣∣ ≤ c

xsr
(4.19)

and ∣∣∣∣∫ 1

0

y2
(
y(1− y)

)sr
cr,ℓ(ty) cos(ℓyx) dy

∣∣∣∣ ≤ c

xsr
.(4.20)

Now, (4.18) and Lemma 4.3 imply (b).
Finally, to verify (c), we observe that ut ∈ W 2

∞(R+) as, moreover, by the
estimate

dl

dxl


r−1∏

j=1−r

(x+ tj)2

2r−1∑
m=0

1

qm

r−1∏
j=1−r

sin2
√
qm(x+ tj)

2

 ≤ c, 0 ≤ x ≤ 2,

for 0 < t ≤ π/(2r) and l = 0, 1, 2 together with (4.18)-(4.20) and Lemma 4.3,
we get for all 0 < t ≤ π/(2r) that

∥u′′
t ∥∞[0,3] ≤ c

and

∥u′′
t ∥∞[t(k−1),t(k+1)] ≤

c

(tk)3
, k > [1/t].

Consequently, for all 0 < t ≤ π/(2r) we have

∞∑
k=1

k|vt(k + 1)− 2vt(k) + vt(k − 1)| ≤
∞∑
k=1

k t2∥u′′
t ∥∞[t(k−1),t(k+1)]

≤ t2 ∥u′′
t ∥∞[0,3]

[1/t]∑
k=1

k + t2
∞∑

k=[1/t]+1

k
c

(tk)3

≤ c t2
[1/t]∑
k=1

k + c t−1
∞∑

k=[1/t]+1

k−2 ≤ c.

This completes the proof of the theorem.

Remark 4.5. Relations (1.2) and Theorem 1.1 show that ω2r−1(f, t)p and
ω̃T
r (f, t)p describe the best trigonometric approximation in terms of big O rates

equally well. However, as we observed earlier, the constants in the two O-
estimates can differ considerably. Let us, for simplicity, consider only the case
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r = 2. Below c1, c2, . . . denote positive absolute constants. A trivial example is
given by f(x) = sinx. Then

c1 t
3 ≤ ω3(f, t)p ≤ c2t

3, 0 < t ≤ 1,

whereas ω̃T
2 (f, t)p ≡ 0.

As another example, let us consider the functions fδ(x) = sin[(1 + δ)x] for
δ ∈ (0, 1]. Then for all δ ∈ (0, 1] we have

c3 t
3 ≤ ω3(fδ, t)p ≤ c4 t

3, 0 < t ≤ 1,

whereas by properties 6 and 8 we get

ω̃T
2 (fδ, t)p ≤ c5

(
(1 + δ)3 − 1

)
t3 ≤ c6 δ t

3.

Remark 4.6. As for the best constants in the Jackson estimates with the
moduli ω2r−1(f, t)p and ω̃T

r (f, t)p, respectively, the latter is not better than the
former. Chernykh [4] proved for p = 2 that

sup
f∈L2(T)\T0

ET
n−1(f)2

ωm(f, 2π/n)2
=

1√(
2m
m

) ,
where n > m. This result has quite recently been extended in a certain sense to
the other Lp-spaces by Foucart, Kryakin and Shadrin [7]. On the other hand, a
result by Babenko [1] implies with m = 2r − 1

sup
f∈L2(T)\Tr−1

ET
n−1(f)2

ω̃T
r (f, 2π/n)2

≥ 1√√√√ max
h∈[0,2π/n]

m∑
ℓ=0

c2r,ℓ(h)

≥ 1√(
2m
m

) .

The second inequality above is derived by Proposition 2.2(iii) and the known
identity

m∑
ℓ=0

(
m

ℓ

)2

=

(
2m

m

)
,

which, for example, follows from the Vandermonde convolution formula (e. g.
[9, Ch. 1, (3)]). It is reasonable to expect that this relation remains true for
p ̸= 2 as well.
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Basel, 1971.

[4] N.I. Chernykh, Best approximation of periodic functions by trigonometric poly-
nomials in L2, Mat. Zametki, 2(5), 1967, 513-522; English translation: Math.
Notes 2(5), 1967, 803-808.

[5] R.A. DeVore, G.G. Lorentz, Constructive Approximation, Springer Verlag,
Berlin, 1993.

[6] B.R. Draganov, A new modulus of smoothness for trigonometric polynomial ap-
proximation, East J. Approx. 8(4), 2002, 465-499.

[7] S. Foucart, Y. Kryakin and A. Shadrin, On the exact constant in the Jackson-
Stechkin inequality for the uniform metric, Const. Approx. 29(2), 2009, 157-179.

[8] G.H. Hardy, E.M. Wright, An Introduction to the Theory of Numbers, fourth
edition, Oxford University Press, 1975.

[9] J. Riordan, Combinatorial Identities, John Wiley & Sons (New York, 1968).

[10] I.J. Schoenberg, On trigonometric spline interpolation, J. Math. Mech. 13, 1964,
795-825.

[11] L.L. Schumaker, Spline Functions: Basic Theory, Wiley-Interscience, New York,
1981.

[12] A. Sharma, I. Tzimbalario, Some linear differential operators and generalized
finite differences, Mat. Zametki 21(2), 1977, 161-172 (in Russian); English trans-
lation: Math. Notes 21(1-2), 1977, 91-97.

[13] V.T. Shevaldin, Extremal interpolation with smallest value of the norm of a linear
differential operator, Mat. Zametki 27(5), 1980, 721-740 (in Russian); English
translation: Math. Notes 27(5-6), 1980, 344-354.

[14] V.T. Shevaldin, Some problems of extremal interpolation in the mean for linear
difference operators, Tr. Mat. Inst. Steklova 164, 1983, 203-240 (in Russian);
English translation: Proc. Steklov Inst. Math. 164, 1985, 233-273.

[15] V.T. Shevaldin, The Jackson-Stechkin inequlaity in the space C(T) with trigono-
metric continuity modulus annihilating the first harmonics, Proc. Steklov Inst.
Math., 2001, Approximation Theory, Asymptotical expansions, suppl. 1, 206-213.

18



Borislav R. Draganov
Dept. of Mathematics and Informatics Inst. of Mathematics and Informatics
University of Sofia Bulgarian Academy of Science
5 James Bourchier Blvd. bl. 8 Acad. G. Bonchev Str.
1164 Sofia 1113 Sofia
Bulgaria Bulgaria
bdraganov@fmi.uni-sofia.bg

Parvan E. Parvanov
Dept. of Mathematics and Informatics
University of Sofia
5 James Bourchier Blvd.
1164 Sofia
Bulgaria
pparvan@fmi.uni-sofia.bg

This is a post-peer-review, pre-copyedit version of an article published in Acta
Mathematica Hungarica. The final authenticated version is available online at:
https://dx.doi.org/10.1007/s10474-011-0072-8.

19


