
Estimating the rate of best trigonometric

approximation in homogeneous Banach spaces by

moduli of smoothness

Borislav R. Draganov∗

Abstract

Best trigonometric approximation in homogeneous Banach spaces of pe-
riodic functions is characterized by two moduli of smoothness, which are
equivalent to zero if the function is a trigonometric polynomial of a given
degree. The characterization is just similar to the one given by the clas-
sical modulus of smoothness. The moduli possesses properties similar to
those of the classical one. One is based on the classical finite differences
but taken on a modification of the function and the other on a modifica-
tion of the finite differences but taken on the function itself.
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1 The characterization of best trigonometric ap-
proximation

Let Lp(T), 1 ≤ p ≤ ∞, denote the space of the functions with finite Lp-norm
on the circle T, as we may actually consider C(T) – the space of the continuous
functions on T, in the place of L∞(T). Best trigonometric approximation of a
function f ∈ B, where B is either Lp(T) or C(T), is given by

ETn (f)B = inf
τ∈Tn

‖f − τ‖B ,
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as Tn denotes the set of the trigonometric polynomials of degree at most n.
The order of ETn (f)B is estimated by the so-called classical moduli of smooth-

ness. To recall, the modulus of smoothness of order r ∈ N is defined by

ωr(f, t)B = sup
0<h≤t

‖∆r
hf‖B ,(1.1)

where the centred finite difference of order r ∈ N of f is given by

∆r
hf(x) =

r∑
k=0

(−1)k
(
r

k

)
f(x+ (r/2− k)h).(1.2)

The following relation between ETn (f)B and ωr(f, t)B is a classical result in
approximation theory (see for example [3, Ch. 7])

ETn (f)B ≤ c ωr(f, n−1)B ,(1.3)

ωr(f, t)B ≤ c tr
∑

0≤k≤1/t

(k + 1)r−1ETk (f)B , 0 < t ≤ t0.(1.4)

Above and in what follows we denote by c positive constants, which do not
depend on the functions in the relations, nor on n ∈ N or 0 < t ≤ t0.

Although (1.3) looks so nice, one is bothered by the fact that ETn (f)B is zero
always when f is a trigonometric polynomial of degree n, whereas ωr(f, t)B is
zero only if f is a constant. To cope with this problem we have to modify the
modulus. First, in 1999 Babenko, Chernykh and Shevaldin [1] considered the
modulus

ω̃Tr (f, t)B = sup
0<h≤t

‖∆̃r,hf‖B ,

as the modified finite differences ∆̃r,h are defined by

(1.5) ∆̃r,hf(x) = ∆r−1,h · · ·∆1,h∆hf(x),

where

∆j,hf(x) = f(x+ h)− 2 cos jh . f(x) + f(x− h), j = 1, 2, . . .

This modulus has the property

ω̃Tr (f, t)B ≡ 0 ⇐⇒ f ∈ Tr−1.

Babenko, Chernykh and Shevaldin [1] proved (1.3) with ω̃Tr (f, t)B in the place of
the classical modulus of smoothness for the space B = L2(T). Later Shevaldin
[11] added the case B = C(T) for r = 2. Quite recently, in [8], (1.3) and (1.4)
with ω̃Tr (f, t)B were verified for B = Lp(T), 1 ≤ p ≤ ∞. More precisely, in [8,
Theorem 1.1] it was established that

ETn (f)B ≤ c ω̃Tr (f, n−1)B , n ≥ r − 1,(1.6)
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ω̃Tr (f, t)B ≤ c t2r−1
∑

r−1≤k≤1/t

(k + 1)2r−2ETk (f)B , 0 < t ≤ 1

r
,(1.7)

for all B = Lp(T), 1 ≤ p ≤ ∞.
Meanwhile, the author introduced another modulus in [5]. It uses the clas-

sical finite differences (1.2) but they are taken on a suitable continuous linear
transform of the function f . Namely, we set

Fr−1f(x) = f(x) +

r−1∑
j=1

ar−1,j
(2j − 1)!

∫ x

0

(x− t)2j−1f(t) dt,

where ar−1,j are given by the Stirling numbers of the first kind by

ar−1,j =

2r−2j−1∑
m=1

(−1)r−j−ms(r,m) s(r, 2r − 2j −m).

Now, we define the modulus by

ωTr (f, t)B = sup
0<h≤t

‖∆2r−1
h Fr−1f‖B .

This modulus also has the property

ωTr (f, t)B ≡ 0 ⇐⇒ f ∈ Tr−1

and in [5, Theorem 1.1] it was shown that it characterizes ETn (f)B just as in
(1.6)-(1.7) for B = Lp(T), 1 ≤ p ≤ ∞. Let us explicitly point out that, though
Fr−1f is not generally 2π-periodic, ∆2r−1

h Fr−1f is.
The purpose of this note is to extend the characterization of best trigonomet-

ric approximation by the moduli ωTr (f, t)B and ω̃Tr (f, t)B to any homogeneous
Banach space of periodic functions. Let us recall (see [9, Definition I.2.10]) that
a homogeneous Banach space (abbreviated HBS ) B on T is a linear subspace
of L1(T), having a norm ‖ ◦ ‖B , under which it is a Banach space such that

(a) The translation is an isometry of B onto itself, i.e. if f ∈ B and t ∈ T,
then ft ∈ B and ‖ft‖B = ‖f‖B , where ft(x) = f(x− t);

(b) The translation is continuous on B, i.e. for all f ∈ B and t, t0 ∈ T there
holds limt→t0 ‖ft − ft0‖B = 0;

(c) B is continuously embedded in L1(T), i.e. there exists an absolute constant
α such that for all f ∈ B there holds ‖f‖L1(T) ≤ α‖f‖B .

Lp(T) for 1 ≤ p < ∞ and C(T) as well as some Lipschitz (Hölder) spaces are
HBS on T. Let us also recall that (1.3)-(1.4) have been extended to abstract
Banach spaces and, in particular, to any HBS on T (cf. [4], [10, Ch. 9] and [12]).

The concept of HBS’s was introduced by Shilov [13]. However, we can ob-
serve a similar abstract approach in the definition of almost periodic functions
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by Bochner and Neumann [2, Definition 1] (see also the references cited there
and [10, p. 200]).

The modulus ω̃Tr (f, t)B is well defined in the setting of an arbitrary HBS on
T. However, the operator Fr−1 in the definition of ωTr (f, t)B has to be modified
a little to ensure that its image is again in B. For Lp(T) this was done in [5] by
adding an appropriate algebraic polynomial operator of degree 2r − 2 to Fr−1
to get that the image is again 2π-periodic. However, this construction does not
make it evident that the image is again in B in the case of an arbitrary HBS.
We can settle this general case if we succeed to modify Fr−1 so that it becomes
a convolution operator. Below we give the details.

Let B be a HBS on T, f ∈ B and K ∈ L1(T). Then the convolution between
K and f

K ∗ f(x) =
1

2π

∫
T
K(x− y)f(y) dy

is an element of B and

(1.8) ‖K ∗ f‖B ≤ ‖K‖L1(T) ‖f‖B

(see [9, Problem I.2.13]).
We define the function a ∈ L1(T) by

(1.9) a(x) =
1

2
|x|(2π − |x|), x ∈ [−π, π].

Let us denote by K∗s the convolution of K ∈ L1(T) with itself s ∈ N times. We
replace the operator Fr−1 in the definition of ωTr (f, t)B with Fr−1 : B → B,
defined by

(1.10) Fr−1f = f +

r−1∑
j=1

ar−1,j a
∗j ∗ f

and set
ωTr (f, t)B = sup

0<h≤t
‖∆2r−1

h Fr−1f‖B .

Redefining ωTr (f, t)B in this way does not give rise to any ambiguity because
Fr−1f and Fr−1f differ with an algebraic polynomial of degree 2r − 2 for any
f as it follows from [5, Proposition 4.9(a)] and Proposition 2.3 below.

The kernel a has very simple Fourier coefficients:

(1.11) â(k) =


− 1

k2
, k ∈ Z\{0},

π2

3
, k = 0.

As usual we set for f ∈ B

f̂(k) =
1

2π

∫
T
f(y)e−iky dy, k ∈ Z.
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Let B be a HBS on T. Then, as is known, the set of trigonometric polyno-
mials in B is dense (see e. g. [9, Theorem I.2.12] or (2.2) below). We set

ETn (f)B = inf
τ∈Tn∩B

‖f − τ‖B .

Our main result is the following characterization of ETn (f)B by means of moduli
of smoothness that are invariant on the trigonometric polynomials of a given
degree.

Theorem 1.1. Let B be a HBS on T and f ∈ B. Then

ETn (f)B ≤ c ωTr (f, n−1)B , n ≥ r − 1,(1.12)

and

ωTr (f, t)B ≤ c t2r−1
∑

r−1≤k≤1/t

(k + 1)2r−2ETk (f)B , 0 < t ≤ 1

r
.(1.13)

The same relations hold with ω̃Tr (f, t)B in the place of ωTr (f, t)B.

In the next section we shall give a proof of this theorem. There we consider
some relevant properties of a modified Riesz operator, which was introduced in
[5], and of Fr−1. In the third and final section we present the most important
properties of the moduli ωTr (f, t)B and ω̃Tr (f, t)B .

2 Proof of the characterization

The proof of the characterization of the error ETn (f)B is comprised of two in-
tertwining parts. One is related to the characterization of ETn (f)B by means of
appropriately defined K-functionals and the other to their equivalence to the
moduli.

Let B be a HBS on T and r, n ∈ N as r ≤ n. Let us denote by AC the set
of the absolutely continuous functions on T. We put for s ∈ N

Bs = {g ∈ B : g(`) ∈ AC ∩B, ` = 0, . . . , s− 1, g(s) ∈ B}.

We shall use K-functionals of the following two types:

Ks(f, t)B = inf
g∈Bs

{
‖f − g‖B + ts‖g(s)‖B

}
,

KT
r,`(f, t)B = inf

g∈B2r+`−1

{
‖f − g‖B + t2r−1+`‖D̃rg

(`)‖B
}
,

where f ∈ B, t > 0, ` ∈ N0 and

D̃rg = Dr−1 · · ·D1 g
′, Djg = g′′ + j2g.

Note that

(2.1) D̃rg = 0 ⇐⇒ g ∈ Tr−1.
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In [5, Sections 2 and 3] we introduced the following combination of modified
Riesz operators Lr−1,n : B → B ∩ Tn−1, defined by

Lr−1,nf = f −
r−1∏
j=0

(f −Rj,nf),

where

Rj,nf(x) =

n−1∑
k=1−n

(
1− k2 − j2

n2 − j2

)
f̂(k) eikx, x ∈ T,

and established that (see [5, Theorem 3.1])

(2.2) ‖f − Lr−1,nf‖B ∼ KT
r,1(f, n−1)B , f ∈ B, n ∈ N.

Here the relation ψ1(f, n) ∼ ψ2(f, n) means that there exists a positive constant
c such that

c−1ψ2(f, n) ≤ ψ1(f, n) ≤ c ψ2(f, n)

for all f and n under consideration.
Let us note that, in view of (2.1) and (2.2) we have

Lr−1,nf = f ⇐⇒ f ∈ Tr−1.

Further, let us observe that

(2.3) Ks(f, t)B ∼ ωs(f, t)B , f ∈ B, t > 0.

This can be established just as for Lp(T) (see e.g. [3, p. 177]), as we observe
that the classical modulus of smoothness preserves its properties in any HBS
on T and the combination of modified Steklov functions belongs to the HBS B
provided that f ∈ B because it is representable as a convolution between f and
a kernel in L1(T) (see [3, Chapter 6, (2.12)]).

Next, we shall extend [5, Theorem 4.12 and Remark 4.13] to any HBS on T.
That is we shall prove the following assertion.

Theorem 2.1. Let B be a HBS on T and ` ∈ N0. Then

KT
r,`(f, t)B ∼ ω2r+`−1(Fr−1f, t)B , f ∈ B, t > 0.

The proof of this theorem is based on the method formulated in [6, Propo-
sition 2.1] (or see [7, Theorem 3.1 and Remark 3.1]). It allows to substitute
a K-functional with a “complex” differential operator with an equivalent one
with a “simple” differential operator by modifying the function. For an easier
reference we state below this result particularly for the case under considera-
tion. Before that let us mention that due to the convolution structure of Fr−1,
used here, the proofs of its properties as well as those of ωTr (f, t)B become much
shorter and simpler than the proofs given in [5].
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Theorem 2.2. Let B be a Banach space of functions on T, r ∈ N and ` ∈ N0.
Let A : B → B and B : B → B be linear operators, satisfying the conditions:

(a) ‖Af‖B ≤ c ‖f‖B for every f ∈ B;

(b) Ag ∈ B2r+`−1 and
∥∥(Ag)(2r+`−1)

∥∥
B
≤ c

∥∥D̃rg
(`)
∥∥
B
for every g ∈ B2r+`−1;

(c) ‖BF‖B ≤ c ‖F‖B for every F ∈ B;

(d) BG ∈ B2r+`−1 and
∥∥D̃r(BG)(`)

∥∥
B
≤ c

∥∥G(2r+`−1)
∥∥
B

for every G ∈
B2r+`−1;

(e) f −BAf ∈ Tr−1 for every f ∈ B;

(f) F −ABF = const for every F ∈ A(B).

Then for all f ∈ B and t > 0 there holds

KT
r,`(f, t)B ∼ K2r+`−1(Af, t)B .

Below we shall verify that Fr−1, defined in (1.10), possesses the properties
of the operator A of the theorem above. We begin with the construction of
the corresponding operator B, which we call a quasi-inverse of A. We set for
F ∈ B, j ∈ N and x ∈ T

BjF (x) = F (x) + bj ∗ F (x),

where bj is a function on T such that

bj(x) = j(|x| − π) sin |jx|, x ∈ [−π, π].

Further, we put

(2.4) Er−1 = Br−1 · · ·B1.

We shall show that the operators Fr−1 and Er−1 satisfy the hypotheses of
Theorem 2.2.

Proposition 2.3. Let B be a HBS on T, r ∈ N and ` ∈ N0. For g ∈ B2r+`−1

we have Fr−1g ∈ B2r+`−1 and

(Fr−1g)(2r+`−1) = D̃rg
(`).

Proof. It is clear that g ∈ B2r+`−1 yields Fr−1g ∈ B2r+`−1 as well. We set for
f ∈ B

Ajf = f + j2a ∗ f, j = 1, 2, . . . ,

where a is given in (1.9). The operator Fr−1 has been constructed as a compo-
sition of the operators Aj for j = 1, 2, . . . , r − 1:

(2.5) Fr−1 = Ar−1 · · ·A1.
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Indeed, denoting by δ the Dirac delta function, we have

Ar−1 · · ·A1 = (δ + (r − 1)2a) ∗ · · · ∗ (δ + a) ∗ f

= f +

r−1∑
j=1

 ∑
1≤`1<···<`j≤r−1

(`1 · · · `j)2
 a∗j ∗ f.

On the other hand, there holds

(2.6) (Ajg)′′ = Djg − j2ĝ(0), g ∈ B2.

To verify this relation, we just calculate the Fourier coefficients of Ajg. We have
by (1.11) for k 6= 0

Âjg(k) = (1 + j2â(k)) ĝ(k) =

(
1− j2

k2

)
ĝ(k).

Consequently, we have for k 6= 0

(̂Ajg)′′(k) = −k2 Âjg(k) = (−k2 + j2)ĝ(k) = ĝ′′(k) + j2ĝ(k) = D̂jg(k),

and hence the Fourier coefficients of the left and right sides of (2.6) are equal
for k 6= 0. Also, it is clear that their Fourier coefficients at k = 0 are both equal
to 0. Therefore, in view of the uniqueness of the Fourier transform, we get (2.6).

Now, combining (2.5) and (2.6), we get the assertion of the proposition.

Proposition 2.4. Let B be a HBS on T and r ∈ N.

(i) We have f − Er−1Fr−1f ∈ Tr−1 for all f ∈ B.

(ii) We have F − Fr−1Er−1 = const for all F ∈ Fr−1(B).

Proof. We proceed similarly to the proof of the previous proposition. We shall
show that

(2.7) Er−1Fr−1f = f + τr−1 ∗ f

with

(2.8) τr−1(x) = −1− 2

r−1∑
j=1

cos jx.

To this end, we shall first establish that

(2.9) BjAjf = f + ηj ∗ f, f ∈ B, j ∈ N,

where
ηj(x) = −1− 2 cos jx.
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We calculate the Fourier coefficients of the kernel bj to be

(2.10) b̂j(k) =


j2

k2 − j2
, k ∈ Z\{±j},

−1

4
, k = ±j.

The definition of the operators Aj and Bj gives

BjAjf = f + (j2a + bj + j2a ∗ bj) ∗ f.

Thus, in view of (1.11) and (2.10) we get for its Fourier transform

(BjAjf )̂ (k) = (1 + j2â(k) + b̂j(k) + j2â(k)b̂j(k)) f̂(k)

=

f̂(k), k ∈ Z\{0,±j},

0, k = 0,±j.

The right hand side is exactly the Fourier transform of f + ηj ∗ f ; hence (2.9)
follows.

Now, using (2.9) and the fact that Aj′ , Aj′′ , Bj′ and Bj′′ commute for all
naturals j′, j′′, we arrive at

Er−1Fr−1f = Br−1 · · ·B1Ar−1 · · ·A1f

= Br−1Ar−1 · · ·B1A1f

= (δ + ηr−1) ∗ · · · ∗ (δ + η1) ∗ f.

Applying the Fourier transform to both sides of the last relation, we get

(Er−1Fr−1f )̂ = (1 + η̂r−1) · · · (1 + η̂1)f̂

= (1 + τ̂r−1)f̂ ,

which verifies (2.7) and completes the proof of assertion (i).
Proceeding to (ii), we have for F = Fr−1f , f ∈ B, by means of (2.7) that

Fr−1Er−1F = Fr−1Er−1Fr−1f

= Fr−1(f + τr−1 ∗ f) = F + Fr−1(τr−1 ∗ f).

But τr−1 ∗ f ∈ B2r−1 ∩ Tr−1 and by Proposition 2.3 we get that (Fr−1(τr−1 ∗
f))(2r−1) = D̃r(τr−1 ∗ f) = 0. Consequently, Fr−1(τr−1 ∗ f) is an algebraic
polynomial of degree not greater than 2r−2. On the other hand, Fr−1(τr−1 ∗f)
is in B and thus 2π-periodic. Therefore it is a constant. Assertion (ii) is
established.

Corollary 2.5. Let B be a HBS on T, r ∈ N and ` ∈ N0. For G ∈ B2r+`−1 we
have Er−1G ∈ B2r+`−1 and

D̃r(Er−1G)(`) = G(2r+`−1) + τr−1 ∗G(2r+`−1).

where τr−1 is given in (2.8).
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Proof. The formula follows directly from Proposition 2.3 and relation (2.7) as
we also take into account that Fr−1 and Er−1, being convolution operators,
commute. Indeed, we just have

D̃r(Er−1G)(`) = (Fr−1(Er−1G))(2r+`−1)

= (Er−1(Fr−1G))(2r+`−1)

= (G+ τr−1 ∗G)(2r+`−1)

= G(2r+`−1) + τr−1 ∗G(2r+`−1).

Now we are ready establish Theorem 2.1.

Proof of Theorem 2.1. In view of (2.3) it is enough to show that

(2.11) KT
r,`(f, t)B ∼ K2r+`−1(Fr−1f, t)B , f ∈ B, t > 0.

To this end, we apply Theorem 2.2 with A = Fr−1 and B = Er−1. Conditions
(a) and (c) follow from (1.8), (b) from Proposition 2.3, (d) from Corollary 2.5,
and (e) and (f) are established in Proposition 2.4.

We have all the ingredients we need to give a proof of the characterization
of best trigonometric approximation in any HBS of periodic functions.

Proof of Theorem 1.1. Relation (2.2) and Theorem 2.1 for ` = 0, 1 enable us to
follow verbatim the proof of [5, Theorem 1.1 in Section 5] in any HBS on T and
establish (1.12).

The weak converse inequality (1.13) is again verified as in [5], taking into
account that the classical Bernstein inequality for trigonometric polynomials
is valid in any HBS on T. Indeed, its proof in Lp(T), based on the Riesz
interpolation formula for trigonometric polynomials θn of degree at most n

θ′n(x) =
1

4n

2n−1∑
`=0

(−1)`

sin2 x`

2

θn(x+ x`), x` =
2`+ 1

2n
π,

(see e.g. [14, Section 4.7.1 (3)]) is directly extendable to any normed space, in
which translation is an isometry (cf. also [4, p. 569, Corollary]).

Thus the inequalities in the theorem are verified for ωTr (f, t)B . In view of the
equivalence between this modulus and the K-functional KT

r (f, t)B , to complete
the proof of the theorem for the other trigonometric modulus ω̃Tr (f, t)B , it is
sufficient to establish that it too is equivalent to KT

r (f, t)B . But this can be done
just as in the proof of [8, Theorem 4.2] because all is expressed via convolutions.
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3 Properties of ωTr (f, t)B and ω̃Tr (f, t)B

Both moduli retain the properties of the classical modulus ωs(f, t)B . Let B be
a HBS on T. There hold:

1. ωTr (f + g, t)B ≤ ωTr (f, t)B + ωTr (g, t)B ;

2. ωTr (cf, t)B = |c|ωTr (f, t)B , c is a constant;

3. ωTr (f, t)B ≤ ωTr (f, t′)B , t ≤ t′;

4. ωTr (f, λt)B ≤ (λ+ 1)2r−1ωTr (f, t)B ;

5. ωTr (f, t)B → 0 as t→ 0;

6. ωT1 (f, t)B ≤ 2‖f‖B and ωT1 (f, t)B ≤ t‖f ′‖B , f ∈ B1 (ωT1 (f, t)B coincides
with the ordinary modulus of continuity);

7. ωTr (f, t)B ≤ (4 + (r − 1)2t2)ωTr−1(f, t)B , r ≥ 2;

8. ωTr (f, t)B ≤ t2ωTr−1(Dr−1f, t)B , f ∈ B2; r ≥ 2;

9. Marchaud inequality

ωTr (f, t)B ≤ c t2r−1
(∫ t0

t

ωTr+1(f, u)B

u2r
du+ ‖f‖B

)
, 0 < t ≤ t0.

The other modulus ω̃Tr (f, t)B possesses identical properties as property 7
adopts the stronger form

7′. ω̃Tr (f, t)B ≤ 4 ω̃Tr−1(f, t)B , r ≥ 2.

Proof of the properties. All the properties of ω̃Tr (f, t)B are established just as
in the case B = Lp(T) considered in [8].

Properties 1-6 of ωTr (f, t)B follow directly from the corresponding properties
of the classical modulus ωs(f, t)B . Property 9 follows from Theorem 1.1 by
means of a standard argument (e.g. [3, p. 210]).

To establish Property 7 we first note that

(3.1) Fr−1f = Ar−1Fr−2f = Fr−2f + (r − 1)2a ∗ Fr−2f.

Moreover, a ∗ f ∈ B2 for any f ∈ B and

(3.2) (a ∗ f)′′(x) = f(x)− f̂(0).

(Relation (3.2) gives another proof of (2.6).) To verify (3.2), we observe that

(a ∗ f)′′(x) = (a′ ∗ f)′(x)

=
1

2π

d

dx

(
−
∫ 0

−π
(π + y)f(x− y) dy +

∫ π

0

(π − y)f(x− y) dy

)
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=
1

2π

d

dx

(
−
∫ x+π

x

(π + x− y)f(y) dy +

∫ x

x−π
(π − x+ y)f(y) dy

)
= f(x)− 1

2π

∫ x+π

x−π
f(y) dy

= f(x)− f̂(0).

Now, using the properties of the classical modulus of smoothness, (3.1) and
(3.2) with f replaced with Fr−2f , we arrive at the inequality in Property 7:

ωTr (f, t)B = ω2r−1(Fr−1f, t)B

≤ ω2r−1(Fr−2f, t)B + (r − 1)2ω2r−1(a ∗ Fr−2f, t)B
≤ 4ω2r−3(Fr−2f, t)B + (r − 1)2t2ω2r−3((a ∗ Fr−2f)′′, t)B

= 4ω2r−3(Fr−2f, t)B + (r − 1)2t2ω2r−3(Fr−2f, t)B

= (4 + (r − 1)2t2)ωTr−1(f, t)B .

It remains to verify Property 8. Since

Fr−1f = Ar−1Fr−2f,

relation (2.6) implies that

(Fr−1f)′′ = Dr−1(Fr−2f)−(r−1)2 F̂r−2f(0) = Fr−2(Dr−1f)−(r−1)2 F̂r−2f(0).

Consequently, by the corresponding property of the classical modulus, we derive

ωTr (f, t)B = ω2r−1(Fr−1f, t)B ≤ t2ω2r−3((Fr−1f)′′, t)B

= t2ω2r−3(Fr−2(Dr−1f), t)B = t2ωTr−1(f, t)B .

The proof of the properties of the moduli is completed.
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