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The paper is concerned with establishing direct estimates for convolution operators
on homogeneous Banach spaces of periodic functions by means of appropriately defined K-
functional. The differential operator in the K-functional is defined by means of strong limit
and described explicitly in terms of its Fourier coefficients. The description is simple and
independent of the homogeneous Banach space. Saturation of such operators is also considered.
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1. Convolution operators in homogeneous Banach spaces of
periodic functions

Let T denote the circle and L(T) be the Banach space of Lebesgue
summable complex-valued functions on T equipped with the norm

‖f‖L =
1

2π

∫
T

f(x) dx, f ∈ L(T).

A natural generalization of L(T) are the so-called homogeneous Banach spaces
on T. The idea of HBS’s is due to Shilov [9]. However, we notice such an abstract
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approach in the definition of almost periodic functions given by Bochner and
Neumann [1, Definition 1] (see also the references cited there and [8, p. 200]. In
particular, Katznelson [7, Definition I.2.10] formulates the following

Definition 1.1. A homogeneous Banach space (abbreviated HBS ) B
on T is a linear subspace of L(T) having a norm ‖ ◦ ‖B under which it is a
Banach space such that

(a) The translation is an isometry of B onto itself, i.e. if f ∈ B and t ∈ T,
then ft ∈ B and ‖ft‖B = ‖f‖B , where ft(x) = f(x− t);

(b) The translation is continuous on B, i.e. for all f ∈ B and t, t0 ∈ T there
holds limt→t0 ‖ft − ft0‖B = 0;

(c) B is continuously embedded in L(T), i.e. there exists an absolute constant
α such that for all f ∈ B there holds ‖f‖L ≤ α‖f‖B .
We will consider approximation properties of convolution operators act-

ing on a HBS on T. First we recall the notion of a periodic approximate identity.

Definition 1.2. (e.g. [2, Definitions 1.1.1 and 1.1.4] and [7, Definition
I.2.2]) The family of functions {kn(t)}n∈N is called a periodic approximate iden-
tity if it satisfies the conditions:

(a) For all n ∈ N we have kn ∈ L(T) and∫
T

kn(t) dt = 2π;

(b) There exists a constant M such that

‖kn‖L ≤M for all n ∈ N;

(c) For each 0 < δ < π, there holds

lim
n→∞

∫
δ≤|t|≤π

|kn(t)| dt = 0.

Let B be a HBS on T. Given a periodic approximate identity {kn(t)}n∈N,
we consider bounded linear operators of Jn : B → B defined by

(1.1) Jnf(x) = kn ∗ f(x) = 1

2π

∫
T

kn(x− t)f(t) dt, x ∈ T, n ∈ N.
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The integral above can be interpreted either as a Lebesgue integral or, equiv-
alently, as Bochner’s generalization of the Lebesgue integral of vector-valued
functions (cf. [7, Lemma I.2.4]). Therefore kn ∗ f(x) exists almost everywhere,
belongs to B and

‖kn ∗ f‖B ≤ ‖kn‖L ‖f‖B ≤M‖f‖B ∀n.

Moreover, as is known (see e.g. [1, Theorems 1.1.5] and [7, Theorem I.2.11]), we
have

(1.2) lim
n→∞ ‖f − Jnf‖B = 0 ∀f ∈ B.

In [6] we presented a set of conditions, which allow us to characterize the rate
of convergence of Jnf to f in (1.2) by means of a K-functional of the form

(1.3) K(f, τ ;B,D) = inf{‖f − g‖B + τ ‖Dg‖B : g ∈ D−1(B)},

where f ∈ B, τ > 0, D is a “differential” operator and D−1(B) = {g ∈ B : Dg ∈
B} is dense in B. These sufficient conditions are based on Fourier transform
methods and have been used before though not in the context of K-functionals
but rather in establishing the saturation property and the saturation class of
convolution operators (see [2, Chapter 12, especially Section 12.6] and [6, Section
3.3]). The purpose of this paper is to show that with an appropriate and quite
natural definition of the differential operator D those of the sufficient conditions
that concern it are directly satisfied. Here, for simplicity, we treat only HBS’s
of univariate periodic functions, but the same methods are applicable to the
multidimensional case. The concept of HBS’s can be extended to functions
defined on R (or Rd) in several different ways (see [7, VI.1.14] and [8, Chapter
9]. However, a HBS on R (resp. Rd) is not generally continuously embedded
in L(R) (resp. L(Rd)) and its treatment becomes more complicated. We shall
present results in this respect in another publication.

In the next section we state sufficient conditions, which imply an upper
estimate of the error of a convolution operator by a K-functional. These results
were established in [6]. In Section 3 and 4 we consider respectively the rate
of approximation and the form of D in terms of Fourier coefficients. There we
establish some of the conditions, given in Section 2. Further, in Section 5, we
strengthen the criterion for direct estimates. In Section 6 we discuss another
definition of the differential operator in the K-functional. Finally, we give a
number of examples in the last section.

The results presented in this paper are either extensions of known asser-
tions for particular HBS’s or they are very similar to such. The main reference
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is the book of Butzer and Nessel [2] (mostly Chapters 12 and 13) as well as that
of DeVore and Lorentz [4](Chapter 11, §§ 2-3).

2. Upper estimates of the error of convolution operators on a
HBS on T

We denote the Fourier coefficients of a function f ∈ L(T) by

f̂(m) =
1

2π

∫
T

f(x) e−imx dx, m ∈ Z.

The assertion of [6, Theorem 3.6] in particular gives

Theorem A. Let B be a HBS on T and Jn be given by (1.1) with a
periodic approximate identity {kn}. Let D be such that D−1(L(T)) is dense in
L(T) and for g ∈ D−1(B) and η ∈ D−1(L(T))

(2.1) D(η ∗ g) = Dη ∗ g = η ∗Dg.
Let also there exist Φ : N → (0,∞), Ψ : Z → C, c ∈ R and �n ∈ L(T), n ∈ N,
such that

(2.2) D̂η(m) = Ψ(m)η̂(m), m ∈ Z, η ∈ D−1(L(T)),

(2.3) 1− k̂n(m) = Φ(n)Ψ(m) �̂n(m), m ∈ Z, n ∈ N,

and

(2.4) ‖�n‖L ≤ c n ∈ N.

Then for all f ∈ B and n ∈ N we have

‖f − Jnf‖B ≤ cK(f,Φ(n);B,D).

Above and henceforth we denote by c positive constants not necessarily the same

that do not depend on f or n.

R ema r k 2.1. As it can be seen in the proof of [6, Theorem 3.6], it is
enough to assume that instead of (2.1) we only have

Dη ∗ g = η ∗Dg.
Let L(R) denote the space of all Lebesgue summable functions on R. As

is known (see e.g. [2, Proposition 3.1.12] or [7, VI.1.15]) each k ∈ L(R) with

(2.5)

∫
R

k(t) dt = 1
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generates a periodic approximate identity {kn} by

(2.6) kn(t) = 2π

∞∑
j=−∞

n k(n(t+ 2jπ)).

Now, taking into account that

(2.7) k̂n(m) = k̂(m/n),

where

k̂(u) =

∫
R

k(x)e−iux dx, u ∈ R,

is the Fourier transform of k ∈ L(R) (see e.g. [2, Proposition 5.1.28] or [7,
VI.1.15]), we derive the following assertion from Theorem A and Remark 2.1.

Corollary B. (see [6, Theorem 3.13]) Let B be a HBS on T and Jn
be given by (1.1) with a periodic approximate identity {kn} defined by (2.5)-
(2.6). Let D be such that D−1(L(T)) is dense in L(T) and for g ∈ D−1(B) and
η ∈ D−1(L(T))

(2.8) Dη ∗ g = η ∗Dg.

Let also there exist κ > 0 and � ∈ L(T) such that

(2.9) D̂η(m) = |m|κη̂(m), m ∈ Z, η ∈ D−1(L(T)),

(2.10) 1− k̂(u) = |u|κ�̂(u), u ∈ R.

Then for all f ∈ B and n ∈ N we have

‖f − Jnf‖B ≤ cK(f, n−κ;B,D).

Relation (2.9) identifies D as the Riesz fractional derivative of order κ (see

e.g. [2, Definition 11.5.10] and [6, Definition 5.1]Dr). In [6] we also established
similar results concerning strong converse inequalities.

We shall consider two definitions of the differential operator D of the
K-functional (1.3). They are equivalent under certain natural assumptions as
we shall show below. Both give differential operators that satisfy conditions
(2.1) and (2.2). On the other hand, relations (2.3)-(2.4) also turn out to be
satisfied for certain HBS’s in the setting of the approximation problem under
consideration (cf. Remark 6.3 below).
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Definition 2.1. (cf. [2, Definition 13.4.3 and (13.4.1)]) Let B be
a HBS on T, the convolution operator Jn be defined by (1.1) with a peri-
odic approximate identity {kn} and the function φ : N → C\{0} be such that
limn→∞ φ(n) = 0. For g ∈ B we set

Dφg = DJ,φg = s - lim
n→∞

Jng − g

φ(n)

if the limit, taken in the B-norm, exists.
Note that thus defined Dφ commutes with the convolution, that is, it

satisfies (2.1). The function φ serves to measure the rate with which Jng ap-
proximates g for g ∈ D−1

φ (B). More precisely, if Dφg 	= 0, then for n large
enough we have

(2.11) ‖g − Jng‖B ≤ 2|φ(n)|‖Dφg‖B .
So, the faster φ(n) tends to 0 the faster Jng strongly converges to g as n→ ∞.
Our goal is to determine how fast φ can vanish at infinity for Dφg 	= 0 as well
as to describe the corresponding differential operator Dφ.

3. The optimal order of φ

Let us recall the notion of saturation (see e.g. [2, Definition 12.0.2] or [4,
Chapter 11, § 2]). We say that the approximation process {Jn} possesses the sat-
uration property if there exists a function Φ : N → (0,∞) with limn→∞Φ(n) = 0
such that there exists f ∈ B with

(3.1) 0 	= ‖f − Jnf‖B = O(Φ(n)), n→ ∞,

(as the inequality on the left is satisfied for at least one natural n) whereas

(3.2) ‖f − Jnf‖B = o(Φ(n)), n→ ∞,

implies
Jnf = f ∀n ∈ N.

The function Φ gives the optimal approximation order of Jn. It is also called
saturation order. It is clear that if (3.1)-(3.2) are satisfied by two function Φ1

and Φ2, then Φ1 ∼ Φ2, i.e.

c−1Φ1(n) ≤ Φ2(n) ≤ cΦ1(n) ∀n ∈ N

(see [4, Chapter 11, § 2]). In this case we shall say that Φ1 and Φ2 are equivalent.
The functions that satisfy (3.1) comprise the saturation or Favard class of Jn.
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Let us note that if there exists g ∈ D−1
Φ (B) such that DΦg 	= 0, then Jn

satisfies (3.1), whereas relation (3.2) is equivalent to f ∈ D−1
Φ (B) and DΦf = 0.

Consequently, if there exists g ∈ D−1
Φ (B) such that DΦg 	= 0 and if DΦg = 0

implies Jng = g for all n ∈ N, then Jn is saturated with order Φ(n). Let us
explicitly observe that DΦg = 0 does not necessarily imply Jng = g for all n ∈ N

— cf. Example 7.4. However, if Jn is saturated with order Φ(n), then it does.
Results concerning the saturation of convolution operators in Lp(T) show

that their approximation rate cannot be arbitrary high (see [2, Section 12.1]
and [4, Chapter 11, §§ 2-3]). The sufficient conditions considered there (cf. also
Theorem A above) reveal that the saturation (optimal) order is determined by
the behaviour of 1 − k̂n(m) as n → ∞. In this section we shall establish that
the converse is also true, namely, that generally, in the setting of any HBS on
T, the optimal order of φ(n) is |1− k̂n(a)| with an appropriately fixed integer a.

We begin with a simple relation between the function φ of Dφ and the
Fourier transform of the kernel kn of the operator Jn.

Proposition 3.1. Let B be a HBS on T and Jn be defined by (1.1) with
a periodic approximate identity {kn}. Let a ∈ Z, k̂n(a) 	= 1 for n large enough
and there exist g0 ∈ D−1

φ (B) such that ĝ0(a) 	= 0. Then

|φ(n)| 	= o(|1 − k̂n(a)|), n→ ∞.

P r o o f. Using basic properties of the Fourier transform, we get for all n

|ĝ0(m)− k̂n(m)ĝ0(m)| = |(g0 − Jng0)̂ (m)| ≤ ‖g0 − Jng0‖L, m ∈ Z,

which, in particular, implies the estimate

(3.3) |1− k̂n(a)| ≤ 1

|ĝ0(a)| ‖g0 − Jng0‖L.

If Dφg0 	= 0, then we combine (3.3), property (c) in Definition 1.1 and (2.11) to
deduce that for n large enough there holds

(3.4) |1− k̂n(a)| ≤ 2α
‖Dφg0‖B
|ĝ0(a)| |φ(n)|.

If Dφg0 = 0, then
‖g0 − Jng0‖B = o(|φ(n)|),

which again together with (3.3) and property (c) in Definition 1.1 imply

(3.5) |1− k̂n(a)| = o(|φ(n)|).



46 B. R. Draganov

The assertion follows from (3.4) and (3.5).

If g = const, then Jng = g for all n and Dφg = 0 for any φ. Taking
this into consideration, we get by means of the last proposition the following
assertion, which shows that if φ tends to 0 too fast, then the corresponding
differential operator is trivial.

Corollary 3.2. Let B be a HBS on T and Jn be defined by (1.1) with
a periodic approximate identity {kn}. Let also for each a ∈ Z\{0}, k̂n(a) 	= 1
for n large enough. If for all a ∈ Z\{0}

|φ(n)| = o(|1 − k̂n(a)|), n→ ∞,

then Dφg = 0 for all g ∈ D−1
φ (B).

Rema r k 3.3. Considerations quite similar to those used in the proof
of Proposition 3.1 show that in the hypotheses of Corollary 3.2 we actually have
D−1
φ (B) ⊆ C. The too rapid decrease of φ makes the domain of Dφ too narrow.

Thus, generally, in the nontrivial case, we can choose the fastest vanishing
φand so acquire generally the best approximation rate in (2.11) is k̂n(a) − 1
with an appropriately fixed integer a. We set ϕa(n) = k̂n(a)− 1. The quantity
|ϕa(n)| is optimal in the sense that if Jn possesses the saturation property, then
its saturation order is at most |ϕa(n)| with an appropriate a ∈ Z (see also [4,
Chapter 11, Theorem 2.1 (i)]. In this respect we have the following assertion,
which is a straightforward generalization of part of the basic theorem cited
above.

Theorem 3.4. (cf. [4, Chapter 11, Theorem 2.1]) Let B be a HBS on
T and Jn be defined by (1.1) with a periodic approximate identity {kn}.
(i) Assume that there exists a ∈ Z such that D−1

ϕa
(B) � g0 with Dϕag0 	= 0

and also such that

(3.6) lim inf
n→∞

∣∣∣∣∣1− k̂n(m)

1− k̂n(a)

∣∣∣∣∣ 	= 0

whenever k̂n(m) 	= 1 for some n ∈ N. Then Jn possesses the saturation
property and its optimal approximation order is |ϕa(n)|.

(ii) Assume that Jn possesses the saturation property with saturation order
φ(n). Then there exists a ∈ Z\{0} such that

(3.7) φ(n) ≥ c |ϕa(n)|, n ∈ N.
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P r o o f. Indeed, (2.11) implies that

‖g0 − Jng0‖B = O(|ϕa(n)|),

as, moreover, the norm on the left-hand side above cannot be equal to 0 since
then we would have that Dϕag0 = 0.

On the other hand, if for some f ∈ B

‖f − Jnf‖B = o(|ϕa(n)|),

then, as in the proof of Proposition 3.1, we get for each m ∈ Z such that
k̂n(m) 	= 1 for some n ∈ N∣∣∣∣∣1− k̂n(m)

ϕa(n)
f̂(m)

∣∣∣∣∣ ≤ α
‖f − Jnf‖B

|ϕa(n)| → 0, n→ ∞.

Now, taking into account (3.6), we arrive at f̂(m) = 0 for each m ∈ Z such that
k̂n(m) 	= 1 for some n ∈ N. Consequently, for all m ∈ Z and n ∈ N we have

k̂n(m)f̂(m) = f̂(m),

which, in view of the uniqueness of the Fourier coefficients, yields Jnf = f for all
n ∈ N. Thus Jn possesses the saturation property and its optimal approximation
order is |ϕa(n)|.

To establish (ii) we proceed in a similar way. Suppose that (3.7) is not
valid. Then for each fixed a ∈ Z\{0} there exists a sequence {nj}∞j=1 of naturals
such that |ϕa(nj)|/φ(nj) → ∞ as j → ∞. Now, let f ∈ B satisfy (3.1). Then
there exists a positive constant C such that for all j∣∣∣∣ϕa(nj)φ(nj)

f̂(a)

∣∣∣∣ ≤ ‖f − Jnjf‖L
φ(nj)

≤ α
‖f − Jnjf‖B

φ(nj)
< C.

Consequently, f̂(a) = 0 for each a ∈ Z\{0}. Hence f = const and then Jnf = f
for all n. This contradiction shows that our assumption was false and assertion
(ii) is valid.

R ema r k 3.5. 1) Let us observe that under certain assumptions condi-
tion (3.6) is also necessary in order that the corresponding convolution operator
possess the saturation property (cf. [4, Chapter 11, Theorem 2.1 (i)] and Ex-
ample 7.5). 2) Assertion (ii) cannot generally be strengthen. It is not true that
for any non-zero integer a there exists a constant c such that (3.7) holds as
Examples 7.4 and 7.5 will show.
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Another similar result is the following

Theorem 3.6. Let B be a HBS on T and Jn be defined by (1.1) with
a periodic approximate identity {kn}, φ : N → C\{0} and Φ : N → (0,∞). Let
there exist g0 ∈ D−1

φ (B) such that Dφg0 	= 0. Finally, let for all f ∈ B and
n ∈ N there holds

(3.8) ‖f − Jnf‖B ≤ cK(f,Φ(n);B,Dφ).

Then Jn possesses the saturation property with optimal approximation order
|φ(n)|.

P r o o f. As above we have

0 	= ‖g0 − Jng0‖B = O(|φ(n)|).
Further, relation (3.8) directly implies

(3.9) ‖g − Jng‖B ≤ cΦ(n)‖Dφg‖B , g ∈ D−1
φ (B), n ∈ N.

Now, if f ∈ B is such that

‖f − Jnf‖B = o(|φ(n)|),
then f ∈ D−1

φ (B) and Dφf = 0, which, in view of (3.9), yields Jnf = f for all
naturals n.

This completes the proof of the proposition.

R ema r k 3.7. Let the convolution operator Jn possesses the saturation
property. The last proposition shows that an upper estimate like (3.8) by a
K-functional with a differential operator given by Definition 2.1 is possible only
with a function φ which is equivalent in absolute value to the saturation order
of Jn. Let us also observe that in the conditions of the preceding theorem
Φ(n) ≥ c|φ(n)| for all n as otherwise (3.9) would imply that Dφg0 = 0.

4. The differential operator Dφ

Our next objective is to describe the differential operator given in Def-
inition 2.1 in any HBS on T. It turns out that Dφ satisfies condition (2.2) as
well. Let us denote by T the set of all trigonometric polynomials. The following
result similar to the one given in [2, pp. 436-437] is valid (cf. also Theorem 12.1.4
as well as Proposition 12.1.1 and its proof in [2]).

Theorem 4.1. Let B be a HBS on T and Jn be defined by (1.1) with a
periodic approximate identity {kn}. Then the limit

lim
n→∞

k̂n(m)− 1

φ(n)
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exists (as a finite number) for each m ∈ Z for which there exists g ∈ D−1
φ (B)

such that ĝ(m) 	= 0. Further, for all g ∈ D−1
φ (B) there holds D̂φg(m) =

ψ(m)ĝ(m), m ∈ Z, where

ψ(m) = lim
n→∞

k̂n(m)− 1

φ(n)

if the right-hand side exists, and ψ(m) is assigned an arbitrary value, otherwise.

P r o o f. The proof is quite similar to that of Proposition 3.1. Using again
basic properties of the Fourier transform and condition (c) of Definition 1.1, we
get for each g ∈ D−1

φ (B) and m ∈ Z∣∣∣∣∣ k̂n(m)− 1

φ(n)
ĝ(m)− D̂φg(m)

∣∣∣∣∣ ≤
∥∥∥∥Jng − g

φ(n)
−Dφg

∥∥∥∥
L

≤ α

∥∥∥∥Jng − g

φ(n)
−Dφg

∥∥∥∥
B

→ 0, n→ ∞.

(4.1)

Set M = {m ∈ Z : ĝ(m) = 0 ∀g ∈ D−1
φ (B)}. For each integer m ∈ Z\M we fix

g ∈ D−1
φ (B) with ĝ(m) 	= 0 in (4.1) and derive that the limit

lim
n→∞

k̂n(m)− 1

φ(n)

exists. Then, again using (4.1), we establish that D̂φg(m) = ψ(m)ĝ(m) for all
g ∈ D−1

φ (B) and m ∈ Z\M.

As for m ∈ M we get by (4.1) that D̂φg(m) = 0 = ψ(m)ĝ(m) for all
g ∈ D−1

φ (B).
This completes the proof of the theorem.

R ema r k 4.2. Let k ∈ L(R) be even and satisfies (2.5). Let us also
assume that k̂(u) 	= 1 for u 	= 0 in a neighbourhood of 0. Consider the periodic
approximate identity {kn} defined by (2.6) and let Jn be the corresponding
convolution operator. Set ϕ(n) = k̂(1/n) − 1 and assume that T ⊂ D−1

ϕ (B).
Then the limit

ψ(m) = lim
n→∞

1− k̂n(m)

1− k̂n(1)
= lim

n→∞
1− k̂(m/n)

1− k̂(1/n)

exists for each m ∈ Z. Moreover, we have for all m1,m2 ∈ N

ψ(m1m2) = lim
n→∞

1− k̂(m1m2/n)

1− k̂(1/n)
= lim

n→∞
1− k̂(m1m2/(m2n))

1− k̂(1/(m2n))



50 B. R. Draganov

= lim
n→∞

1− k̂(m1/n)

1− k̂(1/n)
lim
n→∞

1− k̂(m2/(m2n))

1− k̂(1/(m2n))

= ψ(m1)ψ(m2).

Taking into account that k is even, we get that k̂ and hence ψ are even too.
Consequently,

(4.2) ψ(m1m2) = ψ(m1)ψ(m2), m1,m2 ∈ Z.

Also let us note that since k is even then k̂ is real-valued and hence so is ψ. It
is known that if a function Ψ : [0,∞) → R is continuous and

(4.3) Ψ(u1u2) = Ψ(u1)Ψ(u2), u1, u2 ≥ 0,

as Ψ 	= 0, 1, then there exists κ > 0 such that Ψ(x) = xκ, x ≥ 0. If Ψ is even,
then Ψ(x) = |x|κ, x ∈ R. Thus, if further the limit

(4.4) Ψ(u) = lim
n→∞

1− k̂(u/n)

1− k̂(1/n)

exists for all real u as the convergence is uniform on the compact intervals,
then Ψ is continuous and even on R and similarly to (4.2) one verifies that it

satisfies (4.3). Consequently, D̂ϕg(m) = |m|κĝ(m), m ∈ Z, and Dϕ is the Riesz
fractional derivative of order κ.

In passing, let us note that the existence of the uniform on the compact
intervals limit (4.4) can be easily (and most naturally) established by means of
the analogue of (4.1) for convolution operators on L(R), but this is beyond the
scope of this paper.

5. Direct estimates revisited

A straightforward observation leads us to the following assertion, which
connects in a very natural way notions of saturation and upper error estimates
by K-functionals.

Theorem 5.1. Let B be a HBS on T and Jn be defined by (1.1) with a
periodic approximate identity {kn}. Let T ⊂ D−1

φ (B). Let us set

ψ(m) = lim
n→∞

k̂n(m)− 1

φ(n)
, m ∈ Z,

and assume that ψ(m) 	= 0 for m 	= 0. Let also there exist a function fψ ∈ L(T)
such that

f̂ψ(m) =

{
1

ψ(m) , m 	= 0

0, m = 0,
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as moreover,

(5.1) ‖fψ − Jnfψ‖L = O(|φ(n)|).

Then for all f ∈ B and n ∈ N we have

(5.2) ‖f − Jnf‖B ≤ cK(f, |φ(n)|;B,Dφ).

Moreover, Jn is saturated with optimal order |φ(n)| and fψ belongs to its satu-
ration class.

Rema r k 5.2. 1) The limit which defines the function ψ exists in view
of Theorem 4.1. 2) In most classical applications ψ(m) = |m|κ, κ > 0. Then
the function fψ is given by (see e.g. [2, Problem 6.3.1 (iii)])

fψ(x) = 2

∞∑
m=1

m−κ cosmx.

P r o o f. (Theorem 5.1) To establish (5.2) we shall show that the hy-
potheses of Theorem A are fulfilled with D = Dφ, Φ = φ and Ψ = ψ.

Since B is continuously embedded into L(T), T ⊂ D−1
φ (B) ⊂ D−1

φ (L(T))

and hence D−1
φ (L(T)) is dense in L(T). Recall that Dφ satisfies condition (2.1)

of Theorem A. Further, by Theorem 4.1, applied for the HBS L(T), we have

D̂φη(m) = ψ(m)η̂(m), m ∈ Z, for all η ∈ D−1
φ (L(T)), which verifies (2.2) of

Theorem A.

Finally, set

�n(x) =
fψ(x)− Jnfψ(x)

φ(n)
.

Thus defined �n satisfies (2.3). Finally, taking into account (5.1) we establish
that the family {�n} also possesses property (2.4). This completes the proof of
(5.2).

Next, note that fψ 	∈ D−1
φ (B) as otherwise Theorem 4.1 would give

D̂φfψ(m) = ψ(m)f̂ψ = 1 for m 	= 0, which contradicts the Riemann-Lebesgue
lemma. Further, fψ 	∈ D−1

φ (B) yields Jnfψ 	= fψ for some n. Thus we have (3.1)
with f = fψ and Φ(n) = |φ(n)|. On the other hand, (5.2) implies (3.2) just as
in the proof of Theorem 3.6.

Similarly, we get by means of Corollary B the following criterion.

Theorem 5.3. Let B be a HBS on T and Jn be given by (1.1) with
a periodic approximate identity {kn} defined by (2.5)-(2.6), where k satisfies
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(2.10) with � ∈ L(R) such that �̂(0) 	= 0. Set φ(n) = −�̂(0)n−κ. Then for all
f ∈ B and n ∈ N we have

‖f − Jnf‖B ≤ cK(f, |φ(n)|;B,Dφ).

P r o o f. The assertion follows from Corollary B with D = Dφ. Propo-
sition 6.4 below for B = L(T) implies that T ⊆ D−1

φ (L(T)). Consequently,

D−1
φ (L(T)) is dense in L(T).

The operatorDφ satisfies condition (2.8). Further, since k̂n(m) = k̂(m/n),
we get by (2.10) that

ψ(m) = lim
n→∞

1− k̂(m/n)

φ(n)
= lim

n→∞
|m/n|κ�̂(m/n)

�̂(0)n−κ
= |m|κ

and Theorem 4.1, applied for the HBS L(T), yields (2.9). Now, Corollary B
implies the assertion of the theorem.

6. Another definition of the differential operator D

Let us point out an alternative definition of the differential operator in
the K-functional. It is constructed by means of the Fourier transform.

Definition 6.1. (cf. [2, Definitions 11.5.10 and 13.1.4] and [6, Definition
5.1]) Let B be a HBS on T and Ψ : Z → C. If for g ∈ B there exists G ∈ B
such that Ψ(m)ĝ(m) = Ĝ(m), m ∈ Z, then we set

D̃Ψg = G.

Defined in such a way, the differential operator directly satisfies (2.1)
and (2.2). As far as the upper estimate for convolution operators is concerned,
Definitions 2.1 and 6.1 give equivalent differential operators. More precisely,
there holds

Proposition 6.2 Let B be a HBS on T, {kn} be a periodic approximate
identity and φ : N → C\{0} be such that limn→∞ φ(n) = 0. Let the limit

ψ(m) = lim
n→∞

k̂n(m)− 1

φ(n)

exist for each m ∈ Z.

(i) Then for all g ∈ D−1
φ (B) we have D̃ψg = Dφg.
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(ii) Let conditions (2.3)-(2.4) be satisfied with Φ = φ and Ψ = ψ. Let also
there exist an absolute constant β such that

(6.1) ‖f‖B ≤ β‖f‖L∞ , f ∈ B ∩ L∞(T).

Then for all g ∈ D̃−1
ψ (B) we have Dφg = D̃ψg.

Above we have denoted by L∞(T) the space of the essentially bounded 2π-
periodic function with the usual sup-norm ‖ ◦ ‖L∞ .

P r o o f. (Proposition 6.2) Assertion (i) follows from (4.1).
To verify (ii) we follow a standard argument (see e.g. the proof of [2,

Theorem 11.2.6]). Let g ∈ D̃−1
ψ (B). Then there exists G ∈ B such that Ĝ = ψĝ

and by (2.3) we get(
Jng − g

φ(n)

)̂
(m) = (−�n ∗G)̂ (m), m ∈ Z.

Hence, by the uniqueness of the Fourier transform, we infer that

Jng − g

φ(n)
= −�n ∗G.

Consequently, to verify (ii) it remains to show that

(6.2) ‖�n ∗G+G‖B → 0 as n→ ∞.

Moreover, since the trigonometric polynomials in B are dense (see [7, Theorem
I.2.12]), it is sufficient to establish (6.2) only for them. To this end, we observe
that for any trigonometric polynomial τ(x) =

∑m2
m=m1

cme
imx we have

�n ∗ τ(x) + τ(x) =

m2∑
m=m1

(�̂n(m) + 1)cme
imx;

and hence by (6.1) we get for τ ∈ T ∩B
(6.3) ‖�n ∗ τ + τ‖B ≤ c max

m1≤m≤m2

|cm| max
m1≤m≤m2

|�̂n(m) + 1|.

Since �n satisfies (2.3) with Φ = φ and Ψ = ψ, we get

(6.4) lim
n→∞ �̂n(m) = −1

for all m ∈ Z such that ψ(m) 	= 0. As for those integers m for which ψ(m) = 0,
we have that k̂1(m) = 1, which in view of the Riemann-Lebesgue lemma, yields
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that these m’s are finite in number and consequently, we may assume that
�̂n(m) = −1 without loss of generality as we can correct all �n by adding to
them a single suitable trigonometric polynomial. Thus we have (6.4) for all
integers m and (6.3) implies that

(6.5) ‖�n ∗ τ + τ‖B → 0 as n→ ∞
for all τ ∈ T ∩B. This completes the proof of the proposition.

R ema r k 6.3. In [2, Propositions 6.5.3 and 12.2.4 and Problem 5.5.1
(iii)] and [4, Theorem 2.1 (i)] it has been shown that for certain HBS on T

and ψ(m) = |m|κ, κ > 0, conditions like (2.3) and (2.4) are also necessary for
assertion (ii) to hold.

For periodic approximate identities generated by a function k ∈ L(R)
assertion (ii) of the last proposition can be strengthen.

Proposition 6.4 Let B be a HBS on T and Jn be given by (1.1) with a
periodic approximate identity {kn} defined by (2.5)-(2.6), where k satisfies (2.10)
with � ∈ L(R) such that �̂(0) 	= 0. Set ψ(m) = |m|κ and φ(n) = −�̂(0)n−κ. Then
for all g ∈ D̃−1

ψ (B) we have Dφg = D̃ψg.

P r o o f. Let �n be defined by (2.6) by means of γ� ∈ L(R), γ = 1/�̂(0).
Then �̂n(m) = γ�̂(m/n), m ∈ Z. As in the proof of Proposition 6.2 (ii) we
establish that

Jng − g

φ(n)
= �n ∗G

for any g ∈ D̃−1
ψ (B) and G = D̃ψg. Moreover, we have �̂n(0) = γ�̂(0) = 1 for all

n. Hence {�n} is a periodic approximate identity and∥∥∥∥Jng − g

φ(n)
−G

∥∥∥∥
B

= ‖�n ∗G−G‖B → 0 as n→ ∞,

that is, Dφg = G.

7. Examples

In this section we shall calculate ϕ(n) = ϕ1(n) and ψ(m) for several
well-known convolution operators and hence get the explicit form of Dϕ in any
HBS on T. We also present an application of Theorem 5.1. We have checked
conditions (2.3)-(2.4) (or (2.10)) for several operators in [6, Section 5]. They
furnish examples for the application of Theorem 5.3.

E x amp l e 7.1. Let the one-sided averages be defined for f ∈ B by

Anf(x) = 2πnχ[0,1/n] ∗ f(x) = n

∫ 1/n

0
f(x− t) dt, x ∈ T.
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Above the kernel kn(t) = 2πnχ[0,1/n](t) = 2πnχ[0,1](nt) is considered on T. We
have for its Fourier transform

k̂n(m) = χ̂[0,1](m/n),

as on the right-hand side the transform is taken in the sense of L(R) functions.
Consequently,

k̂n(m) =

{ n

m
sin

m

n
− i

n

m

(
1− cos

m

n

)
, m 	= 0

1, m = 0,

and then

ϕ(n) = k̂n(1)− 1 =

(
n sin

1

n
− 1

)
− i n

(
1− cos

1

n

)
.

Therefore the optimal approximation order of An is

|ϕ(n)| ∼ 1

n
,

as moreover,

lim
n→∞nϕ(n) = − i

2
.

As for the corresponding ψ we have that

ψ(m) = lim
n→∞

1− k̂n(m)

1− k̂n(1)
= m.

Consequently, for any g ∈ D−1
ϕ (B) we have D̂ϕg(m) = mĝ(m), m ∈ Z; hence

Dϕg = −ig′.
E x amp l e 7.2. The Jackson operator is defined for f ∈ B by

Jnf(x) = jn ∗ f(x),
where

jn(t) =
3

n(2n2 + 1)

(
sin nt

2

sin t
2

)4

.

For the Fourier coefficients of jn ∈ T we have (see e.g. [ 2, p. 517])

ĵn(m) =
1

2n(2n2 + 1)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
3|m|3 − 6nm2 − 3|m|+ 4n3 + 2n, |m| ≤ n,

−|m|3 + 6nm2 − (12n2 − 1)|m|
+8n3 − 2n, n ≤ |m| ≤ 2n− 1,

0, |m| ≥ 2n − 1.
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Next, we calculate

ϕ(n) = ĵn(1)− 1 = − 3

2n2 + 1
, |ϕ(n)| ∼ 1

n2

and

ψ(m) = lim
n→∞

1− ĵn(m)

1− ĵn(1)
= lim

n→∞
−|m|3 + 2nm2 + |m|

2n
= m2.

Thus for any g ∈ D−1
ϕ (B) we have D̂ϕg(m) = m2ĝ(m), m ∈ Z; hence Dϕg =

−g′′.
E x amp l e 7.3. The Riesz typical means of the Fourier series of f ∈ B

are defined by

Rκ,nf(x) = rκ,n ∗ f(x),
where the kernel rκ,n, κ > 0, is given by

rκ,n(t) =

n∑
m=−n

(
1−

∣∣∣∣ m

n+ 1

∣∣∣∣κ) eimt.
The Fourier coefficients of rκ,n ∈ T are

r̂κ,n(m) =

⎧⎪⎨⎪⎩
1−

∣∣∣∣ m

n+ 1

∣∣∣∣κ, |m| ≤ n,

0, |m| > n.

Consequently,

ϕ(n) = − 1

(n+ 1)κ
, |ϕ(n)| ∼ 1

nκ
, and ψ(m) = |m|κ.

The last relation above implies that in this case Dϕ is the Riesz fractional
derivative of order κ.

For the Riesz means Theorem 5.1 with φ = ϕ gives for all f ∈ B and
n ∈ N

‖f −Rκ,nf‖B ≤ cK(f, n−κ;B,Dϕ).

Indeed, it only remains to verify condition (5.1), which means, in this particular
case, to establish that the family of function {ln} with Fourier coefficients

l̂n(m) =

{
1, |m| ≤ n,∣∣n+1
m

∣∣κ , |m| > n,
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is uniformly bounded in L-norm. This was verified by DeVore [3, pp. 67-68] (or
see [5, p. 68]).

E x amp l e 7.4. We shall present a periodic approximate identity {kn}
for which the limit

lim
n→∞

1− k̂n(m)

1− k̂n(1/n)

does not exist for all integers m and hence the corresponding convolution oper-
ator does not fulfil the condition that T ⊂ D−1

ϕ (B). Let k ∈ L(R) be given by
its Fourier transform

k̂(u) =

{
1− e−u−2

, u 	= 0,

1 u = 0.

Note that the function on the right-hand side above belongs to L(R), it and its
first derivative are absolutely continuous on R and its second derivative belongs
to L(R); hence it is the Fourier transform of a function k ∈ L(R) with (2.5).
Let kn be defined via (2.6). Then for ϕ and ψ we have respectively

ϕ(n) = k̂(1/n) − 1 = −e−n2

and

lim
n→∞

1− k̂(m/n)

1− k̂(1/n)
= lim

n→∞ e
n2

(
1− 1

m2

)

does not exist as a finite number for |m| > 1. Actually, for a trigonometric
polynomial τ(x) =

∑m2
m=m1

cme
imx ∈ B with a coefficient cm 	= 0 for some

|m| > 1, there holds∥∥∥∥kn ∗ τ − τ

ϕ(n)

∥∥∥∥
B

≥ 1

α
max

m1≤m≤m2

|cm|
∣∣∣∣∣ k̂n(m)− 1

ϕ(n)

∣∣∣∣∣
=

1

α
max

m1≤m≤m2

|cm| en
2
(
1− 1

m2

)
→ ∞ as n→ ∞.

Consequently, D−1
ϕ (B) does not contain trigonometric polynomials of exact de-

gree greater than 1. However, if B contains an element whose Fourier co-
efficient at m = 1 or m = −1 is not zero, the convolution operator pos-
sesses the saturation property with optimal approximation order e−n2

. In-
deed, kn satisfies the assumptions of Theorem 3.4 with a = 1. Also, for any
τ(x) = c−1e

−ix + c0 + c1e
ix ∈ B we have for all n

kn ∗ τ(x)− τ(x)

ϕ(n)
= en

2
1∑

m=−1

(1− k̂n(m))cme
imx = τ(x)− c0.
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Consequently, Dϕτ = τ − c0. And now if f ∈ B is such that either f̂(1) 	= 0

or f̂(−1) 	= 0, then the trigonometric polynomial R1,1f belongs to B and is of
exact degree 1. Therefore DϕR1,1f 	= 0. Now, Theorem 3.4 implies that Jn is

saturated with order e−n2
.

Let us also observe that for a positive integer a we have

ϕa(n) = k̂(a/n)− 1 = −e−n2/a2

and

lim
n→∞

1− k̂(m/n)

1− k̂(a/n)
=

⎧⎪⎨⎪⎩
0, |m| < a,

1, |m| = a,

∞, |m| > a.

Hence, if (6.1) holds, then Dϕaτ = 0 for any trigonometric polynomial of degree
a− 1 whereas Jnf = f for all n iff f = const. Here we have |ϕ(n)| = o(|ϕa(n)|)
for a > 1.

Note that the kernel of Example 7.4 does not satisfy the standard con-
dition [2, (12.1.1)] and hence [2, Theorem 12.1.3] is not applicable. Neither is
[6, Theorem 3.13] nor Theorem 5.1. Also, this example shows that it is really
essential for the domain of Dφ to contain a sufficiently large set of trigonometric
polynomials in order to have assertions like the one in [2, pp. 436-437].

E x amp l e 7.5. Let B 	⊆ C. Then there exists a ∈ N such that either
f̂(a) 	= 0 or f̂(−a) 	= 0 for some f ∈ B. Set

kn(x) = 1 + 2

a−1∑
m=1

cosmx+ 2

∞∑
m=a

(
1− e−(n/m)2

)
cosmx.

It is easy to prove that {kn} is a periodic approximate identity. Let Jn be the
corresponding convolution operator. As in the previous example it is verified
that Jn is saturated with order 1 − k̂n(a/n) = e−n2/a2 as Jnf = f iff f is a
trigonometric polynomial of degree a − 1. For |m| < a we have k̂n(m) = 1 for
all n and

lim
n→∞

1− k̂n(m)

1− k̂n(a)
=

⎧⎪⎨⎪⎩
0, |m| < a,

1, |m| = a,

∞, |m| > a.

Ex amp l e 7.6. An example of a convolution operator that does not
possesses the saturation property can be found in [2, pp. 476-478].
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