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Abstract

The purpose of the paper is to give an upper estimate of the rate of
the simultaneous approximation of Féjer-type operators in the L,-norm
and in a generalized Holder Lp-norm. The estimates involve moduli of
smoothness of second order. A sufficient condition for the optimal order
of approximation is established.
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1 Féjer-type operators

Let A > 0 and f: R — R be such that f(z)/(1 + 2?) is summable on R. The
Féjer-type operators are defined by (see e.g. [1, Section 62])

Fif(@) =) [ %O\ =) () dy, (L)
R
where the measurable kernel X satisfies the conditions:
a) K(z) is even,
b) X(z) is bounded on [—1,1],
¢) 22XK(z) is bounded on R,

d) [pK(x)dr=1.
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As it is known (see e.g. [1, Section 62]), if f is continuous on R, then
Fyf(z) converges to f(x) for every x € R, as the convergence is uniform on
every finite interval on the real line. It is useful to determine the rate of this
convergence. In Section 2 we estimate it in the L,-norm. These results must
have already been verified but we could not find any references and since they
have short and standard proofs we present them. In Section 3 we establish
our main result concerning estimates of the error of Féjer-type operators in
simultaneous approximation in a generalized Holder norm. There we give a
sufficient condition under which these operators approximate the function with
the generally optimal order of 1/A.

2 Simultaneous approximation by Féjer-type
operators in L,(R)

We shall consider a slight generalization of the operator F), defined above, as
we shall use the same notation.

Definition 2.1. Let for A > 0 the bounded linear operator F : L,(R) — L,(R),
1 < p < o0, be defined by (1.1), where the measurable kernel X satisfies the
conditions:

2)

K(z) is even,
b) X(z) is summable on [0, 1],

¢) 22XK(z) is bounded on [1, 00),
d) [x X(z)de=1.

Let us note that conditions a)-c) of Definition 2.1 imply that X € L;(R)
and, consequently by Young’s inequality, we get that ||F)f|l, < |X|1||f|l, for
every f € Ly(R) and A > 0, 1 < p < co. Here and in what follows we denote by
| - |l the usual Ly-norm taken on the real line. Let also W (R), r € N, denote

the Sobolev spaces on R, i.e.
Wy (R) = {f € L,(R) : f € AC""", [V € L,(R)},

where AC*®, s € Ny, denotes the space of functions whose derivatives up to order
s are absolutely continuous on R. We also set W2 (R) = Ly (R).

To estimate the error of the operator F)y, we shall use the modulus of smooth-
ness of second order of the function. Generally, for n € N the modulus of
smoothness of order n of the function f € L,(R) is defined for ¢ > 0 by

wn(f? t)P = Oiligt ||A2Lf||177

where Ay, f(z) = f(z+h/2) — f(z—h/2) and A7 f(z) = Ap (A7~ f)(2) are the
symmetric finite differences of the function f with step h.



Theorem 2.1. Let the operator Fy be defined by Definition 2.1, A > 1 and

feW](R), reNg, 1 <p<oo. Then Fxf € W] (R) and for k =0,...,r there

holds

LF Ml
A

b

A
BN = £, < ky [/\il/ wa(F,1/u)n dy +

where

1
K :/ 1% ()| dz + 4sup |22K ()|,
0

x>1

Proof. First, let us note that under the conditions imposed on the kernel X, we
have Fi f € W} (R) for every f € W] (R) and (Fyf)®) = F\ f*). Consequently,
it is sufficient to establish the assertion of the theorem only for » = 0.

Making the change of the variable © = A(x — y) and using properties a) and
d) of K, we get the representation

Fuf(@) = f(a) = [ KA f()du.
Hence by generalized Minkowski’s inequality we get

1P = Flp < [ GIIAL Sl (21)
We shall estimate the integral on the right above separately on the intervals

[0,1], [1,A] and [A, 00) (see e.g. [1, Section 62]). For the first one, in view of the
fact that wa(f,t), is non-decreasing, we have

1 1
/ K@) 1A2 ), fl, du < / 19(w)] wa(f, u/ )y du
0 0

< /0 K ()| du - wa(f,1/A), (2.2)

1 1 A
< [ ldus s [ w1/,
0 —1lJ1
Next, by property ¢) of X, we get

A

A
/ 1) 182, fllp dus < sup [u2% ()| /
! uzt L (2.3)

A
= suplK()| - 5 [ enlr. 1/

u>1

Finally, again by property c) of X and the inequality ||A? fl, < 4/ f|l,, we get

oo oo 1
[ 1RONIA 5l < 171 sup 2K [ du
A u>1 AU

1 (2.4)

= 4| £l sup [u*K(w)| - <
u>1 A



Combining (2.1)-(2.4) we get the assertion of the theorem for r = 0. O

Remark 2.1. The assertion of the theorem remains valid for A = 1 too,
as 1 flA wa(f*¥)1/y),dy is defined for A = 1 by continuity to be equal to
(,L}Q(f(k), 1)[)

Theorem 2.1 directly yields the following sufficient conditions for the ap-
proximation rate of the operators F).

Corollary 2.1. Let the operator Fy be defined by Definition 2.1. Let f € L,(R)
be such that wa(f,t), = O(t*), 0 < a < 2. Then

O(A™%) if 0<a<l,
[Exf = fllp =90 (A logA) if a=1,
o if 1<a<2.

Let us recall that generally it is not possible to approximate a function f,
no matter how smooth it is, with operators of the type F) with a rate greater
than 1/A. For example, the Féjer operator, which is defined by (1.1) with

fK(;v):z (Sin(m/mf, r eR,

™ T

has a saturation order 1/A (see e.g. [1, Section 61], [2, Ch. 11, Section 3] and
[3, Theorem 2.2]. The saturation class of the Fejer means was determined by
Alexits and Zamansky for the case of continuous 27-periodic functions. Ditzian
and Ivanov [3, Theorem 2.2] established it for a broad range of Banach spaces
including Holder spaces of 2m-periodic functions. However, if the kernel K(x)
satisfies stronger restrictions, we get higher rates of approximation. The follow-
ing theorem holds.

Theorem 2.2. Let the operator Fy be defined by (1.1) as the kernel K is of
a finite support [—(, (], it is summable on R and satisfies conditions a) and d)
of Definition 2.1. Let also A > 0 and f € W (R), r € No, 1 <p < oo. Then
Fyf e WJ(R) and for k =0,...,r there holds

)P = B < Rywa(f&), /M)y,
where

¢
kgz/o |K(z)| dx.

Proof. Now we just have

¢ ¢
IFsf — fllp < / K2, fllp du < / 19(0)] du - walf, C/\)p.



3 Simultaneous approximation by Féjer-type
operators in Holder spaces

Let w be a positive and non-decreasing function on (0, c0). We set for f € L,(R),
I1<p<oo,andneN
1A% fl

Jlpnw =sup
||pnw h>0 W(h)

and Hp,o(R) = {f € L,(R) : |flpnw < 00} Hppo(R) is a Banach space in
the generalized Holder norm

[ fllp.ne = Wfllp =+ [flpn.es

as | - |pnw is a semi-norm in Hp p, o, (R). Assuming that w(h) is bounded does
not affect Hp .o (R). More precisely, if we set @(h) = min{w(h),1}, then
Hyno®R) = Hy,o(R). What matters is whether and how fast w(h) tends
to 0 as h — 0. Moreover, if limj,_.ow(h) # 0, then H, , »(R) = L,(R), and if
there exists a sequence {h;} such that limh; = 0 and limh; "w(h;) = 0, then
f € Hp,o(R) implies f =0 for 1 < p < oo and f = const for p = oo (as it
follows from [2, Ch. 2, Proposition 7.1]).

An important example of Holder spaces Hy, ,, ., (R) are the ones with w(h) =
h®, 0 < a < n. They are also called Lipschitz spaces (see e.g [2, Ch. 2, Section
9]).

Let us observe that for m,n € N with m < n the semi-norm | - | m.e
is generally larger than the semi-norm |- |, in the sense that |f|pnw <
277 flpm,w for every f € Hp o o(R). Hence ||fllpnw < 2" ™| fllpmw and
Hymw(R) C Hypw(R). However, under certain conditions on the function w
these semi-norms, and hence the norms || - ||p,m,w and || - ||pnw are equivalent.
The following assertion holds.

Proposition 3.1. Let m,n € N as m < n. Let also w1 and ws be positive
non-decreasing functions on (0,00) such that

h™ °°
sup / wi(y) dy < oo.
nsow2(h) Ji v

Then there exists a positive constant ¢ such that for every f € Hp o, (R) there
holds

[flpmws < €[ flpnwr-
Proof. First, let us note that
wn (f, h)p
flpnw = sup
Tl =500 =)

for every f € Hpnwo(R), n € N, and a positive non-decreasing function w.
By the Marchaud inequality (see e.g. [2, Ch. 2, Theorem 8.1]), we have for
feHpnw®R)and h >0

on(fimy < e [T 4y < e flyn, [T O

h +1 ym+1




where ¢ is a positive constant, which depends on n but not on f. Hence the
assertion of the proposition follows. O

In view of the trivial relation |f|pn.w < 2" |f|p.m,w, mentioned above, the

last proposition yields the following result concerning the identity of Holder
spaces and, in particular, some Lipschitz spaces.

Corollary 3.1. Let m,n € N as m < n. If w is a positive non-decreasing
function on (0,00) such that

h /°° w(y)
sup —— dy < o0,
nsow(h) Jp ymt Y

then Hp m.ow(R) = Hp p.o(R) with equivalent norms. In particular, if w(h) = h®
with 0 < a < m, then Hp ,, (R) = Hp mo(R) with equivalent norms for every
n>m.

We now proceed to estimating the approximation rate of the operators F)
in Holder spaces. Let wy and wsy be positive non-decreasing functions on (0, co)
such that there exist constants ¢ > 0 and 0 < v < 1 so that

wi (h) < cws(h). (3.1)

This inequality implies that H, 5, o, (R) C Hp 0, (R).
Lasuriya [4, Theorem 1] proved that for any fixed f € Hoo 1,4, (R) and Ag > 1
there exists a positive constant C' such that for any A > \g we have

wi(h) |1 [ 1,
IENS = flloo1wn < C sup wz(h) lA/l wy (1/y) dy] ; (3.2)

as the quantity C' generally depends on f and also on w; and wy. This relation
enabled Lasuriya to improve estimates of the rate of convergence of the Féjer
operator in the Holder norm. However, it cannot give a sufficient condition un-
der which F) f approximates f with the generally optimal rate of approximation
1/ (see [4, Corollary 1]). In the next assertions, following Lasuriya’s approach,
we establish the analogue of (3.2) for the spaces Hp2 o (R), 1 < p < co. This
enables us to give a sufficient condition on the smoothness of the function, which
yields a rate of approximation 1/X in Hp 2, (R) as well as in H, 1 ,,(R). We also
estimate explicitly the quantity C' in terms of the functions f,w;,ws for both
Hp,l,w(R) and Hp727w(R).
Let 1 < p < oo, n,7 € N and w be a positive and non-decreasing function
n (0,00). We set W7, ,(R) ={f € Hynw(R): f e AC™™!, f") € H,, o(R)}

and W), (R) = Hp,o(R). Let us observe that if f € W, ,(R), then f® e
Hynow®),kE=0,...,7.
The following results concerning the simultaneous approximation by Féjer-

type operators in Holder spaces hold.



Theorem 3.1. Let wy and ws be positive non-decreasing functions on (0,00)
with (3. ) and the operator F be defined by Definition 2.1. Let also X > 1

and f € Wi, , (R), 1 < p < oo, r€ Ny Then Fxf € Wy, (R) and for
k=0,...,r there holds
|(F>\f)(k) _f(k)|p’2,w2
Wi (h) | 1f®]p,2 Ao B 2o ISP
< 4k; sup — p”wl/w (1/y)d p’wl P ,
— 1h>%¢d2(h) [ A—1 1 1 ( /y) y 2\

where ky is given in Theorem 2.1. If also infocp<i h=2wi(h) > 0, then for
k=0,...,r there holds

|(F>\f)(k) - f(k)|p,2,w2

w (h C.owi(h)\7T
<ty sup S0 1y (i 200) ]|f<k>pzwlA/ "(1/y)d

>0 wa(h)
Remark 3.1. Recall that if info<pn<1 h=2wi(h) = 0, i.e. there exists a sequence
{h;} such that limh; = 0 and lim h; %w;(h;) = 0, then f = 0 for p < oo and
f = const for p = oo and the assertions of the theorem are trivial.

Proof of Theorem 3.1. To prove the first assertion of the theorem, it is sufficient

to consider it only for r = 0.
Since A (F\f — f) = FA(A%Zf) — A% f, we get by Theorem 2.1 with r = 0

that for every h > 0
Lo [
- AZf1 N=hJ 1P |
A71/1 w2(Ay S, 1/ y)pdy + =3

Further, since wa (A f,t), < 4]|A% fllp, wa(AZ £, 1), < dws(f, 1), and [|AZf], <
4| fllp, we get for every h >0

IARENS = Pllp < Fa

A
IA2(FAf — Pll, < k1 1A £ [4 / W1 ) dy +

1—ry
< dkrw] (W) [f1} 2.0 [J;'pffl/l w1 (1) dy + HfIIAp ]

Hence the first assertion of the theorem follows. To derive the second one from
it, it is sufficient to observe that for A > 1 we have

. Cw ()T 1
- > - (v=1)
o1, e Wy = <o<“ﬁf<1 h2 /\—1/1 ydy

1—y

. wl(h) 1
> _
= (ofﬁil h2 ) %

as the second estimate is verified by direct calculations. O

(4||f|p)1‘”]
A




Combining Theorem 2.1 and Theorem 3.1 we get the following estimate of
the error of F) in the generalized Holder norm.

Theorem 3.2. Let wy and ws be positive non-decreasing functions on (0,00)
with (3.1) and infocp<i h2wi(h) > 0. Let also the operator F\ be defined
by Definition 2.1, X > 1 and f € Wy, , (R), 1 < p < oo, r € Ng. Then

Fxfe Wy, (R) and for k =0,...,r there holds

Y v—1
(k) _ (k) < wi (M) | . wi(h)
[(FXf) Fp2we < {1 + 4 sup R U

h>0 W2(h)

f(k) ,2,w A —
X H )\ !pl - w:IL 7(1/y) dy7
1

where ki is given in Theorem 2.1.

Proof. As in the proof of Theorem 3.1 we derive from Theorem 2.1 the estimate

ICENH® = 72,

: w1 (h) %1 k 1 Ao
< Y (k) _ v
<o (it ) 1O a0 1 [0 an
where k = 0,...,r. This estimate and the second one in Theorem 3.1 imply the
assertion of the theorem. O

In particular, we have in the case of Lipschitz spaces the following direct
estimates of the error of F).

Corollary 3.2. Let the operator Fy be defined by Definition 2.1. Let also
wi(h) = h® and wa(h) = B? with 0 < B < a < 2. For f € Hy2., (R),
1 <p< oo, we have

O (A=) if a—p<1,

lp.2,ws = ¢ O ()\*1 log )\) if a—pB=1,
O (A1) if a—p>1.

IENf— f

Remark 3.2. Let wy and we be positive non-decreasing functions on (0, c0)
with (3.1) and infocp<i h™'wi(h) > 0. Let A > 1 and f € W), (R), 1 <

p < oo, r € Ny. Following the methods used in the proofs of Theorem 2.1 and
Theorem 3.1 one can establish for £ =0, ..., r the following estimates

ICENH® = 72,

. wi(h -1 1 A
oy (e Ny L [ eamay
h o1/,

0<h<1

< k3




and

((EAN® = F 10

w] (R _owi(h)\ I
< 2k sup L )[H (oint, ) ]If(’“) w17 [ @l W)
hS 1

h>0 w2(h>

where )
ks = 2/ K ()| da + dsup [+2K(2)|.
0 z>1

Combining them we get the analogue of Theorem 3.2 in Hj 1., (R).

The estimates presented in the last remark do not give a sufficient condition
on the structural properties of the function in terms of the space Hp 1. (R),
which yields an order of approximation of 1/ in the norm of Hy 1 ,(R). How-
ever, such a condition can be formulated by means of the norm of the space
H, 2., (R). The result below extends [4, Corollary 1] and also gives a sufficient
condition under which F) achieves its optimal order of approximation in the

norm | - [|p,1,.-

Corollary 3.3. Let the operator Fy be defined by Definition 2.1. Let also
wi(h) = h® and wa(h) = hP with0 < B3 <1 and B < a < 2. For f € H, 2w (R),
1 <p < o0, we have

O (A=) if a—-p<1,

lp1w: =9 O (A tlog)) if a—B=1,
o () if a-p>1.

IExf = f

Proof. For 0 < 8 < 1 the result follows from Corollary 3.1 with w(h) = wa(h)
and Corollary 3.2.

Let 3 = 1. Since f € Hp 2., (R), then wa(f,h), = O(h%) as a > 1. This
implies that f € W) (R) and wy(f’,h), = O(h*"!) (see e.g. [2, Ch. 6, Theorem
3.1]). Hence wa(f’,h), = O(h®~1) and by Corollary 2.1 we get

O (A7) if a<2
F /_ / — ’
IS = £l {0 (A\llog)) if a=2.
Thus, in view of [|A(Exf — fllp < ANENS = ) llp = RIIFAS — flp, we get

11—« s
plws = {O (/\ ) if a<?, (3.3)

F _
E5f = f O(Allog)) if a=2.
=

On the other hand, since wa(f,h), = O(h*) with a > 1, we get by Corollary
2.1 the estimate ||F)\f — f|l, = O(A™"), which together with (3.3) implies the
assertion of the corollary for 8 = 1. The proof is completed. O
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