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Characterizations of Weighted K-Functionals
and Their Application

Borislav R. Draganov and Kamen G. Ivanov

We present a characterization of a large class of weighted K-functionals
in terms of the classical fixed step moduli of smoothness and proper
modifications of the underlying function. It gives new estimates of the
error of various approximation processes.

1. The method

The Peetre K-functional turned out to be a very useful tool in approximation
theory in estimating the error. Generally the K-functional is of the form

K(f, t) = K(f, t;X,Y,D) = inf
{
‖f −g‖X + t‖Dg‖X : g ∈ Y ∩D−1(X)

}
, (1)

where X is a Banach space, D is a differential operator of the form

Dg(x) =
r∑

k=0

ϕk(x)g(k)(x), ϕk ∈ X, k = 0, . . . , r, ϕr > 0 a. e.

with a given r ∈ N, D−1(X) = {g ∈ X : Dg ∈ X} and Y ∩ D−1(X) is usually
a dense subspace of X. But the class of functions f for which we can calculate
exactly the infimum in (1) for any t ∈ (0, 1] is quite narrow. That is why it is
useful to have other function characteristics – moduli of smoothness – which
can be calculated for wider class of functions and are equivalent to the K-
functional. Up to now several definitions of moduli of smoothness have been
introduced: Ivanov [8] and [9], Ditzian and Totik [2], Ky [12], etc.

Let I be an interval and let w and ϕ be weights on I as follows

I = [0, 1] w(x) = xγ0(1− x)γ1 ϕ(x) = xλ0(1− x)λ1

I = R+ w(x) = xγ0(x + 1)γ∞−γ0 ϕ(x) = xλ0(x + 1)λ∞−λ0

I = R w(x) =


|x|γ−∞ , x < −1,

1, −1 ≤ x ≤ 1,

xγ+∞ , x > 1.

ϕ(x) =


|x|λ−∞ , x < −1,

1, −1 ≤ x ≤ 1,

xλ+∞ , x > 1.
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The γ’s and the λ’s above are arbitrary real numbers.
We denote D = d

dx and Lp(w)(I) =
{
f : wf ∈ Lp(I)

}
. We shall present

characterizations of the weighted K-functional

K(f, tr;Lp(w)(I), ACr−1
loc , ϕrDr)

= inf
{
‖w(f − g)‖p(I) + tr‖wϕrg(r)‖p(I) : g ∈ ACr−1

loc

}
, (2)

by the classical fixed step moduli of smoothness as the latter are taken not on
the function f itself but on a certain modification of it. These characterizations
will be valid not only for the weights w and ϕ listed in the table but for any
other weights w̃ and ϕ̃ equivalent to them on I. For treatment of weights with
more general asymptotic at the end-points of the domain I see Section 6 of [4].

Since a long time mathematicians have been using the transform f ◦ cos to
establish a connection between the best algebraic and the best trigonometric
approximations. In 1993 Mastroianni and Vértesi (see [13]) showed in fact that

K(f, t;C[−1, 1], ACloc, ϕD) ∼ ω(f ◦ cos, t)∞[0,π],

where ϕ(x) =
√

1− x2 and as usual ψ1(F, t) ∼ ψ2(F, t) means that the ratio of
the functions ψ1 and ψ2 is bounded between two positive constants independent
of F and t.

We shall give a characterization of this type for the K-functionals (2),
namely we shall construct a linear bounded operator A : Lp(w)(I) → Lp(I ′),
where I ′ is an interval, such that

K(f, tr;Lp(w)(I), ACr−1
loc , ϕrDr) ∼ ωr(Af, t)p(I′).

It turns out that a set of several simple relations on the linear operator
A, which maps the Banach space X1 into the Banach space X2, provides the
equivalence

K(f, t;X1, Y1, D1) ∼ K(Af, t;X2, Y2, D2). (3)

We have [5]

Theorem 1. If there exists a linear operator B : X2 → X1, related to
A : X1 → X2, and both operators satisfy the conditions:

(a) ‖Af‖X2 ≤ C‖f‖X1 for any f ∈ X1;

(b) ‖D2Af‖X2 ≤ C‖D1f‖X1 for any f ∈ Y1 ∩D−1
1 (X1);

(c) ‖BF‖X1 ≤ C‖F‖X2 for any F ∈ X2;

(d) ‖D1BF‖X1 ≤ C‖D2F‖X2 for any F ∈ Y2 ∩D−1
2 (X2);

(e) A(Y1 ∩D−1
1 (X1)) ⊆ Y2 ∩D−1

2 (X2);

(f) B(Y2 ∩D−1
2 (X2)) ⊆ Y1 ∩D−1

1 (X1);
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(g) f − BAf ∈ Y1 ∩ kerD1 for any f ∈ X1;

(h) F −ABF ∈ Y2 ∩ kerD2 for any F ∈ X2.

Then

K(f, t;X1, Y1, D1) ∼ K(Af, t;X2, Y2, D2)

and

K(F, t;X2, Y2, D2) ∼ K(BF, t;X1, Y1, D1).

Remark 1. In some cases we can take B = A−1(see[4]) but there are sit-
uations in which this is not possible and we need the more general assertion
above.

Now, if one of the K-functionals above is characterized by a modulus of
smoothness, we get immediately a characterization of the other too. In par-
ticular, if K(F, t;X2, Y2, D2) is the classical unweighted K-functional, that is,
X2 = Lp(I), Y2 = ACr−1

loc and D2 = Dr = dr

dxr , we get

K(f, tr;X1, Y1, D1) ∼ ωr(Af, t)p(I). (4)

In order that (4) to be effective for computations the operator A must have
an explicit and simple form, which is easy to be calculate for a given f . In
some cases we get more simple linear operators if we separate the singularities
of the weights w and ϕ by splitting the interval I beforehand. For example, if
I = [0, 1] and 0 < a < b < 1, we have

K(f, tr;Lp(χ
γ0
0 χ

γ1
1 )[0, 1], ACr−1

loc , χrλ0
0 χrλ1

1 Dr)

∼ K(f, tr;Lp(χ
γ0
0 )[0, b], ACr−1

loc , χrλ0
0 Dr)

+K(f, tr;Lp(χ
γ1
1 )[a, 1], ACr−1

loc , χrλ1
1 Dr),

(5)

where we have put χc(x) = |x− c|; and similarly for I = R+ and I = R.

2. A construction of the operator A

In many cases an operator which satisfies the conditions of Theorem 1 can be
constructed on the basis of the condition

D2(Ag) = D1g for g ∈ Y1 ∩D−1
1 (X1).

In this way we got the A and B-operators presented in [4]. More precisely,
first let us put

αr,k(ρ) =
(−1)k

(r − 1)!

(
r − 1
k − 1

) r−1∏
ν=0

(ρ+ r − k − ν)
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and

βr,k(σ) =
(−1)r−k

(r − 2)!

(
r − 2
k − 2

) r−1∏
i=1

(k − 1− iσ).

Next, as we have shown in [4], the bounded linear operator A0(γ0; ξ) :
Lp(χ

γ0
0 χ

γ1
1 )[0, 1] → Lp(χ

γ1
1 )[0, 1], γ0, γ1 > −1/p, ξ ∈ (0, 1), defined by

(A0(γ0; ξ)f)(x) = xγ0f(x) +
r∑

k=1

αr,k(γ0)xk−1

∫ x

ξ

y−k+γ0f(y)dy

possesses the property

(A0(γ0; ξ)g)(r)(x) = xγ0g(r)(x) a.e.

for any g ∈ ACr−1
loc . Thus A0 helps us clear the weight χγ0

0 , common to
both terms of the K-functional. To clear the singularity at the point 0 in
the weight ϕ for λ0 < 1 we can use the bounded linear operator B0(σ; ξ) :
Lp(χ

γ0−(γ0+1/p)λ0
0 χγ1

1 )[0, 1] → Lp(χ
γ0
0 χ

γ1
1 )[0, 1], γ0 > −1− 1/p and γ1 > −1/p,

defined by

(B0(σ; ξ)f)(x) = f(xσ) +
r∑

k=2

βr,k(σ)xk−1

∫ x

ξ

y−kf(yσ) dy, σ =
1

1− λ0
.

It possesses the property

(B0(σ; ξ)g)(r)(x) = σr(xσ)rλg(r)(xσ) a.e.

for any g ∈ ACr−1
loc . The transform x 7→ 1 − x gives the modifications of A0

and B0 through which we can treat the singularities at 1 of the weights w and
ϕ (with λ1 < 1):

(A1(ρ; ξ)f)(x) = (1− x)ρf(x)−
r∑

k=1

αr,k(ρ)(1− x)k−1

∫ x

ξ

(1− y)−k+ρf(y)dy,

and

(B1(σ; ξ)f)(x) = f(1− (1− x)σ)

−
r∑

k=2

βr,k(σ)(1− x)k−1

∫ x

ξ

(1− y)−kf(1− (1− y)σ) dy.

It is worthy to note that these operators treat the singularities at the ends of
the interval separately.

The operators A0 and B0 can be used to clear from w and ϕ (with λ0 < 1)
respectively weights of the type χα

0 on the interval [0,∞) too. To treat only
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the singularity at infinity one can use respectively for w and ϕ (with λ∞ < 1)
the linear operators

(A∞(ρ; ξ)f)(x) = (x+ 1)ρf(x) +
r∑

k=1

αr,k(ρ)(x+ 1)k−1

∫ x

ξ

(y + 1)−k+ρf(y)dy

and

(B∞(σ; ξ)f)(x) = f((x+ 1)σ − 1)

+
r∑

k=2

βr,k(σ)(x+ 1)k−1

∫ x

ξ

(y + 1)−kf((y + 1)σ − 1) dy, σ > 0.

The B-operators, presented so far, clear the singularity in the weight ϕ if the
exponent λ is less that 1. To settle the case λ0 > 1 on a finite interval (similarly
on a semi-infinite) we use the operator

(B̃0(σ; ξ)f)(x) = f((x+ 1)σ)

+
r∑

k=2

βr,k(σ)(x+ 1)k−1

∫ x

ξ

(y + 1)−kf((y + 1)σ) dy, x ∈ [0,∞), σ < 0.

Above σ = 1/(1 − λ) is negative and to a function f defined on the finite
interval (0, 1] we relate a function defined on the semi-infinite interval [0,∞).
The case λ = 1 is essentially different.

The last operators also possess properties similar to those of A0 and B0.

3. A characterization of the K-functional

Now we shall present a characterization of the K-functional (2) by the classical
fixed step modulus of smoothness in several important for the applications
cases. Here we shall consider cases when λ’s 6= 1. More results of this kind can
be found in [4] and will be given in [5] and another forthcoming paper. Several
results on the case λ’s = 1 are presented in [6] in this volume.

3.1. The finite interval I = [0, 1] and λ0, λ1 < 1

Theorem 2. Let r ∈ N, 1 ≤ p ≤ ∞, λ0, λ1 ∈ (−∞, 1). For p < ∞ we
assume that γ0 6= 1 − r − 1/p, 2 − r − 1/p, . . . ,−1/p and γ1 > −1/p or vice
versa. For p = ∞ we assume that γ0 = γ1 = 0. Set

A = B1(σ1; ξ)B0(σ0; ξ)A1(ρ1; ξ)A0(ρ0; ξ),

σ0 =
1

1− λ0
, σ1 =

1
1− λ1

, ρ0 = γ0 +
λ0

p
, ρ1 = γ1 +

λ1

p
.

Then
K(f, tr;Lp(w)[0, 1], ACr−1

loc , ϕrDr) ∼ ωr(Af, t)p[0,1].
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3.2. The semi-infinite interval I = [0,∞) and λ0, λ∞ < 1

Theorem 3. Let r ∈ N, 1 ≤ p ≤ ∞, λ0, λ∞ ∈ (−∞, 1). For p < ∞ we
assume that γ0 > −1/p and γ∞ 6= 1−r−1/p, 2−r−1/p, . . . ,−1/p. For p = ∞
we assume that γ0 = γ∞ = 0. Set

A = A0(ρ′0;∞)B0(σ0;∞)B∞(σ∞;∞)A∞(ρ∞;∞),

σ0 =
1

1− λ0
, σ∞ =

1− λ0

1− λ∞
,

ρ′0 = (γ0 +
1
p
)σ0 −

1
p
, ρ∞ = γ∞ − γ0 + 1/p

σ∞
+

1
p
.

Then
K(f, tr;Lp(w)[0,∞), ACr−1

loc , ϕrDr) ∼ ωr(Af, t)p[0,∞).

3.3. The finite interval I = [0, 1] and λ0 > 1, λ1 < 1

Theorem 4. Let r ∈ N, 1 ≤ p ≤ ∞, λ0 ∈ (1,∞), λ1 ∈ (−∞, 1). For
p <∞ we assume that γ0 6= 1− r − 1/p, 2− r − 1/p, . . . ,−1/p and γ1 > −1/p
or vice versa. For p = ∞ we assume that γ0 = γ1 = 0. Set

A = A∞(ρ′p;∞)B̃0(σ0;∞)B1(σ1; ξ)A1(ρ1; ξ)A0(ρ0; ξ),

σ0 =
1

1− λ0
, σ1 =

1
1− λ1

,

ρ′p = −p+ 2
2p

, ρ0 = γ0 +
1− λ0

2
+

1
p
, ρ1 = γ1 +

λ1

p
.

For p = ∞ the definition of A reduces to A = B̃0(σ0;∞)B1(σ1; ξ). Then

K(f, tr;Lp(w)[0, 1], ACr−1
loc , ϕrDr) ∼ ωr(Af, t)p[0,∞).

When we reverse the restrictions on γ1 and γ0 in Theorems 2 and 4 we may
get a problem with the boundedness of A0. But in this case there is no need to
change the order of the operators A1 and A0 because of their commutativity
proved in Proposition 5.1 in [4]. The reversing of the restrictions on γ1 and γ0

does not affect the B-operators. In Theorem 3 one can reverse the restrictions
on γ0 and γ∞ with a proper modification of the definition of A.

To get a characterization for any γ’s 6= 1− r − 1/p, 2− r − 1/p, . . . ,−1/p,
1 ≤ p <∞, we can separate the singularities at the end-points applying formula
(5). Note that the case when w and ϕ are equal to 1 at one of the end-points
of the interval is always included in Theorems 2, 3 and 4. The K-functional
of functions, defined on the whole real axis, can also be characterized using
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formula (5) and arriving at two K-functionals of functions defined on semi-
infinite intervals.

The K-functional (2) for γ = 1 − r − 1/p, 2 − r − 1/p, . . . ,−1 − 1/p,
1 ≤ p ≤ ∞, can be reduced to the one for γ = −1/p through an A-operator.
We shall consider the cases γ = 1− r− 1/p, 2− r− 1/p, . . . ,−1/p, 1 ≤ p <∞,
and γ 6= 1− r, 2− r, . . . , 0, p = ∞, in a forthcoming paper.

The values 1 − r − 1/p, 2 − r − 1/p, . . . ,−1/p of the exponent γ0 (or γ1,
or γ∞) are omitted for p < ∞ because the quasi-inverse operators of A0 (see
B in Theorem 1) are unbounded for these values. Nevertheless this case can
be settled applying the same circle of ideas but varying the construction of the
operator. For example, if 1 ≤ p <∞ and α, β ≤ 1− r − 1/p we have

K(f, t;Lp(χα
0 )[0, 1], ACr−1

loc , Dr) ∼ K(χα−β
0 f, t;Lp(χ

β
0 )[0, 1], ACr−1

loc , Dr) (6)

and hence for every γ there exists a linear operator A such that

K(f, tr;Lp(χ
γ
0)[0, 1], ACr−1

loc , Dr) ∼ ωr(Af, t)p[0,1].

For p = ∞ and γ 6= 1 − r, 2 − r, . . . , 0 there does not exist an operator
A : C(χγ

0)[0, 1] → C[0, 1] such that relation (4) holds for every f ∈ C(χγ
0)[0, 1].

The counter-example is given by the function f(x) = x−γ 6∈ πr−1. In fact for
every f ∈ C(χγ

0)[0, 1] such that xγf(x) does not tend to 0 when t → 0 + 0 we
have

K(f, tr;C(χγ
0)[0, 1], ACr−1

loc , Dr) 6→ 0, t→ 0 + 0.

For the set C0(χ
γ
0)[0, 1] = {f ∈ C(χγ

0)[0, 1] : limx→0+0 x
γf(x) = 0} we can

construct a bounded linear operator A such that

K(f, tr;C(χγ
0)[0, 1], ACr−1

loc , Dr) ∼ ωr(Af, t)∞[0,1] for every f ∈ C0(χ
γ
0)[0, 1].

Finally, let us mention that in each of the intervals (−∞, 1− r− 1/p), (1−
r−1/p, 2−r−1/p), . . . , (−1/p,∞) the operator A0 has a different quasi-inverse
operator.

4. The role of the integral summands

The operators A consist of a leading term and several additional terms. The
leading term is obtained from the function f by a proper change of the variable
and multiplication by a weight. The additional terms are anti-derivatives of
the leading term multiplied by low degree polynomials. So we call them “inte-
gral summands”. The smoothness of the integral summands is higher than the
smoothness of the leading term inside I. Near the end-points of the interval
both parts may have approximately one and the same smoothness. As a con-
sequence, the modulus of smoothness of Af may deviate (in both directions)
with logarithmic factors from the same modulus taken on the leading term. In
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other cases the rates of convergence may differ a lot more. We illustrate this
property with the following examples.

Consider I = [0, 1] with ϕ = χλ
0 , λ < 1, w = χγ

0 , γ ∈ R and r = 2.
According to Theorem 2 the operator

(Af)(x) = xρf(xσ) +
∫ x

1

[(ρ− 1)(σ + ρ− 1)xyρ−2 − ρ(σ + ρ)yρ−1]f(yσ) dy

with σ = 1/(1− λ), ρ = σ(γ + 1/p)− 1/p can be used in the characterization

K(f, t2;Lp(w)[0, 1], AC1
loc, ϕ

2D2) ∼ ω2(Af, t)p[0,1],

valid for γ 6= −1− 1/p,−1/p if p <∞ or for γ = 0 (and γ = −1) if p = ∞.
The leading term of Af is A∗f = χρ

0(f ◦ χσ
0 ). Let us compare for different

f ’s the rates of convergence of ω2(Af, t)p and ω2(A∗f, t)p for 1 ≤ p ≤ ∞ and
some ranges for λ and γ.

Set f1(x) = | log x/2|α, α ∈ R. For α 6= 0 we have

ω2(Af1, t)p ∼ tρ+1/p| log t|α−1 if 0 < γ + 1/p < 2/σ,

ω2(A∗f1, t)p ∼ tρ+1/p| log t|α if 0 < γ + 1/p < 2/σ, ρ 6= 0, 1.

For α = 0 we have ω2(Af1, t)p = 0 for all values of γ, λ and p, while

ω2(A∗f1, t)p ∼ tρ+1/p if 0 < γ + 1/p < 2/σ, ρ 6= 0, 1.

Set f2(x) = x| log x/2|α, α ∈ R. For α 6= 0 we have

ω2(Af2, t)p ∼ tρ+σ+1/p| log t|α−1 if 0 < γ + 1 + 1/p < 2/σ,

ω2(A∗f2, t)p ∼ tρ+σ+1/p| log t|α if 0 < γ + 1 + 1/p < 2/σ, ρ+ σ 6= 0, 1.

For α = 0 we have ω2(Af2, t)p = 0 for all values of γ, λ and p and

ω2(A∗f2, t)p ∼ tρ+σ+1/p if 0 < γ + 1 + 1/p < 2/σ, ρ+ σ 6= 0, 1.

Set f3(x) = x−ρ/σ| log x/2|α, α ∈ R. For ρ 6= 0 and ρ+ σ 6= 0 we have

ω2(Af3, t)p ∼ t1/p| log t|α if p <∞,

ω2(A∗f3, t)p ∼

{
t1/p| log t|α−1, p <∞, α 6= 0;
0, α = 0.

Set f4(x) = x(1−ρ)/σ| log x/2|α, α ∈ R. For ρ 6= 1 and ρ+ σ 6= 1 we have

ω2(Af4, t)p ∼ t1+1/p| log t|α if p > 1,

ω2(A∗f4, t)p ∼

{
t1+1/p| log t|α−1, p > 1, α 6= 0;
0, α = 0.
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Let us emphasize that ω2(Af, t)p and ω2(A∗f, t)p have different rates of
convergence even for small orders and not only for orders close to the saturation
as in the Marchaud type inequalities.

According to the examples above one cannot expect in general close be-
haviour between the moduli of Af and A∗f . But for some ranges of the pa-
rameters there is such kind of relation. One example is equivalence (6) above.
Other examples are given in Ditzian and Totik [3], where relations between
the weighted K-functional (2) and the weighted modulus of smoothness with
unvarying step for 1 ≤ p <∞ are established. For example, one of their results
implies that for 0 ≤ λ < 1, σ = 1/(1− λ) the following equivalence is valid for
every f ∈ Lp(χ

γ
0)(I)

K(f ◦ χσ
0 , t

r;Lp(χ
γσ+(σ−1)/p
0 )(I), ACr−1

loc , Dr) + tr‖χγσ+(σ−1)/p
0 (f ◦ χσ

0 )‖p

∼ K(f, tr;Lp(χ
γ
0)(I), ACr−1

loc , χrλ
0 Dr) + tr‖χγ

0f‖p.

The above equivalence is true when γ is bigger than a number depending on
the other parameters p, r, λ and not valid otherwise. So we can clear the weight
ϕ = χλ

0 , preserving the O-order of the K-functional, replacing the function f
by its simple modification f ◦ χσ

0 and the weight w = χγ
0 by another.

5. Application

The approximation error of many operators has already been characterized by
an appropriate weighted K-functional (or equivalent to it weighted modulus
of smoothness). Based on these results, the error can be estimated by the
classical fixed step modulus of smoothness, taken not on the function but on
a certain linear transform of it. This linear transform can be constructed by
the operators A presented so far. Below we give a list of some well-known
operators, which have been studied extensively.

• The best weighted algebraic approximation in Lp(w)[0, 1], 1 ≤ p ≤ ∞
(see [2]): λ0 = λ1 = 1/2, r ∈ N;

• The Bernstein operator (see [11] and [14]): I = [0, 1], λ0 = λ1 = 1/2,
r = 2;

• The Kantorovich and the Durrmeyer operators (see [1], [7] and [10]):
I = [0, 1], λ0 = λ1 = 1/2, r = 2, different kind of differential operator;

• The Szász-Mirakjan operator (see [14]): I = [0,∞), λ0 = λ∞ = 1/2,
r = 2;

• The Baskakov operator (see [14]): I = [0,∞), λ0 = 1/2, λ∞ = 1, r = 2;

• The Gamma and the Post-Widder operators (see [6]): I = [0,∞), λ0 =
λ∞ = 1, r = 2.
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