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Abstract

We present a characterization of the approximation errors of the Post-
Widder and the Gamma operators in Lp(0,∞), 1 ≤ p ≤ ∞, with a weight
xγ0(1 + x)γ∞−γ0 with arbitrary real γ0, γ∞. Two types of characteristics
are used – weighted K-functionals of the approximated function itself and
the classical fixed step moduli of smoothness taken on simple modifications
of it.
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1 Introduction

The Post-Widder operator is given by

(Psf)(x) =
1

Γ(s)

∫ ∞

0

f
(xv
s

)
e−vvs dv

v
(1.1)

and the Gamma operator is given by

(Gsf)(x) =
1

Γ(s+ 1)

∫ ∞

0

f
(xs
v

)
e−vvs+1 dv

v
. (1.2)

Here f is a measurable function defined on (0,∞) and satisfies mild growth
conditions at 0 and at ∞, Γ denotes as usual the Gamma function and s is a
positive real parameter.
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University.
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For real α we denote the power function by χα(x) = xα for x > 0. For real
γ0, γ∞ we denote the weight we are going to consider in this article by

w(x) = w(γ0, γ∞;x) =

{
xγ0 if 0 < x ≤ 1;
xγ∞ if 1 ≤ x <∞.

(1.3)

For r ∈ N, 1 ≤ p ≤ ∞ and D = d
dx we consider the weighted K-functionals:

Kr
w(f, tr)p = K(f, tr;Lp(w)(0,∞), ACr−1

loc , χrDr)

= inf
{
‖w(f − g)‖p + tr‖wχrDrg‖p : g ∈ ACr−1

loc (0,∞)
}
, (1.4)

defined for every f ∈ πr−1 + Lp(w)(0,∞) and t > 0. ACk
loc(a, b) denotes the

set {g : g, g′, . . . , g(k) ∈ AC[ā, b̄] ∀a < ā < b̄ < b} and AC[ā, b̄] is the set
of the absolutely continuous functions on [ā, b̄]. Above and in what follows
L∞(w)(0,∞) can be replaced by the spaces C(w)(0,∞) = {f : wf ∈ C(0,∞)},
where C(a, b) is the space of all continuous functions bounded on (a, b). When
the function g ∈ ACr−1

loc (0,∞) in (1.4) is such that either f − g /∈ Lp(w)(0,∞)
or χrDrg /∈ Lp(w)(0,∞) we assume that ‖w(f − g)‖p + tr‖wχrDrg‖p = +∞.
The Lp norm is assumed to be taken on (0,∞) when no interval is indicated in
its notation.

The following spaces of algebraic polynomials will be considered. Let i, j be
integers. We set πi,j = {cixi + · · · + cjx

j : ck ∈ R} if 0 ≤ i ≤ j and πi,j = {0}
if j < i. For the space of all algebraic polynomials of degree k ∈ N0 = N ∪ {0},
denoted as usual by πk, we have πk = π0,k. Accordingly, we set πk = {0} for
negative integers k.

In [8] we have established for f ∈ Lp(w)(0,∞), 1 ≤ p ≤ ∞ and a weight of
the type w(x) = χγ (i.e. γ0 = γ∞ = γ) the equivalence

‖w(f − Psf)‖p ∼ ‖w(f −Gsf)‖p ∼ K2
w(f, s−1)p, (1.5)

which contains a strong converse theorem of type A (in the terminology of [2]).
Also in [8] the K-functional on the right-hand side of (1.5) was characterized in
the terms of the classical fixed-step moduli of smoothness.

By Ψ(f, t) ∼ Θ(f, t) we mean that there exists a positive constant c such
that c−1Θ(f, t) ≤ Ψ(f, t) ≤ cΘ(f, t) for all f and t under consideration. In
the paper we denote by c positive numbers independent of the functions f , the
parameter t of the K-functional and the parameter s of the operators. The
numbers c may differ at each occurrence. Whenever necessary to indicate con-
stants, which preserve their values throughout the article, we use the notations
M,M1,M2, N,N2. They will not depend on any of the parameters and in this
sense they will be absolute constants.

Earlier contributions related to the inequalities in (1.5) (in the case γ0 =
γ∞ = γ) are summarized in [6]. There are only few results in the case γ0 6= γ∞.
The book of Ditzian and Totik [3] contains the direct estimate for weights (1.3)
with arbitrary real exponents γ0, γ∞. The converse results for the same weights
are given as a statement for the equivalent rates of convergence in terms of
weighted Ditzian-Totik moduli (hence weighted K-functionals).
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One of the main results in the paper is a strong converse theorem of type A
for the Post-Widder and the Gamma operators for a weight (1.3) with arbitrary
real exponents γ0, γ∞. Let us note that the strong converse estimates of type
A are optimal. Here we extend the research in [8], where, as we mentioned, the
case γ0 = γ∞ is considered. The extension is not trivial and requires a new
idea because the strong converse inequalities of type A heavily rely on precise
determination of the constants in some inequalities connected with the operators
(see Section 2).

Theorem 1.1. There are positive numbers N,M such that for every γ0, γ∞ ∈
R, s ≥ N(γ2

0 + γ2
∞ + 1), 1 ≤ p ≤ ∞ and f ∈ π1 + Lp(w)(0,∞) we have

‖w(f − Psf)‖p ≤
(

2 +M
|γ0 − γ∞|√

s
+M

γ2
0 + γ2

∞ + 1
s

)
K2

w

(
f,

1
4s

)
p

(1.6)

and

K2
w

(
f,

1
4s

)
p

≤
(
κ+M

|γ0 − γ∞|√
s

+M
γ2
0 + γ2

∞ + 1
s

)
‖w(f − Psf)‖p (1.7)

with

κ =
21− 4

√
2

8− 2
√

2
= 2.966824...

The same inequalities are true if Ps is replaced by Gs.

The direct inequality (1.6) is also proved in [3], but with an essentially bigger
constant. The inverse inequality (1.7) is new for γ0 6= γ∞. It is established with
a very small constant κ. Thus, the ratio ‖w(f − Psf)‖p /K2

w(f, (4s)−1)p is
bounded between two numbers with ratio less than 6 when s is big enough!
Note that Theorem 1.1 in the case γ0 = γ∞ reduces to Theorem 1.1 from [8].

The relation w(x) ≤ cw̄(x) for every x ∈ (0,∞) implies the inequalities
‖w(f − Psf)‖p ≤ c‖w̄(f − Psf)‖p and Kr

w (f, t)p ≤ cKr
w̄ (f, t)p (with the same

constant c). Hence Theorem 1.1 remains true (up to the value of the constants)
if the weight (1.3) is replaced by any equivalent on (0,∞) weight, for example
by

w(x) = w(γ0, γ∞;x) = xγ0(1 + x)γ∞−γ0 . (1.8)

The latter is more convenient for characterizing the weighted K-functionals with
the classical moduli of smoothness (see Theorem 1.2 below).

Let us observe that in the case γ0 < γ∞ we have w = max{χγ0 , χγ∞} and
hence (1.6) and (1.7) easily follow from (1.5) (with twice bigger constants) be-
cause of w ≤ χγ0 +χγ∞ ≤ 2w. It does not seem that such a simple technique will
work in the case γ0 > γ∞ when w = min{χγ0 , χγ∞}. The approach developed in
Section 2 barely distinguishes between these two cases and provides constants
which differ only in the remainder term from those obtained for w = χγ (i.e.
γ0 = γ∞ = γ) in [8].

The K-functional (1.4) is characterized in [3, Chapter 6] by the weighted
Ditzian-Totik moduli of smoothness. But it turns out that Kr

w(f, tr)p can also
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be characterized in terms of the classical moduli of smoothness, which are gen-
erally easier to compute. The second goal of our paper is to establish such
characterizations. As usual, we denote by ωr(F, t)p(J) the classical unweighted
fixed-step modulus of smoothness of order r of the function F ∈ Lp(J), J ⊆ R
is an interval, namely

ωr(F, t)p(J) = sup
0<h≤t

‖∆r
hF‖p(J).

We assume that ∆r
hF (x) = 0 if the argument of any of the summands of the

finite differences ∆r
hF (x) is outside J . Set ω0(F, t)p(J) = ‖F‖p(J). We use one

and the same notation for a function F defined on R and for its restriction on
some subinterval J .

In order to describe various conditions on the exponents γ0 and γ∞ in the
definition of the weight w defined in (1.8) (or in (1.3)), we shall use the notations:

T0(p) = (1/p,∞),
Ti(p) = (−i− 1/p, 1− i− 1/p), i = 1, . . . , r − 1,
Tr(p) = (−∞, 1− r − 1/p),
Texc(p) = {1− r − 1/p, 2− r − 1/p, . . . ,−1/p}.

For r ∈ N, i, j ∈ N0, j ≤ r and weight w̄ we define the linear operator
Ai,j−1(w̄) : L1,loc(0,∞) → L1,loc(R) by

Ai,j−1(w̄)f = (w̄(f − Li,j−1f)) ◦ E (1.9)

where E(x) = ex and

(Li,j−1f)(x) =
j−1∑
n=i

an(f)xn, (1.10)

as an : L1(α, β) → R, n = i, . . . , j − 1, 0 < α < β, are linear functionals. As
usual, in (1.10) we assume that the sum is 0 if the upper bound is smaller than
the lower.

We require Li,j−1 to satisfy the conditions:

i) |an(f)| ≤ c ‖f‖1(α,β) for any f ∈ L1(α, β), n = i, . . . , j − 1;

ii) Li,j−1f = f for any f ∈ πi,j−1;

and in some cases also one or both of the following conditions:

iii) Li,j−1(χi−1) = 0 if i > 0;

iv) Li,j−1(χj) = 0 if j < r.

Remark 1.1. For the proofs of the following theorems it is enough to replace
i) with
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i′) |an(f)| ≤ c ‖f‖p(α,β) for any f ∈ Lp(α, β), n = i, . . . , j − 1.

We prefer to utilize i) (which implies i′)) in order an(f) to be easily computable
for a given f . Simple examples of such operators Li,j−1 either satisfy i) or
satisfy i′) for p = ∞.

Remark 1.2. The restrictions α > 0 and β < ∞ used above can be relaxed
to α = 0 and/or β = ∞ at the cost of introducing additional weighted norm
conditions.

We give explicit definitions of operators of the form (1.10) that satisfy con-
ditions i)-ii) or i)-iv) in Section 6.

Following ideas of [5] and [8] in the two theorems below we characterize the
K-functional Kr

w(f, tr)p by the unweighted fixed-step moduli of smoothness.

Theorem 1.2. Let r ∈ N, i, j ∈ N0, i, j ≤ r, 1 ≤ p ≤ ∞ and t0 > 0. Let also
w(x) = w(x; γ0, γ∞) be defined in (1.8) with γ0 ∈ Ti(p), γ∞ ∈ Tj(p). Finally,
let Ai,j−1 be given by (1.9) as Li,j−1 satisfies conditions i) and ii). Then for
every f ∈ Lp(w)(0,∞) and 0 < t ≤ t0 there holds

Kr
w(f, tr)p ∼ ωr(Ai,j−1(χ1/pw)f, t)p(R) + tr ‖Ai,j−1(χ1/pw)f‖p(R).

Let us explicitly note that for j ≤ i we have Ai,j−1(χ1/pw)f = (χ1/pwf)◦E.

Theorem 1.3. Let r ∈ N, 1 ≤ p ≤ ∞ and a, t0 > 0. Let also w(x) =
w(γ0, γ∞;x) be defined in (1.8) with γ0, γ∞ ∈ R, and the integers i, j be de-
termined by Ti(p) ∪ {1 − i − 1/p} 3 γ0, Tj(p) ∪ {−j − 1/p} 3 γ∞. We set
`0 = 1 if γ0 ∈ Texc(p), and `0 = 0 otherwise. We set `∞ = 1 if γ∞ ∈ Texc(p),
and `∞ = 0 otherwise. Let the integers i′, j′ be such that 0 ≤ i′ ≤ i − `0 and
j + `∞ ≤ j′ ≤ r. Let Ai,j′−1 be given by (1.9) with an arbitrary Li,j′−1 satis-
fying conditions i) and ii), and also iii) if γ0 ∈ Texc(p). Let Ai′,j−1 be given
by (1.9) with an arbitrary Li′,j−1 satisfying conditions i) and ii), and also iv)
if γ∞ ∈ Texc(p). Then for every f ∈ Lp(w)(0,∞) and 0 < t ≤ t0 there holds

Kr
w(f, tr)p

∼ ωr(Ai,j′−1(χγ0+1/p)f, t)p(−∞,a) + tr−`0ω`0(Ai,j′−1(χγ0+1/p)f, t)p(−∞,a)

+ ωr(Ai′,j−1(χγ∞+1/p)f, t)p(−a,∞) + tr−`∞ω`∞(Ai′,j−1(χγ∞+1/p)f, t)p(−a,∞).
(1.11)

As it is well known, the Post-Widder operator for integer s is actually the
Post-Widder real inversion formula for the Laplace transform. Thus, Theo-
rem 1.1 in combination with Theorem 1.2 or Theorem 1.3 gives us the rate of
convergence of the Post-Widder real inversion formula measured by the struc-
tural properties of the original function [11, Ch. VII].

Remark 1.3. The hypotheses of Theorem 1.3 cover (with few exceptions de-
pending on the specific values of p, γ0 and γ∞) the variety of indices i, j, i′, j′

for which (1.11) is true. The exact ranges of these indices are given in Remarks
5.3 and 5.4 below. We take advantage of the possibility to vary them in the
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proof of Theorem 5.8. Characterization (1.11) is most concise for i′ = i−`0 and
j′ = j + `∞. In each of these cases the polynomial L is a linear combination
of least number of monomials. The explicit form of the characterization is as
follows.

For γ0 ∈ Ti(p), γ∞ ∈ Tj(p), i′ = i and j′ = j relation (1.11) takes the form

Kr
w(f, tr)p ∼ ωr(Ai,j−1(χγ0+1/p)f, t)p(−∞,a) + tr‖Ai,j−1(χγ0+1/p)f‖p(−∞,a)

+ ωr(Ai,j−1(χγ∞+1/p)f, t)p(−a,∞) + tr‖Ai,j−1(χγ∞+1/p)f‖p(−a,∞),

and for γ0 = 1 − i − 1/p, 0 < i ≤ r, γ∞ ∈ Tj(p), i′ = i − 1 and j′ = j it takes
the form

Kr
w(f, tr)p

∼ ωr(Ai,j−1(χγ0+1/p)f, t)p(−∞,a) + tr−1ω1(Ai,j−1(χγ0+1/p)f, t)p(−∞,a)

+ ωr(Ai−1,j−1(χγ∞+1/p)f, t)p(−a,∞) + tr‖Ai−1,j−1(χγ∞+1/p)f‖p(−a,∞).

Similarly, for γ∞ ∈ Texc(p). Note that the pass from γ0 /∈ Texc(p) to γ0 ∈ Texc(p)
not only changes trω0 to tr−1ω1 at the left end of the domain but simultaneously
affects the range for the index i′ of the operator Ai′,j−1 acting at the other end.

The two quantities ωr(F, t)p(J)+tr‖F‖p(J) and ωr(F, t)p(J)+tr−1ω1(F, t)p(J)

are not equivalent with constants independent of F and t ∈ (0, 1]. This is shown
in [8, Remark 1.3] for any unbounded interval J ⊂ R but, of course, the same
is true for finite intervals J .

Remark 1.4. If f ∈ π1+Lp(w)(0,∞) as in Theorem 1.1 and π1 6⊂ Lp(w)(0,∞),
then f is to be replaced by f0 such that f0 ∈ Lp(w)(0,∞) and f −f0 ∈ π1 when
Theorems 1.2 and 1.3 are applied to the K-functional in Theorem 1.1.

Remark 1.5. Theorems 1.2 and 1.3 show the important role of the polyno-
mials from πr−1 belonging to the space Lp(w), that is the trivial class πr−1 ∩
Lp(w)(0,∞) of the K-functional Kr

w(f, tr)p. For future reference we recall

πi,r−1 ⊂ Lp(χγ0)(0, 1) ⇐⇒ γ0 > −i− 1/p for p <∞ or γ0 ≥ −i for p = ∞;
π0,j−1 ⊂ Lp(χγ∞)(1,∞) ⇐⇒ γ∞ < 1− j − 1/p for p <∞ or

γ∞ ≤ 1− j for p = ∞;
πi,j−1 ⊂ Lp(w)(0,∞) ⇐⇒ γ0 > −i− 1/p, γ∞ < 1− j − 1/p for p <∞ or

γ0 ≥ −i, γ∞ ≤ 1− j for p = ∞.

Thus, if p <∞, then πr−1 ∩Lp(w)(0,∞) 6= {0} iff i < j, where the integers i, j
are determined by Ti(p) ∪ {1 − i − 1/p} 3 γ0, Tj(p) ∪ {−j − 1/p} 3 γ∞. Also,
if p = ∞, then πr−1 ∩ L∞(w)(0,∞) 6= {0} iff i < j, where the integers i, j are
determined by Ti(∞) ∪ {−i} 3 γ0, Tj(∞) ∪ {1− j} 3 γ∞.

In comparison with [8] two new type of difficulties have to be overcome
in Theorems 1.2 and 1.3. First, this is the more complex structure of the
space Lp(w)(0,∞) for some γ0, γ∞ compared to Lp(χγ)(0,∞) as the structure
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of the subspaces of algebraic polynomials in each of them shows (cf. Remark
1.5). In order to cope with this problem we introduce the operators Li,j−1.
Despite their effectiveness they, unfortunately, substantially complicate some
proofs. Secondly, the belonging of at least one of γ0, γ∞ to Texc(p) as γ0 6= γ∞
involves splitting of the singularities (see (5.6) below), which, in turn, lessen the
possibility for using Hardy’s inequalities. Hence, we use appropriate integral
representations of the derivatives (see Theorem 3.1 below) and modify Hardy’s
inequalities. The latter can be seen as precise determination of the conditions
on the weight w under which the inequality

‖wχkg(k)‖p ≤ c‖wχrg(r)‖p (1.12)

follows for χrg(r) ∈ Lp(w)(0,∞) and k < r. But in many of the cases considered
in this article the conditions of Hardy’s inequalities are not met. So, under the
additional assumption g ∈ Lp(w)(0,∞), we extend in Theorem 4.1 the range
of (1.12) beyond the limits provided by Hardy’s inequalities. As Remark 4.2
shows the hypotheses of Theorem 4.1 are sharp for the validity of (1.12).

The paper is organized as follows. Section 2 contains the proof of Theo-
rem 1.1 based on several inequalities related to the Post-Widder and the Gamma
operators. In Section 3 we establish a representation of derivatives. In Section
4 we give a number of inequalities for the intermediate derivatives on which the
proofs of the upper and lower estimates of the K-functional Kr

w(f, tr)p by the
unweighted one are based. Theorems 1.2 and 1.3 are proved in Section 5, which
also contains characterizations of the analogues of Kr

w(f, tr)p on the intervals
(0, a) and (a,∞) with a > 0, as well as for spaces of continuous functions. In
this section we show how several basic properties of Kr

w(f, tr)p can be derived
from its characterization in Theorem 1.3. Finally, in Section 6 we explicitly
construct operators Li,j−1 which satisfy conditions i)-ii) or i)-iv).

2 A characterization of the Post-Widder and
the Gamma operator errors

The next theorem is basic for obtaining good upper bounds for the constants
in Propositions 2.1–2.6. The functions from L∞,loc(0,∞) do not need to be
bounded at 0 or at ∞.

Theorem 2.1. Let ξ, η ∈ R, 1 ≤ p ≤ ∞, ψ ∈ L∞,loc(0,∞). Set w̃(x) = xξ

for 0 < x ≤ 1 and w̃(x) = xη for 1 ≤ x < ∞. For every complex-valued
F ∈ Lp(χ−1/pw̃)(0,∞) denote

G(x) =
∫ ∞

0

F (ux)ψ(u)
du

u
, x ∈ (0,∞). (2.1)

Then
‖χ−1/pw̃G‖p(0,∞) ≤ (θ1 + θ2)‖χ−1/pw̃F‖p(0,∞), (2.2)
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where

θ1 = max
{∫ ∞

0

|ψ(u)|u−ξ du

u
,

∫ ∞

0

|ψ(u)|u−η du

u

}
, (2.3)

θ2 = max
{∫ 1

0

∣∣u−ξ − u−η
∣∣ |ψ(u)| du

u
,

∫ ∞

1

∣∣u−ξ − u−η
∣∣ |ψ(u)| du

u

}
. (2.4)

Proof. Set w0 = χξ, w∞ = χη. Then w̃ = max{w0, w∞} iff ξ ≤ η and w̃ =
min{w0, w∞} iff ξ ≥ η. Note that w0 and w∞ are multiplicative functions, i.e.
w0(xy) = w0(x)w0(y) and w∞(xy) = w∞(x)w∞(y) for every x, y ∈ (0,∞), but
w̃ is not multiplicative when ξ 6= η.

The operator defined in (2.1) is linear. In view of the Riesz-Thorin theorem
the statement will be established if we prove (2.2) for p = 1 and for p = ∞.

First we deal with the case p = 1. We have∫ ∞

0

w̃(x)|G(x)|dx
x
≤
∫ ∞

0

∫ ∞

0

w̃(x)|F (ux)|dx
x
|ψ(u)| du

u

=
∫ ∞

0

∫ ∞

0

w̃
(y
u

)
|F (y)|dy

y
|ψ(u)| du

u
.

(2.5)

Let us consider the weight w̃(y/u) on the right-hand side of (2.5). We have
w̃(y/u) = w0(y/u) if 0 < y ≤ u <∞ and w̃(y/u) = w∞(y/u) if 0 < u ≤ y <∞.
We aim to get a good upper bound for the difference w̃(y/u) − w0(y/u) in
0 < y ≤ 1, 0 < u < ∞ and for the difference w̃(y/u) − w∞(y/u) in 1 ≤ y <
∞, 0 < u < ∞. We have w̃(y/u) = w0(y/u) if 0 < y ≤ 1, y ≤ u < ∞ and
w̃(y/u) = w∞(y/u) if 1 ≤ y < ∞, 0 < u ≤ y. So, it remains to consider the
domains Ω0 = {(y, u) ∈ R2 : 0 < u ≤ y ≤ 1} and Ω∞ = {(y, u) ∈ R2 : 1 ≤
y ≤ u <∞}.

First, let ξ ≥ η. Then we have

w̃(y/u) = w∞(y/u) ≤ w0(y/u) =
w0(y)
w0(u)

, (y, u) ∈ Ω0,

w̃(y/u) = w0(y/u) ≤ w∞(y/u) =
w∞(y)
w∞(u)

, (y, u) ∈ Ω∞.

Using these inequalities in (2.5) we get∫ ∞

0

w̃(x)|G(x)|dx
x

≤
∫ ∞

0

|ψ(u)|
w0(u)

du

u
·
∫ 1

0

w̃(y)|F (y)|dy
y

+
∫ ∞

0

|ψ(u)|
w∞(u)

du

u
·
∫ ∞

1

w̃(y)|F (y)|dy
y

≤ θ1

∫ ∞

0

w̃(y)|F (y)|dy
y
,

which proves (2.2) for p = 1 and ξ ≥ η.
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Secondly, let ξ ≤ η. Then we have

w̃(y/u) =
w∞(y)
w∞(u)

≤ w0(y)
w∞(u)

=
w0(y)
w0(u)

+
[
w0(y)
w∞(u)

− w0(y)
w0(u)

]
, (y, u) ∈ Ω0,

w̃(y/u) =
w0(y)
w0(u)

≤ w∞(y)
w0(u)

=
w∞(y)
w∞(u)

+
[
w∞(y)
w0(u)

− w∞(y)
w∞(u)

]
, (y, u) ∈ Ω∞.

Note that the terms in the square brackets are positive. Using these inequalities
in (2.5) we get∫ ∞

0

w̃(x)|G(x)|dx
x

≤
∫ ∞

0

|ψ(u)|
w0(u)

du

u
·
∫ 1

0

w̃(y)|F (y)|dy
y

+
∫ ∞

0

|ψ(u)|
w∞(u)

du

u
·
∫ ∞

1

w̃(y)|F (y)|dy
y

+
∫ 1

0

∫ 1

u

w0(y)|F (y)|dy
y

[
1

w∞(u)
− 1
w0(u)

]
|ψ(u)| du

u

+
∫ ∞

1

∫ u

1

w∞(y)|F (y)|dy
y

[
1

w0(u)
− 1
w∞(u)

]
|ψ(u)| du

u

≤ θ1

∫ ∞

0

w̃(y)|F (y)|dy
y

+ θ2

∫ 1

0

w0(y)|F (y)|dy
y

+ θ2

∫ ∞

1

w∞(y)|F (y)|dy
y

= (θ1 + θ2)
∫ ∞

0

w̃(y)|F (y)|dy
y
.

This completes the proof of (2.2) for p = 1.
Now, let us consider the case p = ∞. Let ξ ≤ η. For 0 < x ≤ 1, using that

w0(y) ≤ w̃(y) for every y ∈ (0,∞), we get

w̃(x)|G(x)| = w0(x)|G(x)|

≤
∫ ∞

0

w0(x)|F (ux)||ψ(u)| du
u

=
∫ ∞

0

w0(ux)|F (ux)| |ψ(u)|
w0(u)

du

u

≤
∫ ∞

0

w̃(ux)|F (ux)| |ψ(u)|
w0(u)

du

u
≤
∫ ∞

0

|ψ(u)|
w0(u)

du

u
· ‖w̃F‖∞ ≤ θ1‖w̃F‖∞.

Similarly, for 1 ≤ x < ∞ we get w∞(x)|G(x)| ≤ θ1‖w̃F‖∞, which proves (2.2)
for p = ∞ and ξ ≤ η.

Let ξ ≥ η. For 0 < x ≤ 1, using that w0(x) ≤ w∞(x), we get

w̃(x)|G(x)| = w0(x)|G(x)| ≤
∫ ∞

0

w0(x)|F (ux)||ψ(u)| du
u

≤
∫ 1/x

0

w0(x)|F (ux)||ψ(u)| du
u

+
∫ ∞

1/x

w∞(x)|F (ux)||ψ(u)| du
u

=
∫ 1/x

0

w0(ux)|F (ux)| |ψ(u)|
w0(u)

du

u
+
∫ ∞

1/x

w∞(ux)|F (ux)| |ψ(u)|
w∞(u)

du

u

9



≤

(∫ 1/x

0

|ψ(u)|
w0(u)

du

u
+
∫ ∞

1/x

|ψ(u)|
w∞(u)

du

u

)
‖w̃F‖∞

≤

(∫ ∞

0

|ψ(u)|
w0(u)

du

u
+
∫ ∞

1/x

[
|ψ(u)|
w∞(u)

− |ψ(u)|
w0(u)

]
du

u

)
‖w̃F‖∞ ≤ (θ1 + θ2)‖w̃F‖∞.

Similarly, for 1 ≤ x <∞, using that w∞(x) ≤ w0(x), we get

w̃(x)|G(x)| = w∞(x)|G(x)|

≤

(∫ ∞

0

|ψ(u)|
w∞(u)

du

u
+
∫ 1/x

0

[
|ψ(u)|
w0(u)

− |ψ(u)|
w∞(u)

]
du

u

)
‖w̃F‖∞

≤ (θ1 + θ2)‖w̃F‖∞,

which completes the proof.

Remark 2.1. In the proof of Theorem 2.1 for p = ∞ the case ξ < η, i.e.
w̃ = max{χξ, χη}, is simpler than the case ξ > η, i.e. w̃ = min{χξ, χη}. But for
p = 1 we have the opposite situation – the case ξ > η is simpler than the case
ξ < η!

Remark 2.2. Note that the differences between the two quantities under the
max sign in (2.3) and (2.4) coincide, i.e.∣∣∣∣∫ ∞

0

|ψ(u)|u−ξ du

u
−
∫ ∞

0

|ψ(u)|u−η du

u

∣∣∣∣
=
∣∣∣∣∫ 1

0

∣∣u−ξ − u−η
∣∣ |ψ(u)| du

u
−
∫ ∞

1

∣∣u−ξ − u−η
∣∣ |ψ(u)| du

u

∣∣∣∣ .
In the applications below the above quantity will have smaller order than θ2,
which in turn will have smaller order than θ1. Let us also mentioned the obvious
inequality θ2 < θ1 for every ψ 6≡ 0.

For the applications of Theorem 2.1 in the proofs of Propositions 2.1–2.6 we
need some notations and results established in [8]. For ζ ∈ R and s > max{0, ζ}
we set

κ1(ζ, s) =
sζΓ(s− ζ)

Γ(s)
=

ss

Γ(s)

∫ ∞

0

e−suus−ζ du

u
;

κj(ζ, s) =
sj−1

(2j − 3)!Γ(s)

∫ ∞

0

∫ v/s

1

(
v

sy
− 1
)2j−3

y−ζ dy

y
e−vvs dv

v
, j = 2, 3;

λj(ζ, s) =
sζ−1

Γ(s)

∫ ∞

0

|(v − s− 2j + 1)2 − s− 2j + 1|e−vvs−ζ dv

v
, j = 1, 2;

λ3(ζ, s) =
sζ− 1

2

Γ(s)

∫ ∞

0

|v − s− 2|e−vvs−ζ dv

v
.

Note that the signs of ( v
sy − 1)2j−3 and ( v

s − 1) in the definition of κ2 and κ3

coincide for every y from the integration range. Hence, the inner integral has

10



always a non-negative value. This fact will be used in the proofs of Propositions
2.2 and 2.3.

The inequalities collected in the following lemma are established in Lemma
2.2, Propositions 2.7, 2.8, 2.9 and Remark 2.12 in [8].

Lemma 2.1. There exists an absolute constant M1 such that for every s ≥ ζ2+8
and ζ ∈ R we have

|κ1(ζ, s)− 1| ≤M1
ζ2 + 1
s

; (2.6)∣∣∣∣κ2(ζ, s)−
1
2

∣∣∣∣ ≤M1
ζ2 + 1
s

; (2.7)∣∣∣∣κ3(ζ, s)−
1
8

∣∣∣∣ ≤M1
ζ2 + 1
s

; (2.8)

sζ−1

Γ(s)

∫ ∞

0

|(v−s−k)2−s−k|e−vvs−ζ dv

v
≤
√

2+M1
ζ2 + 1
s

, k = −1, 1, 3; (2.9)

sζ− 1
2

Γ(s)

∫ ∞

0

|v − s− k|e−vvs−ζ dv

v
≤ 1 +M1

ζ2 + 1
s

, k = −1, 2. (2.10)

Lemma 2.2. For every s > 0 and k ∈ R we have

ss

Γ(s)

∫ ∞

0

[su− s]2[su− s− k]2e−suus du

u
= 3s2 + (k2 − 4k + 6)s, (2.11)

ss

Γ(s)

∫ ∞

0

[su− s]2[(su− s− k)2 − s− k]2e−suus du

u

= 10s3 + (16k2 − 76k + 118)s2 + (k4 − 10k3 + 45k2 − 108k + 120)s. (2.12)

Proof. Using the definition of Γ(s) and its properties we get

ss

Γ(s)

∫ ∞

0

[su− s]2[su− s− k]2e−suus du

u

=
1

Γ(s)

∫ ∞

0

[v − s]2[v − s− k]2e−vvs dv

v

=[Γ(s+ 4)− 2(2s+ k)Γ(s+ 3) + (6s2 + 6ks+ k2)Γ(s+ 2)

− 2(s+ k)s(2s+ k)Γ(s+ 1) + (s+ k)2s2Γ(s)]/Γ(s)

=3s2 + (k2 − 4k + 6)s

11



and

ss

Γ(s)

∫ ∞

0

[su− s]2[(su− s− k)2 − s− k]2e−suus du

u

=
1

Γ(s)

∫ ∞

0

[v − s]2[(v − s− k)2 − s− k]2e−vvs dv

v

=[Γ(s+ 6)− 2(3s+ 2k)Γ(s+ 5) + (15s2 + 20ks− 2s+ 6k2 − 2k)Γ(s+ 4)

− 4(s+ k)(5s2 + 5ks− 2s+ k2 − k)Γ(s+ 3)

+ (s+ k)(15s3 + (25k − 12)s2 + (11k − 1)(k − 1)s+ k(k − 1)2)Γ(s+ 2)

− 2(s+ k)2(s+ k − 1)(3s+ k − 1)sΓ(s+ 1)

+ (s+ k)2(s+ k − 1)2s2Γ(s)]/Γ(s)

=10s3 + (16k2 − 76k + 118)s2 + (k4 − 10k3 + 45k2 − 108k + 120)s.

In the proofs of Propositions 2.1–2.6 we shall apply the following estimates
valid for every ξ, η ∈ R

∣∣u−ξ − u−η
∣∣ ≤ { |ξ − η|u−µ|u− 1|, 0 < u ≤ 1;

|ξ − η|u−ν |u− 1|, 1 ≤ u <∞,
(2.13)

where µ = max{ξ, η} + 1 and ν = min{ξ, η}. Now, we are ready to establish
the main ingredients for the proof of Theorem 1.1.

Proposition 2.1. There are positive numbers N2,M2 such that for every γ0, γ∞
∈ R, s > N2(γ2

0 + γ2
∞ + 1), 1 ≤ p ≤ ∞ and f ∈ Lp(w)(0,∞) we have

‖wPsf‖p ≤ κ∗1(γ0, γ∞, s)‖wf‖p, (2.14)

where

κ∗1(γ0, γ∞, s) ≤ 1 +M2
|γ0 − γ∞|√

s
+M2

γ2
0 + γ2

∞ + 1
s

.

Proof. From (1.1) we get the integral representation

(Psf)(x) =
ss

Γ(s)

∫ ∞

0

f(xu)e−suus du

u
.

Therefore we apply Theorem 2.1 with ξ = γ0 + 1/p, η = γ∞ + 1/p, ψ(u) =
e−suusss/Γ(s) and get (2.14) with κ∗1(γ0, γ∞, s) = θ1 + θ2, where θ1, θ2 are
given in (2.3), (2.4). From (2.3) and (2.6) we get

θ1 =
ss

Γ(s)
max

{∫ ∞

0

e−suus−ξ du

u
,

∫ ∞

0

e−suus−η du

u

}
= max {κ1(ξ, s), κ1(η, s)} ≤ 1 +M1

ξ2 + η2 + 1
s

≤ 1 +M2
γ2
0 + γ2

∞ + 1
s

.
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In order to estimate θ2 we apply the first inequality in (2.13), the Cauchy-
Schwarz inequality, (2.6) and get

ss

Γ(s)

∫ 1

0

∣∣u−ξ − u−η
∣∣ e−suus du

u

≤ |ξ − η| s
s

Γ(s)

∫ ∞

0

u−µ|u− 1|e−suus du

u

≤ |ξ − η|
{

ss

Γ(s)

∫ ∞

0

u−2µe−suus du

u

}1/2{
ss

Γ(s)

∫ ∞

0

(u− 1)2e−suus du

u

}1/2

≤ |ξ − η| {κ1(2µ, s)}1/2 {κ1(−2, s)− 2κ1(−1, s) + κ1(0, s)}1/2

≤
{

1 +M1
4µ2 + 1

s

}1/2 |ξ − η|√
s

≤M2
|γ0 − γ∞|√

s
.

Similarly, using the second estimate in (2.13), we get the same upper bound for
the integral on [1,∞) as the one for (0, 1] and complete the proof.

Proposition 2.2. There are positive numbers N2,M2 such that for every γ0, γ∞
∈ R, s > N2(γ2

0 + γ2
∞ + 1), 1 ≤ p ≤ ∞ and every g such that χ2D2g ∈

Lp(w)(0,∞) we have

‖w(Psg − g)‖p ≤ s−1κ∗2(γ0, γ∞, s)‖wχ2D2g‖p, (2.15)

where

κ∗2(γ0, γ∞, s) ≤
1
2

+M2
|γ0 − γ∞|√

s
+M2

γ2
0 + γ2

∞ + 1
s

.

Proof. The following integral representation is obtained in the proof of Propo-
sition 2.5 in [8]

(Psg)(x)− g(x) =
1

Γ(s)

∫ ∞

0

∫ v/s

1

( v
su

− 1
)

(xu)2(D2g)(xu)
du

u
e−vvs dv

v
.

Therefore we apply Theorem 2.1 with ξ = γ0 + 1/p, η = γ∞ + 1/p, F = χ2D2g,

ψ(u) =
1

Γ(s)

∫ su

0

(
1− v

su

)
e−vvs dv

v
for 0 < u < 1,

ψ(u) =
1

Γ(s)

∫ ∞

su

( v
su

− 1
)
e−vvs dv

v
for 1 < u <∞

(hence G = Psg− g) and get (2.15) with κ∗2(γ0, γ∞, s) = sθ1 + sθ2, where θ1, θ2
are given in (2.3), (2.4). From (2.3) and (2.7) we get

sθ1 = max {κ2(ξ, s), κ2(η, s)} ≤
1
2

+M1
ξ2 + η2 + 1

s
≤ 1

2
+M2

γ2
0 + γ2

∞ + 1
s

.
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In order to estimate sθ2 we apply the first inequality in (2.13), the Cauchy-
Schwarz inequality, (2.7) and get

s

∫ 1

0

∣∣u−ξ − u−η
∣∣|ψ(u)| du

u

=
s

Γ(s)

∫ s

0

∫ v/s

1

∣∣u−ξ − u−η
∣∣ ( v
su

− 1
) du
u
e−vvs dv

v

≤|ξ − η| s

Γ(s)

∫ s

0

∫ v/s

1

u−µ|u− 1|
( v
su

− 1
) du
u
e−vvs dv

v

≤|ξ − η|

{
s

Γ(s)

∫ ∞

0

∫ v/s

1

u−2µ
( v
su

− 1
) du
u
e−vvs dv

v

}1/2

·

{
s

Γ(s)

∫ ∞

0

∫ v/s

1

(u− 1)2
( v
su

− 1
) du
u
e−vvs dv

v

}1/2

=|ξ − η| {κ2(2µ, s)}1/2 {κ2(−2, s)− 2κ2(−1, s) + κ2(0, s)}1/2

≤|ξ − η|
{

1
2

+M1
4µ2 + 1

s

}1/2{10M1

s

}1/2

≤M2
|γ0 − γ∞|√

s
.

Similarly, using the second estimate in (2.13), we get the same upper bound for
the integral on [1,∞) as the one for (0, 1] and complete the proof.

Proposition 2.3. There are positive numbers N2,M2 such that for every γ0, γ∞
∈ R, s > N2(γ2

0 + γ2
∞ + 1), 1 ≤ p ≤ ∞ and every g such that χ4D4g ∈

Lp(w)(0,∞) we have∥∥∥∥w(Psg − g − χ2D2g

2s
− χ3D3g

3s2

)∥∥∥∥
p

≤ κ∗3(γ0, γ∞, s)
s2

‖wχ4D4g‖p, (2.16)

where

κ∗3(γ0, γ∞, s) ≤
1
8

+M2
|γ0 − γ∞|√

s
+M2

γ2
0 + γ2

∞ + 1
s

.

Proof. The following integral representation is obtained in the proof of Propo-
sition 2.6 in [8]

(Psg)(x)− g(x)− 1
2
s−1χ2(x)(D2g)(x)− 1

3
s−2χ3(x)(D3g)(x)

=
1

6Γ(s)

∫ ∞

0

∫ v/s

1

( v
su

− 1
)3

(xu)4(D4g)(xu)
du

u
e−vvs dv

v
.

Therefore we apply Theorem 2.1 with ξ = γ0 + 1/p, η = γ∞ + 1/p, F = χ4D4g,

ψ(u) =
1

6Γ(s)

∫ su

0

(
1− v

su

)3

e−vvs dv

v
for 0 < u < 1,

ψ(u) =
1

6Γ(s)

∫ ∞

su

( v
su

− 1
)3

e−vvs dv

v
for 1 < u <∞
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(hence G = Psg−g− 1
2s
−1χ2D2g− 1

3s
−2χ3D3g) and get (2.16) with κ∗3(γ0, γ∞, s)

= s2θ1 + s2θ2, where θ1, θ2 are given in (2.3), (2.4). From (2.3) and (2.8) we get

s2θ1 = max {κ3(ξ, s), κ3(η, s)} ≤
1
8

+M1
ξ2 + η2 + 1

s
≤ 1

8
+M2

γ2
0 + γ2

∞ + 1
s

.

In order to estimate s2θ2 we apply the first inequality in (2.13), the Cauchy-
Schwarz inequality, (2.8) and get

s2
∫ 1

0

∣∣u−ξ − u−η
∣∣|ψ(u)| du

u

=
s2

6Γ(s)

∫ s

0

∫ v/s

1

∣∣u−ξ − u−η
∣∣ ( v
su

− 1
)3 du

u
e−vvs dv

v

≤|ξ − η| s2

6Γ(s)

∫ s

0

∫ v/s

1

u−µ|u− 1|
( v
su

− 1
)3 du

u
e−vvs dv

v

≤|ξ − η|

{
s2

6Γ(s)

∫ ∞

0

∫ v/s

1

u−2µ
( v
su

− 1
)3 du

u
e−vvs dv

v

}1/2

·

{
s2

6Γ(s)

∫ ∞

0

∫ v/s

1

(u− 1)2
( v
su

− 1
)3 du

u
e−vvs dv

v

}1/2

=|ξ − η| {κ3(2µ, s)}1/2 {κ3(−2, s)− 2κ3(−1, s) + κ3(0, s)}1/2

≤|ξ − η|
{

1
8

+M1
4µ2 + 1

s

}1/2{10M1

s

}1/2

≤M2
|γ0 − γ∞|√

s
.

Similarly, using the second estimate in (2.13), we get the same upper bound for
the integral on [1,∞) as the one for (0, 1] and complete the proof.

Proposition 2.4. There are positive numbers N2,M2 such that for every γ0, γ∞
∈ R, s > N2(γ2

0 + γ2
∞ + 1), 1 ≤ p ≤ ∞ and every f ∈ Lp(w)(0,∞) we have

‖wχ2D2Psf‖p ≤ sλ∗1(γ0, γ∞, s)‖wf‖p, (2.17)

where

λ∗1(γ0, γ∞, s) ≤
√

2 +M2
|γ0 − γ∞|√

s
+M2

γ2
0 + γ2

∞ + 1
s

.

Proof. The following integral representation is obtained in the proof of Propo-
sition 2.7 in [8]

χ2(x)(D2Psf)(x) =
ss

Γ(s)

∫ ∞

0

f(xu)[(su− s− 1)2 − s− 1]e−suus du

u
.

Therefore we apply Theorem 2.1 with ξ = γ0+1/p, η = γ∞+1/p, ψ(u) = [(su−
s−1)2−s−1]e−suusss/Γ(s) and get (2.17) with λ∗1(γ0, γ∞, s) = s−1θ1 + s−1θ2,
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where θ1, θ2 are given in (2.3), (2.4). From (2.3) and (2.9) with k = 1 we get

s−1θ1 = max {λ1(ξ, s), λ1(η, s)} ≤
√

2 +M1
ξ2 + η2 + 1

s

≤
√

2 +M2
γ2
0 + γ2

∞ + 1
s

.

In order to estimate s−1θ2 we apply the first inequality in (2.13), the Cauchy-
Schwarz inequality, (2.6), (2.12) with k = 1 and get

ss−1

Γ(s)

∫ 1

0

∣∣u−ξ − u−η
∣∣ ∣∣(su− s− 1)2 − s− 1

∣∣ e−suus du

u

≤|ξ − η|s
s−1

Γ(s)

∫ 1

0

u−µ|u− 1|
∣∣(su− s− 1)2 − s− 1

∣∣ e−suus du

u

≤|ξ − η|
{

ss

Γ(s)

∫ ∞

0

u−2µe−suus du

u

}1/2

·
{
ss−2

Γ(s)

∫ ∞

0

(su− s)2

s2
[
(su− s− 1)2 − s− 1

]2
e−suus du

u

}1/2

≤|ξ − η|
{

1 +M1
4µ2 + 1
s2

}1/2{10s3 + 58s2 + 48s
s4

}1/2

≤M2
|γ0 − γ∞|√

s
.

Similarly, using the second estimate in (2.13), we get the same upper bound for
the integral on [1,∞) as the one for (0, 1] and complete the proof.

Proposition 2.5. There are positive numbers N2,M2 such that for every γ0, γ∞
∈ R, s > N2(γ2

0 + γ2
∞ + 1), 1 ≤ p ≤ ∞ and every g such that χ2D2g ∈

Lp(w)(0,∞) we have

‖wχ4D4Psg‖p ≤ sλ∗2(γ0, γ∞, s)‖wχ2D2g‖p, (2.18)

where

λ∗2(γ0, γ∞, s) ≤
√

2 +M2
|γ0 − γ∞|√

s
+M2

γ2
0 + γ2

∞ + 1
s

.

Proof. The following integral representation is obtained in the proof of Propo-
sition 2.8 in [8]

χ4(x)(D4Psg)(x) =
ss

Γ(s)

∫ ∞

0

(xu)2(D2g)(xu)[(su− s− 3)2 − s− 3]e−suus du

u
.

Now, we proceed as in the proof of Proposition 2.4 using (2.12) with k = 3.
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Proposition 2.6. There are positive numbers N2,M2 such that for every γ0, γ∞
∈ R, s > N2(γ2

0 + γ2
∞ + 1), 1 ≤ p ≤ ∞ and every g such that χ2D2g ∈

Lp(w)(0,∞) we have

‖wχ3D3Psg‖p ≤
√
sλ∗3(γ0, γ∞, s)‖wχ2D2g‖p, (2.19)

where

λ∗3(γ0, γ∞, s) ≤ 1 +M2
|γ0 − γ∞|√

s
+M2

γ2
0 + γ2

∞ + 1
s

.

Proof. The following integral representation is obtained in the proof of Propo-
sition 2.9 in [8]

χ3(x)(D3Psg)(x) =
ss

Γ(s)

∫ ∞

0

(xu)2(D2g)(xu)[su− s− 2]e−suus du

u
.

Now, we proceed as in the proof of Proposition 2.4 using (2.10) instead of (2.9)
and (2.11) instead of (2.12).

Remark 2.3. If the Post-Widder operator Ps is replaced by the Gamma op-
erator Gs, then Propositions 2.1–2.6 remain unchanged except Proposition 2.3,
where (2.16) is to be replaced by∥∥∥∥w(Gsg − g − χ2D2g

2(s− 1)
− 2χ3D3g

3(s− 1)(s− 2)

)∥∥∥∥
p

≤ κ∗3(γ0, γ∞, s)
s2

‖wχ4D4g‖p.

The reason is a different integral representation, namely

(Gsg)(x)− g(x)− χ2(x)(D2g)(x)
2(s− 1)

− 2χ3(x)(D3g)(x)
3(s− 1)(s− 2)

=
1

6Γ(s+ 1)

∫ ∞

0

∫ s/v

1

( s

vu
− 1
)3

(xu)4(D4g)(xu)
du

u
e−vvs+1 dv

v
.

The only modification in the proofs is the necessity to change the signs of ξ and
η to the opposite, because the integral representations connected with Gs are
naturally of the type ∫ ∞

0

F (y−1x)ψ̃(y)
dy

y
.

So, a change of the variable u = y−1 in the above integral has to be made before
applying Theorem 2.1 and the inverse one y = u−1 afterwards.

Proof of Theorem 1.1. We apply the proof of [8, Theorem 1.1] given in [8, Sec-
tion 3] by simply replacing κj , λj there with κ∗j , λ

∗
j from Propositions 2.1–2.6

(and Remark 2.3) proved in this article. The number N ≥ N2 from the hy-
potheses of the theorem is chosen in such way that the inequality

4κ∗3(γ0, γ∞, s)λ∗2(γ0, γ∞, s) + 4/3λ∗3(γ0, γ∞, s)s−1/2 < 2

is satisfied.
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3 An auxiliary derivative representation

A basic tool in the proof of the lower estimates of the K-functional Kr
w(f, tr)p

by the unweighted fixed-step moduli of smoothness is a representation of the
derivatives of a function g ∈ ACr−1

loc (0,∞) such that g, χrg(r) ∈ Lp(w)(0,∞).
To establish it we use the following assertions about the limit behaviour of the
function at 0 and infinity.

Lemma 3.1. (cf. [8, Corollary 4.3]) Let 1 ≤ p ≤ ∞.

a) Let G ∈ ACloc(0, 1) and G,χG′ ∈ Lp(χγ)(0, 1) with γ ≤ −1/p if p < ∞
or γ < 0 if p = ∞. Then limx→0+0G(x) = 0.

b) Let G ∈ ACloc(1,∞) and G,χG′ ∈ Lp(χγ)(1,∞) with γ ≥ −1/p if p <∞
or γ > 0 if p = ∞. Then limx→∞G(x) = 0.

Proof. Let p = 1, γ ≤ −1 or 1 < p ≤ ∞, γ < −1/p in assertion a). The
condition on G′ (and Hölder’s inequality if p > 1) imply G′ ∈ L1(0, 1), hence
G ∈ AC[0, 1]. The assumption |G(x)| ≥ c > 0 in a neighborhood of the origin
would imply χγ ∈ Lp(0, 1), which contradicts γ < −1/p (or γ ≤ −1 for p = 1).
Hence, there exists a sequence {ξn} such that ξn → 0 + 0 and G(ξn) → 0 as
n→∞, which in view of the continuity of G implies limx→0+0G(x) = 0.

In the remaining case 1 < p <∞, γ = −1/p we set G̃ = |G|p ∈ L1(χ−1)(0, 1).
From

G̃′(x) = p |G(x)|p−1G′(x) signG(x),

χ−1+1/p|G|p−1 ∈ Lp′(0, 1) with p′ = p/(p−1), χ1−1/pG′ ∈ Lp(0, 1) and Hölder’s
inequality we get G̃′ ∈ L1(0, 1). Hence, G̃ satisfies the hypotheses of assertion
a) for p = 1, γ = −1 and then limx→0+0 G̃(x) = 0. The proof of assertion a) is
completed.

Assertion b) is verified similarly.

Remark 3.1. Lemma 3.1 is not true for the remaining values of γ and p.
For example, for γ = 0, p = ∞ counterexamples are given by G(x) = 1 or
G(x) = sin log x.

From Lemma 3.1 we derive

Lemma 3.2. Let 1 ≤ p ≤ ∞, r ∈ N, ρ ∈ N0, ρ < r.

a) Let g ∈ ACr−1
loc (0, 1) and g, χrg(r) ∈ Lp(χγ0)(0, 1) with γ0 ≤ −ρ − 1/p if

p <∞ or γ0 < −ρ if p = ∞. Then

lim
x→0+0

x`−ρg(`)(x) = 0, ` = 0, 1, . . . , r − 1. (3.1)

b) Let g ∈ ACr−1
loc (1,∞) and g, χrg(r) ∈ Lp(χγ∞)(1,∞) with γ∞ ≥ −ρ− 1/p

if p <∞ or γ∞ > −ρ if p = ∞. Then

lim
x→∞

x`−ρg(`)(x) = 0, ` = 0, 1, . . . , r − 1.
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Proof. The hypotheses of assertion a) and Proposition 4.1 below imply

χkg(k) ∈ Lp(χγ0)(0, 1), k = 0, 1, . . . , r. (3.2)

Now, Lemma 3.1.a with G = g(m) and γ = γ0 + m for m = 0, . . . , ρ implies
limx→0+0 g

(m)(x) = 0 for m = 0, . . . , ρ. Thus we get (3.1) for ` = ρ.
Next, for ` = 0, . . . , ρ − 1, ρ > 0 by Taylor’s formula at 0 as g(ρ) ∈ C[0, 1]

we get

x`−ρg(`)(x) =
1

(ρ− `− 1)!
1
x

∫ x

0

(
1− y

x

)ρ−`−1

g(ρ)(y) dy.

Now, in view of limx→0+0 g
(ρ)(x) = 0 we get (3.1) for ` = 0, . . . , ρ− 1.

Further, for ` = ρ+ 1, . . . , r − 1, ρ < r − 1, using(
x`−ρg(`−1)(x)

)′
= (`− ρ)x`−ρ−1g(`−1)(x) + x`−ρg(`)(x), (3.3)(

x`−ρg(`−1)(x)
)′′

= (`− ρ)(`− ρ− 1)x`−ρ−2g(`−1)(x)

+ 2(`− ρ)x`−ρ−1g(`)(x) + x`−ρg(`+1)(x)

and (3.2) for k = ` − 1, `, ` + 1, we get that
(
χ`−ρg(`−1)

)′
, χ
(
χ`−ρg(`−1)

)′′ ∈
Lp(χγ0+ρ)(0, 1). Consequently, by Lemma 3.1.a with G =

(
χ`−ρg(`−1)

)′
and

γ = γ0 + ρ we get

lim
x→0+0

(
x`−ρg(`−1)(x)

)′
= 0, ` = ρ+ 1, . . . , r − 1. (3.4)

Now, (3.1) with ` > ρ follows by induction from (3.3), (3.1) with ` = ρ and
(3.4). This completes the proof of assertion a).

Just similarly we verify assertion b) as we use Lemma 3.1.b and Taylor’s
expansion at a > 1.

The next theorem contains the derivative representation we shall extensively
use. In its formulation we follow the convention that a sum is 0 if the upper
boundary is smaller than the lower.

Theorem 3.1. Let 1 ≤ p ≤ ∞, r ∈ N, µ, ν, k ∈ N0 as µ ≤ ν ≤ r and k < r,
a > 0, and x ∈ (0,∞). Let also g ∈ ACr−1

loc (0,∞) be such that g, χrg(r) ∈
Lp(w)(0,∞), where w(x) = w(γ0, γ∞;x) is defined in (1.8). If k < µ we assume
γ0 < 1 − µ − 1/p for p > 1 or γ0 ≤ −µ for p = 1, and if ν < r we assume
γ∞ > −ν − 1/p for p > 1 or γ∞ ≥ −ν − 1 for p = 1. We set

br,n(g, a) =
r−1∑
`=n

(−a)`−n

(`− n)!
g(`)(a)
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for n = µ, . . . , ν − 1, µ < ν; µ̃ = max{µ, k} and ν̃ = max{ν, k}. Then

g(k)(x) =
ν−1∑
n=µ̃

xn−k

(n− k)!
br,n(g, a) +

r−k−1∑
n=r−µ

(−1)nxr−k−n−1

n!(r − k − n− 1)!

∫ x

0

yng(r)(y) dy

+
r−µ̃−1∑
n=r−ν

(−1)nxr−k−n−1

n!(r − k − n− 1)!

∫ x

a

yng(r)(y) dy

+
r−ν̃−1∑

n=0

(−1)n+1xr−k−n−1

n!(r − k − n− 1)!

∫ ∞

x

yng(r)(y) dy.

Proof. First, let us note that the integrals in the representation of g(k)(x) with
0 or ∞ as an integration boundary are finite in view of Hölder’s inequality.

Let us denote respectively by Sm,k(x), m = 1, 2, 3, 4, the four sums on the
right-hand side of the formula of the theorem. We need to show that

S1,k(x) + S2,k(x) + S3,k(x) + S4,k(x) = g(k)(x), k = 0, . . . , r − 1. (3.5)

Let us observe that the convention for the sum notation implies

S1,k(x) = 0, k ≥ ν or µ = ν, (3.6)
S2,k(x) = 0, k ≥ µ, (3.7)
S3,k(x) = 0, k ≥ ν or µ = ν. (3.8)

In the proof we extensively use the following formula obtained via integration
by parts ∫ η

ξ

yng(r)(y) dy = n!
r−1∑

`=r−n−1

(−1)r−`−1 y
n+`−r+1g(`)(y)

(n+ `− r + 1)!

∣∣∣∣η
ξ

. (3.9)

Using (3.9) with η = x and ξ → 0, Lemma 3.2.a with ρ = µ − 1 ≥ 0,
interchanging the order of summation, reordering the summands in the inner
sum by setting m = r − k − n − 1 and considering separately the cases ` < µ
and ` ≥ µ, we get

S2,k(x) = g(k)(x) +
r−1∑
`=µ

[
µ−k−1∑
m=0

(−1)m

(
`− k

m

)]
(−x)`−k

(`− k)!
g(`)(x), k < µ.

(3.10)
Similarly, by means of (3.9) with η = x and ξ = a, interchanging the order of
summation in the double sum containing g(`)(x), and reordering the summands
in the inner sum by setting m = r − k − n− 1, we get for k < ν and µ < ν

S3,k(x)=
r−1∑
`=µ̃

min{ν−k−1,`−k}∑
m=µ̃−k

(−1)m

(
`− k

m

) (−x)`−k

(`− k)!
g(`)(x)− S1,k(x).
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Hence

S3,k(x) =
ν−1∑
`=µ

 `−k∑
m=µ−k

(−1)m

(
`− k

m

) (−x)`−k

(`− k)!
g(`)(x)

+
r−1∑
`=ν

 ν−k−1∑
m=µ−k

(−1)m

(
`− k

m

) (−x)`−k

(`− k)!
g(`)(x)− S1,k(x), k < µ < ν, (3.11)

and

S3,k(x) = g(k)(x) +
r−1∑
`=ν

[
ν−k−1∑
m=0

(−1)m

(
`− k

m

)]
(−x)`−k

(`− k)!
g(`)(x)− S1,k(x),

µ ≤ k < ν. (3.12)

As in the proof of (3.10), using now (3.9) with ξ = x and η → ∞ and Lemma
3.2.b with ρ = ν we get for ν < r

S4,k(x) =
r−1∑
`=ν̃

[
`−k∑

m=ν̃−k

(−1)m

(
`− k

m

)]
(−x)`−k

(`− k)!
g(`)(x).

Hence

S4,k(x) =
r−1∑
`=ν

[
`−k∑

m=ν−k

(−1)m

(
`− k

m

)]
(−x)`−k

(`− k)!
g(`)(x), k < ν, (3.13)

and
S4,k(x) = g(k)(x), k ≥ ν. (3.14)

Now, (3.10), (3.8) if µ = ν or (3.11) if µ < ν, and (3.13) imply (3.5) for
k = 0, . . . , µ− 1, µ > 0; (3.7), (3.12) and (3.13) imply (3.5) for k = µ, . . . , ν− 1,
µ < ν; and, finally, (3.6)-(3.8) and (3.14) imply (3.5) for k = ν, . . . , r − 1,
ν < r.

Remark 3.2. The case ν < µ under the hypotheses of the theorem is covered
by the case µ = ν. Let us observe that if ν ≤ µ, then the space Lp(w)(0,∞)
is rather narrow, in particular, it does not contain any non-zero polynomial of
degree less than r. For µ = ν the formula of the theorem takes the form

g(k)(x) =
r−k−1∑
n=r−µ

(−1)nxr−k−n−1

n!(r − k − n− 1)!

∫ x

0

yng(r)(y) dy

+
r−µ−1∑

n=0

(−1)n+1xr−k−n−1

n!(r − k − n− 1)!

∫ ∞

x

yng(r)(y) dy, k < µ,
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and

g(k)(x) =
r−k−1∑

n=0

(−1)n+1xr−k−n−1

n!(r − k − n− 1)!

∫ ∞

x

yng(r)(y) dy, µ ≤ k < r.

Also, let us note that if we do not impose any restriction on the weight w at
0 (i.e. we set µ = 0), we get representations which do not contain integrals of
the form

∫ x

0
yng(r)(y) dy. Similarly, if we do not impose any restriction on w at

infinity (i.e. we set ν = r), we get representations without integrals of the form∫∞
x
yng(r)(y) dy.

4 Inequalities for intermediate derivatives

In the proof of the characterization of theK-functionalKr
w(f, tr)p we use several

inequalities for the intermediate derivatives. The following inequalities are well
known (see e.g. [1, Ch. 2, Theorem 5.6]):

(b− a)k ‖g(k)‖p[a,b] ≤ c
(
‖g‖p[a,b] + (b− a)r ‖g(r)‖p[a,b]

)
, (4.1)

for every g ∈W r
p [a, b] and k = 0, 1, . . . , r, and

‖g(k)‖p(J) ≤ c
(
‖g‖p(J) + ‖g(r)‖p(J)

)
, (4.2)

for every g ∈ W r
p (J) and k = 0, 1, . . . , r, where J = (−∞,∞) or J = (−∞, a)

or J = (a,∞), a ∈ R. The constant c in (4.1) and (4.2) depends only on r.
Through the arguments used in the proof of [8, Proposition 4.1] (see also [4,
Lemma 1]) on the base of (4.1) we establish

Proposition 4.1. Let r ∈ N, 1 ≤ p ≤ ∞, w(x) = w(γ0, γ∞;x) be defined in
(1.8) with γ0, γ∞ ∈ R and J be any of the intervals (0, a), (a,∞) or (0,∞),
where a > 0. Then for every g ∈ ACr−1

loc (J) such that g, χrg(r) ∈ Lp(w)(J) we
have

‖wχkg(k)‖p(J) ≤ c
(
‖wg‖p(J) + ‖wχrg(r)‖p(J)

)
, k = 0, 1, . . . , r, (4.3)

where the constant c depends only on γ0, γ∞ and r.

To establish the characterizations of Kr
w(f, tr)p given in the Introduction we

shall need several improvements of the inequality of the last proposition with
the first term on the right missing. These inequalities are either consequences
or modifications of Hardy’s inequalities.

For the proofs we set

ψm,n(ξ, η;x) = xm−n−1

∫ η

ξ

yng(m)(y) dy (4.4)

for m ∈ N, n ∈ N0, 0 ≤ ξ, η ≤ ∞ and g ∈ ACm−1
loc (0,∞) provided that the

integral is well defined.
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Proposition 4.2. Let 1 ≤ p ≤ ∞, r ∈ N, j ∈ N0, j ≤ r, a > 0 and
w(x) = w(γ0, γ∞;x) be defined in (1.8). Let also g ∈ ACr−1

loc (0,∞) be such
that g, χrg(r) ∈ Lp(w)(0,∞). The following assertions hold true:

a) If γ0 < 1− r − 1/p, then

‖χγ0+kg(k)‖p(0,a) ≤ c ‖χγ0+rg(r)‖p(0,a), k = 0, . . . , r − 1.

b) If γ0 < 1− j − 1/p, γ∞ ∈ Tj(p), j > 0, then

‖χγ∞+kg(k)‖p(a,∞) ≤ c ‖wχrg(r)‖p(0,∞), k = 0, . . . , j − 1.

c) If γ∞ > −j − 1/p, j < r, then

‖χγ∞+kg(k)‖p(a,∞) ≤ c ‖χγ∞+rg(r)‖p(a,∞), k = j, . . . , r − 1.

d) If γ0, γ∞ > −j − 1/p, j < r, then

‖χγ0+kg(k)‖p(0,a) ≤ c ‖wχrg(r)‖p(0,∞), k = j, . . . , r − 1.

The constant c is independent of g.

Proof. Let γ0 < 1 − r − 1/p. By Theorem 3.1 with µ = ν = r we have for
k = 0, . . . , r − 1

xkg(k)(x) =
r−k−1∑

n=0

(−1)nxr−n−1

n!(r − k − n− 1)!

∫ x

0

yng(r)(y) dy.

Now, since γ0 +r−n−1 < −1/p for n = 0, . . . , r−1, Hardy’s inequality implies

‖χγ0ψr,n(0, · ; · )‖p(0,a) ≤ c ‖χγ0+rg(r)‖p(0,a), k, n = 0, . . . , r − 1,

where ψr,n(0, x;x) is given by (4.4). Hence a) follows.
To prove b) we get by Theorem 3.1 with µ = ν = j the representation

xkg(k)(x) =
r−k−1∑
n=r−j

(−1)nxr−n−1

n!(r − k − n− 1)!

∫ x

0

yng(r)(y) dy

+
r−j−1∑
n=0

(−1)n+1xr−n−1

n!(r − k − n− 1)!

∫ ∞

x

yng(r)(y) dy.

for k = 0, . . . , j − 1. Since χγ∞+r−n−1 ∈ Lp(a,∞) for n ≥ r − j and also
γ0 < 1− j − 1/p, we get by Hölder’s inequality for n ≥ r − j

‖χγ∞ψr,n(0, a; · )‖p(a,∞) ≤ c ‖χng(r)‖1(0,a) ≤ c ‖χγ0+rg(r)‖p(0,a). (4.5)

Since γ∞+r−n−1 < −1/p for n ≥ r−j, Hardy’s inequality yields for n ≥ r−j

‖χγ∞ψr,n(a, · ; · )‖p(a,∞) ≤ c ‖χγ∞+rg(r)‖p(a,∞). (4.6)
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Relations (4.5), (4.6) and Minkowski’s inequality imply for n ≥ r − j

‖χγ∞ψr,n(0, · ; · )‖p(a,∞) ≤ ‖χγ∞ψr,n(0, a; · )‖p(a,∞) + ‖χγ∞ψr,n(a, · ; · )‖p(a,∞)

≤ c ‖wχrg(r)‖p(0,∞).

Thus b) is established for j = r. To finish the proof for j < r we also need to
observe that, since γ∞ + r − n − 1 > −1/p for n ≤ r − j − 1, j < r, Hardy’s
inequality implies for n ≤ r − j − 1, j < r,

‖χγ∞ψr,n(· ,∞; · )‖p(a,∞) ≤ c ‖χγ∞+rg(r)‖p(a,∞).

Assertions c) and d) are established like a) and b) respectively using the
representation from Theorem 3.1 with ν = j and with k ≥ j.

Combining inequalities given in the last proposition, we get

Theorem 4.1. Let 1 ≤ p ≤ ∞, i, j ∈ N0, r ∈ N, i, j ≤ r and w(x) =
w(γ0, γ∞;x) be defined in (1.8). We set

m =


0 if γ0 ∈ Ti(p), γ∞ ∈ Tj(p), j ≤ i;
i if γ0 = 1− i− 1/p, γ∞ ∈ Tj(p) ∪ {1− j − 1/p}, i > 0, j ≤ i;
j if γ0 ∈ Ti(p), γ∞ = 1− j − 1/p, 0 < j ≤ i;
j if γ0 ∈ Ti(p) ∪ {1− i− 1/p}, γ∞ ∈ Tj(p)∪{1− j − 1/p}, i < j.

If m < r, then for g ∈ ACr−1
loc (0,∞) such that g, χrg(r) ∈ Lp(w)(0,∞) we have

‖wχkg(k)‖p(0,∞) ≤ c ‖wχrg(r)‖p(0,∞), k = m,m+ 1, . . . , r − 1. (4.7)

The constant c is independent of g.

Proof. If γ0, γ∞ > −max{i, j} − 1/p and i, j < r, then Proposition 4.2.c and
Proposition 4.2.d imply

‖wχkg(k)‖p(0,∞) ≤ c ‖wχrg(r)‖p(0,∞), k = max{i, j}, . . . , r − 1, (4.8)

which verifies the assertion of the theorem in the following cases:

• γ0, γ∞ ∈ T0(p);

• γ0 = 1− i− 1/p, γ∞ ∈ Tj(p) ∪ {1− j − 1/p}, 0 < i < r, j ≤ i;

• γ0 ∈ Tj(p), γ∞ = 1− j − 1/p, 0 < j < r;

• γ0 ∈ Ti(p) ∪ {1− i− 1/p}, γ∞ ∈ Tj(p) ∪ {1− j − 1/p}, i < j < r.

Next, if γ0 < 1− i− 1/p, γ∞ > −j − 1/p and j < i, then Proposition 4.2.a and
Proposition 4.2.c with r = i imply

‖wχkg(k)‖p(0,∞) ≤ c ‖wχig(i)‖p(0,∞), k = j, . . . , i− 1, (4.9)

which together with (4.8) yields the assertion of the theorem in the cases:
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• γ0 ∈ Ti(p), i > 0, γ∞ ∈ T0(p);

• γ0 ∈ Ti(p), γ∞ = 1− j − 1/p, 0 < j < i.

Finally, if γ0, γ∞ < 1 − j − 1/p, j > 0, then Proposition 4.2.a and Proposition
4.2.b with r = j = i imply

‖wχkg(k)‖p(0,∞) ≤ c ‖wχjg(j)‖p(0,∞), k = 0, . . . , j − 1, (4.10)

which verifies the theorem in the case γ0, γ∞ ∈ Tr(p). Inequalities (4.10) and
(4.8) with 0 < i = j < r imply the theorem for γ0, γ∞ ∈ Ti(p), 0 < i < r;
inequalities (4.10) and (4.9) with i = r imply the theorem for γ0 ∈ Tr(p),
γ∞ ∈ Tj(p), 0 < j < r; and inequalities (4.10), (4.9) and (4.8) imply the
theorem for γ0 ∈ Ti(p), γ∞ ∈ Tj(p), 0 < j < i < r.

Thus the proof is completed.

Remark 4.1. Let us note that in terms of γ0, γ∞ the condition m = r is
equivalent to γ0 = 1− r − 1/p, or γ∞ = 1− r − 1/p, or γ∞ < 1− r − 1/p < γ0.

Remark 4.2. Theorem 4.1 is exact in the following sense. The inequality (4.7)
is not true for k = m − 1 provided that m 6= 0. Indeed, let φ ∈ C∞(R) be a
fixed function with support in [1, 2]. For arbitrary δ ∈ (0, 1) we set g1,δ(x) =
xm−1φ(x−δ) and g2,δ(x) = xm−1φ(xδ). Let γ ∈ R be arbitrary. We observe
that g1,δ, χ

rg
(r)
1,δ ∈ Lp(w(1 −m − 1/p, γ))(0,∞) and g2,δ, χ

rg
(r)
2,δ ∈ Lp(w(γ, 1 −

m− 1/p))(0,∞) for 1 ≤ p ≤ ∞. Moreover, we have

‖w(1−m− 1/p, γ)χkg
(k)
1,δ ‖p(0,∞) ∼ δ−1/p, k = 0, . . . ,m− 1,

‖w(1−m− 1/p, γ)χkg
(k)
1,δ ‖p(0,∞) ∼ δ1−1/p, k = m, . . . , r,

‖w(γ, 1−m− 1/p)χkg
(k)
2,δ ‖p(0,∞) ∼ δ−1/p, k = 0, . . . ,m− 1,

‖w(γ, 1−m− 1/p)χkg
(k)
2,δ ‖p(0,∞) ∼ δ1−1/p, k = m, . . . , r.

If γ0 or γ∞ are in Texc(p), then g1,δ or g2,δ, respectively, with δ → 0 provides a
counterexample to (4.7) with k = m − 1. A counterexample in the remaining
cases with m > 0, which are described by γ0 > 1 −m − 1/p, γ∞ ∈ Tm(p), is
provided by g = χm−1.

Remark 4.3. In view of Theorem 4.1 and Remark 4.2 we can decrease the
order of the derivative k (starting from r−1) in (4.7) until the three conditions:
χk 6∈ Lp(w)(0,∞), γ0 + k 6= −1/p and γ∞ + k 6= −1/p are satisfied. In all
the cases considered in Theorem 4.1 we have πr−1 ∩ Lp(w)(0,∞) ⊆ πm−1 and
γ0 + k, γ∞ + k 6= −1/p, k = m, . . . , r − 1.

Remark 4.4. Let us observe that if γ0 < γ∞, then Theorem 4.1 follows from
the assertion for γ0 = γ∞, established in [8, Corollary 4.2], because in this case
we have w ∼ max{χγ0 , χγ∞}.

Now, we proceed to the analogue of Proposition 4.2 and Theorem 4.1 in the
case when there exist monomials χk with k ∈ {m, . . . , r − 1} in Lp(w)(0,∞).
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Proposition 4.3. Let 1 ≤ p ≤ ∞, i ∈ N0, j, r ∈ N as i < j ≤ r, a > 0,
w(x) = w(γ0, γ∞;x) be defined in (1.8) and the linear operator Li,j−1 given
by (1.10) satisfy conditions i)-ii). We set ᾱ = min{a, α} and β̄ = max{a, β}.
Let also g ∈ ACr−1

loc (0,∞) be such that g, χrg(r) ∈ Lp(w)(0,∞). The following
assertions hold true:

a) If γ0 ∈ Ti(p) and γ∞ > −j − 1/p, j < r, then

‖χγ0+k(g − Li,j−1g)(k)‖p(0,a) ≤ c ‖wχrg(r)‖p(0,∞), k = 0, . . . , r − 1.

b) If γ0 ∈ Ti(p), then

‖χγ0+k(g − Li,r−1g)(k)‖p(0,a) ≤ c ‖χγ0+rg(r)‖p(0,β̄), k = 0, . . . , r − 1.

c) If γ∞ ∈ Tj(p), then

‖χγ∞+k(g − L0,j−1g)(k)‖p(a,∞) ≤ c ‖χγ∞+rg(r)‖p(ᾱ,∞), k = 0, . . . , r − 1.

d) If γ0 < 1− i− 1/p, i > 0, and γ∞ ∈ Tj(p), then

‖χγ∞+k(g − Li,j−1g)(k)‖p(a,∞) ≤ c ‖wχrg(r)‖p(0,∞), k = 0, . . . , r − 1.

e) If γ0 ∈ Ti(p) and γ∞ ∈ Tj(p), then

‖wχk(g − Li,j−1g)(k)‖p(0,∞) ≤ c ‖wχrg(r)‖p(0,∞), k = 0, . . . , r − 1.

The constant c is independent of g.

Remark 4.5. Note that in the hypotheses of items a), d) and e) above we
have πr−1 ∩ Lp(w)(0,∞) ⊆ πi,j−1; in the hypothesis of b) we have πr−1 ∩
Lp(χγ0)(0, β̄) = πi,r−1; and in the hypothesis of c) we have πr−1∩Lp(χγ∞)(ᾱ,∞)
= π0,j−1 (cf. Remark 1.5). Consequently, by property ii) of Li,j−1 the left-hand
side of each of the inequalities above is 0 whenever g is a polynomial of degree
less than r which belongs to the respective weighted Lp-space.

Proof of Proposition 4.3. Proposition 4.1 implies that it is sufficient to prove the
assertions only for k = 0. Each of the hypotheses of a)-e) imply γ0 < 1− i−1/p
for i > 0 and γ∞ > −j−1/p for j < r. Then by Theorem 3.1 with µ = i, ν = j,
k = 0, and property ii) of Li,j−1 we get

g − Li,j−1g = Rg − Li,j−1(Rg), (4.11)

where

(Rg)(x) =
r−1∑

n=r−i

(−1)nxr−n−1

n!(r − n− 1)!

∫ x

0

yng(r)(y) dy

+
r−i−1∑
n=r−j

(−1)nxr−n−1

n!(r − n− 1)!

∫ x

a

yng(r)(y) dy

+
r−j−1∑
n=0

(−1)n+1xr−n−1

n!(r − n− 1)!

∫ ∞

x

yng(r)(y) dy.
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First we shall prove a) and b). Since γ0 ∈ Ti(p) we get by Hardy’s inequalities
that

‖χγ0ψr,n(0, · ; · )‖p(0,β̄) ≤ c ‖χγ0+rg(r)‖p(0,β̄), n ≥ r − i, i > 0, (4.12)

‖χγ0ψr,n(a, · ; · )‖p(0,β̄) ≤ c ‖χγ0+rg(r)‖p(0,β̄), n ≤ r − i− 1, (4.13)

where the functions ψr,n are defined in (4.4).
Next, since χγ0+r−n−1 ∈ Lp(0, β̄) for n ≤ r − j − 1 and also γ∞ > −j − 1/p

for j < r we get by Hölder’s inequality

‖χγ0ψr,n(a,∞; · )‖p(0,β̄) ≤ c ‖χγ∞+rg(r)‖p(a,∞), n ≤ r − j − 1, j < r. (4.14)

Relations (4.13) and (4.14) imply

‖χγ0ψr,n(· ,∞; · )‖p(0,β̄) ≤ c ‖wχrg(r)‖p(0,∞), n ≤ r − j − 1, j < r. (4.15)

Now, inequalities (4.12), (4.13) and (4.15) imply

‖χγ0Rg‖p(0,β̄) ≤ c ‖wχrg(r)‖p(0,∞), j < r, (4.16)

and (4.12) and (4.13) imply

‖χγ0Rg‖p(0,β̄) ≤ c ‖χγ0+rg(r)‖p(0,β̄), j = r. (4.17)

Further, using property i) of Li,j−1 and Hölder’s inequality we get

‖χγ0Li,j−1(Rg)‖p(0,a) ≤ c ‖Rg‖1(α,β) ≤ c ‖Rg‖p(α,β) ≤ c ‖χγ0Rg‖p(0,β̄). (4.18)

Now, relations (4.11), (4.18) and (4.16) imply a), and (4.11), (4.18) and (4.17)
imply b).

Assertions c) and d) follow from (4.11) and the estimates:

‖χγ∞ψr,n(0, · ; · )‖p(ᾱ,∞) ≤ c ‖wχrg(r)‖p(0,∞), n ≥ r − i, i > 0,

‖χγ∞ψr,n(a, · ; · )‖p(ᾱ,∞) ≤ c ‖χγ∞+rg(r)‖p(ᾱ,∞), n ≥ r − j,

‖χγ∞ψr,n(· ,∞; · )‖p(ᾱ,∞) ≤ c ‖χγ∞+rg(r)‖p(ᾱ,∞), n ≤ r − j − 1, j < r,

‖χγ∞Li,j−1(Rg)‖p(a,∞) ≤ c ‖χγ∞Rg‖p(ᾱ,∞),

which are verified as above.
Finally, assertion e) follows directly from a)-d).

5 A characterization of Kr
w(f, tr)p by the

unweighted fixed-step moduli of smoothness

Let J ⊆ R be an open interval. For r ∈ N, F ∈ Lp(J) and t > 0 we denote the
unweighted K-functional by

Kr(F, tr)p(J) = inf
{
‖F −G‖p(J) + tr‖G(r)‖p(J) : G ∈ ACr−1

loc (J)
}
.
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For r = 0 we set K0(F, t0)p(J) = ‖F‖p(J). As it is known (see e.g. [1, Ch. 6,
Theorem 2.4])

Kr(F, tr)p(J) ∼ ωr(F, t)p(J). (5.1)

We shall also need the following characterization of another K-functional, which
is simple modification of the one above.

Lemma 5.1. For r ∈ N, 1 ≤ p ≤ ∞, 0 < t ≤ t0, an open interval J ⊆ R and
F ∈ Lp(J) there holds

inf
{
‖F −G‖p(J) + tr‖G(r)‖p(J) + tr‖G′‖p(J) : G ∈ ACr−1

loc (J)
}

∼ ωr(F, t)p(J) + tr−1ω1(F, t)p(J).

The assertion of this lemma can be established as in [8, Lemma 5.2].
We shall prove the upper and lower estimates of the K-functional Kr

w(f, tr)p

separately as for each of them it is necessary to distinguish between two main
cases: j ≤ i and i < j, where i, j are determined by Ti(p) 3 γ0 and Tj(p) 3 γ∞.
According to Remark 1.5 the trivial class πr−1∩Lp(w)(0,∞) of the K-functional
Kr

w(f, tr)p is {0} for j ≤ i, whereas for i < j it is πi,j−1 6= {0}.

5.1 Upper estimates

The following theorem establishes the upper estimate of Kr
w(f, tr)p by the un-

weighted K-functionals. Although it is valid for all real γ0, γ∞, it will be used
in the case γ0, γ∞ 6= 1− r − 1/p, . . . ,−1/p.

Theorem 5.1. Let r ∈ N, 1 ≤ p ≤ ∞, t0 > 0, w(x) = w(γ0, γ∞;x) be defined
in (1.8) with γ0, γ∞ ∈ R. Then for f ∈ Lp(w)(0,∞), q ∈ πr−1 ∩ Lp(w)(0,∞),
F = (χ1/pw(f − q)) ◦ E and 0 < t ≤ t0 there holds

Kr
w(f, tr)p ≤ c

(
Kr(F, tr)p(R) + tr‖F‖p(R)

)
.

Proof. First, let us observe that since Kr
w(f, tr)p = Kr

w(f − q, tr)p, it is enough
to establish the theorem with q = 0.

In all the proofs in this section we follow a standard K-functional argument:
in order to prove the assertion of the theorem, it is enough to show that for
every function G ∈ ACr−1

loc (R) such that G,G(r) ∈ Lp(R) there exists a function
g ∈ ACr−1

loc (0,∞) such that

‖w(f − g)‖p(0,∞) ≤ c ‖F −G‖p(R) (5.2)

and

‖wχrg(r)‖p(0,∞) ≤ c
(
‖G‖p(R) + ‖G(r)‖p(R)

)
. (5.3)
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Indeed, from (5.2) and (5.3) we get for every t such that 0 < t ≤ t0 and
G ∈ ACr−1

loc (R) such that G,G(r) ∈ Lp(R) the estimate

Kr
w(f, tr)p ≤ ‖w(f − g)‖p(0,∞) + tr‖wχrg(r)‖p(0,∞)

≤ c
(
‖F −G‖p(R) + tr‖G(r)‖p(R) + tr‖F‖p(R)

)
.

Taking infimum onG in the above inequality we get the assertion of the theorem.
Let G ∈ ACr−1

loc (R) be such that G,G(r) ∈ Lp(R). We set g = χ−1/pw−1(G◦
log) = (W−1G) ◦ log, where W = (χ1/pw) ◦E. Then by a change of the variable
we see that (5.2) is valid as an equality with c = 1.

To prove (5.3) we write

‖wχrg(r)‖p(0,∞) = ‖wχr((W−1G) ◦ log)(r)‖p(0,∞)

=
∥∥∥∥w r∑

`=1

mr,`(W−1G)(`) ◦ log
∥∥∥∥

p(0,∞)

≤ c
r∑

`=1

‖W (W−1G)(`)‖p(R) (5.4)

with appropriate integers mr,`. To estimate ‖W (W−1G)(`)‖p(R) for ` = 1, . . . , r
we first apply the Leibniz rule and get

(W−1(x)G(x))(`) = W−1(x)
∑̀
k=0

[
`−k∑
n=0

b`,k,n

(
ex

1 + ex

)n
]
G(k)(x)

with some numbers b`,k,n = b`,k,n(γ0 + 1/p, γ∞ + 1/p). Next we only need to
observe that ∣∣∣∣∣

`−k∑
n=0

b`,k,n

(
ex

1 + ex

)n
∣∣∣∣∣ ≤ c, x ∈ R,

and use (4.2) to get for ` = 1, . . . , r

‖W (W−1G)(`)‖p(R) ≤ c
∑̀
k=0

‖G(k)‖p(R) ≤ c
(
‖G‖p(R) + ‖G(r)‖p(R)

)
. (5.5)

Inequalities (5.4) and (5.5) imply (5.3) and complete the proof.

To solve the cases when one or both of the γ’s belong to Texc(p), we treat
the singularities separately by splitting the interval (0,∞). For J an interval of
the type (0, a) or (a,∞) with 0 < a <∞ and γ ∈ R we set

Kr
χγ (f, tr)p(J) = K(f, tr;Lp(χγ)(J), ACr−1

loc , χrDr)

= inf
{
‖χγ(f − g)‖p(J) + tr‖χγ+rDrg‖p(J) : g ∈ ACr−1

loc (J)
}
.

According to [7, Lemma 7.1] (see also [1, Ch. 6, Lemma 2.3]) for A > 1, every
f ∈ Lp(w)(0,∞) and 0 < t ≤ t0 there holds

Kr
w(f, tr)p ∼ Kr

χγ0 (f, tr)p(0,A) +Kr
χγ∞ (f, tr)p(1/A,∞). (5.6)
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Theorem 5.2. Let r ∈ N, 1 ≤ p ≤ ∞, a, t0 > 0, 0 < t ≤ t0, w(x) =
w(γ0, γ∞;x) be defined in (1.8) with γ0, γ∞ ∈ R. For f ∈ Lp(w)(0,∞) we
set F0 = (χγ0+1/p(f − q0)) ◦ E and F∞ = (χγ∞+1/p(f − q∞)) ◦ E, where q0 ∈
πr−1 ∩ Lp(χγ0)(0, 1) and q∞ ∈ πr−1 ∩ Lp(χγ∞)(1,∞) are arbitrary. Let `0 = 1
if γ0 ∈ Texc(p), and `0 = 0 otherwise. Let `∞ = 1 if γ∞ ∈ Texc(p), and `∞ = 0
otherwise. Then we have:

Kr
w(f, tr)p ≤ c

(
Kr(F0, t

r)p(−∞,a) + tr−`0K`0(F0, t
`0)p(−∞,a)

+Kr(F∞, tr)p(−a,∞) + tr−`∞K`∞(F∞, t`∞)p(−a,∞)

)
.

Proof. Let A = ea > 1. In view of (5.6), Kr
χγ0 (f, tr)p(0,A) = Kr

χγ0 (f −
q0, t

r)p(0,A) and Kr
χγ∞ (f, tr)p(1/A,∞) = Kr

χγ∞ (f − q∞, t
r)p(1/A,∞), it is enough

to prove the inequalities:

Kr
χγ0 (f, tr)p(0,A) ≤ c

(
Kr(F0, t

r)p(−∞,a) + tr−`0K`0(F0, t
`0)p(−∞,a)

)
(5.7)

with F0 = (χγ0+1/pf) ◦ E and

Kr
χγ∞ (f, tr)p(1/A,∞) ≤ c

(
Kr(F∞, tr)p(−a,∞) + tr−`∞K`∞(F∞, t`∞)p(−a,∞)

)
(5.8)

with F∞ = (χγ∞+1/pf) ◦ E. The proofs of (5.7) and (5.8) are quite similar and
we shall give only the one of the former.

For every G ∈ ACr−1
loc (−∞, a) such that G,G(r) ∈ Lp(−∞, a) we set g =

χ−γ0−1/p(G◦ log). Just as in the proof of Theorem 5.1, the inequality (5.7) with
`0 = 0 follows for an arbitrary real γ0 from the relations

‖χγ0(f − g)‖p(0,A) = ‖F0 −G‖p(−∞,a) (5.9)

and

‖χγ0+rg(r)‖p(0,A) ≤ c
(
‖G‖p(−∞,a) + ‖G(r)‖p(−∞,a)

)
,

which are verified as in the proof of Theorem 5.1.
Let γ0 = −i − 1/p, where i ∈ N0 and i < r. In view of Lemma 5.1 and the

equivalence (5.1), relation (5.7) with `0 = 1 follows from (5.9) and

‖χγ0+rg(r)‖p(0,A) ≤ c
(
‖G′‖p(−∞,a) + ‖G(r)‖p(−∞,a)

)
.

To verify the inequality above let us observe that r− i ≥ 1 and we actually have
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with appropriate integers m`,k

‖χγ0+rg(r)‖p(0,A) = ‖χ−1/pχr−i(χi(G ◦ log))(r)‖p(0,A)

=

∥∥∥∥∥χ−1/p
r∑

`=r−i

(
r

`

)
i!

(i+ `− r)!
χ`(G ◦ log)(`)

∥∥∥∥∥
p(0,A)

=

∥∥∥∥∥χ−1/p
r∑

`=r−i

(
r

`

)
i!

(i+ `− r)!

∑̀
k=1

m`,k G
(k) ◦ log

∥∥∥∥∥
p(0,A)

≤ c
r∑

k=1

∥∥∥χ−1/pG(k) ◦ log
∥∥∥

p(0,A)

= c
r∑

k=1

‖G(k)‖p(−∞,a) ≤ c
(
‖G′‖p(−∞,a) + ‖G(r)‖p(−∞,a)

)
,

where at the last step we have applied (4.2).

Remark 5.1. Let us note that actually (5.7) and (5.8) hold with `0 = 0 for
any γ0 ∈ R and/or `∞ = 0 for any γ∞ ∈ R. In particular, for any γ0, γ∞ ∈ R
we have

Kr
w(f, tr)p ≤ c

(
Kr(F0, t

r)p(−∞,a) + tr‖F0‖p(−∞,a)

+Kr(F∞, tr)p(−a,∞) + tr‖F∞‖p(−a,∞)

)
.

5.2 Lower estimates

In the proof of the lower estimates of Kr
w(f, tr)p by unweighted K-functionals,

we shall use the following assertion, which is verified directly.

Proposition 5.1. Let the linear operator Li,j−1 be defined by (1.10) and sat-
isfy condition i) and let πi,j−1 ⊂ Lp(w)(0,∞). Then Li,j−1 : Lp(w)(0,∞) →
Lp(w)(0,∞) is bounded.

We also need a combinatorial identity, which follows from Vandermonde’s
convolution formula (see [10, Ch. 1, (5c)]). For the sake of completeness we
give its short proof.

Lemma 5.2. Let n,m ∈ N. Then

min{n,m}∑
k=0

(−1)m−k

(
m

k

)
(n+m− k − 1)!

(n− k)!
= 0.
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Proof. The identity follows from

0 ≡
(
x−n · xn

)(m) =
m∑

k=0

(
m

k

)(
x−n

)(m−k) (xn)(k)

=
min{n,m}∑

k=0

(
m

k

)[
(−1)m−k (n+m− k − 1)!

(n− 1)!
xk−n−m

] [
n!

(n− k)!
xn−k

]

= nx−m

min{n,m}∑
k=0

(−1)m−k

(
m

k

)
(n+m− k − 1)!

(n− k)!
.

First, we shall prove the lower estimate of Kr
w(f, tr)p by unweighted K-

functionals for γ0, γ∞ /∈ Texc(p).

Theorem 5.3. Let r ∈ N, 1 ≤ p ≤ ∞, t0 > 0, w(x) = w(x; γ0, γ∞) be defined
in (1.8) with γ0 ∈ Ti(p), γ∞ ∈ Tj(p). For f ∈ Lp(w)(0,∞) we set

F = (χ1/pw(f − Li,j−1f)) ◦ E,

where Li,j−1 is given by (1.10) and satisfies conditions i) and ii). Then for
` = 0, 1, . . . , r and 0 < t ≤ t0 there holds

tr−`K`(F, t`)p(R) ≤ cKr
w(f, tr)p.

Proof. We follow the standard K-functional argument used in the proof of
Theorem 5.1. Let g ∈ ACr−1

loc (0,∞) and g, χrg(r) ∈ Lp(w)(0,∞). We set
G = (χ1/pw(g − Li,j−1g)) ◦ E.

Let j ≤ i. Then Li,j−1 = 0 by definition. First, just by a change of the
variable we get

‖F −G‖p(R) = ‖w(f − g)‖p(0,∞). (5.10)

Next, for ` = 1, 2, . . . , r we have with some integers n`,k

‖G(`)‖p(R) = ‖((χ1/pwg) ◦ E)(`)‖p(R) =

∥∥∥∥∥∑̀
k=1

n`,kEk
(
(χ1/pwg)(k) ◦ E

)∥∥∥∥∥
p(R)

≤ c
∑̀
k=1

‖χk−1/p(χ1/pwg)(k)‖p(0,∞)

≤ c
(
‖wg‖p(0,∞) + ‖χr−1/p(χ1/pwg)(r)‖p(0,∞)

)
, (5.11)

where at the last step we have used Proposition 4.1 with J = (0,∞). Inequality
(5.11) is also true for ` = 0 in view of (5.10) with f = F = 0. To estimate the
term ‖χr−1/p(χ1/pwg)(r)‖p(0,∞) we apply the Leibniz rule to get

xr−1/p(x1/pw(x)g(x))(r) = w(x)
r∑

k=0

[
r−k∑
n=0

dk,n

(
x

1 + x

)r−k−n
]
xkg(k)(x)
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with some numbers dk,n = dk,n(γ0 + 1/p, γ∞ + 1/p). Next, since∣∣∣∣∣
r−k∑
n=0

dk,n

(
x

1 + x

)r−k−n
∣∣∣∣∣ ≤ c, x ≥ 0,

we get by means of Proposition 4.1 with J = (0,∞)

‖χr−1/p(χ1/pwg)(r)‖p(0,∞) ≤ c
r∑

k=0

‖wχkg(k)‖p(0,∞)

≤ c (‖wg‖p(0,∞) + ‖wχrg(r)‖p(0,∞)). (5.12)

Theorem 4.1 implies

‖wg‖p(0,∞) ≤ c ‖wχrg(r)‖p(0,∞),

which together with (5.11) and (5.12) gives the inequalities

‖G(`)‖p(R) ≤ c ‖wχrg(r)‖p(0,∞), ` = 0, 1, . . . , r. (5.13)

Finally, (5.10) and (5.13) imply for ` = 0, 1, . . . , r and 0 < t ≤ t0

tr−`Kr(F, t`)p(R) ≤ tr−`‖F −G‖p(R) + tr‖G(`)‖p(R)

≤ c
(
‖w(f − g)‖p(0,∞) + tr‖wχrg(r)‖p(0,∞)

)
,

which proves the theorem in the case j ≤ i by taking infimum in g.
To establish the assertion for i < j, we, first, observe that Proposition 5.1

implies

‖F −G‖p(R) ≤ ‖w(f − g)‖p(0,∞) + ‖w Li,j−1(f − g)‖p(0,∞)

≤ c ‖w(f − g)‖p(0,∞).

Next, we establish the estimates

‖G(`)‖p(R) ≤ c ‖wχrg(r)‖p(0,∞), ` = 0, 1, . . . , r,

just in the same way as in the proof of the first part as we replace g with
g − Li,j−1g and use Proposition 4.3.e instead of Theorem 4.1.

To treat the cases when one or both of the γ’s belong to the set Texc(p), we
shall prove several lower estimates, which correspond to the terms in the upper
estimate of Theorem 5.2.

Theorem 5.4. Let r ∈ N, i, j ∈ N0, i, j ≤ r, 1 ≤ p ≤ ∞, a, t0 > 0, 0 < t ≤ t0,
w(x) = w(γ0, γ∞;x) be defined in (1.8) with γ0, γ∞ ∈ R. For f ∈ Lp(w)(0,∞)
we set F0 = (χγ0+1/pf) ◦ E and F∞ = (χγ∞+1/pf) ◦ E. We have:

a) For γ0 ∈ Ti(p) and either γ∞ > −i − 1/p, i < r or γ∞ ∈ R, i = r there
holds

tr−`K`(F0, t
`)p(−∞,a) ≤ cKr

w(f, tr)p, ` = 0, 1, . . . , r;
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b) For γ0 = 1−i−1/p, i > 0 and either γ∞ > −i−1/p, i < r or γ∞ ∈ R, i = r
there holds

tr−`K`(F0, t
`)p(−∞,a) ≤ cKr

w(f, tr)p, ` = 1, . . . , r;

c) For γ∞ ∈ Tj(p) and either γ0 ∈ R, j = 0 or γ0 < 1− j − 1/p, j > 0 there
holds

tr−`K`(F∞, t`)p(−a,∞) ≤ cKr
w(f, tr)p, ` = 0, 1, . . . , r;

d) For γ∞ = −j−1/p, j < r and either γ0 ∈ R, j = 0 or γ0 < 1−j−1/p, j > 0
there holds

tr−`K`(F∞, t`)p(−a,∞) ≤ cKr
w(f, tr)p, ` = 1, . . . , r.

Proof. We follow the method used in the proof of the previous theorem. For
the proof of a) and b) we set G = (χγ0+1/pg) ◦ E, where g ∈ ACr−1

loc (0,∞) is
such that g, χrg(r) ∈ Lp(w)(0,∞).

First, by a change of the variable we get

‖F0 −G‖p(−∞,a) ≤ c ‖w(f − g)‖p(0,∞). (5.14)

Assertion a) follows from (5.14) and

‖G(`)‖p(−∞,a) ≤ c ‖wχrg(r)‖p(0,∞), ` = 0, 1, . . . , r. (5.15)

To prove (5.15), we first get, as in the proof of (5.11)-(5.12)

‖G(`)‖p(−∞,a) ≤ c (‖χγ0g‖p(0,A) + ‖χγ0+rg(r)‖p(0,A)), ` = 0, 1, . . . , r, (5.16)

where A = ea. The inequality

‖χγ0g‖p(0,A) ≤ c ‖χγ0+ig(i)‖p(0,A) (5.17)

is trivial for i = 0 and follows for i = 1, . . . , r from Proposition 4.2.a with k = 0,
r = i because in this case γ0 < 1 − i − 1/p. Consequently, if i = r, (5.16) and
(5.17) imply (5.15) for γ0 < 1− r − 1/p and any real γ∞.

If i < r, we use Proposition 4.2.d with k = j = i to get for γ0, γ∞ > −i−1/p

‖χγ0+ig(i)‖p(0,A) ≤ c ‖wχrg(r)‖p(0,∞),

which together with (5.17) yields

‖χγ0g‖p(0,A) ≤ c ‖wχrg(r)‖p(0,∞)

and hence by (5.16) we get (5.15) for i < r as well. Thus the proof of assertion
a) is completed.

Assertion b) follows from (5.14) and

‖G(`)‖p(−∞,a) ≤ c ‖wχrg(r)‖p(0,∞), ` = 1, . . . , r. (5.18)
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To establish the above inequalities, we get for ` = 1, 2, . . . , r as in the the proof
of (5.11)

‖G(`)‖p(−∞,a) ≤ c
(
‖χ1−1/p(χ1−ig)′‖p(0,A) + ‖χr−1/p(χ1−ig)(r)‖p(0,A)

)
.

(5.19)
Note that if r = 1, then i = 1 and the last inequality implies directly (5.18) for
` = r = 1 and any real γ∞. So let us assume that r > 1.

If i < r, then γ0, γ∞ > −i− 1/p and Proposition 4.2, d) with j = i implies

‖χγ0+kg(k)‖p(0,A) ≤ c ‖wχrg(r)‖p(0,∞), k = i, . . . , r − 1. (5.20)

Hence we get (5.18) for i = 1. For i > 1 the Leibniz rule gives for m = 1, . . . , r

xm−1/p(x1−ig(x))(m)

=
x1−i−1/p

(i− 2)!

m∑
k=0

(−1)m−k

(
m

k

)
(i+m− k − 2)!xkg(k)(x). (5.21)

In view of (5.19)-(5.21) to establish (5.18) with γ0 = 1 − i − 1/p, it is enough
to prove the inequality∥∥∥∥∥∥χ1−i−1/p

min{i−1,m}∑
k=0

(−1)m−k

(
m

k

)
(i+m− k − 2)!χkg(k)

∥∥∥∥∥∥
p(0,A)

≤ c ‖χ1−1/pg(i)‖p(0,A) (5.22)

for m = 1, . . . , r. To accomplish that we apply Theorem 3.1 with µ = i− 1 > 0
and r = ν = i to get for k = 0, . . . , i− 1 the representation

xkg(k)(x) = g(i−1)(a)
xi−1

(i− k − 1)!
+

xi−1

(i− k − 1)!

∫ x

a

g(i)(y) dy

+
i−k−1∑
n=1

(−1)nxi−n−1

n!(i− k − n− 1)!

∫ x

0

yng(i)(y) dy

= g(i−1)(x)
xi−1

(i− k − 1)!
+

i−k−1∑
n=1

(−1)nxi−n−1

n!(i− k − n− 1)!

∫ x

0

yng(i)(y) dy.

Now, taking into consideration Lemma 5.2 with n = i − 1, we get for m =
1, . . . , r

x1−i−1/p

min{i−1,m}∑
k=0

(−1)m−k

(
m

k

)
(i+m− k − 2)!xkg(k)(x)

=
i−1∑
n=1

ρi−1,m,n x
−n−1/p

∫ x

0

yng(i)(y) dy,
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where

ρi,m,n =
min{i−n,m}∑

k=0

(−1)m+n−k

(
m

k

)
(i+m− k − 1)!
n!(i− k − n)!

= (−1)m+n

(
i− 1
n− 1

)
(m+ n− 1)!

n!
(5.23)

as the last equality follows from [10, Ch. 1, (5a)]. Finally, Hardy’s inequality
implies (5.22).

For i = r (5.18) follows from (5.19), (5.21) and (5.22), and, consequently, no
restrictions are imposed on γ∞. Thus the proof of b) is completed.

For the proof of c) and d) we set G = (χγ∞+1/pg)◦E, where g∈ACr−1
loc (0,∞)

is such that g, χrg(r) ∈ Lp(w)(0,∞).
Just as above we get

‖F∞ −G‖p(−a,∞) ≤ c ‖w(f − g)‖p(0,∞). (5.24)

Assertion c) follows from (5.24) and the inequalities

‖G(`)‖p(−∞,a) ≤ c ‖wχrg(r)‖p(0,∞), ` = 0, 1, . . . , r.

They are verified like in the proof of a) as the estimate

‖χγ∞g‖p(1/A,∞) ≤ c ‖wχrg(r)‖p(0,∞)

follows in the case j = 0 from Proposition 4.2.c with k = j = 0 and hence no
restrictions on γ0 are imposed, and in the case j > 0 from Proposition 4.2.b
with k = 0.

Assertion d) follows from (5.24) and

‖G(`)‖p(−a,∞) ≤ c ‖wχrg(r)‖p(0,∞), ` = 1, . . . , r. (5.25)

To prove the last inequalities we get as in the the proof of (5.11)

‖G(`)‖p(−a,∞) ≤ c
(
‖χ1−1/p(χ−jg)′‖p(1/A,∞) + ‖χr−1/p(χ−jg)(r)‖p(1/A,∞)

)
.

(5.26)
If r = 1, then j = 0 and (5.26) directly implies (5.25) for ` = r = 1 and any
γ0 ∈ R.

Let r > 1. The inequality

‖χγ∞+kg(k)‖p(1/A,∞) ≤ c ‖χγ∞+rg(r)‖p(1/A,∞), k = j + 1, . . . , r. (5.27)

is trivial for k = r and for k = j + 1, . . . , r − 1 (hence j < r − 1) follows from
Proposition 4.2.c with j + 1 instead of j since γ∞ > −j − 1− 1/p. From (5.26)
and (5.27) we get (5.25) for j = 0 and any real γ0. For j > 0 by the Leibniz
rule we have for m = 1, . . . , r

xm−1/p(x−jg(x))(m)

=
x−j−1/p

(j − 1)!

m∑
k=0

(−1)m−k

(
m

k

)
(j +m− k − 1)!xkg(k)(x). (5.28)
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Now, in view of (5.26)-(5.28) to establish (5.25) it is enough to prove∥∥∥∥∥∥χ−j−1/p

min{j,m}∑
k=0

(−1)m−k

(
m

k

)
(j +m− k − 1)!χkg(k)

∥∥∥∥∥∥
p(1/A,∞)

≤ c ‖wχrg(r)‖p(0,∞), m = 1, . . . , r (5.29)

with 1 ≤ j < r. To do it we apply Theorem 3.1 with a = 1/A, µ = j and
ν = j + 1 ≤ r to get for k = 0, . . . , j the representation

xkg(k)(x) = (Qg)(x)
xj

(j − k)!
+ (R̂kg)(x),

where

(Qg)(x) =
r−1∑
`=j

(−A)j−`

(`− j)!
g(`)(1/A) +

(−1)r−j−1

(r − j − 1)!

∫ x

1/A

yr−j−1g(r)(y) dy (5.30)

and

(R̂kg)(x) =
r−k−1∑
n=r−j

(−1)nxr−n−1

n!(r − k − n− 1)!

∫ x

0

yng(r)(y) dy

+
r−j−2∑
n=0

(−1)n+1xr−n−1

n!(r − k − n− 1)!

∫ ∞

x

yng(r)(y) dy.

Using the representations above and taking into account Lemma 5.2 with n = j,
we get

x−j−1/p

min{j,m}∑
k=0

(−1)m−k

(
m

k

)
(j +m− k − 1)!xkg(k)(x)

=
r−1∑

n=r−j

ρ′j,m,nx
r−j−n−1−1/p

∫ x

0

yng(r)(y) dy

+
r−j−2∑
n=0

ρ′′j,m,nx
r−j−n−1−1/p

∫ ∞

x

yng(r)(y) dy, (5.31)

where

ρ′j,m,n =
min{r−n−1,m}∑

k=0

(−1)m+n−k

(
m

k

)
(j +m− k − 1)!
n!(r − k − n− 1)!

= (−1)m+n

(
j +m+ n− r

n

)(
j − 1

r − n− 1

)
, (5.32)

ρ′′j,m,n =
min{j,m}∑

k=0

(−1)m+n−k+1

(
m

k

)
(j +m− k − 1)!
n!(r − k − n− 1)!

. (5.33)
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as to calculate ρ′j,m,n we again used [10, Ch. 1, (5a)].
Since χr−j−n−1−1/p ∈ Lp(1/A,∞) for n ≥ r − j and also γ0 < 1− j − 1/p,

we get by Hölder’s inequality

‖χγ∞ψr,n(0, 1/A; · )‖p(1/A,∞) ≤ c ‖χγ0+rg(r)‖p(0,1/A), n ≥ r − j, (5.34)

where ψr,n is defined in (4.4).
By Hardy’s inequalities we get

‖χγ∞ψr,n(1/A, · ; · )‖p(1/A,∞) ≤ c ‖χγ∞+rg(r)‖p(1/A,∞), n ≥ r − j, (5.35)

and

‖χγ∞ψr,n(· ,∞; · )‖p(1/A,∞) ≤ c ‖χγ∞+rg(r)‖p(1/A,∞), n ≤ r − j − 2. (5.36)

Inequalities (5.34) and (5.35) imply

‖χγ∞ψr,n(0, · ; · )‖p(1/A,∞) ≤ c ‖wχrg(r)‖p(0,∞), n ≥ r − j. (5.37)

Finally, (5.31), (5.37) and (5.36) imply (5.29). This completes the proof of
assertion d).

Remark 5.2. If χ−j−1g, χr−j−1g(r) ∈ L1(1,∞), then we have by Lemma 3.2.b
and (3.9)

(Qg)(x) =
(−1)r−j

(r − j − 1)!

∫ ∞

x

yr−j−1g(r)(y) dy

for Qg given in (5.30). The above condition does not follow from the hypotheses
of Theorem 5.4.d when p > 1.

Theorem 5.5. Let r, j ∈ N, i ∈ N0, i < j ≤ r, 1 ≤ p ≤ ∞, a, t0 > 0,
0 < t ≤ t0 and w(x) = w(γ0, γ∞;x) be defined in (1.8) with γ0, γ∞ ∈ R. For
f ∈ Lp(w)(0,∞) we set

F0 = (χγ0+1/p(f − Li,j−1f)) ◦ E and F∞ = (χγ∞+1/p(f − Li,j−1f)) ◦ E,

where Li,j−1 is given by (1.10).

a) Let Li,j−1 satisfy conditions i) and ii). Then for γ0 ∈ Ti(p) and either
γ∞ > −j − 1/p, j < r or γ∞ ∈ R, j = r there holds

tr−`K`(F0, t
`)p(−∞,a) ≤ cKr

w(f, tr)p, ` = 0, 1, . . . , r.

b) Let Li,j−1 satisfy conditions i)-iii). Then for γ0 = 1− i− 1/p, i > 0, and
either γ∞ > −j − 1/p, j < r or γ∞ ∈ R, j = r there holds

tr−`K`(F0, t
`)p(−∞,a) ≤ cKr

w(f, tr)p, ` = 1, . . . , r.
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c) Let Li,j−1 satisfy conditions i) and ii). Then for γ∞ ∈ Tj(p) and either
γ0 ∈ R, i = 0 or γ0 < 1− i− 1/p, i > 0 there holds

tr−`K`(F∞, t`)p(−a,∞) ≤ cKr
w(f, tr)p, ` = 0, 1, . . . , r.

d) Let Li,j−1 satisfy conditions i), ii) and iv). Then for γ∞ = −j − 1/p,
j < r, and either γ0 ∈ R, i = 0 or γ0 < 1− i− 1/p, i > 0 there holds

tr−`K`(F∞, t`)p(−a,∞) ≤ cKr
w(f, tr)p, ` = 1, . . . , r.

Proof. Let g ∈ ACr−1
loc (0,∞) be such that g, χrg(r) ∈ Lp(w)(0,∞). We set g̃ =

g−Li,j−1g. Let us note that g̃(k) = g(k) for k ≥ j and g̃, χr g̃(r) ∈ Lp(w)(0,∞).
For the proof of assertions a) and b) we set G = (χγ0+1/pg̃) ◦ E. First, by a

change of the variable and Proposition 5.1 we get

‖F0 −G‖p(−∞,a) ≤ c ‖w(f − g)‖p(0,∞). (5.38)

Assertion a) follows from (5.38) and

‖G(`)‖p(−∞,a) ≤ c ‖wχrg(r)‖p(0,∞), ` = 0, 1, . . . , r. (5.39)

By (5.16) we have

‖G(`)‖p(−∞,a) ≤ c (‖χγ0 g̃‖p(0,A) + ‖χγ0+rg(r)‖p(0,A)), ` = 0, 1, . . . , r, (5.40)

where A = ea. Next, respectively by Propositions 4.3.a and 4.3.b with k = 0 we
have

‖χγ0 g̃‖p(0,A) ≤ c ‖wχrg(r)‖p(0,∞), j < r, (5.41)

‖χγ0 g̃‖p(0,A) ≤ c ‖χγ0+rg(r)‖p(0,β̄), j = r, (5.42)

where β̄ = max{A, β}. Now, (5.40)-(5.42) imply (5.39). Note that for j = r
(5.39) follows from (5.40) and (5.42) and hence no restrictions are imposed on
γ∞.

Assertion b) follows from (5.38) and

‖G(`)‖p(−∞,a) ≤ c ‖wχrg(r)‖p(0,∞), ` = 1, . . . , r, (5.43)

which are verified just similarly as (5.18). Indeed, by (5.19) we have

‖G(`)‖p(−∞,a) ≤ c
(
‖χ1−1/p(χ1−ig̃)′‖p(0,A) + ‖χr−1/p(χ1−ig̃)(r)‖p(0,A)

)
,

(5.44)
where A = ea. By (5.21) there holds for m = 1, . . . , r

xm−1/p(x1−ig̃(x))(m)

=
x1−i−1/p

(i− 2)!

m∑
k=0

(−1)m−k

(
m

k

)
(i+m− k − 2)!xkg̃(k)(x). (5.45)
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Next, by (5.22) we have the estimate∥∥∥∥∥∥χ1−i−1/p

min{i−1,m}∑
k=0

(−1)m−k

(
m

k

)
(i+m− k − 2)!χkg̃(k)

∥∥∥∥∥∥
p(0,A)

≤ c ‖χ1−1/pg̃(i)‖p(0,A), m = 1, . . . , r. (5.46)

Further, by Theorem 3.1 with µ = i−1 and r = ν = j we have for k = 0, . . . , j−1

xkg(k)(x) =
j−1∑

n=max{i−1,k}

xn

(n− k)!
bj,n(g,A)

+
j−k−1∑

n=j−i+1

(−1)nxj−n−1

n!(j − k − n− 1)!

∫ x

0

yng(j)(y) dy

+
j−max{i−1,k}−1∑

n=0

(−1)nxj−n−1

n!(j − k − n− 1)!

∫ x

A

yng(j)(y) dy. (5.47)

Using this formula with k = 0 and properties ii) and iii) of Li,j−1 we get

(Li,j−1g)(x) =
j−1∑
n=i

xn

n!
bj,n(g,A) + (Li,j−1R̄g)(x),

where we have set

(R̄g)(x) =
j−1∑

n=j−i+1

(−1)nxj−n−1

n!(j − n− 1)!

∫ x

0

yng(j)(y) dy

+
j−i∑
n=0

(−1)nxj−n−1

n!(j − n− 1)!

∫ x

A

yng(j)(y) dy.

Hence for k = i, . . . , j − 1 we have

xk(Li,j−1g)(k)(x) =
j−1∑
n=k

xn

(n− k)!
bj,n(g,A) +

j−1∑
n=k

an(R̄g)
n!xn

(n− k)!
.

From (5.47) and the last relation we get for k = i, . . . , j − 1

xkg̃(k)(x) =
j−k−1∑

n=0

(−1)nxj−n−1

n!(j − k − n− 1)!

∫ x

A

yng(j)(y) dy

−
j−1∑
n=k

an(R̄g)
n!xn

(n− k)!
. (5.48)
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Hardy’s inequality implies for n ≤ j − i− 1

‖χγ0ψj,n(A, · ; · )‖p(0,A) ≤ c ‖χγ0+jg(j)‖p(0,A), (5.49)

where ψj,n is defined in (4.4). By property i) of Li,j−1 and Hölder’s inequality
we have

|an(R̄g)| ≤ c ‖R̄g‖1(α,β) ≤ c ‖R̄g‖∞(α,β) ≤ c ‖χγ0+jg(j)‖p(0,β̄), (5.50)

where β̄ = max{A, β}.
Relations (5.48)-(5.50) imply

‖χγ0+kg̃(k)‖p(0,A) ≤ c ‖χγ0+jg(j)‖p(0,β̄), k = i, . . . , j − 1. (5.51)

Now, if j = r, (5.44)-(5.46) and (5.51) imply (5.43) for any γ∞. For j < r we
have γ0, γ∞ > −j − 1/p and hence Proposition 4.2.d with k = j gives

‖χγ0+kg(k)‖p(0,β̄) ≤ c ‖wχrg(r)‖p(0,∞), k = j, . . . , r − 1. (5.52)

Relations (5.44)-(5.46), (5.51) and (5.52) imply (5.43) for j < r.
For the proof of assertions c) and d) we set G = (χγ∞+1/pg̃) ◦ E. Just as

above we get
‖F∞ −G‖p(−a,∞) ≤ c ‖w(f − g)‖p(0,∞). (5.53)

Assertion c) follows from (5.53) and

‖G(`)‖p(−a,∞) ≤ c ‖wχrg(r)‖p(0,∞), ` = 0, 1, . . . , r.

They are verified like in the proof of assertion a) as the estimates:

‖χγ∞ g̃‖p(1/A,∞) ≤ c ‖χγ∞+rg(r)‖p(ᾱ,∞), i = 0,

‖χγ∞ g̃‖p(1/A,∞) ≤ c ‖wχrg(r)‖p(0,∞), i > 0,

where ᾱ = min{1/A, α}, follow respectively from Proposition 4.3.c and Propo-
sition 4.3.d with k = 0. Note that in the case i = 0 no restrictions are imposed
on γ0.

Assertion d) follows from (5.53) and

‖G(`)‖p(−a,∞) ≤ c ‖wχrg(r)‖p(0,∞), ` = 1, . . . , r.

Following the proof of Theorem 5.4.d with g̃ instead of g in (5.26)-(5.28) we see
that for the validity of the above inequalities it is enough to prove the estimates∥∥∥∥∥∥χ−j−1/p

min{j,m}∑
k=0

(−1)m−k

(
m

k

)
(j +m− k − 1)!χkg̃(k)

∥∥∥∥∥∥
p(1/A,∞)

≤ c ‖wχrg(r)‖p(0,∞), m = 1, . . . , r (5.54)

with 1 ≤ j < r.
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By Theorem 3.1 with µ = i and ν = j + 1 we have for k = 0, . . . , j

xkg(k)(x) =
j∑

n=max{i,k}

xn

(n− k)!
br,n(g, 1/A)

+
r−k−1∑
n=r−i

(−1)nxr−n−1

n!(r − k − n− 1)!

∫ x

0

yng(r)(y) dy

+
r−max{i,k}−1∑

n=r−j−1

(−1)nxr−n−1

n!(r − k − n− 1)!

∫ x

1/A

yng(r)(y) dy

+
r−j−2∑
n=0

(−1)n+1xr−n−1

n!(r − k − n− 1)!

∫ ∞

x

yng(r)(y) dy.

By means of this formula for k = 0 and properties ii) and iv) of Li,j−1, we get

(Li,j−1g)(x) =
j−1∑
n=i

xn

n!
br,n(g, 1/A) + (Li,j−1Řg)(x),

where we have set

(Řg)(x) =
r−1∑

n=r−i

(−1)nxr−n−1

n!(r − n− 1)!

∫ x

0

yng(r)(y) dy

+
r−i−1∑

n=r−j−1

(−1)nxr−n−1

n!(r − n− 1)!

∫ x

1/A

yng(r)(y) dy

+
r−j−2∑
n=0

(−1)n+1xr−n−1

n!(r − n− 1)!

∫ ∞

x

yng(r)(y) dy.

Hence for k = 0, . . . , j there holds

xk(Li,j−1g)(k)(x) =
j−1∑

n=max{i,k}

xn

(n− k)!
br,n(g, 1/A)

+
j−1∑

n=max{i,k}

an(Řg)
n!xn

(n− k)!
.

Consequently, we have for k = 0, . . . , j

xkg̃(k)(x) = (Qg)(x)
xj

(j − k)!
+ (Řkg)(x)−

j−1∑
n=max{i,k}

an(Řg)
n!xn

(n− k)!
,
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where Qg is defined in (5.30) and

(Řkg)(x) =
r−k−1∑
n=r−i

(−1)nxr−n−1

n!(r − k − n− 1)!

∫ x

0

yng(r)(y) dy

+
r−max{i,k}−1∑

n=r−j

(−1)nxr−n−1

n!(r − k − n− 1)!

∫ x

1/A

yng(r)(y) dy

+
r−j−2∑
n=0

(−1)n+1xr−n−1

n!(r − k − n− 1)!

∫ ∞

x

yng(r)(y) dy.

Hence, taking into consideration also Lemma 5.2 with n = j, we get

x−j−1/p

min{j,m}∑
k=0

(−1)m−k

(
m

k

)
(j +m− k − 1)!xkg̃(k)(x)

=
r−1∑

n=r−i

ρ′j,m,nx
r−j−n−1−1/p

∫ x

0

yng(r)(y) dy

+
r−i−1∑
n=r−j

ρ′j,m,nx
r−j−n−1−1/p

∫ x

1/A

yng(r)(y) dy

+
r−j−2∑
n=0

ρ′′j,m,nx
r−j−n−1−1/p

∫ ∞

x

yng(r)(y) dy

+
j−1∑
n=i

ρ′′′j,m,n an(Řg)xn−j−1/p, (5.55)

where ρ′j,m,n and ρ′′j,m,n are given in (5.32) and (5.33), respectively, and

ρ′′′j,m,n = n!
min{n,m}∑

k=0

(−1)m−k

(
m

k

)
(j +m− k − 1)!

(n− k)!

= (−1)m (j +m− n− 1)!(j − 1)!
(j − n− 1)!

, (5.56)

as to calculate ρ′′′j,m,n we used [10, Ch. 1, (5c)].
Let us observe that (5.35) and (5.36) are valid. Next, as in the proof of

(5.34), we get

‖χγ∞ψr,n(0, 1/A; · )‖p(1/A,∞) ≤ c ‖χγ0+rg(r)‖p(0,1/A), n ≥ r − i, i > 0,

which together with (5.35) implies

‖χγ∞ψr,n(0, · ; · )‖p(1/A,∞) ≤ c ‖wχrg(r)‖p(0,∞), n ≥ r − i, i > 0. (5.57)
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Further, property i) of Li,j−1, and the inequalities of Minkowski and Hölder
imply for n = i, . . . , j − 1

|an(Řg)| ≤ c ‖Řg‖1(α,β) ≤ c ‖Řg‖∞(α,β) ≤ c ‖wχrg(r)‖p(0,∞). (5.58)

Now, (5.55), (5.57), (5.35), (5.36) and (5.58) imply (5.54). Let us note that
for i = 0 (5.57) is not used and in (5.58) we actually have

|an(Řg)| ≤ c ‖χγ∞+rg(r)‖p(ᾱ,∞),

where ᾱ = min{1/A, α}. Hence no restrictions are imposed on γ0. Thus the
proof of d) is completed.

Now we are ready to prove Theorems 1.2 and 1.3.

Proof of Theorem 1.2. The theorem follows from Theorem 5.1 with q = Li,j−1f ,
Theorem 5.3 with ` = 0 and ` = r, F = Ai,j−1(χ1/pw)f for both theorems and
(5.1).

Proof of Theorem 1.3. The upper bound for Kr
w(f, tr)p is implied by Theo-

rem 5.2 with q0 = Li,j′−1f , F0 = Ai,j′−1(χγ0+1/p)f , q∞ = Li′,j−1f , F∞ =
Ai′,j−1(χγ∞+1/p)f and (5.1). The lower bound for Kr

w(f, tr)p follows from The-
orems 5.4 and 5.5 with F0 = Ai,j′−1(χγ0+1/p)f , F∞ = Ai′,j−1(χγ∞+1/p)f and
(5.1). The proof of the lower bound branches to four cases corresponding to
`0 = 0 or 1 and `∞ = 0 or 1.

Let us consider, for example, `0 = 0, `∞ = 1. Then γ0 ∈ Ti(p) and γ∞ =
−j−1/p, 0 ≤ i′ ≤ i and j+1 ≤ j′ ≤ r. If j′ ≤ i (which is possible only if j < i)
we apply Theorems 5.4.a and if i < j′ we apply Theorems 5.5.a, in both cases
with j′ instead of j and F0 = Ai,j′−1(χγ0+1/p)f , and get

tr−`K`(Ai,j′−1(χγ0+1/p)f, t`)p(−∞,a) ≤ cKr
w(f, tr)p, ` = 0, 1, . . . , r. (5.59)

If j ≤ i′ (which is possible only if j ≤ i) we apply Theorems 5.4.d and if
i′ < j we apply Theorems 5.5.d, in both cases with i′ instead of i and F∞ =
Ai′,j−1(χγ∞+1/p)f , and get

tr−`K`(Ai′,j−1(χγ∞+1/p)f, t`)p(−a,∞) ≤ cKr
w(f, tr)p, ` = 1, 2, . . . , r. (5.60)

Combining (5.59) with ` = 0 and ` = r and (5.60) with ` = 1 and ` = r we get
the lower bound for Kr

w(f, tr)p in (1.11).

Remark 5.3. The exact ranges of the integer parameters i′ and j′ under which
the assertion of Theorem 1.3 is valid are:

0 ≤ i′(≤ r) if j ≤ i− (1− [1/p])`0, or (5.61)
0 ≤ i′ ≤ i− (1− [1/p])`0 if i− (1− [1/p])`0 < j; and (5.62)

(0 ≤)j′ ≤ r if j + (1− [1/p])`∞ ≤ i, or
j + (1− [1/p])`∞ ≤ j′ ≤ r if i < j + (1− [1/p])`∞,

where [ξ] denotes the integer part of the real number ξ. Below we give the
arguments for i′ as the considerations for j′ are similar.
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a) For p = 1 and γ0 = −i, i ∈ {1, . . . , r}, relation (1.11) holds with i′ = i as
well. This is verified analogously to the the assertion of the theorem as
we take into consideration the case p = 1 in Theorem 3.1. If we combine
the case i′ = i with the cases 0 ≤ i′ ≤ i − `0 considered in Theorem 1.3
we verify the theorem is true for the range of i′ given in (5.62).

b) If j ≤ i − `0, then for every i′ ≥ i − `0 we have Ai′,j−1(χγ∞+1/p)f =
(χγ∞+1/pf)◦E, as the case i′ = i−`0 is considered in Theorem 1.3. Hence
the restriction i′ ≤ i − `0 is redundant and Theorem 1.3 holds for every
i′. Thus (5.61) is verified in all cases except `0 = 1, p = 1 and j = i. In
the latter case for every i′ ≥ i we have Ai′,i−1(χγ∞+1)f = (χγ∞+1f) ◦ E,
as the case i′ = i is considered in a).

c) Let 1 ≤ p ≤ ∞, γ0 ∈ Ti(p), γ∞ ∈ Tj(p) ∪ {−j − 1/p}, i < j or p = 1,
γ0 = −i, i ∈ {1, . . . , r}, γ∞ ∈ Tj(1) ∪ {−j − 1}, i < j. Then for f =
χi ∈ Lp(w)(0,∞) we have Kr

w(f, tr)p ≡ 0 but Ai′,j−1(χγ∞+1/p)f is not an
algebraic polynomial for i′ > i and hence ωk(Ai′,j−1(χγ∞+1/p)f, t)p(−a,∞)

does not vanish for any k ∈ N0.

d) Let 1 < p ≤ ∞, γ0 = 1− i− 1/p, i ∈ {1, . . . , r}, γ∞ ∈ Tj(p)∪ {−j − 1/p},
i−1 < j. For 0 < δ < 1 and b = min{e−a, α} we set fδ(x) = b−δxi−1+δ for
x ∈ (0, b), and fδ(x) =

∑i−1
k=0

(
i−1+δ

k

)
bi−k−1(x− b)k for x ∈ [b,∞). Thus,

fδ ∈ ACi−1
loc (0,∞). Then, on the one hand, we have by Theorem 5.8

below Kr
w(fδ, t

r)p ≤ cKi
w(fδ, t

i)p ≤ c ti‖wχif
(i)
δ ‖p(0,∞) ≤ c δ1−1/p ti with

c independent of δ. And, on the other hand, in view of |fδ(x)−xi−1| ≤ cδ
for x ∈ [b, β] we have ωk(Ai′,j−1(χγ∞+1/p)fδ, t)p(−a,∞) ≥ c tk for i′ ≥ i
and any k ∈ N0 with c independent of δ.

Items c) and d) (with k = r and δ < ct(r−i)p/(p−1)) above show that (1.11)
cannot be true for i′ outside of the range given in (5.62) for 1 ≤ p ≤ ∞, `0 = 0;
p = 1, `0 = 1 and 1 < p ≤ ∞, `0 = 1 respectively.
Remark 5.4. The indices i of Ai,j′−1 and j of Ai′,j−1 are, in general, the
only possible choices in (1.11). The only exception for the first operator is
the case p = ∞ and γ0 = 1 − i, i ∈ {1, . . . , r}, when (1.11) is also valid
with Ai−1,j′−1(χγ0)f instead of Ai,j′−1(χγ0)f as Li−1,j′−1 (in the definition of
Ai−1,j′−1(χγ0)) satisfies conditions i) and ii) (with i − 1 in the place of i and
j = j′) but not necessarily iii). Indeed, let (Li−1,j′−1f)(x) =

∑j′−1
n=i−1 an(f)xn

satisfy i)-ii) with i − 1 in the place of i and j = j′. Then the linear operator
(Li,j′−1f)(x) =

∑j′−1
n=i an(f)xn satisfies i)-iii) and hence Ai,j′−1 defined through

it satisfies (1.11). On the other hand, we have

Ai,j′−1(χγ0)f −Ai−1,j′−1(χγ0)f = ai−1(f) ∈ L∞(R)

and the right-hand side of (1.11) remains the same under this replacement. Note
that γ0 ∈ Texc(∞) and, thus, `0 = 1.

Similarly, the only exception for the index j of Ai′,j−1 is in the case p = ∞,
γ∞ = −j, j ∈ {0, . . . , r−1}. Here Ai′,j−1(χγ∞)f can be replaced by Ai′,j(χγ∞)f
in (1.11) as Li′,j satisfies conditions i) and ii) but not necessarily iv).
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5.3 Characterization of Kr
χγ (f, tr)p(0,a) and Kr

χγ (f, tr)p(a,∞)

Similar characterization is valid for the analogues of Kr
w(f, tr)p on the intervals

(0, a) and (a,∞), where a > 0.

Theorem 5.6. Let r ∈ N, i ∈ N0, i ≤ r, 1 ≤ p ≤ ∞, γ ∈ R, a, t0 > 0 and
0 < t ≤ t0. Let also f ∈ Lp(χγ)(0, a) and Ai,r−1 be given by (1.9) as Li,r−1

satisfies conditions i) with β ≤ a and ii). Then we have:

a) For γ ∈ Ti(p) there holds

Kr
χγ (f, tr)p(0,a) ∼ ωr(Ai,r−1(χγ+1/p)f, t)p(−∞,log a)

+ tr‖Ai,r−1(χγ+1/p)f‖p(−∞,log a).

b) For γ = 1− i− 1/p, i > 0, if Li,r−1 also satisfies iii), there holds

Kr
χγ (f, tr)p(0,a) ∼ ωr(Ai,r−1(χγ+1/p)f, t)p(−∞,log a)

+ tr−1ω1(Ai,r−1(χγ+1/p)f, t)p(−∞,log a).

Proof. The upper estimates of Kr
χγ (f, tr)p(0,a) by moduli on (−∞, log a) follow

from (5.7) with Li,r−1f , a and log a in the place of q0, A and a respectively
and (5.1). The lower estimate in a) for i < r is verified as in the proof of Theo-
rem 5.5.a in the case j = r, whereas for i = r as in the proof of Theorem 5.4.a.
The lower estimate in b) for i < r is verified as in the proof of Theorem 5.5.b
in the case j = r, whereas for i = r as in the proof of Theorem 5.4.b.

Theorem 5.7. Let r ∈ N, j ∈ N0, j ≤ r, 1 ≤ p ≤ ∞, γ ∈ R, a, t0 > 0 and
0 < t ≤ t0. Let also f ∈ Lp(χγ)(a,∞) and A0,j−1 be given by (1.9) as L0,j−1

satisfies conditions i) with α ≥ a and ii). Then we have:

a) For γ ∈ Tj(p) there holds

Kr
χγ (f, tr)p(a,∞) ∼ ωr(A0,j−1(χγ+1/p)f, t)p(log a,∞)

+ tr‖A0,j−1(χγ+1/p)f‖p(log a,∞).

b) For γ = −j − 1/p, j < r, if L0,j−1 also satisfies iv), there holds

Kr
χγ (f, tr)p(a,∞) ∼ ωr(A0,j−1(χγ+1/p)f, t)p(log a,∞)

+ tr−1ω1(A0,j−1(χγ+1/p)f, t)p(log a,∞).

Proof. The upper estimates of Kr
χγ (f, tr)p(a,∞) by moduli on (log a,∞) follow

from (5.8) with L0,j−1f , a and log a in the place of q0, 1/A and −a respectively
and (5.1). The lower estimate in a) for j = 0 is verified as in the proof of
Theorem 5.4.c, whereas for j > 0 as in the proof of Theorem 5.5.c in the
case i = 0. The lower estimate in b) for j = 0 is verified as in the proof of
Theorem 5.4.d, whereas for j > 0 as in the proof of Theorem 5.5.d in the case
i = 0.
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5.4 K-functionals of continuous functions

Consider the space

C(w)[0,∞) = {f : wf ∈ C(0,∞), ∃ lim
x→0+0

(wf)(x)},

where w(x) = w(γ0, γ∞;x) is given in (1.8). For functions f ∈ C(w)[0,∞)
we may define a slightly different functional than (1.4) imposing the additional
restriction g ∈ C(w)[0,∞) on the functions g on which the infimum is taken.
Denote this K-functional by

K(f, tr;C(w)[0,∞), ACr−1
loc , χrDr).

Let us note that Theorems 1.2 and 1.3 with p = ∞ holds for thisK-functional
too. This fact follows from the equivalence

K(f, tr;C(w)(0,∞), ACr−1
loc , χrDr) ≤ K(f, tr;C(w)[0,∞), ACr−1

loc , χrDr)

≤ cK(f, tr;C(w)(0,∞), ACr−1
loc , χrDr),

valid for r ∈ N, γ0, γ∞ ∈ R and f ∈ C(w)[0,∞). The first inequality is obvious
– an infimum on a more narrow class is taken in the second K-functional. The
second inequality follows from the results of Subsections 5.1 and 5.2. First we
observe that the modified Steklov function of F (used in the proof of (5.1)) has
a limit at −∞ provided F has a limit at −∞. Hence Theorems 5.1 and 5.2 give
the same upper bounds for K(f, tr;C(w)[0,∞), ACr−1

loc , χrDr) as the quantities
in Theorems 1.2 and 1.3.

The same observations are true if wf has a limit at ∞, or has simultaneously
limits at 0 and at ∞.

5.5 Properties of Kr
w(f, tr)p

Let us point out several properties of the weighted K-functional Kr
w(f, tr)p

which follow from the estimates in Subsections 5.1 and 5.2. The analogous
properties of Kr

χγ (f, tr)p(0,a) and Kr
χγ (f, tr)p(a,∞) can be verified in a similar

way.

Theorem 5.8. Let r,m ∈ N, m < r, 1 ≤ p ≤ ∞, t0 > 0 and w(x) =
w(γ0, γ∞;x) be defined in (1.8) with γ0, γ∞ ∈ R. For f ∈ Lp(w)(0,∞) and
0 < t ≤ t0 there holds

Kr
w(f, tr)p ≤ cKm

w (f, tm)p.

Proof. Let us set F0 = (χγ0+1/p(f − Li,m−1f)) ◦ E and F∞ = (χγ∞+1/p(f −
L0, min{j,m}−1f))◦E, where i and j are determined by Ti(p)∪{1− i−1/p} 3 γ0

and Tj(p) ∪ {−j − 1/p} 3 γ∞, and the operators Lµ,ν are defined by (1.10)
and satisfy the conditions of Theorem 1.3 (with r = m). Let `0 = 1 if γ0 =
1−m− 1/p, . . . ,−1/p, and `0 = 0 otherwise; let also `∞ = 1 if γ∞ = 1−m−
1/p, . . . ,−1/p, and `∞ = 0 otherwise. As it is known

ωr(F, t)p(J) ≤ 2r−mωm(F, t)p(J), F ∈ Lp(J), (5.63)
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where J ⊆ R is an interval. Then by Theorem 5.2 or Remark 5.1 (with q0 =
Li,m−1f and q∞ = L0, min{j,m}−1f), (5.1) and (5.63) we get

Kr
w(f, tr)p ≤ c

(
ωm(F0, t)p(−∞,a) + tm−`0ω`0(F0, t)p(−∞,a)

+ ωm(F∞, t)p(−a,∞) + tm−`∞ω`∞(F∞, t)p(−a,∞)

)
.

The above inequality proves the theorem in view of Theorem 1.3 with r = m,
i′ = 0, j′ = m, i and j replaced respectively by min{i,m} and min{j,m}.

Similar considerations yield the following Marchaud-type inequality.

Theorem 5.9. Let r,m ∈ N, m < r, 1 ≤ p ≤ ∞, t0 > 0 and w(x) =
w(γ0, γ∞;x) be defined in (1.8) with γ0, γ∞ ∈ R. For f ∈ Lp(w)(0,∞) and
0 < t ≤ t0 there holds

Km
w (f, tm)p ≤ c tm

(∫ t0

t

Kr
w(f, τ r)p

τm+1
dτ + ‖wf‖p(0,∞)

)
.

Proof. By Theorem 5.2 with m in the place of r, q0 = q∞ = 0, `0 = `∞ = 0 (in
view of Remark 5.1) and (5.1) we have

Km
w (f, tm)p ≤ c

(
ωm((χγ0+1/pf) ◦ E, t)p(−∞,a)

+ ωm((χγ∞+1/pf) ◦ E, t)p(−a,∞) + tm‖wf‖p(0,∞)

)
. (5.64)

Further, let i, j, i′, j′, Ai,j′−1 and Ai′,j−1 satisfy the conditions of Theorem 1.3.
Then by property i) of Li,j′−1 and Li′,j−1 we have

ωm((χγ0+1/pLi,j′−1f) ◦ E, t)p(−∞,a) ≤ c tm‖((χγ0+1/pLi,j′−1f) ◦ E)(m)‖p(−∞,a)

≤ c tm‖f‖1(α,β) ≤ c tm‖wf‖p(0,∞)

and, similarly,

ωm((χγ∞+1/pLi′,j−1f) ◦ E, t)p(−a,∞) ≤ c tm‖wf‖p(0,∞).

Consequently, by (5.64) we get

Km
w (f, tm)p ≤ c

(
ωm(Ai,j′−1(χγ0+1/p)f, t)p(−∞,a)

+ ωm(Ai′,j−1(χγ∞+1/p)f, t)p(−a,∞) + tm‖wf‖p(0,∞)

)
. (5.65)

Next, as it is known for F ∈ Lp(J), J ⊆ R is an interval, and 0 < t ≤ t0 the
Marchaud inequality

ωm(F, t)p(J) ≤ c tm
(∫ t0

t

ωr(F, τ)p(J)

τm+1
dτ + ‖F‖p(J)

)
(5.66)

holds. Applying it to (5.65), we get by Theorem 1.3 and Proposition 5.1 the
assertion of the theorem.
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As it is well-known for p < ∞ we have limt→0K
r(F, t)p = 0 for any

F ∈ Lp(R), whereas limt→0K
r(F, t)∞ = 0 for F ∈ L∞(R) iff F is uniformly

continuous on R. Then Theorem 1.3 yields the following assertion.

Theorem 5.10. Let r ∈ N, 1 ≤ p ≤ ∞, w(x) = w(γ0, γ∞;x) be defined in (1.8)
with γ0, γ∞ ∈ R and f ∈ Lp(w)(0,∞).

a) For p <∞ we have limt→0K
r
w(f, t)p = 0.

b) We have limt→0K
r
w(f, t)∞ = 0 iff (wf) ◦E is uniformly continuous on R.

Also, by Theorem 1.3 we can derive the saturation class of Kr
w(f, t)p from

that of the unweighted fixed-step moduli. Let J ⊆ R be an interval and BV (J)
denote the set of all functions defined on J , which are equivalent to a function
of bounded variation on J .

Theorem 5.11. Let r ∈ N, 1 ≤ p ≤ ∞, w(x) = w(γ0, γ∞;x) be defined in (1.8)
with γ0, γ∞ ∈ R and f ∈ Lp(w)(0,∞).

a) For p > 1 we have Kr
w(f, t)p = O(t) iff f ∈ ACr−1

loc (0,∞) and wχrf (r) ∈
Lp(0,∞).

b) We have Kr
w(f, t)1 =O(t) iff f ∈ ACr−2

loc (0,∞) and wχrf (r−1)∈BV (0,∞).

Proof. We set F0 = (χγ0+1/p(f−Li,r−1f))◦E and F∞ = (χγ∞+1/p(f−L0,j−1f))
◦ E, where Li,r−1 and L0,j−1 satisfy the hypotheses of Theorem 1.3. In view
of Proposition 5.1 we have F0 ∈ Lp(−∞, a) and F∞ ∈ Lp(−a,∞) with fixed
a > 0.

Let p > 1. As it is known ωr(F, t)p(J) = O(tr) iff F ∈ ACr−1
loc (J) and

F (r) ∈ Lp(J). Using this fact, Theorem 1.3, Remark 5.1 and (5.1) we get
that Kr

w(f, t)p = O(t) iff F0 ∈ ACr−1
loc (−∞, a), F (r)

0 ∈ Lp(−∞, a) and F∞ ∈
ACr−1

loc (−a,∞), F (r)
∞ ∈ Lp(−a,∞). Next, we have F0 ∈ ACr−1

loc (−∞, a) and
F∞ ∈ ACr−1

loc (−a,∞) iff f ∈ ACr−1
loc (0,∞). Also, as in the proof of (5.4)-(5.5)

and (5.11)-(5.12) we verify that F (r)
0 ∈ Lp(−∞, a) and F

(r)
∞ ∈ Lp(−a,∞) iff

wχrf (r) ∈ Lp(0,∞). Thus assertion a) is proved.
Let p = 1. As it is known ωr(F, t)1(J) = O(tr) iff F ∈ ACr−2

loc (J) and
F (r−1) ∈ BV (J). Hence by Theorem 1.3, Remark 5.1 and (5.1) we get that
Kr

w(f, t)1 = O(t) iff F0 ∈ ACr−2
loc (−∞, a), F (r−1)

0 ∈ BV (−∞, a) and F∞ ∈
ACr−2

loc (−a,∞), F (r−1)
∞ ∈ BV (−a,∞). Again we have F0 ∈ ACr−2

loc (−∞, a) and
F∞ ∈ ACr−2

loc (−a,∞) iff f ∈ ACr−2
loc (0,∞). Further, since Eδ ∈ BV (−∞, a)

for δ ≥ 0 and ((1 + E)γ)(k) ∈ W 1
1 (−∞, a) ⊂ BV (−∞, a) for every γ ∈ R and

k ∈ N0, we have F (r−1)
0 ∈ BV (−∞, a) iff ((χγ0+1f) ◦ E)(r−1) ∈ BV (−∞, a) iff

((χwf) ◦ E)(r−1) ∈ BV (−∞, a) iff wχrf (r−1) ∈ BV (0, ea). Just similarly, we
get that F (r−1)

∞ ∈ BV (−a,∞) iff wχrf (r−1) ∈ BV (e−a,∞). This proves b).
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6 The linear operator Li,j−1

6.1 Operators Li,j−1 that satisfy conditions i) and ii)

Let i, j ∈ N0 as i < j and x0, . . . , xj−i ∈ (0,∞) be fixed distinct points. We
define the linear operator L̂i,j−1 : L1,loc(0,∞) → πi,j−1 by

(L̂i,j−1f)(x) = (Li+1,jIf)′(x),

where

(Li+1,jF )(x) =

[
F (x0)−

j−i∑
k=1

F (xk)li+1,j,k(x0)

]
1−

∑j−i
k=1 li+1,j,k(x)

1−
∑j−i

k=1 li+1,j,k(x0)

+
j−i∑
k=1

F (xk)li+1,j,k(x), (6.1)

li+1,j,k(x) =
xi+1(x− x1) · · · (x− xk−1)(x− xk+1) · · · (x− xj−i)

xi+1
k (xk − x1) · · · (xk − xk−1)(xk − xk+1) · · · (xk − xj−i)

and
(If)(x) = (Iaf)(x) =

∫ x

a

f(y) dy, a > 0.

The denominator in (6.1) 1 −
∑j−i

k=1 li+1,j,k(x0) is not 0 as can be verified by
assuming the contrary and applying Rolle’s theorem.

The definition of L̂i,j−1 directly implies that it satisfies condition i) with
α ≤ min{x0, . . . , xj−1} and β ≥ max{x0, . . . , xj−i}. Next, let us observe that
Li+1,jF is the only polynomial in R ⊕ πi+1,j which interpolates the function
F ∈ Cloc(0,∞) at the j − i + 1 positive distinct nodes x0, . . . , xj−i. Hence
Li+1,jF = F for any F ∈ R ⊕ πi+1,j and L̂i,j−1f = f for any f ∈ πi,j−1.
Thus the linear operator L̂i,j−1 satisfies conditions i) and ii). Consequently,
Theorem 1.2 holds with Li,j−1 = L̂i,j−1.

Let us also mention that for p = ∞ and f ∈ C(w)(0,∞) we can use in The-
orem 1.2 (cf. Remark 1.1) the following modification of Lagrange interpolation
polynomials

(Li,j−1f)(x) =
j−i∑
k=1

f(xk) li,j−1,k(x).

6.2 Operators Li,j−1 that satisfy conditions i)-iv)

For [α, β] ⊂ (0,∞) let x0, x1, . . . , xr ∈ [α, β] be r + 1 fixed distinct points. The
functionals {

∫ xk

x0
f(y) dy}r

k=1 and the polynomials {Φ′`(x)/Φ`(x`)}r
`=1, where

Φ`(x) =
r∏

m=0
m6=`

(x− xm), ` = 1, 2, . . . , r,
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form a normalized bi-orthogonal system in πr−1 because Φ′` ∈ πr−1 and∫ xk

x0

Φ′`(y)
Φ`(x`)

dy =
Φ`(xk)− Φ`(x0)

Φ`(x`)
= δk,`.

Hence the bi-orthogonal expansion L̃ : L1[α, β] → πr−1 given by

(L̃f)(x) =
r∑

`=1

Φ′`(x)
Φ`(x`)

∫ x`

x0

f(y) dy

is a bounded linear operator and preserves the polynomials from πr−1. Writ-
ing Φ′`(x) as the Taylor polynomial of degree r − 1 at 0 we get (L̃f)(x) =∑r−1

n=0 ãn(f)xn, where

ãn(f) =
r∑

`=1

Φ(n+1)
` (0)
n!Φ`(x`)

∫ x`

x0

f(y) dy. (6.2)

Because of the properties of L̃ the linear functionals ãn given by (6.2) satisfy

ãn(χk) = δn,k, k, n = 0, 1, . . . , r − 1. (6.3)

Now for i, j ∈ N0, j ≤ r, we define the linear operator L̃i,j−1 : L1(α, β) →
πi,j−1 by

(L̃i,j−1f)(x) =
j−1∑
n=i

ãn(f)xn =
j−1∑
n=i

(
r∑

`=1

Φ(n+1)
` (0)
n!Φ`(x`)

∫ x`

x0

f(y) dy

)
xn (6.4)

with the convention that the sum in (6.4) is 0 if j ≤ i. The following lemma is
an immediate consequence of (6.3).

Lemma 6.1. We have:

a) L̃i,j−1f = f for any f ∈ πi,j−1;

b) L̃i,j−1f = 0 for any f ∈ π0,i−1 ⊕ πj,r−1.

Obviously, L̃i,j−1 satisfies condition i). Lemma 6.1 shows that it satisfies
conditions ii)-iv) as well. Thus the linear operator L̃i,j−1 satisfies conditions
i)-iv) and, consequently, Theorem 1.3 holds with Lµ,ν = L̃µ,ν .

Let us note that in the characterization of the analogues of Kw(f, tr)p on
the intervals (0, a) or (a,∞) we must fix the numbers x0, x1, . . . , xr respectively
in subintervals of (0, a] or [a,∞).

Let us now explicitly give the operator L̃i,j−1 for r = 1 and r = 2. Let
x0, x1, x2 be fixed positive distinct numbers. For r = 1 we use the operator L̃

only in the case i = 0, j = 1 and it is given by (see (6.4))

(L̃0,0f)(x) =
1

x1 − x0

∫ x1

x0

f(y) dy.
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For r = 2 there are three different operators of type L̃, which are given by:

(L̃0,0f)(x) = ã0(f), (L̃0,1f)(x) = ã0(f) + ã1(f)x, (L̃1,1f)(x) = ã1(f)x,

where

ã0(f) = − x0 + x2

(x1 − x0)(x1 − x2)

∫ x1

x0

f(y) dy − x0 + x1

(x2 − x0)(x2 − x1)

∫ x2

x0

f(y) dy,

ã1(f) =
2

(x1 − x0)(x1 − x2)

∫ x1

x0

f(y) dy +
2

(x2 − x0)(x2 − x1)

∫ x2

x0

f(y) dy.

The same pattern can be followed in constructing other operators of type
L. Let {q`}r−1

`=0 be the normalized Legendre polynomials for a given interval
[α, β] ⊂ (0,∞), i.e.∫ β

α

qk(y)q`(y) dy = δk,`, k, ` = 0, 1, . . . , r − 1.

Starting with the normalized bi-orthogonal system {
∫ β

α
qk(y)f(y) dy, q`}r−1

k,`=0 we
get the operators

(L̄i,j−1f)(x) =
j−1∑
n=i

(
r−1∑
`=0

q
(n)
` (0)
n!

∫ β

α

q`(y)f(y) dy

)
xn

=
j−1∑
n=i

(
r−1∑
k=0

r−1∑
`=0

q
(k)
` (0)q(n)

` (0)
k!n!

∫ β

α

ykf(y) dy

)
xn.

Then, Lemma 6.1 holds with L̄i,j−1 in the place of L̃i,j−1 and, thus, L̄i,j−1

satisfies conditions i)-iv).
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