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Abstract

We present a characterization of the approximation errors of the Post-
Widder and the Gamma operators in L,(0,00), 1 < p < oo, with a weight
27°(1 + x)7>=77° with arbitrary real 7o, Yoo Two types of characteristics
are used — weighted K-functionals of the approximated function itself and
the classical fixed step moduli of smoothness taken on simple modifications
of it.
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1 Introduction

The Post-Widder operator is given by

PN =555 | Tr () et 1)

and the Gamma operator is given by

@00 =g [ F(E) et (19

Here f is a measurable function defined on (0,00) and satisfies mild growth
conditions at 0 and at oo, I' denotes as usual the Gamma function and s is a
positive real parameter.
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For real a we denote the power function by x*(z) = z® for > 0. For real
Y0, Yoo We denote the weight we are going to consider in this article by

7 if0<z <1,

. (1.3)
Y~ ifl1 <z <oo.

w(r) = w(y0, Yoo} T) = {

ForreN, 1<p<ooand D = % we consider the weighted K-functionals:

K, (f,1)p = K(f,17; Ly(w)(0, 00), AC], .1, X" D")

loc

—inf {[lw(f — )lly + ¢ lux"D7gll, : g € ACLZ (0,00)},  (1.4)

loc

defined for every f € m.—1 + Ly(w)(0,00) and ¢t > 0. ACF (a,b) denotes the
set {g : g,9',...,9%® € ACla,b] Va < @ < b < b} and AC[a,b] is the set
of the absolutely continuous functions on [@,b]. Above and in what follows
Lo (w)(0,00) can be replaced by the spaces C(w)(0,00) = {f : wf € C(0,00)},
where C(a, b) is the space of all continuous functions bounded on (a,b). When
the function g € AC], (0, 00) in (1.4) is such that either f — g & L,(w)(0,00)
or X"Dg ¢ Ly(w)(0,50) we assume that [w(f — g), + " [wx” Dgll, = +oc.
The L, norm is assumed to be taken on (0, 00) when no interval is indicated in
its notation.

The following spaces of algebraic polynomials will be considered. Let i, j be
integers. We set m; ; = {¢c;a" + -+ ¢ja? 1 ¢, € R}if 0 < i < jand m;; = {0}
if j <. For the space of all algebraic polynomials of degree k € Ny = NU {0},
denoted as usual by 7, we have 7, = mg . Accordingly, we set 7, = {0} for
negative integers k.

In [8] we have established for f € L,(w)(0,00), 1 < p < oo and a weight of
the type w(xz) = x7 (i.e. 70 = Yoo = 7y) the equivalence

lw(f = Psf)llp ~ llw(f = Gsfllp ~ K5 (f, 5™ s (1.5)

which contains a strong converse theorem of type A (in the terminology of [2]).
Also in [8] the K-functional on the right-hand side of (1.5) was characterized in
the terms of the classical fixed-step moduli of smoothness.

By U(f,t) ~ O(f,t) we mean that there exists a positive constant ¢ such
that ¢71O(f,t) < U(f,t) < cO(f,t) for all f and ¢ under consideration. In
the paper we denote by ¢ positive numbers independent of the functions f, the
parameter t of the K-functional and the parameter s of the operators. The
numbers ¢ may differ at each occurrence. Whenever necessary to indicate con-
stants, which preserve their values throughout the article, we use the notations
M, My, Ms, N, Ny. They will not depend on any of the parameters and in this
sense they will be absolute constants.

Earlier contributions related to the inequalities in (1.5) (in the case 7o =
Yoo = 7¥) are summarized in [6]. There are only few results in the case 79 # Yoo-
The book of Ditzian and Totik [3] contains the direct estimate for weights (1.3)
with arbitrary real exponents g, V- The converse results for the same weights
are given as a statement for the equivalent rates of convergence in terms of
weighted Ditzian-Totik moduli (hence weighted K-functionals).



One of the main results in the paper is a strong converse theorem of type A
for the Post-Widder and the Gamma operators for a weight (1.3) with arbitrary
real exponents g, V- Let us note that the strong converse estimates of type
A are optimal. Here we extend the research in [8], where, as we mentioned, the
case Y9 = Yoo is considered. The extension is not trivial and requires a new
idea because the strong converse inequalities of type A heavily rely on precise
determination of the constants in some inequalities connected with the operators
(see Section 2).

Theorem 1.1. There are positive numbers N, M such that for every o, Yoo €
R,s>NM+79% +1),1<p<ooand f €m + Ly(w)(0,00) we have

Yo =Yool | 2,20+ Y5+ 1 1
s = Pl < (20l A a2 (1 0]

and

2 (p 1 o =Yool | 4,20+ 75 +1
K2 (145) = (rrnrl 2ol A s - R, 0

with
21-4V2
8 —2v2

The same inequalities are true if Py is replaced by G.

= 2.966824...

The direct inequality (1.6) is also proved in [3], but with an essentially bigger
constant. The inverse inequality (1.7) is new for 79 # 7. It is established with
a very small constant k. Thus, the ratio ||w(f — Psf)|l, /KZ(f,(4s)7Y), is
bounded between two numbers with ratio less than 6 when s is big enough!
Note that Theorem 1.1 in the case vy = Yoo reduces to Theorem 1.1 from [8].

The relation w(z) < cw(z) for every x € (0,00) implies the inequalities
lw(f = Pof)ll, < cll(f — Pop)lly and K, (£.8), < K7 (£,4), (with the same
constant ¢). Hence Theorem 1.1 remains true (up to the value of the constants)
if the weight (1.3) is replaced by any equivalent on (0,00) weight, for example
by

W(x) = W(70, Yoo; ¥) = 27°(1 + 2)7> 7. (1.8)

The latter is more convenient for characterizing the weighted K-functionals with
the classical moduli of smoothness (see Theorem 1.2 below).

Let us observe that in the case 79 < Yo we have w = max{x™, x7=} and
hence (1.6) and (1.7) easily follow from (1.5) (with twice bigger constants) be-
cause of w < x4 x> < 2w. It does not seem that such a simple technique will
work in the case 79 > Yoo when w = min{x?, x7=}. The approach developed in
Section 2 barely distinguishes between these two cases and provides constants
which differ only in the remainder term from those obtained for w = x7 (i.e.
Yo =Yoo =) in [8].

The K-functional (1.4) is characterized in [3, Chapter 6] by the weighted
Ditzian-Totik moduli of smoothness. But it turns out that K[ (f,t"), can also



be characterized in terms of the classical moduli of smoothness, which are gen-
erally easier to compute. The second goal of our paper is to establish such
characterizations. As usual, we denote by w,(F,t),(s) the classical unweighted
fixed-step modulus of smoothness of order r of the function F' € L,(J), J C R
is an interval, namely

wr(Fy )y = S IALE [l p(r)-

We assume that A} F'(z) = 0 if the argument of any of the summands of the
finite differences A} F'(x) is outside J. Set wo(F,t)psy = [|F||ps). We use one
and the same notation for a function F' defined on R and for its restriction on
some subinterval J.

In order to describe various conditions on the exponents 7y and v, in the
definition of the weight w defined in (1.8) (or in (1.3)), we shall use the notations:

T (p) = (—o0,1 —r—1/p),
Tewelp)={1—7r—-1/p,2—r—1/p,...,—1/p}.

For r € N, 4,5 € Ng, j < r and weight w we define the linear operator
A j—1(0) : L110c(0,00) — L1 10c(R) by

Aija(w)f = (w(f —Lij-1f)) o0& (1.9)

where E(z) = e* and

(Liga)@) =D an(f)a", (1.10)

as ap : L1(a,8) > R,n=14,...,7 — 1,0 < a < (3, are linear functionals. As
usual, in (1.10) we assume that the sum is 0 if the upper bound is smaller than
the lower.

We require L; ;_; to satisfy the conditions:

) Jan(5)] < ¢ Flia s for any [ € La(, ), n=i,...,j — 1
i) Lij—1f=fforany f€m;1;

and in some cases also one or both of the following conditions:
i) Lij ('™ =0ifi>0;
iv) L;j-1(x)=0ifj <r.

Remark 1.1. For the proofs of the following theorems it is enough to replace
i) with



i) lan(f)| < cllfllp(a,s) for any f € Ly(a, B), n=,...,j — 1.

We prefer to utilize i) (which implies i’)) in order a,(f) to be easily computable
for a given f. Simple examples of such operators L; ;_1 either satisfy i) or
satisfy i) for p = oco.

Remark 1.2. The restrictions a > 0 and 8 < oo used above can be relaxed
to @ = 0 and/or = oo at the cost of introducing additional weighted norm
conditions.

We give explicit definitions of operators of the form (1.10) that satisfy con-
ditions i)-ii) or i)-iv) in Section 6.

Following ideas of [5] and [8] in the two theorems below we characterize the
K-functional K,(f,t"), by the unweighted fixed-step moduli of smoothness.

Theorem 1.2. Letr € N, 4,5 € Ny, 4,7 <r, 1 <p < oo and tg > 0. Let also
w(z) = w(z;70,700) be defined in (1.8) with vo € T;(p), Yoo € T;(p). Finally,
let A;j—1 be given by (1.9) as L; j_1 satisfies conditions i) and ii). Then for
every f € L,(w)(0,00) and 0 < t <ty there holds

Ky (f,17)p ~ wr(Ai i1 O PW) f )y + 17 [Ai i1 O PW) fLpe)-
Let us explicitly note that for j < i we have A; ;_1(x"/Pw)f = (x'/Pwf)oé&.

Theorem 1.3. Let r € N, 1 < p < oo and a,tg > 0. Let also w(z) =
W (Y0, Yoo; &) be defined in (1.8) with 79,700 € R, and the integers i,j be de-
termined by T;(p) U {1 —i —1/p} > v, Tj(p) U{—J — 1/p} > Y7o. We set
by =1 if y0 € Texe(p), and £y = 0 otherwise. We set boo = 1 if Yoo € Tezc(p),
and £, = 0 otherwise. Let the integers i',j’ be such that 0 < i’ < i — {y and
JH+le < j <r. Let A; ji_1 be given by (1.9) with an arbitrary L; j;_1 satis-
fying conditions i) and ii), and also 3) if o € Tewe(p). Let Ay j_1 be given
by (1.9) with an arbitrary Ly ;1 satisfying conditions i) and i), and also iv)
if Yoo € Tewe(p). Then for every f € L,(w)(0,00) and 0 < t <ty there holds

K:v(fa tT)P
~ Wy (Ai,j/fl(x’yo+1/p)fv t)p(—oo,a) + trieowég (‘Ai,j’fl(X’YOJrl/p)fa t)p(—oo,a)

+ wy (‘Aiﬁj—l(X’ym-‘rl/p)fa t)p(fa,oo) + tr—éoo We (‘Ai’,j—l(X’ym+1/p)f7 t)p(fa,(oo)- )
1.11

As it is well known, the Post-Widder operator for integer s is actually the
Post-Widder real inversion formula for the Laplace transform. Thus, Theo-
rem 1.1 in combination with Theorem 1.2 or Theorem 1.3 gives us the rate of
convergence of the Post-Widder real inversion formula measured by the struc-
tural properties of the original function [11, Ch. VII].

Remark 1.3. The hypotheses of Theorem 1.3 cover (with few exceptions de-
pending on the specific values of p,v9 and 7)) the variety of indices i, 5,4, j’
for which (1.11) is true. The exact ranges of these indices are given in Remarks
5.3 and 5.4 below. We take advantage of the possibility to vary them in the



proof of Theorem 5.8. Characterization (1.11) is most concise for i’ = i — £y and
j' = j + ls. In each of these cases the polynomial £ is a linear combination
of least number of monomials. The explicit form of the characterization is as
follows.

For 7o € Ti(p), Yoo € Tj(p), ¥’ =i and j' = j relation (1.11) takes the form

K3 (1) ~ wp(Ai o1 (X7 P) ) p(—o0,0) + £ 1A 21O TP) Fllp(—c0.a)
+ wr (A o1 (OTYP) £ ) p a0y + E ML —1 (X7 TP) (=00

and for vg =1—1—1/p, 0<i <7, 700 € Tj(p), 7' =1 —1 and j' = j it takes
the form

K:v(fa tr)p
~ Wr (‘Ai,jfl(xryo—i—l/p)f» t)p(—oc,a) + tT_lwl (Ai,jfl(xryo—'—l/p)f» t)p(—oc,a)
+ wr(ﬂi—l,j—l(x'yoc+l/p)f7 t)p(fa,oo) + tr||-Ai—1,j—1(Xﬂmerl/p)f”p(fa,oo)-

Similarly, for Yoo € Tere(p). Note that the pass from vy € Tere(p) t0 Y0 € Tere(p)
not only changes t"wg to " 1w, at the left end of the domain but simultaneously
affects the range for the index ¢’ of the operator A,/ ;_1 acting at the other end.

The two quantities wy (F, t),() +t" | F |57y and wy (F, ) +t" w1 (F,8) )
are not equivalent with constants independent of F' and ¢ € (0, 1]. This is shown
in [8, Remark 1.3] for any unbounded interval J C R but, of course, the same
is true for finite intervals J.

Remark 1.4. If f € m;+L,(w)(0,00) as in Theorem 1.1 and m ¢ L (w)(0, 00),
then f is to be replaced by fo such that fo € L,(w)(0,00) and f — fo € 71 when
Theorems 1.2 and 1.3 are applied to the K-functional in Theorem 1.1.

Remark 1.5. Theorems 1.2 and 1.3 show the important role of the polyno-
mials from m,_1 belonging to the space L,(w), that is the trivial class m_1 N
L,(w)(0,00) of the K-functional K7, (f,t"),. For future reference we recall

Tir—1 C Lp(x7°)(0,1) <=0 > —i —1/p for p < 0o or vy > —i for p = oo;
mo,j—1 C Lp(x7*)(1,00) <= Yoo <1—j —1/p for p < oo or
Yoo <1 —j for p = oo;
Tij—1 C Lp(w)(0,00) <= 70> —i—1/p, 700 <1—j—1/p for p < oo or
Y0 > =1y Yoo < 1 — 7 for p = 0.

Thus, if p < oo, then 7,1 N L,(w)(0,00) # {0} iff ¢ < j, where the integers 1, j
are determined by T;(p) U{1 — ¢ —1/p} 3 v0, T;(p) U{—Jj — 1/p} 3 Veo. Also,
if p = oo, then m,_1 N Loo(w)(0,00) # {0} iff @ < j, where the integers i, j are
determined by T;(00) U{—i} 3 70, Tj(c0) U{l —j} 3 Vo

In comparison with [8] two new type of difficulties have to be overcome
in Theorems 1.2 and 1.3. First, this is the more complex structure of the
space L,(w)(0,00) for some 7,V compared to L,(x?)(0,00) as the structure



of the subspaces of algebraic polynomials in each of them shows (cf. Remark
1.5). In order to cope with this problem we introduce the operators L; ;_i.
Despite their effectiveness they, unfortunately, substantially complicate some
proofs. Secondly, the belonging of at least one of Yg, Voo 10 Teze(P) as Y0 # Yoo
involves splitting of the singularities (see (5.6) below), which, in turn, lessen the
possibility for using Hardy’s inequalities. Hence, we use appropriate integral
representations of the derivatives (see Theorem 3.1 below) and modify Hardy’s
inequalities. The latter can be seen as precise determination of the conditions
on the weight w under which the inequality

Iwx® g™l < cllwx" g™, (1.12)

follows for x"g(") € L,(w)(0,00) and k < r. But in many of the cases considered
in this article the conditions of Hardy’s inequalities are not met. So, under the
additional assumption g € L,(w)(0,00), we extend in Theorem 4.1 the range
of (1.12) beyond the limits provided by Hardy’s inequalities. As Remark 4.2
shows the hypotheses of Theorem 4.1 are sharp for the validity of (1.12).

The paper is organized as follows. Section 2 contains the proof of Theo-
rem 1.1 based on several inequalities related to the Post-Widder and the Gamma,
operators. In Section 3 we establish a representation of derivatives. In Section
4 we give a number of inequalities for the intermediate derivatives on which the
proofs of the upper and lower estimates of the K-functional K,(f,t"), by the
unweighted one are based. Theorems 1.2 and 1.3 are proved in Section 5, which
also contains characterizations of the analogues of K, (f,t"), on the intervals
(0,a) and (a,00) with a > 0, as well as for spaces of continuous functions. In
this section we show how several basic properties of K7, (f,¢"), can be derived
from its characterization in Theorem 1.3. Finally, in Section 6 we explicitly
construct operators £, ;_1 which satisfy conditions i)-ii) or i)-iv).

2 A characterization of the Post-Widder and
the Gamma operator errors

The next theorem is basic for obtaining good upper bounds for the constants
in Propositions 2.1-2.6. The functions from L 0c(0,00) do not need to be
bounded at 0 or at co.

Theorem 2.1. Let £,m € R, 1 < p < 00, ¥ € Lo 10e(0,00). Set w(x) = ¢
for 0 < z <1 and w(z) = 2" for 1 < x < oo. For every complex-valued
F € L,(x Y/Pw)(0,00) denote

G(x)z/OOOF(ux)w(u)?, 2 € (0,00). (2.1)

Then
X P0G p0,00) < (01 + 02)IX ™/ PWF || (0,00 (2.2)



where

91=max{/0°0 w)u~¢ d“/ W)™ d“}, (2.3)
oo = max{ [ =t = 2, [T et - e 2 e

Proof. Set wy = X%, Weo = X". Then W = max{wp, ws} iff &€ < 1 and @& =
min{wp, Weo } iff £ > 1. Note that wy and ws, are multiplicative functions, i.e.
wo(zy) = wo(2)wo(y) and wee(TY) = Weo (X )Wweo (y) for every z,y € (0,00), but
w is not multiplicative when £ # 7.
The operator defined in (2.1) is linear. In view of the Riesz-Thorin theorem
the statement will be established if we prove (2.2) for p = 1 and for p = oo.
First we deal with the case p = 1. We have

| aie@i < [T [ air) F e
= [ [ a(2) irwi w5

Let us consider the weight @w(y/u) on the right-hand side of (2.5). We have
W(y/u) = wo(y/u) if 0 <y <u < ooand W(y/u) =we(y/u) if 0 < u <y < oco.
We aim to get a good upper bound for the difference w(y/u) — wo(y/u) in
0 <y <1,0<u< oo and for the difference w(y/u) — weo(y/u) in 1 < y <
00,0 < u < oo. We have w(y/u) = wo(y/u) if 0 < y < 1,y < u < oo and
W(y/u) = weoly/u) if 1 <y < 00,0 < u < y. So, it remains to consider the
domains Qo = {(y,u) €R? : 0 <u<y<1}and Oy = {(y,u) eR? : 1<
y<u<oo}h.
First, let £ > 7. Then we have

(2.5)

~

o(y

g

W(y/u) = weo(y/u) < woly/u) = wo(u)’ (y,u) € Qo,
/) = wnlyf) < (/i) = 22 () € O

Using these inequalities in (2.5) we get

which proves (2.2) for p=1 and £ > .



Secondly, let & < 7. Then we have

_ Weoly) o woly) _ woly) | [woly) _ woly)
o) = S < )+ ) ] €
) = L) Weoly) _ Wooly) | [wee(y)  weo(y) "
W) = ) < ) = ) L ] 0 €0

Note that the terms in the square brackets are positive. Using these inequalities
in (2.5) we get

| i

o [l / L O I
o) [ wwire [ <) wol(u)]|¢<u>f

[T e ® [ L o &

<o, [TotirG )|+92/1 <y>|F<y>|y+e2/1°°woo<y>|F<y>dj

~ o) [ h )F )|

This completes the proof of (2.2) for p = 1.
Now, let us consider the case p = co. Let £ < n. For 0 < = < 1, using that
wo(y) < w(y) for every y € (0,00), we get

W (2)|G(x)| = wo(z)|G(z)|

< /OOO wo ()| F (uz)]| | (u)| d;u = /OOO wo(ux)F(uxﬂZ/}O((lg)' %L

. Y@ du _ (7 [¢(u)] du
g/o w(uz)|F (uzx)| — S/o N@F oo < O1[[0F |-

wo(u) wu wo(u) w

Similarly, for 1 < < 0o we get woo (2)|G(2)| < 01||WF ||, which proves (2.2)
for p =00 and & <.
Let £ > n. For 0 < z < 1, using that wo(z) < weo(z), we get

DG = @6 < [ w@lFu)lvi]
1/ du o0 U
/ )| F(u) [ ()| 2 + / oo ()| F () [ at)| 22
0 (% 1/z U

1/”” u)| du e u)| du
0 1/x

wo(u) u Woo (U) U




Ve ()| du [ ()] d
<</ o % * i) )”“’F =

X ) du <Rl )] de, -
: </o wo(u) u +/1/ono(u) wo(u)} u)” Flloo < (61 4 62) [0 F oo -

Similarly, for 1 < z < oo, using that we (z) < wo(x), we get

W (2)|G(2)] = weo ()| G(2)]

: </ooo Kﬁ(% T /01/1 mﬁ - zﬁim d“) 2.

< (01 + 02)[[0F | oo,

which completes the proof. O

Remark 2.1. In the proof of Theorem 2.1 for p = oo the case £ < 7, i.e.
W = max{x¢, x"}, is simpler than the case £ > 7, i.e. @ = min{x¢, x"}. But for
p = 1 we have the opposite situation — the case £ > 7 is simpler than the case
£<n!

Remark 2.2. Note that the differences between the two quantities under the
max sign in (2.3) and (2.4) coincide, i.e.

| e - [T e 2
= [ bl 2 [ e ) 2

In the applications below the above quantity will have smaller order than 6s,
which in turn will have smaller order than 61. Let us also mentioned the obvious
inequality 02 < 67 for every ¢ # 0.

For the applications of Theorem 2.1 in the proofs of Propositions 2.1-2.6 we
need some notations and results established in [8]. For ¢ € R and s > max{0, ¢}

we set gF( C) J
s I(s—¢)  s° e s—cdu
mie =S =g e

25—3
dy dv
. - 1 %Y —v, sY i—9 3.
ﬁ](Cv ) 2]_3|1—\ / / ( ) Yy ye v ’U’ J 33a

g1

d
/ (v—s—2j+1)? s —2j + e v, j=1,2
0 v

sz [0 - dv
)\3(C78) = F(S) /() |’U 872|6 ‘— v

Note that the signs of (7 — 1)%73 and (% — 1) in the definition of x and k3
coincide for every y from the integration range. Hence, the inner integral has

10



always a non-negative value. This fact will be used in the proofs of Propositions
2.2 and 2.3.

The inequalities collected in the following lemma are established in Lemma
2.2, Propositions 2.7, 2.8, 2.9 and Remark 2.12 in [8].

Lemma 2.1. There exists an absolute constant M, such that for every s > (248
and ¢ € R we have

2
+1
m1(Gos) 1 < M S (26)
1 241
H2(C>3)—’SM1C - ; (2.7)
2 s
1 241
ms<<,s>—'<M1< 1 (2.8)
8 s
561 o0 dv ¢Z+1
— —s—k)?—s—kle "0 ¢ — < V24 M k=-1,1,3; (2.9
o | omsm et < VERAL S k= -1 (29)
¢—% o0 d 2 1
%/0 \U—s—k\eﬂ’v“C%}Sl—FMlC: , k=-1,2. (2.10)

Lemma 2.2. For every s >0 and k € R we have

S o0
Fs(s) /0 [su — s]?[su — s — k]?e™""u® % =35+ (k* —4k +6)s,  (2.11)
i /Oo[su —s]2[(su — 5 — k)* — 5 — ke ""u® du
L(s) Jo u

= 105> + (16k? — 76k + 118)s* + (k* — 10k® + 45k? — 108k + 120)s. (2.12)

Proof. Using the definition of T'(s) and its properties we get

s du

> / [su — s]*[su — s — k]?e™*“u® —
0 u

I'(s)

:F(ls) /Ooo[v — s]%[v — 5 — k]?e " "0* a%v

=[[(s+4) — 2(2s + k)['(s + 3) + (65 + 6ks + k*)T'(s + 2)
—2(s+k)s(2s + k)T(s + 1) + (s + k)?sT(s)]/T'(s)

=352 + (k? — 4k + 6)s

11



and

SS

— OosufSQ su—s—k)?—s—k2e %
£ [l Pl = s ke

1 > 2—8— 2_3_ 2671}115@
5 | Pl s s ke

=[['(s +6) — 2(3s + 2k)['(s + 5) + (155 + 20ks — 25 + 6k* — 2k)T'(s + 4)
— 4(s + k)(55% + ks — 25 + k? — k)T'(s + 3)
+ (s + k) (1553 + (25k — 12)s% 4+ (11k — 1)(k — 1)s + k(k — 1)))I'(s + 2)
—2(s+k)*(s+k—1)3s+k—1)sT(s+1)
+ (s + k)% (s + k —1)%°T(s)]/T(s)

=10s" + (16k* — 76k + 118)s” + (k* — 10k® + 45k — 108k + 120)s.

du

O

In the proofs of Propositions 2.1-2.6 we shall apply the following estimates
valid for every &, n € R

—6_ | < € —nlu™u—1], 0<u<I;
[ —u ‘{ € —nlulu—1], 1<u<oc, (213)

where 4 = max{¢,n} + 1 and v = min{{,n}. Now, we are ready to establish
the main ingredients for the proof of Theorem 1.1.

Proposition 2.1. There are positive numbers No, My such that for every vo, Yoo
ER, s> No(V¥+7% +1),1<p<ocoand f € Ly(w)(0,00) we have

lwPsfllp < £1(Y0, Yoos 8w flp, (2.14)

where ) )
170 — Vool a0 s +1

NG s

Proof. From (1.1) we get the integral representation

ﬁ;(’)/O)’YoovS) < 1+ M2

(P = [ fame et

Therefore we apply Theorem 2.1 with & = v + 1/p, 1 = Yoo + 1/p, ¥(u) =

e *u®s® /T(s) and get (2.14) with £} (70, Voo, ) = 61 + 02, where 61,0, are
given in (2.3), (2.4). From (2.3) and (2.6) we get

s oo d o0 d
0, = S max / e Sy ¢ —u,/ R TR w
['(s) 0 u - Jo u

2 2 2
+n?+1
SET SR

+12 +1
= maX{Hl(é-aS)v’il(nﬂs)} <1+ M1 +

12



In order to estimate 65 we apply the first inequality in (2.13), the Cauchy-
Schwarz inequality, (2.6) and get

€y e si

d
<le—nlts / Tt — 1fe
(s u

)
<le- n{ ‘f) / muwesuus‘fj}m{;(; /0 °°(u_1)2esuuscz¢}

< | —nl {r1 (20, $)}'/* {k1(=2, 5) — 261 (=1, 8) + K1 (0, 5)}/*

1/2

4 2 1 1/2 - e
§{1+M1u+ } €=nl o 5 0 = Yool
s Vs Vs
Similarly, using the second estimate in (2.13), we get the same upper bound for
the integral on [1,00) as the one for (0,1] and complete the proof. O

Proposition 2.2. There are positive numbers No, My such that for every vo, Yoo
ER, s> No(V3+7% +1), 1 < p < oo and every g such that x*D?g €
L,(w)(0,00) we have

lw(Psg = 9)llp < 57 85(70, Yoo, 8)[wx*D?gllp, (2.15)
where ) )
o =Yool | pp 20+ 5+ 1
Vs
Proof. The following integral representation is obtained in the proof of Propo-
sition 2.5 in [8]

. 1
K5(Y0, Yoo, 8) < 5 + My

(Psg)(z) — g(x) = %S) /0OQ /1U/S (% - 1) (zu)?(D*g)(wu) dgu e Vv® %

Therefore we apply Theorem 2.1 with & = o +1/p, 1 = Voo + 1/p, F = x?>D?g,

su
. d
/ (l—i)e_vvé—v for 0<u<1,
s) Jo su v

o d
/ (i—l)e*”vs—v for 1 <u<oo
() Jou \su v

u

P(u) =

Plu) =

(hence G = Psg — g) and get (2.15) with &5(Y0, Yoo, 8) = s01 + sb2, where 61,05
are given in (2.3), (2.4). From (2.3) and (2.7) we get

2 1 1 2 2 1
s0; = max {r2(, s), ka(n,s)} < = +M w - MZM-
s

[\

S
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In order to estimate sfs we apply the first inequality in (2.13), the Cauchy-
Schwarz inequality, (2.7) and get

o [ e - i 2
_S/S/”/S|u ) (L 1) B
<[€ - nl—// uHu — 1|(7_1)du —u, civ
gsm{@/j/l”uw(; ) &, d}
(el [ o . )

=& =l {r2(2p, )} {Ra(=2,5) — 2ma(—1,5) + K2 (0, 5)}2

a2+ 1) Y2 (106, V2 e
<‘§ 77|{ +M1 MS } { 1} SMQM

s Vs
Similarly, using the second estimate in (2.13), we get the same upper bound for
the integral on [1,00) as the one for (0, 1] and complete the proof. O

Proposition 2.3. There are positive numbers No, My such that for every vo, Yoo
ER, s > No(W3+92 +1), 1 <p < oo and every g such that x*D*g €
L,(w)(0,00) we have

H ( \2D2%g Xngg)
w| Psg—g— -

X lox'Dlgly.  (2:16)

S
P

(’7077007 )
52

where ) )
— Yoo +9% +1
o = veel | 5y 0+ '
Vs
Proof. The following integral representation is obtained in the proof of Propo-
sition 2.6 in [8]

(Pg)(&) — 9(2) — 557 @ (D)) = 3570 @) (D))

= 6%(5) /O00 /IU/S (% - 1)3 (zu)*(D*g)(zu) % e v dT}U

Therefore we apply Theorem 2.1 with & = 9 +1/p, = Yoo + 1/p, F = x*D%g,

R 1
K3 (70, Yoo, §) < 3 + M,

su v \3 dv
= 1-—— Yot — 1 1
P(u) 6F(s)/0 ( su) e *v® — for 0<u<l,

1 v 3 dv
= — -1 “Yv® — for 1
(u) 6T (s) /S (su ) e "v’ -~ for 1<u<oo
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(hence G = Pyg—g—1s7'Xx*D?*g—1572x3D3g) and get (2.16) with £5(70, Voo, 5)
= 52601 + 520, where 01,0, are given in (2.3), (2.4). From (2.3) and (2.8) we get

2 2 2
+n°+1 1 +93 +1
520, = max {k3(&, s), k3(n,s)} < = +M §+ S +Mz%.

In order to estimate s20y we apply the first inequality in (2.13), the Cauchy-
Schwarz inequality, (2.8) and get
3d d
‘u_é —u" (— - 1) Hevys &2
v

1
d
52/ |u7£—u7’7||1/)(u) a
0
2
- su U

1
2 s v/s 3
i / / u Mu — 1] (1—1> d—uefv v
6L (s) Jo 1 su u v
32 o ’U/s 5 v 3 du d
<le — _c =2 (2 _ e~V o2
S {6F(s) /0 /1 b <su 1) v
3 du s dv
—12 (= —1) e
{GI‘ / / (u ) U € v }

=& — | {ra (2, 8)}'/* {ra(— 2,s>—2m3<—1,s>+ﬂ3<o,s>}”2

1/2 1/2
4 +1 10M, Y0 — Yoo
<|§— 77|{ + M, . } { . } §M27| 7 |-

Similarly, using the second estimate in (2.13), we get the same upper bound for
the integral on [1,00) as the one for (0,1] and complete the proof. O

Proposition 2.4. There are positive numbers No, My such that for every vo, Yoo
ER, s> No(v3 +7% +1), 1 <p<oo and every f € L,(w)(0,00) we have

[wx*D* Py fllp < AT (70, Yoo, 8) 1w f 1. (2.17)
where ) )
o = ool | 5y 0+ '
NG
Proof. The following integral representation is obtained in the proof of Propo-
sition 2.7 in [8]

AT(’YO}’YOO?‘S) S \/§+ M2

—‘3‘7_L S

N(su—s—1)* —s—1]e

(@) (D) (a) &

Therefore we apply Theorem 2.1 with & = v+ 1/p, 1 = Yoo +1/p, ¥(u) = [(su—
s—1)2 —s—1]e *“u®s*/T'(s) and get (2.17) with A} (Y0, Voo, 8) = 8~ 101 + 5 105,

15



where 61,6, are given in (2.3), (2.4). From (2.3) and (2.9) with £ = 1 we get

2 4 .2
1
5710 = max {\ (€, 5), \1(n,8)} < V2 + M1“++

2 2

1

< Va4 M0 T e T
S

In order to estimate s~y we apply the first inequality in (2.13), the Cauchy-
Schwarz inequality, (2.6), (2.12) with k =1 and get

5571

I'(s)

1
/ |u7§—u7’7"(su—s—l)z—s—llefs"usd—u
O u

Ss—l

s° > - —su sdu Yz
<|f—77|{r(8)/0 u 2M6 u u}

i {;S(;j /OOO (sus—2 5)” [(su—s—1)*—s— 1]2 e "u® ds}l/g

1
s d

/ u Hu—1| |(su—s—1)2—s—1}6_“‘u5—u

0 (7

402 +1) 7 (1083 + 5852 4 485 ) /?
<|f—77|{1+M1 5 } 7
s s
|70 - '7oo|

<My—F—.

M7
Similarly, using the second estimate in (2.13), we get the same upper bound for
the integral on [1,00) as the one for (0,1] and complete the proof. O

Proposition 2.5. There are positive numbers No, My such that for every vo, Yoo
ER, s > No(V3+79%4 +1), 1 < p < oo and every g such that x*D?g €
L,(w)(0,00) we have

lwx* D Peglly < sA5(70, Yoo, 8)[[wx* D2 g, (2.18)

where | | ) )
. Y0~ Yoo YotV tl
A 003 8) S V24 My—r + My———>2——,
5(70, Y00, 8) < V2+ Ma NG + My 5
Proof. The following integral representation is obtained in the proof of Propo-
sition 2.8 in [8]

SS

I'(s)

Now, we proceed as in the proof of Proposition 2.4 using (2.12) with k =3. O

du

@D Pa)e) = fos [ D) (s s - 32 = s = gl
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Proposition 2.6. There are positive numbers No, My such that for every vo, Yoo
ER, s> No(V3+7% +1), 1 < p < oo and every g such that x*D?g €
L,(w)(0,00) we have

lwx® D*Paglly < V/5X5(70, Yoo, 8)llwx® D2gllp, (2.19)
where ) )
— Yoo +92 +1
o = ool | 5y 70+ '
NG
Proof. The following integral representation is obtained in the proof of Propo-
sition 2.9 in [8]

)‘§(70770078) S 1 + M2

SS

3 (2)(D?Pyg)(z) = RO /Ooo(m)2(ng)(m)[su 5= e du

u

Now, we proceed as in the proof of Proposition 2.4 using (2.10) instead of (2.9)
and (2.11) instead of (2.12). O

Remark 2.3. If the Post-Widder operator P; is replaced by the Gamma op-
erator G, then Propositions 2.1-2.6 remain unchanged except Proposition 2.3,
where (2.16) is to be replaced by

212 313 %
X D 9 2X D 9 K3 ('70’700) 8) 4 4
Gsg—g— _ D .
Hw ( T79756—1) 35— 1)(s— 2)) 2 o Dl
The reason is a different integral representation, namely
2( )(D2 )z)  2x3(x)(D3g)(x)
G — _

(Gu0)(w) — gle) ~ =30 = TR

G/'U du g

= — = 1 4 p4 OO0 pmvgst1 28

s+1 / / (M) (D*g)(wu) — e~ v —

The only modification in the proofs is the necessity to change the signs of £ and
1 to the opposite, because the integral representations connected with Gy are
naturally of the type
Py 'a)d(y) —.
0 Y
So, a change of the variable v = y~! in the above integral has to be made before
applying Theorem 2.1 and the inverse one y = v~ afterwards.

Proof of Theorem 1.1. We apply the proof of [8, Theorem 1.1] given in [8, Sec-

tion 3] by simply replacing x;, A; there with K3, A} from Propositions 2.1-2.6

(and Remark 2.3) proved in thls article. The number N > Ny from the hy-
potheses of the theorem is chosen in such way that the inequality

435 (0, Yoo )5 (70, Yoos 8) + 4/3N5 (70, Yoo, 8)s T2 < 2
is satisfied. -
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3 An auxiliary derivative representation

A basic tool in the proof of the lower estimates of the K-functional K[,(f,t"),
by the unweighted fixed-step moduli of smoothness is a representation of the
derivatives of a function g € AC; '(0,00) such that g,x"g™ € L,(w)(0,00).
To establish it we use the following assertions about the limit behaviour of the

function at 0 and infinity.
Lemma 3.1. (¢f. [8, Corollary 4.58]) Let 1 < p < co.

a) Let G € ACp:(0,1) and G,xG" € L,(x7)(0,1) with v < —1/p if p < o0
ory <0 if p=oo. Then lim,_,o+9G(z) =0.

b) Let G € ACioc(1,00) and G, xG' € L,(x7)(1,00) withy > —1/p if p < 00
ory >0 if p=oo. Then lim,_,, G(x) = 0.

Proof. Let p =1,y < —lor 1 < p < o0, ¥ < —1/p in assertion a). The
condition on G’ (and Holder’s inequality if p > 1) imply G’ € L1(0,1), hence
G € AC[0,1]. The assumption |G(z)| > ¢ > 0 in a neighborhood of the origin
would imply x” € L,(0,1), which contradicts v < —1/p (or v < —1 for p = 1).
Hence, there exists a sequence {{,} such that , — 0+ 0 and G(&,) — 0 as
n — 0o, which in view of the continuity of G implies lim,_o+0 G(z) = 0.

In the remaining case 1 < p < 0o,y = —1/pweset G = |G|” € Li(x~)(0,1).
From

G'(x) = p|G(2)|P~ G (2) sign G(z),

X P|GIPY € L, (0,1) with p’ = p/(p—1), x}~/PG’ € L,(0,1) and Holder’s
inequality we get G e L1(0,1). Hence, G satisfies the hypotheses of assertion
a) for p=1, v = —1 and then lim,_g4o G(z) = 0. The proof of assertion a) is
completed.

Assertion b) is verified similarly. O

Remark 3.1. Lemma 3.1 is not true for the remaining values of « and p.
For example, for v = 0, p = oo counterexamples are given by G(z) = 1 or
G(z) = sinlog x.

From Lemma 3.1 we derive
Lemma 3.2. Let 1 <p<oo,reN, peNy, p<r.

a) Let g € AC]-1(0,1) and g, x"g") € L,(x*)(0,1) with v9 < —p — 1/p if

loc

p< oo orvy <—pifp=oo. Then

i L=p ,(£) - - _
xkg-ls-om g (x)=0, £=0,1,...,r—1. (3.1)

b) Let g € ACT*(1,00) and g, x"g"") € L,(x"=)(1,00) with Yoo > —p—1/p

loc

ifp <00 or Yoo > —p if p=o00. Then

lim xlfpg(e)(x) =0, £=0,1,...,r—1.

Tr— 00
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Proof. The hypotheses of assertion a) and Proposition 4.1 below imply
xFg® € L,(x)(0,1), k=0,1,...,r (3.2)

Now, Lemma 3.1.a with G = ¢™) and v = 49 4+ m for m = 0,..., p implies
lim, 409" (x) =0 for m =0,...,p. Thus we get (3.1) for £ = p.
Next, for £ = 0,...,p — 1, p > 0 by Taylor’s formula at 0 as g(*) € C/0, 1]

we get
: 2290 (z) = 1 i/x (I_E)p_e_l ) (y) d
g C(p—t—-1Dz ), x gy oy

Now, in view of lim, o409 (2) = 0 we get (3.1) for £=0,...,p — 1.
Further, for {=p+1,...,r =1, p <71 —1, using

(290 @) = (€= pat > g D) + a0 O@),  (33)

1
(xéfﬂg(fﬂ)(m)) =({l—p)l—p—1) x@*p72g(lfl)(x)
+2(¢—p) xf—p—lg(e) () + xf—pg(1€+1)(m)

and (3.2) for k = ¢ —1,0,0+ 1, we get that (Xe_pg(z_l))/,x (Xf_pg(z_l))” €
L,(x*?)(0,1). Consequently, by Lemma 3.1.a with G = (Xzfpg(e’l))l and
7 =" +p we get

li
; L—p (€—1) ) — — _
EEI&O(x g (2) 0, {=p+1,....,7r—1 (3.4)
Now, (3.1) with ¢ > p follows by induction from (3.3), (3.1) with £ = p and
(3.4). This completes the proof of assertion a).

Just similarly we verify assertion b) as we use Lemma 3.1.b and Taylor’s
expansion at a > 1. O

The next theorem contains the derivative representation we shall extensively
use. In its formulation we follow the convention that a sum is 0 if the upper
boundary is smaller than the lower.

Theorem 3.1. Let 1 <p<oo, 7N, yyv,keNgaspu<v<randk <r,
a >0, and x € (0,00). Let also g € AC],-'(0,00) be such that g,x"g"") €
L,(w)(0,00), where w(z) = w(0, Yoo; &) s defined in (1.8). If k < pn we assume
Yo <l—p—1/p forp>1or~y < —pforp=1, and if v < r we assume
Yoo > —V—=1/pforp>1o0rvy.,e>—-v—1forp=1. We set

r—1

_ (—a)" 0
brn(g,a) =Y = ? (a)

l=n
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form=p,...,v—1, p <v; i =max{p, k} and v = max{v,k}. Then

1)nmr7kfn71 i )
n_(r d
n'(r—k—n—l)!/oyg () dy

-1 -1

AN

nk: r—
T brn(g,a) +

n:y, . n

. M

()nrknl

¢ n _(r)
,(T_k_n_l)!/a y"g'" (y) dy

—1
( 1)n+1wr—k—n—1 o] " ()
nlir—k—-—n-1"!J, y'g T y) dy.

+

MviM~ Imi

+

3
Il
o

Proof. First, let us note that the integrals in the representation of g(k)(x) with

0 or oo as an integration boundary are finite in view of Holder’s inequality.
Let us denote respectively by Sy, ,x(x), m = 1,2, 3,4, the four sums on the

right-hand side of the formula of the theorem. We need to show that

S1.6(z) + S2.k(x) + S (x) + Sap(x) = g(k) (), k=0,...,r—1 (3.5)

Let us observe that the convention for the sum notation implies

Sik(z)=0, k>v or p=v, (3.6)
Sok(z) =0, k>p, (3.7)
Szp(x) =0, k>v or u=v. (3.8)

In the proof we extensively use the following formula obtained via integration
by parts

n r—1 n4+l—r+1 (E)( )
ng™ (y) dy = n! e 9 W 3.9
/5 y"g" (y)dy =n ézri_n_f ) = r 1), (3.9)

Using (3.9) with n = = and £ — 0, Lemma 3.2.a with p = p—1 > 0,
interchanging the order of summation, reordering the summands in the inner
sum by setting m = r — k — n — 1 and considering separately the cases ¢ < u

and ¢ > u, we get
—k
(é kﬂ ((g )k:)' dO@), k<p

(3.10)
Similarly, by means of (3.9) with n = z and £ = a, interchanging the order of
summation in the double sum containing ¢(*) (z), and reordering the summands
in the inner sum by setting m =r —k —n — 1, we get for k < v and u <v

r—1 1

Sar(@) = gM (@) + 3
l=p

Ps

m=0

r—1 | min{v—k—1,0—Fk}

B )k
S =S % (_1)m<£mk> Mgw(x)_sl,k(x).

l=]i m=p—k
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r—1 [ v—k—1 . —k
+Z[ > (U’"(gmk)] ((E—)k)! 9 O(z) — Siu(x), k<p<wv, (3.11)
= —u—k

l=v | m=p—
and
r—1 [v—k—1 . 0 —k (7x)lfk
S =@+ 3 [ 3 (", )] Tpr ¢ @ S

w<k<wv. (3.12)

As in the proof of (3.10), using now (3.9) with £ = z and n — oo and Lemma
3.2.b with p = v we get for v <r

r—1 l—k 0 — k (—k
S4,k(x)=ezul > (=ym ( N ﬂ ((g )k)' 9O ().

=0 Lm=v—k
Hence
r—1 l—k
C—k\ | (=x)tF ©
——— 1
e ;L_Z (' )] e k<n (@13)
and

Syr(z) =g®(x), k>w (3.14)
Now, (3.10) (3.8) if p = v or (3.11) if p < v, and (3.13) imply (3.5) for
k=0,....,u0—1, 1> 0; (3.7), (3.12) and (3.13) imply (3.5) for k =p,...,v—1,
p < v; and ﬁnally, (3.6)-(3.8) and (3.14) imply (3.5) for &k = v,...,r — 1,
v O

Remark 3.2. The case v < p under the hypotheses of the theorem is covered
by the case 1 = v. Let us observe that if v < p, then the space L,(w)(0, c0)
is rather narrow, in particular, it does not contain any non-zero polynomial of
degree less than r. For u = v the formula of the theorem takes the form

OEY " /w y"9" (y) dy
£ n!(r—k—n—l)!

n+1 r—k—m—1

ey 9]

n=0
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and

r—k—1 (71)n+1xr7k7n71

®)(z) = T e () d <k<r
9" (x) nz:% n!(r—k—n—l)!/m y'9" () dy, p<k<r

Also, let us note that if we do not impose any restriction on the weight w at
0 (i.e. we set u = 0), we get representations which do not contain integrals of
the form fom y"g")(y) dy. Similarly, if we do not impose any restriction on w at
infinity (i.e. we set v =), we get representations without integrals of the form

[y (y) dy.

4 Inequalities for intermediate derivatives

In the proof of the characterization of the K-functional K, (f,t"), we use several
inequalities for the intermediate derivatives. The following inequalities are well
known (see e.g. [1, Ch. 2, Theorem 5.6]):

(b= )" 1lg® lptasr < e (lglptass + O = ) N9 lpany),  (41)

for every g € Wy[a,b] and k =0,1,...,7, and

l9® lpiry < € (lgllpcry + 19 lpir ) » (4.2)

for every g € Wy (J) and k = 0,1,...,r, where J = (—o0,00) or J = (—00,a)
or J = (a,00), a € R. The constant ¢ in (4.1) and (4.2) depends only on r.
Through the arguments used in the proof of [8, Proposition 4.1] (see also [4,
Lemma 1]) on the base of (4.1) we establish

Proposition 4.1. Let r € N, 1 < p < 00, w(x) = wW(70,Veo; Z) be defined in
(1.8) with 0,7 € R and J be any of the intervals (0,a), (a,00) or (0,00),
where a > 0. Then for every g € AC]-'(J) such that g,x"g\") € Ly(w)(J) we
have

"0y < e (Iwgllpi) + X"Vl ) k=010, (43)

where the constant ¢ depends only on Yo, Voo and r.

To establish the characterizations of K7, (f,t"), given in the Introduction we
shall need several improvements of the inequality of the last proposition with
the first term on the right missing. These inequalities are either consequences
or modifications of Hardy’s inequalities.

For the proofs we set

n
Vi, (€15 ) =x’"‘”‘1/E y" "™ (y) dy (4.4)

forme N, ne Ny, 0<En<ocandg € AC’ZZC_l(O,oo) provided that the
integral is well defined.
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Proposition 4.2. Let 1 < p < oo, r € N, j € Ny, j <r, a >0 and
w(z) = W(70,700; ) be defined in (1.8). Let also g € AC}*(0,00) be such
that g,x"g\") € L,(w)(0,00). The following assertions hold true:

a) If vo <1—1r—1/p, then

I 9P 0,0y < el 9 po)y k=0, =1
b) If o <1—=j—=1/p, v € Tj(p), j >0, then

Hx%ﬁkg(k)up(am) <e HWXTg(T)“p(O,oo)a k=0,...,5—1.

¢) If Yoo > —j — 1/p, j <, then
X 9%) 000y < X9 a0y, k=13 our — 1.

d) [f’YOarYoo > 7]‘ - 1/p7 ] <r, then
HX%Jrkg(k)Hp(O,a) <c ”WXTQ(T) ”p(O,oo): k=jg,...,r—1

The constant c is independent of g.

Proof. Let 49 < 1 —r — 1/p. By Theorem 3.1 with 4 = v = r we have for
k=0,...,7r—1

r—k—1 ( 1)nm7’7n71 x
ko (k) () — — 7o (M) (/) d
abg®(z) = Y n!(r_k_n_l)!/oyg (y) dy.

n=0

Now, since yo+r—n—1< —1/pforn =0,...,r—1, Hardy’s inequality implies
X7 %rn (0«5 ) p(o,a) < C||X7°+T9(T)||p(o,a), kn=0,...,r—1,

where ¢, (0, z; z) is given by (4.4). Hence a) follows.
To prove b) we get by Theorem 3.1 with y = v = j the representation

r—k—-1 (_1)n$r—n—1 T
wFg®(z) = Y )!/0 "9 (y) dy

nllr—k—n-—1
n=r—j
rdt n+1l,.r—n—1 9]
(1) e / ")
"9 (y) dy.
" nz:% r—k—-n—11J, Y7 (y) dy
for k = 0,...,5 — 1. Since x?=*""""1 € L (a,00) for n > r — j and also

Y0 < 1—7—1/p, we get by Holder’s inequality for n > r — j

||XA/OC qur,n(O» as- )Hp(a,oo) <c ||Xng(r) Hl(O,a) <c HX%+TQ(T) Hp(O,a)- (45)
Since Yoo +7—n—1 < —1/p for n > r—j, Hardy’s inequality yields for n > r—j

”X’YQO wr,n(a? t3t )”p(a,oo) <c ||X'yao+7’g(7“) ||p(a,oo)~ (46)
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Relations (4.5), (4.6) and Minkowski’s inequality imply for n > r — j
||X’ym¢7’,n(07 i )Hp(a,oo) < HX’ywa,n(Oﬂ as - )Hp(a,oo) + ||X’Y00¢r,n(a7 R )”p(a,oo)
< ellwx"g" llp(o,00)-

Thus b) is established for j = r. To finish the proof for j < r we also need to
observe that, since yoo +7—n—1> —1/pforn <r—j—1, j < r, Hardy’s
inequality implies forn <r—j—1,j <,

||X’YOO¢T,7L(' , 005 - )”p(a,oo) <c ||X’Y°c+rg(r) ||p(a,oo)~

Assertions c¢) and d) are established like a) and b) respectively using the
representation from Theorem 3.1 with v = j and with k > j. O

Combining inequalities given in the last proposition, we get

Theorem 4.1. Let 1 < p < o0, i,j € No, r € N, 4,5 < r and w(z) =
W(70, Yoo; ) be defined in (1.8). We set

0 if v €Ti(p): Yoo € Tj(p): J <45
i if yo=1—-1—-1/p, Yoo € T;(p)U{l—j—1/p}, i >0, j <i;
joif w€Ti(p), Yo =1-37—1/p, 0<j <1
joif 0 € Ti(p) U{l —i—1/ph,ve € Ti(p)U{1 —j —1/p}, i <.
If m <, then for g € AC]*(0,00) such that g,x" g™ € Ly,(w)(0,00) we have
WX g™ 0,00y < €lWX 9 000y, k=mym+1,...,r—1.  (47)
The constant c is independent of g.

Proof. Tf 79,700 > —max{i,j} — 1/p and 4,j < r, then Proposition 4.2.c and
Proposition 4.2.d imply

||kag(k)Hp(0,oo) <c ||W>(’”g(r)|\p(0,oo)7 k = max{i,j},...,r — 1, (4.8)

which verifies the assertion of the theorem in the following cases:

® 70,70 € Jo(p);

*Yo=1-i-1/p, v € Tj(p) U{l —j —1/p}, 0 <i<r, j<is

% E€Ti(P) Yo=1—-j—1/p, 0<j<m;

e 0 €Ti(p)U{l—i—1/p}, 1 €Tj(P)U{l —j—1/p}, i <j<r.

Next, if v <1 —4i—1/p, ¥00 > —j — 1/p and j < i, then Proposition 4.2.a and
Proposition 4.2.c with r = ¢ imply

IwxX* 9™ llp0,.00) < WX 9V lp0,00)s k= Gi-evi = 1, (4.9)

which together with (4.8) yields the assertion of the theorem in the cases:
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e % €Ti(p), i >0, Yoo € To(p);
¢ % ETiP) Yoo=1—75—1/p, 0<j <i.

Finally, if 70,700 < 1—j — 1/p, 5 > 0, then Proposition 4.2.a and Proposition
4.2.b with r = j =4 imply

||kag(k)||p(0700) <c ||ijg(j)|\p(01w), k=0,...,5—1, (4.10)

which verifies the theorem in the case 79,V € T(p). Inequalities (4.10) and
(4.8) with 0 < @ = j < r imply the theorem for 7g,ve € Ti(p), 0 < i < 75
inequalities (4.10) and (4.9) with ¢ = r imply the theorem for 7o € T,.(p),
Yoo € T;(p), 0 < j < r; and inequalities (4.10), (4.9) and (4.8) imply the
theorem for 7o € T;(p), Yoo € T;j(p), 0 < j < i <.

Thus the proof is completed. O

Remark 4.1. Let us note that in terms of g,V the condition m = r is
equivalent to yg =1—r—1/p,or yoo =1 —7 — 1/p, 0r Yoo < 1 —7 —1/p < 7.
Remark 4.2. Theorem 4.1 is exact in the following sense. The inequality (4.7)
is not true for k = m — 1 provided that m # 0. Indeed, let ¢ € C*°(R) be a
fixed function with support in [1,2]. For arbitrary § € (0,1) we set g1 5(x) =
2™ tp(27%) and gos(z) = 2™ 1p(2%). Let v € R be arbitrary. We observe

that g1, X9\ € Ly(w(l —m — 1/p,7))(0,00) and g2.6,X"95) € Ly(w(,1 —

m —1/p))(0,00) for 1 < p < co. Moreover, we have

(1 —m = 1/p, )X p0oey ~ 52, k=0,...,m—1,
Iw(l —m = 1/p, I 9 lp0,00) ~ 82, k=m,...,
lw(~,1—m —1/p>xkg;f“§||p<om>~6-1/p, k=0,....m—1,
(v, 1 —m = 1/ 05 pooey ~ 877, k=m,... r

If 49 or Yoo are in Tege(p), then g1 5 or go s, respectively, with § — 0 provides a
counterexample to (4.7) with k = m — 1. A counterexample in the remaining
cases with m > 0, which are described by 79 > 1 —m — 1/p, 700 € Tin(p), is
provided by g = y™ L.

Remark 4.3. In view of Theorem 4.1 and Remark 4.2 we can decrease the
order of the derivative k (starting from r —1) in (4.7) until the three conditions:
X" & Ly(w)(0,00), vo + k # —1/p and 7o + k # —1/p are satisfied. In all
the cases considered in Theorem 4.1 we have m,_; N L,(w)(0,00) C m,—1 and
Yo+ kYoo +k#E=1/p, k=m,...,r —1.

Remark 4.4. Let us observe that if 79 < 70, then Theorem 4.1 follows from
the assertion for 79 = 70, established in [8, Corollary 4.2], because in this case
we have w ~ max{x7, x7>=}.

Now, we proceed to the analogue of Proposition 4.2 and Theorem 4.1 in the
case when there exist monomials x* with k € {m,...,r — 1} in L,(w)(0, 00).
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Proposition 4.3. Let 1 < p < o0, 7 € Ny, j,r e Nasi < j <r,a>0,
w(z) = W(Y0,V0: ) be defined in (1.8) and the linear operator L; ;_q given
by (1.10) satisfy conditions i)-ii). We set @ = min{a,a} and 3 = max{a, 3}.
Let also g € AC};*(0,00) be such that g,x"g™) € L,(w)(0,00). The following
assertions hold true:

a) If vo € Ti(p) and voo > —j — 1/p, j < r, then

I (9 = Li-19) P lp0.0) < WX 9 lp0,00)s k=0, = 1.
b) If v0 € Ti(p), then
(g = Lir-19)Pllp0.a) < e lX 9 0,3, k=0,-00ir =1L
¢) If Yoo € T;(p), then
X4 (9 = £0,j-19) P llpa,ce) < ¢ lX=* 9 lp(a,o0), K =0,.0,m = 1.

d) If o <1—1i—1/p, i >0, and vy € T;(p), then
=g = £ij19) P lp(ace) < WX 9 po.0)s K =0,....r = 1.
e) If vo € Ti(p) and oo € T;(p), then
Iwx*(9 = Lij-19)® llp0,00) < WX 9 po,00)s &= 0,00 = 1.

The constant c is independent of g.

Remark 4.5. Note that in the hypotheses of items a), d) and e) above we
have m._1 N Ly(w)(0,00) C m; j_1; in the hypothesis of b) we have m_1 N
Ly(x7)(0, 8) = 7 »—1; and in the hypothesis of ¢) we have 7, ;N L, (x 7> ) (&, 00)
= mp,j—1 (cf. Remark 1.5). Consequently, by property ii) of £; j_1 the left-hand
side of each of the inequalities above is 0 whenever g is a polynomial of degree
less than r which belongs to the respective weighted L,-space.

Proof of Proposition 4.3. Proposition 4.1 implies that it is sufficient to prove the
assertions only for £ = 0. Each of the hypotheses of a)-e) imply 79 < 1—i—1/p
fori > 0 and 7o > —j—1/p for j < r. Then by Theorem 3.1 with p =i, v = j,
k =0, and property ii) of L, ;_1 we get

9—Lij19=Rg—Li;1(Rg), (4.11)

where

r—1 nr—n—1 x
(Rg)(z) = > L, /0 y" 9" (y) dy

o nlr—n—1)
r—i—1
(71) xrfnfl /ZE )
n T d
+n;]n'(r_n_1)! A (y) dy
r—j—1

(_1)n+1x7'—n—1

J o]
n (1)
+ Y iC— /x y" 9" (y) dy.
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First we shall prove a) and b). Since v € T;(p) we get by Hardy’s inequalities
that

X% (0,5 ) lpo,5) < X9 poy, m=r—i, i>0,  (412)
X n(as 5 )llpo,5) < X9 lpo,5, n<r—i—1, .
X7 %0 ( i < el g™ < 1 (4.13)

where the functions v, ,, are defined in (4.4).
Next, since x° " ="=1 € L,(0,3) forn <r —j—1 and also ye > —j — 1/p
for 7 < r we get by Holder’s inequality

||Xﬂmwr,n(a700; ° )Hp(OB) < CHX’YN-‘_TQ(T)Hp(a,oo)u n<r _j - 17 ] <r. (414)
Relations (4.13) and (4.14) imply
X7 % (- 005 lpo.) < Cllwx 9 poocy, n<r—j—1, j<r. (4.15)
Now, inequalities (4.12), (4.13) and (4.15) imply
X Ryl p0.3) < WX 97 lpo,00)s  J < (4.16)
and (4.12) and (4.13) imply
X Rgllp0.5) < X9 0.5, J=r (4.17)
Further, using property i) of £; ;1 and Holder’s inequality we get
XL j-1(R9)|p0,a) < clIRYll1(ap) < €IRYllpa,8) < X RYllpo,5)- (4.18)

Now, relations (4.11), (4.18) and (4.16) imply a), and (4.11), (4.18) and (4.17)
imply b).
Assertions c) and d) follow from (4.11) and the estimates:
X7 (0,5 ) Ipaoe) < ¢IWX"9 lp0,00), 1 =7 —1i, i >0,
”X’YQC wT‘,n(a7 RN )”p(o‘t,oo) <c ||X’Ym+rg(r) ||p(5¢,oo)a nzr-—7j
X7 r,n (- 003 +)
X7 Lij-1(R9)lp(a,00) < €IX7 RYllp(a,00)

llp(a,00) < € ||x7°°+Tg(T)||p(a,oo), n<r—j—1,j<m,

which are verified as above.
Finally, assertion e) follows directly from a)-d). O

5 A characterization of K (f,t"), by the
unweighted fixed-step moduli of smoothness

Let J C R be an open interval. For r € N, F € L,(J) and t > 0 we denote the
unweighted K-functional by

K™(F,t7),(s) = inf {||F — Gllpy + NGy : G € ACT‘l(J)} .

loc
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For r = 0 we set KO(F, 1),y = ||F|lp(s)- As it is known (see e.g. [1, Ch. 6,
Theorem 2.4])
KT(F, tr)p(]) Nw,.(F, t)p(J). (51)

We shall also need the following characterization of another K-functional, which
is simple modification of the one above.

Lemma 5.1. Forr e N, 1 <p < o0, 0 <t <ty, an open interval J C R and
F e L,(J) there holds

loc

inf {|[F = Gllpiy + " IG ) + IG Iy0) : G € ACTM(I) }
~ Wr(Fa t)p(J) + trilwl(Fv t)p(J)~

The assertion of this lemma can be established as in [8, Lemma 5.2].

We shall prove the upper and lower estimates of the K-functional K7, (f,t"),
separately as for each of them it is necessary to distinguish between two main
cases: j <iand i < j, where 7, j are determined by T;(p) 3 7o and T;(p) 3 Voo-
According to Remark 1.5 the trivial class m,._1NL,(w)(0, 00) of the K-functional
K (f,t")p is {0} for j <4, whereas for i < j it is m; ;_1 # {0}.

5.1 Upper estimates

The following theorem establishes the upper estimate of K7, (f,t"), by the un-
weighted K-functionals. Although it is valid for all real v, Voo, it will be used

in the case y9,V0o #1—7r—1/p,...,=1/p.

Theorem 5.1. Letr € N, 1 < p < o0, tg > 0, w(x) = w(70,Voo; ) be defined
in (1.8) with Y0,V € R. Then for f € L,(w)(0,00), ¢ € m—1 N L,(w)(0,00),
F=X"Y?w(f—q))o& and 0 < t <ty there holds

KL (") < ¢ (K" (Pt ) p@) + 7| Fllpm) -

Proof. First, let us observe that since K[,(f,t"), = KL, (f —¢,t")p, it is enough
to establish the theorem with ¢ = 0.

In all the proofs in this section we follow a standard K-functional argument:
in order to prove the assertion of the theorem, it is enough to show that for
every function G € AC;  '(R) such that G,G(") € L,(R) there exists a function

g € AC]-1(0,00) such ltoﬁat
19( = 80y < €lIF ~ Gl (5.2)
and
199 llp0.00) < € (IG lpcey + 167 e ) - (53)
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Indeed, from (5.2) and (5.3) we get for every ¢ such that 0 < t < ¢, and
G € AC]H(R) such that G, G € L,(R) the estimate

loc
K (£t < 190 = 9llpo.se) + ¢ 199 pg0,00)
< ¢ (IF = Glipw + £ IG Nz + ¢ | Flpgs) ) -

Taking infimum on G in the above inequality we get the assertion of the theorem.
Let G € AC]_*(R) be such that G,G(™ € L,(R). Weset g = x"/Pw=(Go
log) = (W~1G) olog, where W = (x'/Pw) o &. Then by a change of the variable
we see that (5.2) is valid as an equality with ¢ = 1.
To prove (5.3) we write

1wX"9" 0,000 = 19X (W1 G) ©108) " (0,009
= HWZmM(WIG)“) olog

< CZ W W =16) O, (5-4)

p(0,00)

with appropriate integers m,. ;. To estimate ||[W (W ~1G)® lpwy for £=1,...,r
we first apply the Leibniz rule and get

¢ [tk N
(W @)G) @ =W i) S lZ b (1 ¥ ) ] ¢()

k=0 Ln=0

with some numbers by i, = bek.n (Y0 + 1/, Yoo + 1/p). Next we only need to

observe that
l—k T n
S b (5
IRy 1+6I
n=0

and use (4.2) to get for £ =1,...,7

<ec¢ x€R,

W (w6 ||pR><cZ||G<’< o < € (IG @ + 167 lm) - (55)

Inequalities (5.4) and (5.5) imply (5.3) and complete the proof. O

To solve the cases when one or both of the 4’s belong to Te,(p), we treat
the singularities separately by splitting the interval (0, 00). For J an interval of
the type (0,a) or (a,00) with 0 < a < oo and v € R we set

K (fot )iy = K(f, 75 Ly(X)(J), ACL L X" D")
=inf {|X"(f = 9oy + ' IIX" T D gllpiry 1 g € ACL ()}

According to [7, Lemma 7.1] (see also [1, Ch. 6, Lemma 2.3]) for A > 1, every
f € Ly(w)(0,00) and 0 < ¢ < to there holds

Ko (f,t")p ~ Ko (f17)p(0,4) + Koo (F5 1) p(1/4,00)- (5.6)
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Theorem 5.2. Let r € N, 1 < p < o0, a,t9g > 0, 0 < t < tg, w(z) =
W(70,Yoo; ) be defined in (1.8) with v0,7c € R. For f € L,(w)(0,00) we
set Fy = (X™*T/2(f —qo)) 0 € and Foo = (X" T/2(f — gu)) © €, where qq €
Tr—1 N Lp(x"°)(0,1) and goo € mr—1 N Lp(x7)(1,00) are arbitrary. Let {y =1
if Y0 € Tewe(p), and Ly = 0 otherwise. Let boo = 1 if Yoo € Tene(p), and los =0
otherwise. Then we have:

K:v(f5 tr)p <ec (KT(F(), tT>p(fooA,a) + tr—foKﬁo (F07 teo)p(foo,a)
+ KT(Fooa tr)p(fa,oo) + tr—éoo Kéoo (F007 tgoc)p(fa,oo))-

Proof. Let A = e* > 1. In view of (5.6), K (f,t")p0,4) = Ko (f —

q0,t")p(0,4) and Ko (f, 1" )p(1/4,00) = Koo (f = @o0st")p(1/4,00), it is enough
to prove the inequalities:

Ko (fit)p(0,4) < € (K7 (B0t )p(-o0,0) + 7 OK (Fo ) p(-e) (5.7
with FO = (X’YO+1/pf) o & and

KT (f7)p(1/400) < € (K" (Fooy 1) p(—a,00) + 1= K= (Fi, t‘w)pw,o%) 9
with Fo = (x?=1/Pf) 0 &. The proofs of (5.7) and (5.8) are quite similar and
we shall give only the one of the former.

For every G € AC] '(—00,a) such that G,G(") € L,(—o0,a) we set g =

loc

X~ °71/P(Golog). Just as in the proof of Theorem 5.1, the inequality (5.7) with
£y = 0 follows for an arbitrary real vy from the relations

X7 (f = Dllpo,4) = 1Fo = Gllp(=o0,a) (5.9)

and
1+ 9 0,4 < € (IG1lp—so) + 167 (-0 ) -
which are verified as in the proof of Theorem 5.1.

Let v9 = —i — 1/p, where i € Ny and ¢ < r. In view of Lemma 5.1 and the
equivalence (5.1), relation (5.7) with £y = 1 follows from (5.9) and

X779 po,a) < ¢ (llG'Hp(—oo,a) + ||G(T)HP<—°°7“)) ‘

To verify the inequality above let us observe that r—¢ > 1 and we actually have
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with appropriate integers my x
X779 p0,4) = X PX" (X (G ©108)) |0, 4)

S () Gt

p(0,4)

r . 4
~1/p it # o]

l=r—i

p(0,4)

< ~1/p 3(k) 5] H
<c Z HX G'* olog S0
k=1
T
= 1P ey < € (I o) + 1G7p-e)
k=1

where at the last step we have applied (4.2). O

Remark 5.1. Let us note that actually (5.7) and (5.8) hold with ¢y = 0 for
any 7o € R and/or £, = 0 for any 7., € R. In particular, for any vo,7sc € R
we have

K\:av(fa tr)p <c (KT(F(L tr)p(foo.,a) + tr”FO”p(foo.A)
+ K" (Foo, ") p(—a,00) + [ Foo |l p(—a,00)) -

5.2 Lower estimates

In the proof of the lower estimates of KJ,(f,t"), by unweighted K-functionals,
we shall use the following assertion, which is verified directly.

Proposition 5.1. Let the linear operator L; ;_1 be defined by (1.10) and sat-
isfy condition i) and let m; j_1 C Lp(w)(0,00). Then L; j—1 : Ly(w)(0,00) —
L,(w)(0,00) is bounded.

We also need a combinatorial identity, which follows from Vandermonde’s
convolution formula (see [10, Ch. 1, (5¢)]). For the sake of completeness we
give its short proof.

Lemma 5.2. Let n,m € N. Then

min{n,m}
mepi (M) (n+m—k—1)!
2, (1 k(k) CE S

k=0
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Proof. The identity follows from

0= (o am)™ = Zm: <7Z> (a=m) ) (B

k=0
T @) e [
e )

First, we shall prove the lower estimate of K, (f,t"), by unweighted K-
functionals for vo, Yoo & Tewe(p)-

Theorem 5.3. Letr € N, 1 < p < o0, to > 0, w(z) = w(x;70,7e0) e defined
in (1.8) with vo € T;(p), Yoo € T;j(p). For f € L,(w)(0,00) we set

F="Y"Pw(f—Lij-1f) o0&,

where L; j_1 is given by (1.10) and satisfies conditions i) and ii). Then for
£=0,1,...,7 and 0 < t <ty there holds

KN F ) ) < e KL (F,17)p

Proof. We follow the standard K-functional argument used in the proof of
Theorem 5.1. Let g € AC]'(0,00) and g,x"g\") € L,(w)(0,00). We set
G = (x"Pw(g —Lij-19))0&.
Let j < 4. Then L;;_; = 0 by definition. First, just by a change of the
variable we get
IF = Gllpmy = (= 9)llp(o.00)- (5.10)

Next, for £ =1,2,...,r we have with some integers ng

1G9 ey = (0P wg) © ) pqxy = Znekek( X 7wg)® o €)

p(R)
0
<e ST IO Pwg) P 0,00
k=1
< ¢ (Iwglpo.000 + X2 7w9) D llpo,00)) (5.11)

where at the last step we have used Proposition 4.1 with J = (0, 00). Inequality
(5.11) is also true for £ = 0 in view of (5.10) with f = F = 0. To estimate the
term ||x" /P (x'/Pwg) (") ||,(0,00) we apply the Leibniz rule to get

T r—k—mn
2 VP (2 Py (2)g(2) ") = w(z Z lz di.n (1 n x) 1 2k g™ (z)

k=0 Ln=0
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with some numbers di ,, = di.n(V0 + 1/P, Yoo + 1/p). Next, since

r—k T r—k—n
din
2o (155)

we get by means of Proposition 4.1 with J = (0, c0)

<e¢ x20,

20 Pw09) 0,000 < € WX g® 0,00
k=0

< e ([wgllpo.00) + WX 97 p0.00))-  (5:12)
Theorem 4.1 implies
1w 3llp,00) < € IWX"9" llp(0,00):
which together with (5.11) and (5.12) gives the inequalities
1G9y < cllwx g lpo.oc), €=0,1,...,7. (5.13)
Finally, (5.10) and (5.13) imply for £=0,1,...,r and 0 <t < ¢y
KT (Fot ) ey < F = Gllow + 711G @)
< ¢ (I9(f = 9)llp0.00) + 10X 97 0,009

which proves the theorem in the case j < ¢ by taking infimum in g.
To establish the assertion for ¢ < j, we, first, observe that Proposition 5.1
implies
IF = Gllpwy < W = 9)llp0,00) + I1W Lij—1(f = 9)llp(0,00)
<cllw(f - g)”p(0,00)'

Next, we establish the estimates
||G(€) HIJ(R) <c ||WXrg(r) ||p(0,00)) l= 07 1a sy Ty

just in the same way as in the proof of the first part as we replace g with
g — L; j—19 and use Proposition 4.3.e instead of Theorem 4.1. O

To treat the cases when one or both of the v’s belong to the set Te..(p), we
shall prove several lower estimates, which correspond to the terms in the upper
estimate of Theorem 5.2.

Theorem 5.4. Letr e N, i, €Ny, 4,7 <r, 1 <p<oo, a,tyg>0,0<t <1,
w(x) = W(Y0,Yoo; ) be defined in (1.8) with vo,Ye € R. For f € L,(w)(0,00)
we set Fy = (TP f) o€ and Fyo = (x'=1Pf) 0 &. We have:

a) For vy € Ti(p) and either Yoo > —i — 1/p,i < 1 or 70 € R,i = r there
holds
K (Fos ) p(—ooia) < ¢ KL (it )p,  £=0,1,...,7;
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b) For~yg=1—i—1/p,i > 0 and either oo > —i—1/p,i <1 orys. € Rji =71
there holds

trieKz(F(%te)p(—oo,a) < CK:v(f7 tr)p7 C=1,...,m;

¢) For v € T;(p) and either o € R,j =0 or v <1—j—1/p,j > 0 there
holds

tring(FOOatZ)p(—a,oo) < CK:v(fa tr)pa =0, 1,...,m5

d) For~ys = —j—1/p,j <r andeitheryy € R,j=0o0rv <1—j—1/p,j >0
there holds

T K (Fooy ) p(arse) < KL (fit)p, £=1,...,7.

Proof. We follow the method used in the proof of the previous theorem. For
the proof of a) and b) we set G = (x°+/Pg) 0 &, where g € AC] (0, 00) is
such that g, x"g(") € L,(w)(0, 00).

First, by a change of the variable we get

1E0 = Gllp(—s0,a) < clW(f = 9)llp(0,50)- (5.14)
Assertion a) follows from (5.14) and
1G O p(—s0a) < WX 9 p00c)y €=0,1,...,7. (5.15)
To prove (5.15), we first get, as in the proof of (5.11)-(5.12)
GO Np-o00) < e (X Gllp0.a) + X9 po,0)), €=0.1,....7, (5.16)
where A = e®. The inequality
X gllp(0.4) < €X' 9| p(0.4) (5.17)

is trivial for ¢ = 0 and follows for ¢ = 1,...,r from Proposition 4.2.a with k = 0,
r = i because in this case 79 < 1 —i — 1/p. Consequently, if i = r, (5.16) and
(5.17) imply (5.15) for 79 <1 —r —1/p and any real veo.

If ¢ < r, we use Proposition 4.2.d with k = j = i to get for 79, Ve0 > —i—1/p

X" 9D lp0,4) < ¢ llwx"9 [lp(0,00):
which together with (5.17) yields
X" gllp0,.4) < e llwX"g" llp(0,00)

and hence by (5.16) we get (5.15) for ¢ < r as well. Thus the proof of assertion
a) is completed.
Assertion b) follows from (5.14) and

||G(e)||p(7oc’a) <ec ||erg(r)‘|p(0,oo)7 £=1,...,r (5.18)
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To establish the above inequalities, we get for £ = 1,2,...,7 as in the the proof
of (5.11)

||G(Z)Hp(—oo,a) <c (HXl_l/p(Xl_lg)/||p(0,A) + ||XT_1/p(X1_lg)(r)||p(o,A)>
(5.19)
Note that if » = 1, then ¢ = 1 and the last inequality implies directly (5.18) for
{ =7 =1 and any real 7. So let us assume that r > 1.
If ¢ < r, then 79,700 > —t — 1/p and Proposition 4.2, d) with j = ¢ implies

X% g9 0.4y < WX 0 pose)s b =1,...,7— 1. (5.20)

Hence we get (5.18) for ¢ = 1. For i > 1 the Leibniz rule gives for m =1,...,r

#m P (g )™

pl-i-1/p ™ m
=) (-mF i +m —k—2)lz"g®) (). (5.21
o 2 (e k2t e, 2
In view of (5.19)-(5.21) to establish (5.18) with vo = 1 — ¢ — 1/p, it is enough
to prove the inequality

min{i—1,m}

ey (-t <TZ> (i+m—k—2)!x "

k=0
p(0,A)

SC”Xl_l/pg(i)Hp(o,A) (5.22)

form=1,...,r. To accomplish that we apply Theorem 3.1 with p=7—1>0
and r =v =14 to get for k =0,...,i — 1 the representation

xi—l xi—l

H@) = R /j Sy

_ ey "
! ("T)(i—k—l)!+ n!(i—k—n—l)!/o y"g " (y) dy.

Now, taking into consideration Lemma 5.2 with n =i — 1, we get for m =
1,...,r

min{i—1,m}

plmi1/p Z (—l)m_k (Z) (i+m—k— 2)!xkg(k)(x)

k=0

i—1
= Z pifl,m,n m—n—l/p / yng(Z) (y) dy7
n=1

T
0
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where

min{i—n,m}

man—k (M) (0 +m —k—1)!
pimn = D ()" k(k)(')

P nl(i — k —n)!

= (l)m”(i 1)(m+nl)! (5.23)

n—1 n!

as the last equality follows from [10, Ch. 1, (5a)]. Finally, Hardy’s inequality
implies (5.22).

For i = r (5.18) follows from (5.19), (5.21) and (5.22), and, consequently, no
restrictions are imposed on 7,. Thus the proof of b) is completed.

For the proof of ¢) and d) we set G = (y7=*1/Pg) o€, where g€ AC}, (0, 00)
is such that g, x"g\") € L,(w)(0, 00).

Just as above we get

[Foo = Gllp(—a,00) < ¢[[W(f = 9)lIp(0.00)- (5.24)
Assertion c) follows from (5.24) and the inequalities
||G(Z) Hp(—oo,a) S c ||WXTg(T) ||p(0700)? = 07 17 cee, T
They are verified like in the proof of a) as the estimate

X gllp(1/4,00) < € IWX"9p(0,00)

follows in the case j = 0 from Proposition 4.2.c with £k = 7 = 0 and hence no
restrictions on g are imposed, and in the case j > 0 from Proposition 4.2.b
with £ = 0.

Assertion d) follows from (5.24) and

G p(—a,00) < ellwx 9 llpo,00), = 1,7 (5.25)
To prove the last inequalities we get as in the the proof of (5.11)

1 pame) < & (IXPO79) it r.00) + 2079 1. ) -
(5.26)
If r = 1, then j = 0 and (5.26) directly implies (5.25) for £ = r = 1 and any
Y € R.
Let » > 1. The inequality

= 9" p1/a,00) < X9 pja0e), E=5+ 1m0 (5.27)

is trivial for k = r and for k = j 4+ 1,...,7 — 1 (hence j < r — 1) follows from
Proposition 4.2.c with j + 1 instead of j since o, > —j — 1 — 1/p. From (5.26)
and (5.27) we get (5.25) for j = 0 and any real 79. For j > 0 by the Leibniz
rule we have form =1,...,r

xmfl/p(xfjg(z))(m)
z—i-1/p

=G (=1)mk <7;§) (G4+m—k—1)2"¢®(z). (5.28)
k=0
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Now, in view of (5.26)-(5.28) to establish (5.25) it is enough to prove

min{j,m}

XMy (et (Z) (G +m—k—=1)x"g®

h=0 p(1/A,50)
<elwx 9 .y, m=1,...,m (5.29)
with 1 < j < r. To do it we apply Theorem 3.1 with a = 1/A4, 4 = j and
v=3+1<rtoget for k=0,...,;j the representation

g (z) = (Qg)(x) (jfijk), + (Rg) (),
where
SHCA gy CU
ez; g A (T—j—l)!/l/Ay 9" (y) dy (5.30)
and

R r—k—1 —1)rgr—n—1 T
(Fro)a) = 3 i | "y

n=r—j

r—j=2 1)nHigr—n-1 S -
n (r d
+Z n,ri 7n71)/ y" 9" (y) dy

Using the representations above and taking into account Lemma 5.2 with n = j,
we get

min{j,m}

D S () L A

k=0
Z P L 1/”/ y" 9" (y) dy

n=r—j

—j—2

- Z ™ j*"*H/p/ y" g (y)dy,  (5.31)

where

min{r—n—1,m}

- (_1)m+nk(m) (j+m—Fk—1)

pj,m,n_ | A _ !
poars k)nl(r—k—n-—1)
j+m+n—r j—1
- (-1 m+n 32
(T (100, (5.32)
i ‘min{im}( gk (1) UM 2k (5.33)
Pimm = prt k)nl(r—k—n-—1)"1 '
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as to calculate pf; , , we again used [10, Ch. 1, (5a)].
Since "I/ € [,(1/A,00) for n > 7 —j and also v < 1 — j — 1/p,
we get by Holder’s inequality

%% (0, 1/45 ) p1/4,00) < €IIX 9 p01/a), n>r—3,  (5.34)

where 1., is defined in (4.4).
By Hardy’s inequalities we get

||va¢r,n(1/Au';')Hp(l/A,oo) < CHX’YOOJFTQ(T)Hp(l/A,ooﬁ n> T_j7 (535)

and

X" n (s, 005 )|lp(1/4,00) < CllX 9" lpajace)y, n<r—75—2. (5.
(X7 Yr,n( )| < el < 2. (5.36)

Inequalities (5.34) and (5.35) imply

7% (0,5 Mlp( /.00 < €llWX 0 Ip0.00ys 7 > 7 — 5. (5.37)

Finally, (5.31), (5.37) and (5.36) imply (5.29). This completes the proof of
assertion d). O

Remark 5.2. If x7~1g, x"7~1¢(") € Li(1, 00), then we have by Lemma 3.2.b
and (3.9)

Q)= 2= [T way

for Qg given in (5.30). The above condition does not follow from the hypotheses
of Theorem 5.4.d when p > 1.

Theorem 5.5. Let r,j € N, i € Ng, it < j <r, 1 <p < o0, a,tg > 0,
0 <t <ty and w(xz) = w(y0,700; ) be defined in (1.8) with vo,Ye0 € R. For
f € Ly(w)(0,00) we set

Fo= (XM (f = Ligaf)) o€ and Foo=(~(f = Lijaf)) ok,
where L; j_1 is given by (1.10).

a) Let L; j_1 satisfy conditions i) and ). Then for vy € T;(p) and either
Yoo > —J —1/p, j <71 or v €R, j =1 there holds

trizKZ(FOa tz)p(foo,a) < Cth’v(f’ tr)pa L= 07 17 s T

b) Let L; j_1 satisfy conditions i)-iii). Then for v =1—i—1/p, i >0, and
either voo > —j — 1/p, j <71 or ¥ € R, j =1 there holds

tT_KKE(F07t£)p(7oo,a) < CK:v(fvtr)p7 = 1a"'a7ﬁ'
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c¢) Let L; ;1 satisfy conditions i) and it). Then for voo € T;(p) and either
Y ER,i=0o0rv<1—i—1/p, i >0 there holds

" K (Foo, ) p(—ao0) < ¢ K4 (fot )p, £=0,1,...,7.
d) Let L; ;1 satisfy conditions i), ii) and w). Then for voo = —j — 1/p,
Jj<r, and either vo €R, i =0 ory <1—1i—1/p, i > 0 there holds

trieKe(Fooatg)p(fa,oo) < CK:v(f’tT)pa L= 1,...,7‘.

Proof. Let g € AC].*(0,00) be such that g, x"¢g(™ € L,(w)(0,00). We set § =

loc

g—L;j-19. Let us note that §*) = g(*) for k > j and g, x"§") € L,(w)(0, 0).
For the proof of assertions a) and b) we set G = (x°T1/?§) o &. First, by a
change of the variable and Proposition 5.1 we get

[Fo = Gllp(—oc,a) < € IW(f = 9)llp(0,00)- (5.38)
Assertion a) follows from (5.38) and
|G® lp(—oo.a) < € () lp0,00) £=0,1,...,7 (5.39)
By (5.16) we have
IGp(—sea) < X llp0.4) + X797 p0.2)),  €=0,1,...,7, (5.40)
where A = e®. Next, respectively by Propositions 4.3.a and 4.3.b with £ = 0 we
have
||X7°§||p(0,A) <c ”erg(r)Hp(O,oo)v j <r, (541)
X llp0,4) < cIX*T 90,5y, 4=, (5.42)

where 3 = max{A, 3}. Now, (5.40)-(5.42) imply (5.39). Note that for j = r
(5.39) follows from (5.40) and (5.42) and hence no restrictions are imposed on

Yoo-
Assertion b) follows from (5.38) and

||G(Z) ||p(—007a) <c ||WXTg(T) Hp(O,oo)v {= 13 s Ty (543)

which are verified just similarly as (5.18). Indeed, by (5.19) we have

16 y—serny < € (I 2079 o, + I 26D 0,0 )
(5.44)
where A = e®. By (5.21) there holds form =1,...,r

AP (g ) ()
pl—i-1/p ™

= T D) m = k- 2)lab g (). (.
(i—2)! ,;f ! (k)(+ k=2)latgP (). (5.45)

39



Next, by (5.22) we have the estimate

min{i—1,m}

NI W G b ki (7:) (i+m—k—2)!x*g"

k=0
p(0,A)

<clxX' VP 0.4, m=1,...,1. (5.46)

Further, by Theorem 3.1 with y =i—1andr =v = jwehavefork =0,...,j—1

j—1

"
n=max{i—1,k} ’
j—k—1 i—n—1 xT
(=)"ar " / n ()
d
* Z MG—F—n=n /), V9 Wy
n=j—i+1

j—max{i—1,k}—1

> mf{i)?f[_m/:y"g%my. (5.47)

n=0

Using this formula with £ = 0 and properties ii) and iii) of £; ;1 we get

j—1

x" _
Lijag)(@) => = 1 Din (9,4) + (Lij—1Rg)(z),
n=t¢
where we have set
B j—l (_1)7].]:_7_”_1 x ( )
(Rg)(x) = Z m/o y"g7 (y) dy
n=j—i+1
Jj—i n,j—n—1 x
(=1)"a’ / ()
Y dy.
L3 G [
Hence for k =14,...,5 — 1 we have
-l o
zk(Li,j—lg)(k) (z) = Z m bjn(g, A Z an (R ),-
n==k ’

From (5.47) and the last relation we get for k =4,...,5 —1

Jj—k-1 n.j—n—1 x
k) () — (=)"a’ / n o) () d
" (x) = ; MG —h-n-11 ),V (y) dy
Jj—1

~ " an(Ry) (:!_x]:)!. (5.48)
n=k
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Hardy’s inequality implies forn < j—i—1

X% (A5 ) lp0,4) < €IXH gD [0.4), (5.49)

where 1), ,, is defined in (4.4). By property i) of £, ;_1 and Hélder’s inequality
we have

|an(Rg)| < ¢[|Rglli(a,8) < clIRglloc(ap) < clIX T 9D 0,5), (5.50)

where 3 = max{A, 3}.
Relations (5.48)-(5.50) imply

X" 0,4y < elIXH 9D 0,5, k=i i -1 (5.51)
Now, if j = r, (5.44)-(5.46) and (5.51) imply (5.43) for any 7. For j < r we
have Y0,700 > —j — 1/p and hence Proposition 4.2.d with k = j gives

Yotk

I 9P 0.5 < elwxg " lpo,00) k=3 = 1. (5.52)

Relations (5.44)-(5.46), (5.51) and (5.52) imply (5.43) for j < r.
For the proof of assertions c) and d) we set G = (x?>+1/Pg) o €. Just as
above we get

”FOO - G”p(fa,oo) <c ”W(f - g)||p(0,oo)~ (553)
Assertion c) follows from (5.53) and
I e IR S

They are verified like in the proof of assertion a) as the estimates:

||X’Yoo§||p(1/A,oo) <c HX%"HQ(T)Hp(a,oo)v i =0,
I llp(1/4.00) < € IWX 0 Ip(0.00)s 7 >0,

where @ = min{1/A4, a}, follow respectively from Proposition 4.3.c and Propo-
sition 4.3.d with £ = 0. Note that in the case ¢ = 0 no restrictions are imposed

on vo-
Assertion d) follows from (5.53) and

G Np(-a00) < WX 9P lp0,00), £ =1s---

Following the proof of Theorem 5.4.d with § instead of g in (5.26)-(5.28) we see
that for the validity of the above inequalities it is enough to prove the estimates

min{j,m}

XYY (e (7:) (G +m—k—1)x*g"

k=0 p(1/A,00)
<ec ||WXTg(T)||p(O,OO), m=1,...,r (5.54)

with 1 <j<r.
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By Theorem 3.1 with 4 =4 and v = j + 1 we have for k =0,...,j
J

2k g® (z) = Z (nxfnk)' brn(g,1/A)

n=max{i,k}

r—k—-1 nrnl
n _(r)
+ ) n,r_ —n—l)/ y" 9" (y) dy

n=r—i

r—max{i,k}—1

_ nxrfnfl T
+ Y n!((ri)k_n_l)!/ y" 9" (y) dy

n=r—j—1 1/A

1)n+1xr—n—1

J 0
— n (r)
+ Z n!(r—kfnfl)!/x yg () dy.

By means of this formula for k£ = 0 and properties ii) and iv) of £, ;_1, we get

=1 n

(Lism19)@) = 3 2 brnlg, 1/A) + (Lig-1Rg) (),

n=t

where we have set

r—j— n+1 r—n—1 e8] )
N 7= n T d .
+nZ=:O n,r_n i /w y"9" (y) dy

Hence for £ = 0,...,j there holds

j—1 n
x
xk(Li,j—lg)(k)(l’) = br,n(97 1/A)
o (n—k)!
n=max{%,k}
j—1 5 nl z™
n=max{i,k}

Consequently, we have for k =0,...,j
kg (k) v R S fg) M
5 (2) = (Q)(w) -y + (i) )~ an(B)

n=max{i,k}
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where Qg is defined in (5.30) and

. r—k—1 (_1)nxrfn71

(Fug)a) = 3 iy | "y

r—max{i,k}—1 =1 T
(=Dra " / n ()
d
+ :Z_] i r———l A () dy
r—i_92 71)n+1xr—n71

J 00
+ 3 / y"9 " (y) dy.

Hence, taking into consideration also Lemma 5.2 with n = j, we get

nl(r—k—n-1)!

min{j,m}

DY (—1>m‘k<rg)<j+m—k—1>!xkg<k><x>
k=0
r—1 ) T
_ Z p;,mynxr*j*nflfl/p/ yng(r)(y)dy

n=r—i 0

r—i—1 ) T

D DT / y"9 " (y) dy
nr 1/A

r—j—2 e}
D D T i / "9 (y) dy
n=0

j—1
+ > an(Rg) a7, (5.55)
n=i
where pf; ., and p7 . are given in (5.32) and (5.33), respectively, and

min{n,m} .
A _qymek (M) GAm k= DY
pj,m,n =nl kz:% ( 1) <k‘) (n _ k‘)'

= (- UE ”"‘(j__"n__l)l!)(f — (5.56)

as to calculate p’,  we used [10, Ch. 1, (5c)].
Let us observe that (5.35) and (5.36) are valid. Next, as in the proof of

(5.34), we get
||X’Yoowr7n(07 1/A7 : )Hp(l/A,oo) <c ”Xﬁm_i_rg(r)up((),l/A)a n>r—i >0
which together with (5.35) implies

%% (0, 5 lp(1/a,00) < €lWX" 9 lp0,00)s n =7 —1d, i>0.  (5.57)
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Further, property i) of £, ;_1, and the inequalities of Minkowski and Holder
imply forn=14,...,7—1

|an(Rg)| < ¢ | Rglli(a,p) < €lRYllootas) < cllwX"g" llpo,00)- (5.58)

Now, (5.55), (5.57), (5.35), (5.36) and (5.58) imply (5.54). Let us note that
for i = 0 (5.57) is not used and in (5.58) we actually have

lan(Rg)| < e X" 9" || p(a.00):

where @ = min{1/A,a}. Hence no restrictions are imposed on 7g. Thus the
proof of d) is completed. O

Now we are ready to prove Theorems 1.2 and 1.3.

Proof of Theorem 1.2. The theorem follows from Theorem 5.1 with ¢ = L; ;1 f,
Theorem 5.3 with £ = 0 and £ =7, F = A; ;_1(x"/Pw)f for both theorems and
(5.1). O

Proof of Theorem 1.8. The upper bound for K7,(f,t"), is implied by Theo-
rem 5.2 with go = L;j—1f, Fo = Aijici(X°TVP)f, oo = Lirjorf, Foo =
Ay j—1(x?=T/P)f and (5.1). The lower bound for K7, (f,t"), follows from The-
orems 5.4 and 5.5 with Fj = Ai,j/q(x"m"’l/p)f’ F = .Ai/’j,l(x"m'*‘l/p)f and
(5.1). The proof of the lower bound branches to four cases corresponding to
lo=0o0r1andl, =0o0r1.

Let us consider, for example, £y = 0,¢s, = 1. Then 79 € T;(p) and voo =
—j—=1/p,0<# <iand j+1<j <r. If j <i (which is possible only if j < 7)
we apply Theorems 5.4.a and if ¢ < j' we apply Theorems 5.5.a, in both cases
with j” instead of j and Fy = A; j»—1(x°*1/?) f, and get

T R (A1 O ) ooy S CKL(fitT)p, £=0,1,...,7m. (5.59)

If j < ¢ (which is possible only if j < i) we apply Theorems 5.4.d and if
7" < j we apply Theorems 5.5.d, in both cases with i’ instead of ¢ and F,, =
‘Ai/,j—l(X’Ym+1/p)f7 and get

K (A 1 0= ) pcare) S e KL (fit7)p, £=1,2,...,m. (5.60)
Combining (5.59) with £ =0 and ¢ = r and (5.60) with £ =1 and ¢ = r we get
the lower bound for K7, (f,t"), in (1.11). O

Remark 5.3. The ezract ranges of the integer parameters i’ and j' under which
the assertion of Theorem 1.3 is valid are:

0<i(<r) if j<i—(1-[1/p)ly, or (5.61)
0<it<i—(1-[/plo i i—(1—[p)lo<j; and (562)
0= <r if j+1—[1/p)lo <, or

JHQ=[/plee <5 <1 3 i <G+ (1= [1/p])loc,

where [£] denotes the integer part of the real number . Below we give the
arguments for i’ as the considerations for j' are similar.
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a) For p=1and vy = —i, i € {1,...,r}, relation (1.11) holds with ¢’ =i as
well. This is verified analogously to the the assertion of the theorem as
we take into consideration the case p = 1 in Theorem 3.1. If we combine
the case i/ = ¢ with the cases 0 < i’ < ¢ — ¢y considered in Theorem 1.3
we verify the theorem is true for the range of ¢ given in (5.62).

b) If j < ¢ — £y, then for every i’ > i — ¢y we have Ai/,j—l(X%OH/p)f =
(X" FVPf)o&, as the case i’ = i — £ is considered in Theorem 1.3. Hence
the restriction i’ < i — £y is redundant and Theorem 1.3 holds for every
i'. Thus (5.61) is verified in all cases except £y =1, p=1and j =i. In
the latter case for every i’ > i we have Ay ;1 (x\7=T1)f = (x?=T1f) o €,
as the case i’ = i is considered in a).

c) Let 1 < p < o0, v € Ti(p); Voo € Tj(p)U{—5—1/p}, i < jorp=1,
Yo =—t, 1€ {l,...,1}, Yoo € Tj;(1) U{—j — 1}, ¢ < j. Then for f =
X' € Ly(w)(0,00) we have KT (f, "), = 0 but Ay j_1(x"=T1/P)f is not an
algebraic polynomial for i’ > ¢ and hence wi(Ay j—1 (X" T/P) £, ) p(—a.00)
does not vanish for any k € Ny.

d) Let 1<p<oo,yo=1—i—1/p,ie{l,...,1}, Yoo € Tj(p) U{—j —1/p},
i—1<j. For0<§<1andb=min{e % a} weset fs(z) =b°z" 17 for
x € (0,b), and f5(z) = X4y (TAT)0F (@ — b)F for o € [b,00). Thus,
fs € AC/1(0,00). Then, on the one hand, we have by Theorem 5.8

loc
below K7 (fs5,t"), < c KL (f5,t)p < ctinXifél)Hp(OM) < c¢6'VPE with
c independent of §. And, on the other hand, in view of |fs(z) — 2| < ¢d
for z € [b, 3] we have wk(.AirJ_l(x'VOO“/p)fg,t)p(,a,oo) > ctk for i > i
and any k € Ny with ¢ independent of 4.

Items c) and d) (with & = 7 and § < ct("=9P/(P=1)) above show that (1.11)
cannot be true for ¢’ outside of the range given in (5.62) for 1 < p < oo, £y = 0;
p=14¢y=1and 1 < p < oo, ¥y =1 respectively.

Remark 5.4. The indices 7 of A; j_1 and j of Ay ;_1 are, in general, the
only possible choices in (1.11). The only exception for the first operator is
the case p = oo and v = 1 —14, ¢ € {1,...,7}, when (1.11) is also valid
with Ai—l,j/—l(X’yo)f instead of ‘Ai,j’—l(X’\m)f as L¢_17j/_1 (lIl the definition of
Ai—1,7-1(x)) satisfies conditions i) and ii) (with ¢ — 1 in the place of i and

J = 7') but not necessarily iii). Indeed, let (L;_1 j_1f)(x) = {1:11—1 an(f)a™
satisfy i)-ii) with ¢ — 1 in the place of ¢ and j = j/. Then the linear operator
(Lijr—1f)(x) = i:_il an(f)x™ satisfies 1)-iii) and hence A; j_1 defined through

it satisfies (1.11). On the other hand, we have

Aijr (X f = Aicr 1 (X7°)f = aia(f) € Loo(R)
and the right-hand side of (1.11) remains the same under this replacement. Note
that 79 € Teze(00) and, thus, ¢y = 1.
Similarly, the only exception for the index j of Ay ;j_; is in the case p = oo,
Yoo = —J,7 €{0,...,r—1}. Here Ay j_1(x">)f can be replaced by Ay ;(x7>) f
in (1.11) as L/ ; satisfies conditions i) and ii) but not necessarily iv).
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5.3 Characterization of K[, (f,t"),0, and K7, (f,t")pa,00)
Similar characterization is valid for the analogues of K7,(f,¢"), on the intervals
(0,a) and (a, 00), where a > 0.

Theorem 5.6. Let r e N, i € No, i <7, 1 <p<o0,v€R, aty>0and
0 <t <ty Letalso fe Ly(x")(0,a) and A;,_1 be given by (1.9) as L;,_1
satisfies conditions i) with § < a and ). Then we have:

a) For ~v € T;(p) there holds

K;'v (f7 tr)p(07a) ~ Wr ('Ai,r—l(X’YJrl/p)fv t)p(fooJog a)
+ tr||‘Ai”"*1(X’Y+1/p)f|‘p(—oo,loga)~

b) Fory=1—1i—1/p, i >0, if L; ,—1 also satisfies iii), there holds

(f7 ) p(0,a) ™ wr(Ai,r—l(X’YJrl/p)fv t)p(—oo,loga)
+ tr_lwl (‘Ai,rfl(xfy-i_l/p)fv t)p(foo,log a)-

Proof. The upper estimates of K7, (f,t"),(0,q) by moduli on (—o0,loga) follow
from (5.7) with £, ,_1f, a and loga in the place of gy, A and a respectively
and (5.1). The lower estimate in a) for ¢ < r is verified as in the proof of Theo-
rem 5.5.a in the case j = r, whereas for ¢ = r as in the proof of Theorem 5.4.a.
The lower estimate in b) for ¢ < r is verified as in the proof of Theorem 5.5.b
in the case j = r, whereas for ¢ = r as in the proof of Theorem 5.4.b. O

Theorem 5.7. Letr e N, j €Ny, j<r,1<p<oo,v€ER,aty>0and
0 <t <ty Letalso f e Ly(x")(a,00) and Ay j_1 be given by (1.9) as Lo j_1
satisfies conditions i) with a > a and ii). Then we have:

a) For v € T;(p) there holds

(f?tr) (a,00) NwT(‘AC'] 1( i /p)f t) (log a,00)
+t" ”‘Ao,jfl(X’Y+1/p)f”p(loga,oo)~

b) Fory=—j—1/p, j<r,if Lo ;1 also satisfies i), there holds

(fvtr) (a,00) NWT('AOJ 1(X7+1/p)fa ) (log a,00)
+1" 1(4)1 (‘AO,jfl(X’y-i_l/p)fv t)p(log a,00)"

Proof. The upper estimates of K- (f,t")p(a,00) by moduli on (loga,oo) follow
from (5.8) with Lo j_1f, a and loga in the place of g, 1/A and —a respectively
and (5.1). The lower estimate in a) for j = 0 is verified as in the proof of
Theorem 5.4.c, whereas for j > 0 as in the proof of Theorem 5.5.c in the
case i = 0. The lower estimate in b) for 7 = 0 is verified as in the proof of
Theorem 5.4.d, whereas for j > 0 as in the proof of Theorem 5.5.d in the case
i=0. O
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5.4 K-functionals of continuous functions
Consider the space

C(w)[0,00) ={f : wf € C(0,00), 3 lim (wf)(z)},
where w(z) = w(7y0,Yeo; ) is given in (1.8). For functions f € C(w)[0,00)
we may define a slightly different functional than (1.4) imposing the additional
restriction g € C(w)[0,00) on the functions g on which the infimum is taken.
Denote this K-functional by

K(f7 tra C(W) [07 OO), Acl?“ozla XTDT)’

Let us note that Theorems 1.2 and 1.3 with p = oo holds for this K-functional
too. This fact follows from the equivalence

K(f,t";C(w)(0,00), AC]., X" D") < K(f,t";C(w)[0,00), ACy, .t X" D")
< cK(f,t";C(w)(0,00),AC] ., X" D7),

loc

valid for r € N, 79,700 € R and f € C(w)[0,00). The first inequality is obvious
— an infimum on a more narrow class is taken in the second K-functional. The
second inequality follows from the results of Subsections 5.1 and 5.2. First we
observe that the modified Steklov function of F' (used in the proof of (5.1)) has
a limit at —oo provided F' has a limit at —oo. Hence Theorems 5.1 and 5.2 give
the same upper bounds for K(f,t"; C(w)[0, c0), AC{Oj, X" D") as the quantities
in Theorems 1.2 and 1.3.

The same observations are true if wf has a limit at co, or has simultaneously
limits at 0 and at co.

5.5 Properties of K (f,t"),

Let us point out several properties of the weighted K-functional KJ,(f,t"),
which follow from the estimates in Subsections 5.1 and 5.2. The analogous
properties of K1~ (f,t")p0,a) and K3+ (f,1")p(a,00) can be verified in a similar
way.

< 0 and w(x) =

p < o0, tg >
R. For f € L,(w)(0,00) and

Theorem 5.8. Let rym € N, m < r, 1 <
W(Y0,Yoo; ) be defined in (1.8) with vo,700 €

0 <t <ty there holds
KL (f, tr)p < e K (f, t")p-

Proof. Let us set Fo = (x°Y/P(f — Lim_1f)) 0 & and Foy = (X7=Ht1/P(f —
Lo, min{j,m}—1f)) 0 &, where i and j are determined by T;(p) U{1 —i—1/p} > 7o
and T;(p) U{—j — 1/p} 3 Ve, and the operators L, , are defined by (1.10)
and satisfy the conditions of Theorem 1.3 (with r = m). Let fyp = 1 if vy =

1—m—1/p,...,—1/p, and £y = 0 otherwise; let also oo = 1 if 750 =1 —m —
1/p,...,—1/p, and o, = 0 otherwise. As it is known
wT(F7 t)p(J) < 2r7mwm(F7 t)p(J)7 F e LP(']>7 (563)
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where J C R is an interval. Then by Theorem 5.2 or Remark 5.1 (with gy =
Lz}mflf and goo = LO,min{j,m}flf% (51) and (563) we get

K\T:v(fa tT)p <c (wm(FO; t)p(foo,a) + tm_éowéo (F07 t)p(foo,a)
+ Wm (Foo; t)p(fa,oo) + tm_emwfoc (Fooa t)p(fa,oo)) .

The above inequality proves the theorem in view of Theorem 1.3 with r = m,
i’ =0, j/ =m, i and j replaced respectively by min{i,m} and min{j,m}. O

Similar considerations yield the following Marchaud-type inequality.

Theorem 5.9. Let rrm € N, m < r, 1 < p < oo, tg > 0 and w(z) =
W(Y0,Yoo; ) be defined in (1.8) with 70,7 € R. For f € L,(w)(0,00) and
0 <t <ty there holds

to gor f,TT
wp(remy, <o ([T gk 0.

t

Proof. By Theorem 5.2 with m in the place of r, gg = goo = 0, £y = £oo = 0 (in
view of Remark 5.1) and (5.1) we have

KvT(fv tm)p < C(wrn((X%Jrl/pf) © gat)p(*oo,a)
+ Wi (= TYP ) 0 &8 p(—ar00) + 1™ [W S |p0.00)) - (5.64)

Further, let ¢, 7,7, 5, A; j—1 and Ay j_1 satisfy the conditions of Theorem 1.3.
Then by property i) of L; ;s_1 and L j_1 we have

Wi (XL 1 f) 0 €,) p(—os,a) < ™ I((XOTPLi jr—1.f) 0 €)™ |p(—c0.a)
< ct™| fllia,s) < ct™ W llpo,00)

and, similarly,
Wi (= FPLis 51 1) 0 &€, )p(—arse) < ™ [W fllp(0,00)-
Consequently, by (5.64) we get
K (f, tm)p < C(wm(Ai,j’—l(XvOJrl/p)fa t)p(—oo,a)
+ wm(Ai,)j_l(X7x+1/P)f, t)p(fa,oo) =+ tm”Wpr(O,oo)) . (565)

Next, as it is known for F' € L,(J), J C R is an interval, and 0 < t < ¢, the
Marchaud inequality

m fo WT(F,T) J
wm(F, ) < et (/ Ter)()dTJrHFHp(J)) (5.66)

holds. Applying it to (5.65), we get by Theorem 1.3 and Proposition 5.1 the
assertion of the theorem. O
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As it is well-known for p < oo we have limy o K"(F,t), = 0 for any
F € L,(R), whereas lim;_,g K"(F,t)oo = 0 for F € Ly (R) iff F is uniformly
continuous on R. Then Theorem 1.3 yields the following assertion.

Theorem 5.10. Letr € N, 1 < p < 0o, w(x) = w(Y0, Voo; ) be defined in (1.8)
with Y0, Yoo € R and f € L,(w)(0, 00).

a) For p < co we have limy_.o K, (f,t), = 0.
b) We have limy_g K% (f,t)0o = 0 iff (wf) o & is uniformly continuous on R.

Also, by Theorem 1.3 we can derive the saturation class of K, (f,t), from
that of the unweighted fixed-step moduli. Let J C R be an interval and BV (J)
denote the set of all functions defined on J, which are equivalent to a function
of bounded variation on J.

Theorem 5.11. Letr € N, 1 < p < oo, w(z) = w(Y0, Yoo; ) be defined in (1.8)
with Y0, Yoo € R and f € L,(w)(0,00).

a) For p > 1 we have KI,(f,t), = O(t) iff f € AC],-1(0,00) and wx" () €
L,(0,00).

b) We have K3 (£,1)1=O(t) iff f € AC}2(0,00) andwy" f=V € BV (0, ).
Proof. We set Fy = (X" ™/P(f=Lir_1f))o€ and Foo = (X' F/P(f=Lo ;1))
o &, where L;,_1 and Ly ;j_; satisfy the hypotheses of Theorem 1.3. In view
of Proposition 5.1 we have Fy € Ly(—00,a) and Fy € L,(—a,00) with fixed
a > 0.

Let p > 1. As it is known w,.(F,t),;) = O(t") iff F € AC],*(J) and

loc

F) ¢ L,(J). Using this fact, Theorem 1.3, Remark 5.1 and (5.1) we get
that K7(f,t), = O(t) iff Fy € AC]*(—00,a), F\" € Ly(~00,a) and Fs, €

loc

ACT H(~a,0), F) e Ly(—a,00). Next, we have [y € AC] '(—oc,a) and

loc loc

Fy € ACT M (—a,00) iff f € ACT1(0,00). Also, as in the proof of (5.4)-(5.5)

loc loc
and (5.11)-(5.12) we verify that Fér) € L,(—o0,a) and P e L,(—a,00) iff
wx" f(") € L,(0,00). Thus assertion a) is proved.
Let p = 1. As it is known w.(F,t);;) = O(t") iff F € AC],*(J) and

F(r=1) ¢ BV(J). Hence by Theorem 1.3, Remark 5.1 and (5.1) we get that
KT (f.t)1 = O(t) iff Fy € AC!*(—00,a), F\"™ € BV(-00,a) and Fi €

loc

ACT % (—a, 0 Fi Y e BV (—a, 00). Again we have Fy € AC]?(—00,a) and

);
Fooloé AC] ?(—a,0) iff f € AC]?(0,00). Further, since 8‘%066 BV (-0, a)
for § > 0 and ((1+ &)")*) € W} (—~00,a) C BV(—0c0,a) for every v € R and
k € Ny, we have F\""" € BV (=00, a) iff (x*1f) 0 &)1 € BV (-00,a) iff
((xwf) o &)1 € BV(—o0,a) iff wx"f=1 € BV(0,e?). Just similarly, we

get that F0 ™Y € BV (—a, 00) iff wx" £~V € BV (e=?,00). This proves b). O
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6 The linear operator L;;

6.1 Operators L, ;_; that satisfy conditions i) and ii)
Let ¢,j € Ny as ¢ < j and x¢,...,z;_; € (0,00) be fixed distinct points. We

define the linear operator L; j_1 : L1 0¢(0,00) — m; j_1 by

(Lij-1/)(@) = (Liz11f) (2),

where
j—i i
(Lit1,;F)(x) = | F(z0) — F(xk)li+1,j,k($o)] Zk 1 li+1,5k(2)
k=1 1= 37720 L gk (o)
j—i
+ ZF(xk)li+1,j7k(l‘), (6.1)
k=1

Lo (2) = i+1(x—1‘1)...(:c—xkfl)(x—karl)...(x_mjii)
i+1,5, Z-i-l(xk —x1) - (2p — p—1) (@ — Ty ) -+ (6 — 2524)

and

(If)(@) = /f Vdy, a>0.

The denominator in (6.1) 1 T i k(o) is not 0 as can be verified by
assuming the contrary and applymg Rolle’s theorem.

The definition of £i7j71 directly implies that it satisfies condition i) with
a < min{zg,...,zj—1} and 8 > max{xo,...,z;_;}. Next, let us observe that
L;11,;F is the only polynomial in R @ 741 ; which interpolates the function
F € Cip(0,00) at the j — ¢ + 1 positive distinct nodes xo,...,z;—;,. Hence
Lip1;F = F for any ' € R @ Tit1,5 and ﬁ’i,j—l.f = f for any f € i 5—1-
Thus the linear operator Jim»,l satisfies conditions i) and ii). Consequently,
Theorem 1.2 holds with L; ;1 = ﬁi’j,l.

Let us also mention that for p = co and f € C'(w)(0,00) we can use in The-
orem 1.2 (cf. Remark 1.1) the following modification of Lagrange interpolation
polynomials

—1

Lij1f)x) =) flop)lij—1x(z).

1

<.

B
Il

6.2 Operators L, ;_; that satisfy conditions i)-iv)

For [a, B8] C (0,00) let zg, z1,...,2, € [, 8] be r + 1 fixed distinct points. The
functionals {[," f(y) dy};—, and the polynomials {®(z)/®¢(x,)}}_;, where

(bg(ﬂf):H(x—xm), £:1727"'7T7

m=0
m#L
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form a normalized bi-orthogonal system in 7,._; because @2 € m_1 and

™ 9y(y) Pe(zk) — Pe(z0) _
/mo Oy(xy) dy = Do) = Ot

Hence the bi-orthogonal expansion £ : Ly|a, 8] — mr—1 given by

L =3 21
=1

is a bounded linear operator and preserves the polynomials from 7._;. Writ-
ing ®)(x) as the Taylor polynomial of degree r — 1 at 0 we get (Lf)(z) =

Z:L;B an(f)z™, where

T n+1
an(f) =Y M)Z o / fly (6.2)

(=1
Because of the properties of £ the linear functionals d, given by (6.2) satisty
an(X*) = 0pp, k,n=0,1,....70 1. (6.3)

Now for i,j € Ng, j < r, we define the linear operator f;iyjq : Li(o, 8) —
Tij—1 by

j—1 q)(”+1)
(Liyorlla Zan Z<@ et L dy) (64)

with the convention that the sum in (6.4) is 0 if j < i. The following lemma is
an immediate consequence of (6.3).

Lemma 6.1. We have:
a) Lijorf =f forany f €mij_1;
b) f)m-,lf =0 for any f € mo,i—1 ® Tjp—1.

Obviously, ﬁi’j,l satisfies condition i). Lemma 6.1 shows that it satisfies
conditions ii)-iv) as well. Thus the linear operator flw»,l satisfies conditions
i)-iv) and, consequently, Theorem 1.3 holds with £, ,, = L -

Let us note that in the characterization of the analogues of Ky, (f,t"), on
the intervals (0, a) or (a,00) we must fix the numbers g, z1, . . . , 2, respectively
in subintervals of (0, a] or [a, c0).

Let us now explicitly give the operator ﬁi,j,l for r = 1 and » = 2. Let
Zg, 1,2 be fixed positive distinct numbers. For » = 1 we use the operator L
only in the case i = 0,7 = 1 and it is given by (see (6.4))

(Boof)(x) = / e

531—330
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For r = 2 there are three different operators of type L, which are given by:

(Loof)(@) =ao(f), (Lopf)(@)=ao(f)+ai(f)z, (Li1f)(z)=a(f)z,

where

do(f) = — Dot T2 /'f “*“ /)f ) dy,

(561—330 I1—332 932—330 172—$1

i (f) = 2 Cfly)dy + 2 /f@@.

(21— @0) (w1 — T2) (z2 — @0) (72 — 21)

The same pattern can be followed in constructing other operators of type
L. Let {qz}z;é be the normalized Legendre polynomials for a given interval

[, B] C (0, 00), ie.
&)
/ qk(y)qg(y) dyzék,@ k.=0,1,...,r— 1.

Starting with the normalized bi-orthogonal system {ff ar(y) f(y) dy, qg};}l:o we
get the operators

O
(Lijorf)(x Z(Z / Qe(y)f(y)dy>w
- r—1r—1 (k) ) ¥l
—Z(qu‘ Japy )/kaf(y)dy>x

n=i \k=0¢=0

Then, Lemma 6.1 holds with Ei,j,l in the place of f,m-,l and, thus, ﬁi,j,l
satisfies conditions i)-iv).
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