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Abstract

We present a characterization of the approximation errors of the Post-
Widder and the Gamma operators in Lp(0,∞), 1 ≤ p ≤ ∞, with a weight
xγ for any real γ. Two types of characteristics are used – weighted K-
functionals of the approximated function itself and the classical fixed step
moduli of smoothness taken on a simple modification of it.
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1 Introduction

The Post-Widder operator is given by

Ps(f, x) =
1

Γ(s)

∫ ∞

0

f
(xv
s

)
e−vvs dv

v
, (1.1)

where f is a measurable function defined on (0,∞), Γ denotes as usual the
Gamma function and s is a positive real parameter. This operator for integer s
is actually the Post-Widder real inversion formula for the Laplace transform.

The Gamma operator, introduced by A. Lupas and M. Müller [9], is given
by

Gs(f, x) =
1

Γ(s+ 1)

∫ ∞

0

f
(xs
v

)
e−vvs+1 dv

v
. (1.2)

The two operators are closely related. If for real α we denote the power
function by χα(x) = xα for x > 0 and set τs(u) = s+1

s u, then

Gs(f, x) = Ps+1(f ◦ χ−1 ◦ τs, χ−1(x)). (1.3)

Both operators have a simple action on the power functions. Direct application
of the definition of the Gamma function gives

Ps(χα) =
Γ(s+ α)
sαΓ(s)

χα, Gs(χα) =
sαΓ(s+ 1− α)

Γ(s+ 1)
χα. (1.4)

1



These formulae show that the two operators preserve the functions χ0(x) = 1
and χ1(x) = x.

Both operators were extensively studied. Here we only discuss results on
characterizing their rate of convergence in terms of proper K-functionals. In
view of (1.3) all results formulated below for one of the operators can easily be
proved for the other too.

For r ∈ N, 1 ≤ p ≤ ∞, γ ∈ R, D = d
dx and ϕ = χ we consider the weighted

K-functionals:

Kr
γ(f, tr)p = K(f, tr;Lp(χγ)(0,∞), ACr−1

loc , ϕrDr)

= inf
{
‖χγ(f − g)‖p + tr‖χγϕrDrg‖p : g ∈ ACr−1

loc (0,∞)
}
, (1.5)

defined for every f ∈ πr−1+Lp(χγ)(0,∞) and t > 0. By πk we denote the space
of all algebraic polynomials of degree k. ACk

loc(a, b) = {g : g, g′, . . . , g(k) ∈
AC[ā, b̄] ∀a < ā < b̄ < b} and AC[ā, b̄] is the set of the absolutely continuous
functions on [ā, b̄]. Above and in what follows L∞(χγ)(0,∞) can be replaced by
the spaces C(χγ)(0,∞) = {f : χγf ∈ C(0,∞)}, where C(a, b) is the space of
all continuous functions bounded on (a, b). When in (1.5) g ∈ ACr−1

loc is such
that either f − g /∈ Lp(χγ) or Drg /∈ Lp(χγϕr) we assume that ‖χγ(f − g)‖p +
tr‖χγϕrDrg‖p = +∞.

Note that the weight in the second term in the right-hand side of (1.5) is
χγ+r. We use two notations (ϕ and χ) for one and the same function in order to
underline the different role of the two multipliers in the discussions in Sections
2 and 3.

The direct theorem for the approximation error of the Gamma operator in
Lp, 1 ≤ p ≤ ∞, without weights is proved by Totik [12]:

‖f −Gs(f)‖p ≤ cK2
0 (f, s−1)p.

In the same article [12] a weak converse theorem of the form

K2
0 (f, s−1)p ≤ cs−1

(
s∑

k=2

‖f −Gk(f)‖p + ‖f‖p

)

is obtained. Here and in the sequel we denote by c positive numbers independent
of the functions f , the parameter t below and the parameter s of the operators.
The numbers c may differ at each occurrence.

The book of Ditzian and Totik [3] extends the above direct result to weights
equivalent to w(x) = xγ0(1 + x)γ∞ with arbitrary real exponents γ0, γ∞. The
converse result for the same weights is given as a statement for the equivalent
rates of convergence in terms of weighted Ditzian-Totik moduli.

The question for the validity of strong converse theorems (in the terminology
of [2]) complementing the direct estimates remained open for a while. In 2002
Sangüesa [11] proved the strong converse theorem of type A for γ = 0, p = ∞,
namely

K2
0 (f, s−1)∞ ≤ c‖f − Ps(f)‖∞.
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As far as we know this is the only strong converse theorem of type A for the
Post-Widder or the Gamma operators proved by now. As for strong converse
theorems of type B, two results have recently been published. In [7] Guo, Liu,
Qi and Zhang proved that for γ = 0 and 1 ≤ p ≤ ∞ there is a constant m > 1
such that

K2
0 (f, n−1)p ≤ c (‖f −Gn(f)‖p + ‖f −Gmn(f)‖p) .

The other result is a similar strong converse theorem of type B, proved by Qi
and Guo in [10] for −2 ≤ γ ≤ 0 and p = ∞.

One of the main results of this article is a strong converse theorem of type
A for the Post-Widder and the Gamma operator for γ ∈ R and 1 ≤ p ≤ ∞.

Theorem 1.1. There are positive numbers N,M such that for every γ ∈ R,
s ≥ N(γ2 + 1), 1 ≤ p ≤ ∞ and f ∈ π1 + Lp(χγ)(0,∞) we have

‖χγ(f − Ps(f))‖p ≤
(

2 +M
γ2 + 1
s

)
K2

γ(f, (4s)−1)p (1.6)

and

K2
γ(f, (4s)−1)p ≤

(
κ+M

1√
s

+M
γ2 + 1
s

)
‖χγ(f − Ps(f))‖p (1.7)

with

κ =
21− 4

√
2

8− 2
√

2
= 2.966824...

The same inequalities are true if Ps is replaced by Gs.

Inequalities like (1.6) are well-known. For example, they are proved in [12]
and [3], but with bigger constants. The inverse inequality (1.7) seems to be new
(except γ = 0, p = ∞). It comes with a very small constant κ. Thus, the ratio
‖χγ(f − Ps(f))‖p /K

2
γ(f, (4s)−1)p is bounded between two numbers with ratio

less than 6 when s is big enough!
Theorem 1.1 remains true (up to the value of the constants) if the weight

χγ is replaced by any equivalent on (0,∞) weight.
The K-functional (1.5) is characterized in [3, Chapter 6] by the weighted

Ditzian-Totik moduli of smoothness. But it turns out that Kr
γ(f, tr)p has a

simple characterization in terms of the classical (unweighted fixed-step) moduli
of smoothness ωk(F, t)p(R). Following the ideas of [5] we obtain

Theorem 1.2. Let r ∈ N, α ∈ R, 1 ≤ p ≤ ∞, 0 < t ≤ t0 and f ∈
Lp(χα−1/p)(0,∞).

a) If α 6= 1− r, 2− r, . . . ,−1, 0, then

Kr
α−1/p(f, t

r)p ∼ ωr((χαf) ◦ E, t)p(R) + tr ‖(χαf) ◦ E‖p(R).
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b) If α = 1− r, 2− r, . . . ,−1, 0, then

Kr
α−1/p(f, t

r)p ∼ ωr((χαf) ◦ E, t)p(R) + tr−1ω1((χαf) ◦ E, t)p(R).

By E and Eα we denote the exponential function and its powers, i.e. E(x) =
ex,Eα(x) = eαx, α ∈ R. By Ψ(f, t) ∼ Θ(f, t) we mean that there exists c such
that c−1Θ(f, t) ≤ Ψ(f, t) ≤ cΘ(f, t) for all f and t under consideration.

The assertions of Theorem 1.2 follow from Theorems 6.6 and 7.3 proved
below. Let us mention that Theorem 6.6 improves the result of [4, Theorem 1
with θ = E].

Remark 1.3. The characterization of Kr
α−1/p(f, t

r)p splits into two types,
which cannot be unified. Indeed, let ψ ∈ Cr(R), ψ 6≡ 0, be with a finite
support. Set Fn(x) = ψ(n−1x), n ∈ N. Then ωk(Fn, t)p(R) ∼ n−k+1/p tk and

ωr(Fn, t)p(R) + tr−kωk(Fn, t)p(R) ∼ n−k+1/ptr, k = 0, 1, . . . , r,

where ω0(F, t)p(R) means ‖F‖p(R). Hence, any two of the above quantities are
not equivalent with constants independent of n and t ∈ (0, 1]. See also Corollary
5.3.

From Theorem 1.1 and Theorem 1.2 we immediately get

Theorem 1.4. Let γ ∈ R, 1 ≤ p ≤ ∞, f ∈ Lp(χγ)(0,∞) and s ≥ N(γ2 + 1),
where N is from Theorem 1.1.

a) If γ 6= −1− 1/p,−1/p, then

‖χγ(f − Ps(f))‖p(0,∞) ∼ ‖χγ(f −Gs(f))‖p(0,∞)

∼ ω2((χγ+1/pf) ◦ E, s−1/2)p(R) + s−1 ‖(χγ+1/pf) ◦ E‖p(R).

b) If γ = −1− 1/p,−1/p, then

‖χγ(f − Ps(f))‖p(0,∞) ∼ ‖χγ(f −Gs(f))‖p(0,∞)

∼ ω2((χγ+1/pf) ◦ E, s−1/2)p(R) + s−1/2ω1((χγ+1/pf) ◦ E, s−1/2)p(R).

In particular, for the case γ = 0, p = ∞ we obtain

‖f − Ps(f)‖∞(0,∞) ∼ ω2(f ◦ E, s−1/2)∞(R) + s−1/2ω1(f ◦ E, s−1/2)∞(R).

Remark 1.5. If f ∈ π1+Lp(χγ)(0,∞) as in Theorem 1.1, then in the character-
ization of the errors above f is to be replaced by f0 such that f0 ∈ Lp(χγ)(0,∞)
and f − f0 ∈ π1.

The results of this paper have been announced in [6].
The paper is organized as follows. Section 2 contains the inequalities on

which the proof of Theorem 1.1 is based. In Section 3 we give the proof of
this theorem. Next, Section 4 is devoted to imbedding inequalities needed in
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the proof of the characterization of the K-functional Kr
γ(f, tr)p by the classical

moduli of smoothness. In Section 5 we give several auxiliary results on K-
functionals. The proof of Theorem 1.2 naturally splits into two parts. In Section
6 we characterize Kr

γ(f, tr)p by K-functionals on the real line with exponential
weights taken on a modification of the function. In Section 7 we proceed further
to estimate this weighted K-functionals by the classical moduli of smoothness
by modifying the function again.

2 Inequalities for the Post-Widder operator

For β ∈ R and s > max{0, β} we set

κ1(β, s) :=
sβΓ(s− β)

Γ(s)
;

κj(β, s) :=
sj−1

(2j − 3)!Γ(s)

∫ ∞

0

∫ v/s

1

(
v

sy
− 1
)2j−3

y−β dy

y
e−vvs dv

v
, j = 2, 3, 4;

λ1(β, s) :=
sβ−1

Γ(s)

∫ ∞

0

|(v − s− 1)2 − s− 1|e−vvs−β dv

v
;

λ2(β, s) :=
sβ−1

Γ(s)

∫ ∞

0

|(v − s− 3)2 − s− 3|e−vvs−β dv

v
;

λ3(β, s) :=
sβ− 1

2

Γ(s)

∫ ∞

0

|v − s− 2|e−vvs−β dv

v
;

The quantities κj(β, s), λj(β, s) will be used in the inequalities established
in Propositions 2.4 – 2.9. It is important for us that they remain bounded by
absolute constants for β ∈ R and s ≥ β2 + 8.

Note that the signs of ( v
sy −1)2j−3 and ( v

s −1) in the definition of κj coincide
for every y from the integration range. Hence, the inner integral is always a non-
negative number. This fact will be used in Propositions 2.5 and 2.6.

Lemma 2.1. For β ∈ R and s > max{0, β} we have

κ1(β, s)− 1 = β(β + 1)κ2(β, s)s−1; (2.1)

κ2(β, s)−
1
2

=
[
(β + 2)(β + 3)κ3(β, s)−

β + 2
3

]
s−1; (2.2)

κ3(β, s)−
1
8

=
[
(β + 4)(β + 5)κ4(β, s)−

2β + 5
12

]
s−1 − β + 4

5
s−2. (2.3)

Proof. Applying twice integration by parts we get for j ≥ 2∫ z

1

(
z

y
− 1
)2j−3

y−β dy

y
=

(z − 1)2j−2

2j − 2
− (β + 2j − 2)(z − 1)2j−1

(2j − 2)(2j − 1)

+
(β + 2j − 2)(β + 2j − 1)

(2j − 2)(2j − 1)

∫ z

1

(
z

y
− 1
)2j−1

y−β dy

y
.
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When we plug this formula with z = v/s in the definition of κj we get

κj(β, s) =
sj−1

(2j − 2)!
T (2j − 2, s)− (β + 2j − 2)sj−1

(2j − 1)!
T (2j − 1, s)

+
(β + 2j − 2)(β + 2j − 1)

s
κj+1(β, s), (2.4)

where

T (m, s) =
m∑

k=0

(−1)m−k

(
m

k

) k−1∏
i=0

(
1 +

i

s

)
. (2.5)

As usual the product is 1 for an upper bound, which is smaller than the lower
bound. Direct calculations show that formulae (2.4) – (2.5) remain true for
j = 1. From (2.5) we get

T (0, s) = 1, T (1, s) = 0, T (2, s) = s−1, T (3, s) = 2s−2,

T (4, s) = 3s−2(1 + 2s−1), T (5, s) = 4s−3(5 + 6s−1).

Now, applying (2.4) with j = 1, 2 and 3 we complete the proof.

Lemma 2.2. There exists an absolute constant M1 such that for every s ≥ β2+8
and β ∈ R we have

|κ1(β, s)− 1| ≤M1
1 + β2

s
; (2.6)∣∣∣∣κ2(β, s)−

1
2

∣∣∣∣ ≤M1
1 + β2

s
; (2.7)∣∣∣∣κ3(β, s)−

1
8

∣∣∣∣ ≤M1
1 + β2

s
. (2.8)

Proof. In view of Lemma 2.1 it is enough to prove the existence of a constant
M2 such that

0 < κj(β, s) ≤M2 ∀ j = 1, 2, 3, 4, β ∈ R, s ≥ β2 + 8. (2.9)

First, we shall prove (2.9) for j = 1, which, in turn, will be used when
establishing (2.9) for the other j’s. Note that (2.1) implies 0 < κ1(β, s) < 1 for
−1 < β < 0, κ1(−1, s) = κ1(0, s) = 1 and 1 < κ1(β, s) for β < −1 or 0 < β.
For β < 0 using

κ1(β, s) =
(

1− β + 1
s

)
...

(
1− β +m

s

)
sβ+mΓ(s− β −m)

Γ(s)

with m = [−β] and m = [−β] + 1 we get

1− 1
s
≤ 1− [−β] + 1 + β

s
≤ κ1(β, s)

[−β]∏
i=1

(
1− β + i

s

)−1

≤ 1. (2.10)
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Now the last inequality in (2.10) implies

κ1(β, s) ≤
[−β]∏
i=1

(
1 +

−β − i

s

)
≤ e

∑[−β]
i=1 (−β−i)s−1

≤ eβ2(2s)−1
≤
√
e,

which verifies (2.9) for j = 1 and β < 0. For β ≥ 0 using

κ1(β, s) =
(

1− β

s

)−1

...

(
1− β −m+ 1

s

)−1
sβ−mΓ(s− β +m)

Γ(s)

with m = [β] and m = [β] + 1 we get

1− 1
s
≤ 1− β − [β]

s
≤ κ1(β, s)

[β]∏
i=0

(
1− β − i

s

)
≤ 1. (2.11)

Having in mind that β
s ≤ β2+8

5s ≤ 1
5 we see as in the first case that the last

inequality in (2.11) implies (2.9) for j = 1 and β ≥ 0.
In order to prove (2.9) for j = 2, 3 and 4 we estimate from above the inner

integral in the definition of κj(β, s). For j ≥ 1 we have∫ v/s

1

(
v

sy
− 1
)2j−1

y−β dy

y
=
∫ v/s

1

(v
s
− y
)2j−1

y−β−2jdy

≤
∫ v/s

1

(v
s
− y
)2j−1

dy[1 + v−β−2jsβ+2j ] =
1
2j

(v
s
− 1
)2j

[1 + v−β−2jsβ+2j ].

Hence

κj+1(β, s) =
sj

(2j − 1)!Γ(s)

∫ ∞

0

∫ v/s

1

(
v

sy
− 1
)2j−1

y−β dy

y
e−vvs dv

v

≤ sj

(2j)!Γ(s)

∫ ∞

0

(v
s
− 1
)2j

[1 + v−β−2jsβ+2j ]e−vvs dv

v

=
sj

(2j)!Γ(s)

∫ ∞

0

(v
s
− 1
)2j

e−vvs dv

v
+

sj+β

(2j)!Γ(s)

∫ ∞

0

(
1− s

v

)2j

e−vvs−β dv

v

=
sj

(2j)!

2j∑
k=0

(−1)k

(
2j
k

)
s−kΓ(s+ k)

Γ(s)

+
sj+β+2j

(2j)!

2j∑
k=0

(−1)k

(
2j
k

)
s−kΓ(s− β − 2j + k)

Γ(s)

=
sj

(2j)!

2j∑
k=0

(−1)k

(
2j
k

) k−1∏
i=0

(
1 +

i

s

)

+
sβΓ(s− β)

Γ(s)
s2jΓ(s− β − 2j)

Γ(s− β)
sj

(2j)!

2j∑
k=0

(−1)k

(
2j
k

) k−1∏
i=0

(
1− β + 2j

s
+
i

s

)
.
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Therefore

(2j)!κj+1(β, s) ≤ Tj(0, s) +
sβΓ(s− β)

Γ(s)
s2jΓ(s− β − 2j)

Γ(s− β)
Tj(β + 2j, s), (2.12)

where

Tj(b, s) := sj

2j∑
k=0

(−1)k

(
2j
k

) k−1∏
i=0

(
1− b

s
+
i

s

)
.

Direct calculations for j = 1, 2, 3 give

T1(b, s) = 1 + b(b− 1)s−1;

T2(b, s) = 3 + 2(3− 7b+ 3b2)s−1 + (−6b+ 11b2 − 6b3 + b4)s−2;

T3(b, s) = 15 + 5(26− 33b+ 9b2)s−1 + (120− 404b+ 375b2 − 130b3 + 15b4)s−2

+ (−120b+ 274b2 − 225b3 + 85b4 − 15b5 + b6)s−3

and in particular

T1(0, s) = 1; T2(0, s) = 3 + 6s−1; T3(0, s) = 15 + 130s−1 + 120s−2.

Substituting in (2.12) the above values of Tj(b, s) with b = 0 and b = β + 2j,
using (2.9) with j = 1 and the inequality

s2jΓ(s− β − 2j)
Γ(s− β)

=
2j∏

i=1

(
1− β + i

s

)−1

≤M3,

valid for
∣∣∣β+i

s

∣∣∣ ≤ |β|+6
β2+8 ≤ 4

5 , we prove (2.9) for j = 2, 3, 4 and complete the
proof of the lemma.

Remark 2.3. Note that the lower and upper estimates in (2.10) and (2.11)
imply directly (2.6).

Proposition 2.4. For every f ∈ Lp(χγ)(0,∞), 1 ≤ p ≤ ∞, and s > max{0, γ+
p−1} we have

‖χγPs(f)‖p ≤ κ1(γ + p−1, s)‖χγf‖p, (2.13)

where κ1(β, s) is estimated in (2.6) for s ≥ β2 + 8.

Proof. From (1.1) we get

xβPs(f, x) =
sβ

Γ(s)

∫ ∞

0

[(xv
s

)β

f
(xv
s

)]
e−vvs−β dv

v
.
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Applying the generalized Minkowski inequality in this representation we get{∫ ∞

0

|xβPs(f, x)|p
dx

x

} 1
p

≤ sβ

Γ(s)

∫ ∞

0

{∫ ∞

0

∣∣∣∣(xvs )β

f
(xv
s

)∣∣∣∣p dxx
} 1

p

e−vvs−β dv

v

=
sβ

Γ(s)

∫ ∞

0

{∫ ∞

0

∣∣yβf (y)
∣∣p dy

y

} 1
p

e−vvs−β dv

v

= κ1(β, s)
{∫ ∞

0

∣∣yβf (y)
∣∣p dy

y

} 1
p

.

Putting β = γ + p−1 in the above inequality we prove (2.13).

Proposition 2.5. For every g such that ϕ2D2g ∈ Lp(χγ)(0,∞), 1 ≤ p ≤ ∞,
and s > max{0, γ + p−1} we have

‖χγ (Ps(g)− g) ‖p ≤ s−1κ2(γ + p−1, s)‖χγϕ2D2g‖p, (2.14)

where κ2(β, s) is estimated in (2.7) for s ≥ β2 + 8.

Proof. Applying Ps to the Taylor expansion of g

g(y) = g(x) + (y − x)g′(x) +
∫ y

x

(y − u)g′′(u) du

we get in view of (1.4)

Ps(g, x)− g(x) =
1

Γ(s)

∫ ∞

0

∫ xv/s

x

(xv
s
− u
)
g′′(u) du e−vvs dv

v

=
1

Γ(s)

∫ ∞

0

∫ v/s

1

(
v

sy
− 1
)

(xy)2g′′(xy)
dy

y
e−vvs dv

v

and hence

xβ |Ps(g, x)− g(x)| ≤ 1
Γ(s)

∫ ∞

0

∫ v/s

1

(
v

sy
− 1
)
y−β(xy)β+2|g′′(xy)| dy

y
e−vvs dv

v
.

Now we apply the arguments from the proof of Proposition 2.4 in order to get
(2.14).

Proposition 2.6. For every g such that ϕ4D4g ∈ Lp(χγ)(0,∞), 1 ≤ p ≤ ∞,
and s > max{0, γ + p−1} we have∥∥∥∥χγ

(
Ps(g)− g − 1

2
s−1ϕ2D2g − 1

3
s−2ϕ3D3g

)∥∥∥∥
p

≤ s−2κ3(γ + p−1, s)‖χγϕ4D4g‖p, (2.15)

where κ3(β, s) is estimated in (2.8) for s ≥ β2 + 8.
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Proof. Applying Ps to the Taylor expansion of g

g(y) = g(x) + (y − x)g′(x) +
(y − x)2

2
g′′(x) +

(y − x)3

6
g′′′(x)

+
∫ y

x

(y − u)3

6
D4g(u) du

we get as in the proof of Proposition 2.5

xβ

∣∣∣∣Ps(g, x)− g(x)− 1
2
s−1ϕ2(x)D2g(x)− 1

3
s−2ϕ3(x)D3g(x)

∣∣∣∣
≤ 1

6Γ(s)

∫ ∞

0

∫ v/s

1

(
v

sy
− 1
)3

y−β(xy)β+4|D4g(xy)| dy
y
e−vvs dv

v
.

Now we apply the arguments from the proof of Proposition 2.4 in order to get
(2.15).

Proposition 2.7. For every f ∈ Lp(χγ)(0,∞), 1 ≤ p ≤ ∞, and s > max{0, γ+
p−1} we have

‖χγϕ2D2Ps(f)‖p ≤ sλ1(γ + p−1, s)‖χγf‖p. (2.16)

There is an absolute constant M4 such that

λ1(β, s) ≤
√

2 +M4(1 + β2)s−1 (2.17)

for every β ∈ R, s ≥ β2 + 8.

Proof. Substituting v = su/x in (1.1) we get

Ps(f, x) =
1

Γ(s)

∫ ∞

0

f(u)e−su/xssusx−s du

u
.

Differentiating the above expression twice with respect to x and making the
inverse substitution u = xv/s we arrive at

D2Ps(f, x) =
x−2

Γ(s)

∫ ∞

0

f
(xv
s

) [
(v − s− 1)2 − s− 1

]
e−vvs dv

v
.

Hence

xβ+2|D2Ps(f, x)|

≤ sβ

Γ(s)

∫ ∞

0

(xv
s

)β ∣∣∣f (xv
s

)∣∣∣ ∣∣(v − s− 1)2 − s− 1
∣∣ e−vvs−β dv

v
.

Now we apply the arguments from the proof of Proposition 2.4 in order to
get (2.16). The estimate of λ1 uses standard arguments – the Cauchy-Schwarz

10



inequality. We have

s−β+1Γ(s)λ1(β, s)

≤
{∫ ∞

0

(
(v − s− 1)2 − s− 1

)2
e−vvs−β dv

v

}1/2{∫ ∞

0

e−vvs−β dv

v

}1/2

= {Γ(s− β + 4)− 4(s+ 1)Γ(s− β + 3) + 2(s+ 1)(3s+ 2)Γ(s− β + 2)

− 4s(s+ 1)2Γ(s− β + 1) + s2(s+ 1)2Γ(s− β)}1/2Γ(s− β)1/2.

Hence

λ1(β, s) ≤
sβΓ(s− β)

Γ(s)

{
2 +

2 + 4β(β − 1)
s

+
β(β − 1)(β2 − β + 2)

s2

}1/2

≤
√

2 +M4(1 + β2)s−1.

This proves (2.17).

Proposition 2.8. For every g such that ϕ2D2g ∈ Lp(χγ)(0,∞), 1 ≤ p ≤ ∞,
and s > max{0, γ + p−1} we have

‖χγϕ4D4Ps(g)‖p ≤ sλ2(γ + p−1, s)‖χγϕ2D2g‖p. (2.18)

There is an absolute constant M5 such that

λ2(β, s) ≤
√

2 +M5(1 + β2)s−1 (2.19)

for every β ∈ R, s ≥ β2 + 8.

Proof. Differentiating (1.1) twice with respect to x, substituting v = su/x in
the right-hand side integral, differentiating the resulting expression twice with
respect to x and making the inverse substitution u = xv/s we arrive at

D4Ps(g, x) =
x−4

Γ(s)

∫ ∞

0

(xv
s

)2

D2g
(xv
s

) [
(v − s− 3)2 − s− 3

]
e−vvs dv

v
.

Hence

xβ+4|D4Ps(g, x)|

≤ sβ

Γ(s)

∫ ∞

0

(xv
s

)β+2 ∣∣∣D2g
(xv
s

)∣∣∣ ∣∣(v − s− 3)2 − s− 3
∣∣ e−vvs−β dv

v
.

Now we apply the arguments from the proof of Proposition 2.4 in order to get
(2.18). As in the proof of Proposition 2.7 we estimate λ2 by

λ2(β, s) ≤
sβΓ(s− β)

Γ(s)

{
2 +

18 + 4β(β + 3)
s

+
36 + β(β + 3)(β2 + 3β + 14)

s2

}1/2

≤
√

2 +M5(1 + β2)s−1.

This proves (2.19).
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Proposition 2.9. For every g such that ϕ2D2g ∈ Lp(χγ)(0,∞), 1 ≤ p ≤ ∞,
and s > max{0, γ + p−1} we have

‖χγϕ3D3Ps(g)‖p ≤
√
sλ3(γ + p−1, s)‖χγϕ2D2g‖p, (2.20)

There is an absolute constant M6 such that

λ3(β, s) ≤ 1 +M6(1 + β2)s−1 (2.21)

for every β ∈ R, s ≥ β2 + 8.

Proof. Differentiating (1.1) twice with respect to x, substituting v = su/x in
the right-hand side integral, differentiating the resulting expression once with
respect to x and making the inverse substitution u = xv/s we arrive at

D3Ps(g, x) =
x−3

Γ(s)

∫ ∞

0

(xv
s

)2

D2g
(xv
s

)
[v − s− 2] e−vvs dv

v
.

Hence

xβ+3|D3Ps(g, x)| ≤
sβ

Γ(s)

∫ ∞

0

(xv
s

)β+2 ∣∣∣D2g
(xv
s

)∣∣∣ |v − s− 2| e−vvs−β dv

v
.

Now we apply the arguments from the proof of Proposition 2.4 in order to get
(2.20). As in the proof of Proposition 2.7 we estimate λ3 by

λ3(β, s) ≤
sβΓ(s− β)

Γ(s)

{
1 +

β2 + 3β + 4
s

}1/2

≤ 1 +M6(1 + β2)s−1.

This proves (2.21).

Remark 2.10. The constant κ1 in (2.13) of Proposition 2.4 is exact for p = ∞
as the example of f0(x) = x−γ shows. The same example can be used to show
that the constants κ2 in (2.14) of Proposition 2.5 and κ3 in (2.15) of Proposition
2.6 are exact for p = ∞ when γ 6= 0,−1 and γ 6= 0,−1,−2,−3 respectively. For
the exceptional values of γ an additional logarithmic factor has to be introduced
in the definition of the extremal function f0. The constants are also exact for
1 ≤ p < ∞. This can be seen if we multiply the extremal functions for p = ∞
with the characteristic function of the interval [ε, ε−1] and let ε→ 0+.

Remark 2.11. The constants λj in (2.16), (2.18) and (2.20) are not exact.

Remark 2.12. If the Post-Widder operator Ps is replaced by the Gamma
operator Gs, then the results of this section remain true with slight changes.
The necessary modifications are:

a) In Propositions 2.4 and 2.5 the restriction on s is s > max{0,−γ−p−1−1}
and κj(γ + p−1, s) are replaced by κj(−γ − p−1 − 1, s), j = 1, 2.

12



b) In Proposition 2.6 the restriction on s is s > max{2,−γ − p−1 − 1} and
estimate (2.15) changes to∥∥∥∥χγ

(
Gs(g)− g − ϕ2D2g

2(s− 1)
− 2ϕ3D3g

3(s− 1)(s− 2)

)∥∥∥∥
p

≤ κ̄3(γ + p−1, s)
s2

‖χγϕ4D4g‖p,

where

κ̄3(β, s) :=
s4

6Γ(s)

∫ ∞

0

∫ v/s

1

(
v

sy
− 1
)3

yβ+3 dy

y
e−vvs−2 dv

v
.

κ̄3(β, s) satisfies (2.8) as κ3 does.

c) In Proposition 2.7 the restriction on s is s > max{0,−γ − p−1 − 1} and
λ1(γ + p−1, s) is replaced by λ1(−γ − p−1 − 1, s).

d) In Proposition 2.8 the restriction on s is s > max{0,−γ − p−1 − 1} and
λ2(γ + p−1, s) is replaced by λ̄2(−γ − p−1 − 1, s), where

λ̄2(β, s) :=
sβ−1

Γ(s)

∫ ∞

0

|(v − s+ 1)2 − s+ 1|e−vvs−β dv

v
.

λ̄2(β, s) satisfies (2.19) as λ2 does.

e) In Proposition 2.9 the restriction on s is s > max{0,−γ − p−1 − 1} and
λ3(γ + p−1, s) is replaced by λ̄3(−γ − p−1 − 1, s), where

λ̄3(β, s) :=
sβ− 1

2

Γ(s)

∫ ∞

0

|v − s+ 1|e−vvs−β dv

v
.

λ̄3(β, s) satisfies (2.21) as λ3 does.

3 A characterization of the Post-Widder opera-
tor error

Now we are ready to prove Theorem 1.1.

Proof. Both sides of (1.6) and (1.7) do not change if we subtract a linear function
from f . So we may assume that f ∈ Lp(χγ)(0,∞).

For every g ∈ AC1
loc(0,∞) such that g, ϕ2D2g ∈ Lp(χγ)(0,∞) we have from

Propositions 2.4 and 2.5

‖χγ(Psf − f)‖p ≤ ‖χγPs(f − g)‖p + ‖χγ(Psg − g)‖p + ‖χγ(f − g)‖p

≤ (κ1 + 1)‖χγ(f − g)‖p + s−1κ2‖χγϕ2D2g‖p

≤ max{κ1 + 1, 4κ2}{‖χγ(f − g)‖p + (4s)−1‖χγϕ2D2g‖p}.
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(The arguments γ + p−1 and s of κj , λj are omitted in the proof.) Taking
infimum on g we get

‖χγ(Psf − f)‖p ≤ max{κ1 + 1, 4κ2}Kγ

(
f,

1
4s

)
p

,

which, in view of (2.6), (2.7), proves (1.6).
In order to prove (1.7) for a given f ∈ Lp(χγ)(0,∞) we set g = P 2

s f . Then
ϕ4D4g ∈ Lp(χγ)(0,∞) in view of Propositions 2.7 and 2.8 (with g = Psf) and
hence we can apply Proposition 2.6. A consecutive application of Propositions
2.6, 2.8 and 2.7 gives∥∥∥∥χγ

(
P 3

s f − P 2
s f −

1
2s
ϕ2D2P 2

s f −
1

3s2
ϕ3D3P 2

s f

)∥∥∥∥
p

≤ κ3

s2
‖χγϕ4D4P 2

s f‖p ≤
κ3λ2

s
‖χγϕ2D2Psf‖p

≤ κ3λ2

s
‖χγϕ2D2P 2

s f‖p +
κ3λ2

s
‖χγϕ2D2Ps(f − Psf)‖p

≤ κ3λ2

s
‖χγϕ2D2P 2

s f‖p + κ3λ2λ1‖χγ(f − Psf)‖p. (3.1)

Using Propositions 2.9 and 2.7 we obtain

‖χγϕ3D3P 2
s f‖p ≤ s1/2λ3‖χγϕ2D2Psf‖p

≤ s1/2λ3‖χγϕ2D2P 2
s f‖p + s1/2λ3‖χγϕ2D2Ps(f − Psf)‖p

≤ s1/2λ3‖χγϕ2D2P 2
s f‖p + s3/2λ3λ1‖χγ(f − Psf)‖p. (3.2)

From (3.1), Proposition 2.4 and (3.2) we obtain

1
2s
‖χγϕ2D2P 2

s f‖p

≤
∥∥∥∥χγ

(
P 3

s f − P 2
s f −

1
2s
ϕ2D2P 2

s f −
1

3s2
ϕ3D3P 2

s f

)∥∥∥∥
p

+ ‖χγP 2
s (Psf − f)‖p +

1
3s2

‖χγϕ3D3P 2
s f‖p

≤ κ3λ2

s
‖χγϕ2D2P 2

s f‖p + κ3λ1λ2‖χγ(f − Psf)‖p

+ κ2
1‖χγ(f − Psf)‖p +

λ3

3s3/2
‖χγϕ2D2P 2

s f‖p +
λ1λ3

3s1/2
‖χγ(f − Psf)‖p.

Hence

1
4s
‖χγϕ2D2P 2

s f‖p ≤
κ2

1 + κ3λ1λ2 + 1/3λ1λ3s
−1/2

2− 4κ3λ2 − 4/3λ3s−1/2
‖χγ(f − Psf)‖p (3.3)

provided that 2 − 4κ3λ2 − 4/3λ3s
−1/2 > 0. This inequality is valid for s ≥
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N(γ2 + 1) if we take into account (2.8), (2.19) and (2.21). Therefore

Kγ

(
f,

1
4s

)
p

≤ ‖χγ(f − P 2
s f)‖p +

1
4s
‖χγϕ2D2P 2

s f‖p

≤
(

1 + κ1 +
κ2

1 + κ3λ1λ2 + 1/3λ1λ3s
−1/2

2− 4κ3λ2 − 4/3λ3s−1/2

)
‖χγ(f − Psf)‖p.

In view of the estimates of κj and λj this inequality proves (1.7) and completes
the proof of Theorem 1.1 for the Post-Widder operator Ps. The proof for the
Gamma operator Gs is the same as we take into account Remark 2.12.

In the proof of Theorem 1.1 (see (3.3) above) we have established the fol-
lowing statement which is of importance in itself.

Proposition 3.1. There are positive numbers N,M such that for every γ ∈ R,
s ≥ N(γ2 + 1), 1 ≤ p ≤ ∞ and f ∈ π1 + Lp(χγ)(0,∞) we have

1
4s
‖χγϕ2D2P 2

s f‖p ≤
(

5
8− 2

√
2

+M
1√
s

+M
γ2 + 1
s

)
‖χγ(f − Psf)‖p.

Remark 3.2. The proof of the theorem follows an idea from [2]. The inequality
κ3λ2 <

1
2 (here 1

2 is the coefficient in front of s−1ϕ2D2g in the left-hand side of
(2.15)) is crucial. The fact that the power −2 of s in front of ϕ3D3g in (2.15)
is less than − 3

2 is also of high importance. The values of the constants in the
remaining propositions of Section 2 are not essential in this proof.
Remark 3.3. From Proposition 2.4, (3.3) and (1.6) we get

‖χγ(f − P 2
s f)‖p +

1
4s
‖χγϕ2D2P 2

s f‖p ≤ 2.98‖χγ(f − Psf)‖p

≤ 6Kγ

(
f,

1
4s

)
p

(3.4)

for s big enough. This means that P 2
s f provides a realization of the K-functional

Kγ(f, (4s)−1)p. The same is true for the other powers Pm
s f of the operator. For

example, for m = 1 from (3.3) and Proposition 2.7 we get

1
2s
‖χγϕ2D2Psf‖p ≤

1
2s
‖χγϕ2D2P 2

s f‖p +
1
2s
‖χγϕ2D2Ps(Psf − f)‖p

≤ 2.7‖χγ(f − Psf)‖p (3.5)

for s big enough. Now (3.5) and (1.6) implies an inequality for Psf similar to
(3.4).

4 Imbedding inequalities

The proof of the characterization of the K-functional Kr
γ(f, tr)p is based on

several imbedding inequalities. As it is known for g ∈W r
p [a, b] there holds

(b− a)j ‖g(j)‖p[a,b] ≤ c
(
‖g‖p[a,b] + (b− a)r ‖g(r)‖p[a,b]

)
, j = 0, 1, . . . , r, (4.1)
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where the constant c depends only on r (see e.g. [1, p. 38]). As usual W r
p [a, b]

denotes the space of the functions g ∈ ACr−1
loc [a, b] for which f, f (r) ∈ Lp[a, b].

Using (4.1) one can show (cf. [4])

Proposition 4.1. Let r ∈ N, γ ∈ R and 1 ≤ p ≤ ∞. Then for every g ∈
ACr−1

loc (0,∞) such that g, χrg(r) ∈ Lp(χγ)(0,∞) we have

‖χγ+jg(j)‖p(0,∞) ≤ c
(
‖χγg‖p(0,∞) + ‖χγ+rg(r)‖p(0,∞)

)
, j = 0, 1, . . . , r, (4.2)

where the constant c depends only on γ and r.

Proof. Using (4.1), we get for a > 0 and j = 0, 1, . . . , r,

‖χγ+jg(j)‖p[a,2a] ≤ max{1, 2γ+j} aγ+j ‖g(j)‖p[a,2a]

≤ c aγ
(
‖g‖p[a,2a] + ar ‖g(r)‖p[a,2a]

)
≤ c

(
‖χγg‖p[a,2a] + ‖χγ+rg(r)‖p[a,2a]

)
, (4.3)

where the constant c depends only on γ and r.
To prove (4.2) we divide the interval (0,∞) by the points ak = 2k, k ∈ Z

and apply (4.3) on every interval [ak, ak+1]. Thus the case p = ∞ is settled.
If p < ∞, we further raise both sides of (4.3) to power p, use the inequality
(A+B)p ≤ 2p−1(Ap +Bp), sum the inequalities in k and finally raise to power
1/p.

We derive the following corollary from Proposition 4.1, using the well-known
Hardy’s inequalities (see [8, p. 245]).

Corollary 4.2. Let r ∈ N, i ∈ {0, 1, . . . , r − 1}, 1 ≤ p ≤ ∞ and γ ∈ R be
such that γ 6= 1 − r − 1/p, . . . ,−i − 1/p. Then for g ∈ ACr−1

loc (0,∞) such that
g, χrg(r) ∈ Lp(χγ)(0,∞) there hold

‖χγ+jg(j)‖p(0,∞) ≤ c ‖χγ+rg(r)‖p(0,∞), j = i, i+ 1, . . . , r − 1, (4.4)

where the constant c depends only on min{|γ+ j+1/p| : j = i, i+1, . . . , r−1},
γ and r.

Proof. It is enough to prove the statement for i = j = r−1, since the general case
follows from it by iteration. Since g, χrg(r) ∈ Lp(χγ)(0,∞), then Proposition
4.1 yields that χr−1g(r−1) ∈ Lp(χγ)(0,∞), i.e. χγ+r−1g(r−1) ∈ Lp(0,∞).

First, we consider the case γ + r − 1 < −1/p. From Hölder’s inequality
we get

∫ a

x

∣∣g(r)(y)
∣∣ dy ≤ c ‖χγ+rg(r)‖p[0,a] for 0 < x ≤ a, which implies g(r) ∈

L1[0, a]. Moreover, the assumption |g(r−1)(x)| ≥ c > 0 in a neighborhood of
the origin would imply χγ+r−1 ∈ Lp[0, 1], which contradicts γ + r − 1 < −1/p.
Hence, there exists a sequence {ξn} such that ξn → 0 + 0 and g(r−1)(ξn) → 0
as n → ∞. Combining these two facts with the representation g(r−1)(x) =
g(r−1)(ξ) +

∫ x

ξ
g(r)(y) dy, 0 < x, ξ ≤ a we get

g(r−1)(x) =
∫ x

0

g(r)(y) dy, x ∈ (0,∞), (4.5)
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and now Hardy’s inequalities prove (4.4).
In a similar way in the case γ+r−1 > −1/p we show that the representation

g(r−1)(x) = −
∫ ∞

x

g(r)(y) dy, x ∈ (0,∞), (4.6)

holds and once again Hardy’s inequalities prove (4.4).

Corollary 4.2 shows that, except for few values of γ, the conclusion of Propo-
sition 4.1 can be improved by omitting ‖χγg‖p(0,∞) from the right-hand side of
(4.2). Be aware that the condition g ∈ Lp(χγ)(0,∞) is necessary for the validity
of (4.4) as the example of g(x) = xj shows. Comparing Corollary 4.2 with [4,
Lemma 3] we see that the conclusions are similar but the assumptions differ.

As a consequence of (4.5) and (4.6) we get the following simple description
of the boundary behaviour of g.

Corollary 4.3. Let g ∈ ACr−1
loc (0,∞) be such that g, χrg(r) ∈ Lp(χγ)(0,∞).

Then:

a) if γ + r − 1 + 1/p < 0 then limx→0+0 g
(j)(x) = 0 for 0 ≤ j < r;

b) if 0 < γ+i+1/p < 1 for some i = 1, 2, . . . , r−1 then limx→0+0 g
(j)(x) = 0

for 0 ≤ j < i and limx→∞ g(j)(x) = 0 for i ≤ j < r;

c) if 0 < γ + 1/p then limx→∞ g(j)(x) = 0 for 0 ≤ j < r;

d) if γ = −m−1/p for some m = 0, 1, . . . , r−1 then limx→0+0 g
(j)(x) = 0 for

j = 0, 1, . . . ,m−1 and limx→∞ g(j)(x) = 0 for j = m+1,m+2, . . . , r−1.

Note that the value j = m is not considered in d).
We shall give a characterization of the weighted K-functional Kr

α−1/p(f, t
r)p

by means of K-functionals on R with the weight Eα. That is why, to clear
that additional exponential weight, we shall need the analogue of the above
inequalities for such weights.

Proposition 4.4. (cf. [4]) Let r ∈ N, α ∈ R and 1 ≤ p ≤ ∞. Then for every
G ∈ ACr−1

loc (R) such that G,G(r) ∈ Lp(Eα)(R) we have

‖EαG(j)‖p(R) ≤ c
(
‖EαG‖p(R) + ‖EαG(r)‖p(R)

)
, j = 0, 1, . . . , r,

where the constant c depends only on α and r.

Proof. We divide the real line by the points ak = k, k ∈ Z, and apply the
inequality (4.1) on each interval [ak, ak+1].

Now, Proposition 4.4 and Corollary 4.2 imply

Corollary 4.5. Let r ∈ N, α ∈ R, α 6= 0 and 1 ≤ p ≤ ∞. Then for every
G ∈ ACr−1

loc (R) such that G,G(r) ∈ Lp(Eα)(R) we have

‖EαG(j)‖p(R) ≤ c‖EαG(r)‖p(R), j = 0, 1, . . . , r,

where the constant c depends only on α and r.
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Proof. It is enough to prove the statement for j = r − 1, since the general case
follows from it by iteration. Since G,G(r) ∈ Lp(Eα)(R), then Proposition 4.4
yields that G(r−1) ∈ Lp(Eα)(R). Now the statement follows from (4.4) with
r = 1 and α = γ + 1/p 6= 0 by the substitution G(r−1)(y) = g(ey).

5 Auxiliary relations about K-functionals

In establishing the result in Theorem 1.2, we shall first relate Kr
γ(f, tr)p to the

K-functional

Kr
α(F, tr)p = inf

G∈ACr−1
loc (R)

{‖Eα(F −G)‖p(R) + tr‖EαG(r)‖p(R)},

where F ∈ Lp(Eα)(R), r ∈ N, α ∈ R and t > 0. Note that the two norms in the
definition of the K-functional have one and the same exponential weight.

Theorem 5.1. Let r ∈ N, α ∈ R, 1 ≤ p ≤ ∞, 0 < t ≤ t0 and F ∈ Lp(Eα)(R).
Then

Kr
α(F, tr)p ∼ ωr(F, t)p(Eα)(R)

where
ωr(F, t)p(Eα)(R) = sup

0<h≤t
‖Eα∆r

hF‖p(R). (5.1)

Proof. The proof follows the lines of its classical analogue (the case α = 0)
based upon the properties of the modulus ωr(F, t)p(Eα)(R) and the construction
of modified Steklov functions (see e.g. [1, p. 177–178]). Let us note that the
quantity in (5.1) is well defined since eα(x+h) ∼ eαx uniformly for x ∈ R and for
0 < h ≤ t ≤ t0, where t0 > 0 is fixed.

Definition (5.1) reduces to the classical modulus of smoothness ωr(F, t)p(R)

in the unweighted case α = 0.
In the proof of Theorem 6.1.b) we shall use the following characterization of

a K-functional, which is a simple modification of the classical unweighted one.

Lemma 5.2. For r ∈ N, 1 ≤ p ≤ ∞, 0 < t ≤ t0 and F ∈ Lp(R) there holds

inf
G∈W r

p (R)

{
‖F −G‖p(R) + tr‖G(r)‖p(R) + tr‖G′‖p(R)

}
∼ ωr(F, t)p(R) + tr−1ω1(F, t)p(R).

Proof. Since for any G ∈W r
p (R) and 0 < t ≤ t0 we have

ωr(F, t)p(R) ≤ c
(
‖F −G‖p(R) + tr‖G(r)‖p(R)

)
and

tr−1ω1(F, t)p(R) ≤ c
(
‖F −G‖p(R) + tr‖G′‖p(R)

)
18



there holds the lower estimate

ωr(F, t)p(R) + tr−1ω1(F, t)p(R)

≤ c inf
G∈W r

p (R)

{
‖F −G‖p(R) + tr‖G(r)‖p(R) + tr‖G′‖p(R)

}
.

To prove the converse inequality we set for any F ∈ Lp(R) and t > 0

Gt(x) =
r∑

i=1

(−1)i−1

(
r

i

)
1
tr

∫ t

0

· · ·
∫ t

0

F

(
x+

i

r
(y1 + · · ·+ yr)

)
dy1 · · · dyr.

Then

‖F −Gt‖p(R) ≤ ωr(F, t)p(R), (5.2)

tr‖G(r)
t ‖p(R) ≤ c ωr(F, t)p(R), (5.3)

and

tr‖G′t‖p(R) ≤ c tr−1ω1(F, t)p(R). (5.4)

Now, inequalities (5.2) – (5.4) imply the upper estimate of the K-functional.
The proof of the assertion is completed.

From Lemma 5.2 and Proposition 4.4 with α = 0 we get

Corollary 5.3. For r ∈ N, 1 ≤ p ≤ ∞, 0 < t ≤ t0 and F ∈ Lp(R) there holds

ωr(F, t)p(R) + tr−1ω1(F, t)p(R) ≤ c
(
ωr(F, t)p(R) + tr‖F‖p(R)

)
.

6 A characterization of Kr
α−1/p(f, tr)p by K−func-

tionals on the real line with an exponential
weight

First, we establish the upper estimate.

Theorem 6.1. Let r ∈ N, α ∈ R, 1 ≤ p ≤ ∞ and f ∈ Lp(χα−1/p)(0,∞).

a) If α 6= 0 and 0 < t, then

Kr
α−1/p(f, t

r)p ≤ cKr
α(f ◦ E, tr)p(R).

b) If α = 0 and 0 < t ≤ t0, then

Kr
−1/p(f, t

r)p ≤ c
(
Kr

0(f ◦ E, tr)p(R) + tr−1K1
0(f ◦ E, t)p(R)

)
.
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Proof. For f ∈ Lp(χα−1/p)(0,∞) set F = f ◦ E. For every G ∈ ACr−1
loc (R) such

that G,G(r) ∈ Lp(Eα)(R) we set g = G ◦ log. In order to prove assertion a)
using the standard K-functional arguments it is enough to show that

‖χα−1/p(f − g)‖p(0,∞) ≤ c ‖Eα(F −G)‖p(R); (6.1)

‖χα−1/p+rg(r)‖p(0,∞) ≤ c ‖EαG(r)‖p(R). (6.2)

Indeed, from (6.1) and (6.2) we get for every G ∈ ACr−1
loc (R) such that G,G(r) ∈

Lp(Eα)(R) the estimate

Kr
α−1/p(f, t

r)p ≤ ‖χα−1/p(f − g)‖p(0,∞) + tr‖χα−1/p+rg(r)‖p(0,∞)

≤ c
(
‖Eα(F −G)‖p(R) + tr‖EαG(r)‖p(R)

)
.

Taking infimum on G in the above inequality we get a).
By simple change of the variables we see that (6.1) is true with c = 1 as

equality. For the proof of (6.2) we use Corollary 4.5 and get

‖χα−1/p+r(G ◦ log)(r)‖p(0,∞) =
∥∥∥∥χα−1/p+rχ−r

r∑
j=1

mr,j(G(j) ◦ log)
∥∥∥∥

p(0,∞)

≤
r∑

j=1

|mr,j | ‖EαG(j)‖p(R) ≤ c ‖EαG(r)‖p(R)

with appropriate integers mr,j .
In the proof of b) we use the previous notations. Now we cannot use Corol-

lary 4.5 in the proof of the analogue of (6.2) because α = 0. Instead, from
Proposition 4.4 with α = 0 we get G′ ∈ Lp(R). Then

‖χ−1/p+r(G ◦ log)(r)‖p(0,∞) =
∥∥∥∥χ−1/p+rχ−r

r∑
j=1

mr,j(G(j) ◦ log)
∥∥∥∥

p(0,∞)

≤
r∑

j=1

|mr,j | ‖G(j)‖p(R)

≤ c
(
‖G′‖p(R) + ‖G(r)‖p(R)

)
, (6.3)

where at the last step we use once again Proposition 4.4 with α = 0 and G′ and
r − 1 at the place of G and r. Using (6.1) with α = 0 and (6.3) we get

Kr
−1/p(f, t

r)p ≤ c inf
G∈W r

p (R)

{
‖F −G‖p(R) + tr‖G(r)‖p(R) + tr‖G′‖p(R)

}
≤ c

(
Kr

0(f ◦ E, tr)p(R) + tr−1K1
0(f ◦ E, t)p(R)

)
,

where at the last step we use Lemma 5.2 and Theorem 5.1. This completes the
proof.
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Remark 6.2. The upper estimate in the last theorem is not exact for α =
1− r, 2− r, . . . ,−1, as it follows from Remark 1.3 and Theorems 6.6.b) and 7.3
below.

Let us now proceed to the lower estimate.

Theorem 6.3. Let r ∈ N, α 6= 1− r, 2− r, . . . ,−1, 1 ≤ p ≤ ∞, 0 < t ≤ t0 and
f ∈ Lp(χα−1/p)(0,∞). Then for j = 1, 2, . . . , r there holds

tr−j Kj
α(f ◦ E, tj)p ≤ cKr

α−1/p(f, t
r)p.

Proof. Let g ∈ ACr−1
loc (0,∞) and g, χrg(r) ∈ Lp(χα−1/p)(0,∞). We write

(g ◦ E)(j) =
j∑

i=1

nj,iE
i(g(i) ◦ E)

with appropriate positive integers nj,i. Then, using Corollary 4.2 with i = 1
and γ = α− 1/p, we get

‖Eα(g ◦ E)(j)‖p(R) ≤
j∑

i=1

nj,i ‖Eα+i(g(i) ◦ E)‖p(R)

=
j∑

i=1

nj,i ‖χα+i−1/pg(i)‖p(0,∞)

≤ c ‖χα−1/p+rg(r)‖p(0,∞).

Combining the above inequality with the equality ‖Eα(f ◦ E − g ◦ E)‖p(R) =
‖χα−1/p(f − g)‖p(0,∞) and the condition t ≤ t0 we complete the proof by stan-
dard K-functional arguments.

Remark 6.4. In the case r = 1 Theorems 6.1 and 6.3 provide the equivalence

K1
α−1/p(f, t)p ∼ K1

α(f ◦ E, t)p

for all values of α.

The inequalities we have proven so far enable us to find K-functonals on the
real line equivalent to Kr

α−1/p(f, t
r)p for α 6= 1− r, 2− r, . . . ,−1. To settle the

cases α = 1− r, 2− r, . . . ,−1 we shall relate them to the case α = 0. Note that
the value α = 0 is acceptable for the hypotheses of Theorem 6.3.

Theorem 6.5. Let r ∈ N, r ≥ 2, m = 1, 2, . . . , r − 1, 1 ≤ p ≤ ∞ and f ∈
Lp(χ−m−1/p)(0,∞). Then

Kr
−m−1/p(f, t

r)p ∼ Kr
−1/p(χ

−mf, tr)p. (6.4)
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Proof. Set F = χ−mf . For any G ∈ ACr−1
loc (0,∞) such that G,χrG(r) ∈

Lp(χ−1/p)(0,∞) we set g = χmG. From the Leibniz rule and Corollary 4.2
with i = 1 and γ = −1/p we get

‖χ−m−1/p+rg(r)‖p(0,∞) = ‖χ−m−1/p+r(χmG)(r)‖p(0,∞)

≤
r∑

j=r−m

(
r

j

)
m!

(m+ j − r)!
‖χ−1/p+jG(j)‖p(0,∞)

≤ c ‖χ−1/p+rG(r)‖p(0,∞).

And since trivially

‖χ−m−1/p(f − g)‖p(0,∞) = ‖χ−1/p(F −G)‖p(0,∞), (6.5)

we get by standard K-functional arguments

Kr
−m−1/p(f, t

r)p ≤ cKr
−1/p(F, t

r)p.

The converse inequality

Kr
−1/p(F, t

r)p ≤ cKr
−m−1/p(f, t

r)p

will follow from (6.5) and

‖χ−1/p+rG(r)‖p(0,∞) ≤ c ‖χ−m−1/p+rg(r)‖p(0,∞), G = χ−mg, (6.6)

valid for any g ∈ ACr−1
loc (0,∞) such that g, χrg(r) ∈ Lp(χ−m−1/p)(0,∞). By

the Leibniz rule we have

G(r)(x) =
r∑

j=0

(−1)r−j

(
r

j

)
(m+ r − j − 1)!

(m− 1)!
x−m−r+jg(j)(x). (6.7)

If m < r−1 then we observe that Corollary 4.2 with i = m+1 and γ = −m−1/p
implies for j = m+ 1, . . . , r − 1

‖χ−m−1/p+jg(j)‖p(0,∞) ≤ c ‖χ−m−1/p+rg(r)‖p(0,∞). (6.8)

We shall show that∥∥∥∥χ−m−1/p
m∑

j=0

(−1)r−j

(
r

j

)
(m+ r − j − 1)!χjg(j)

∥∥∥∥
p(0,∞)

≤ c ‖χ1−1/pg(m+1)‖p(0,∞). (6.9)

Then (6.7) – (6.9) imply (6.6) as (6.8) is not necessary in case m = r− 1. So it
remains to prove (6.9).

First, putting g(x) = xm in (6.7), we get

0 ≡
m∑

j=0

(−1)r−j

(
r

j

)
(m+ r − j − 1)!

(m− 1)!
x−m−r+j m!

(m− j)!
xm−j

22



and hence
m∑

j=0

(−1)r−j

(
r

j

)
(m+ r − j − 1)!

(m− j)!
= 0. (6.10)

Next, we expand g(j), j = 0, 1, . . . ,m, by the Taylor expansion at the point
u > 0 up to the derivative of order m+ 1 and after rearranging the summands
according to the order of the derivatives, we get

m∑
j=0

(−1)r−j

(
r

j

)
(m+ r − j − 1)!xjg(j)(x)

=
m∑

`=0

∑̀
j=0

(−1)r−j

(
r

j

)
(m+ r − j − 1)!

(`− j)!
xj (x− u)`−j

 g(`)(u)

+
m∑

j=0

(−1)r−j

(
r

j

)
(m+ r − j − 1)!

(m− j)!
xj

∫ x

u

(x− y)m−jg(m+1)(y) dy.

Now, taking into consideration (6.10), we get
m∑

j=0

(−1)r−j

(
r

j

)
(m+ r − j − 1)!xjg(j)(x)

=
m−1∑
`=0

∑̀
j=0

(−1)r−j

(
r

j

)
(m+ r − j − 1)!

(`− j)!
xj (x− u)`−j

 g(`)(u)

+

[
m∑

k=1

(−1)kµr,m,kx
m−kuk−1

]
u g(m)(u)

+
m∑

k=1

(−1)kµr,m,k x
m−k

∫ x

u

ykg(m+1)(y) dy, (6.11)

where for k = 1, 2, . . . ,m we have put

µr,m,k =
m−k∑
j=0

(−1)r−j

(
r

j

)
(m+ r − j − 1)!

(m− j)!

(
m− j

k

)

= (−1)r

(
m− 1
m− k

)
(r + k − 1)!

k!
.

In order to get a simpler representation than (6.11), we shall take the limit
u → 0 + 0. Before that we emphasize on three facts. It was established in
Corollary 4.2 d) that

lim
u→0+0

g(`)(u) = 0, ` = 0, 1, . . . ,m− 1. (6.12)

Since
u g(m)(u) = u g(m)(1) + u

∫ u

1

g(m+1)(y) dy
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and Hölder’s inequality gives∣∣∣∣u ∫ u

1

g(m+1)(y) dy
∣∣∣∣ ≤ u| log u|1−1/p‖χ1−1/pg(m+1)‖p(0,∞)

we get
lim

u→0+0
u g(m)(u) = 0. (6.13)

From χ1−1/pg(m+1) ∈ Lp[0, 1] and χ1/p ∈ L∞[0, 1] we get

χ g(m+1) ∈ L1[0, 1]. (6.14)

Now, taking the limit u→ 0+0 in (6.11) (for an arbitrary fixed positive x) and
having in mind (6.12) – (6.14), we get the representation

m∑
j=0

(−1)r−j

(
r

j

)
(m+ r − j − 1)!xjg(j)(x)

=
m∑

k=1

(−1)kµr,m,k x
m−k

∫ x

0

ykg(m+1)(y) dy.

Finally, Hardy’s inequality applied to the right-hand side of the above formula
implies (6.9). This completes the proof of the theorem.

Combining the results from Theorems 6.1, 6.3, 6.5 and 5.1 we get

Theorem 6.6. Let r ∈ N, α ∈ R, 1 ≤ p ≤ ∞, 0 < t ≤ t0 and f ∈
Lp(χα−1/p)(0,∞).

a) If α 6= 1− r, 2− r, . . . ,−1, 0, then

Kr
α−1/p(f, t

r)p ∼ Kr
α(f ◦ E, tr)p ∼ ωr(f ◦ E, t)p(Eα)(R).

b) If α = 1− r, 2− r, . . . ,−1, 0, then

Kr
α−1/p(f, t

r)p ∼ ωr((χαf) ◦ E, t)p(R) + tr−1ω1((χαf) ◦ E, t)p(R).

Remark 6.7. The second term in the relation in b) cannot be dropped or
replaced by a modulus of different order of the same function as it was shown
in Remark 1.3.

Remark 6.8. Although

Kr
α−1/p(f, t

r)p ≤ c ωr(f ◦ E, t)p(Eα)(R)

in the cases α = 1− r, 2− r, . . . ,−1 as well, the converse inequality is not valid
for these values of α. For the sake of simplicity we shall consider only the case
p = ∞. Let α = −m, where m ∈ {1, 2, . . . , r−1}. Then for fm(x) = xm we have
fm ∈ C(χ−m)(0,∞), Kr

−m−1/p(fm, t
r)∞ ≡ 0 while ωr(fm ◦ E, t)∞(E−m)(R) =

(etm − 1)r 6= 0.
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7 A characterization of Kr
α(F, tr)p by the classical

moduli of smoothness

Again first we shall establish the upper estimate.

Theorem 7.1. Let r ∈ R, α ∈ R and 1 ≤ p ≤ ∞. Then for F ∈ Lp(Eα)(R)
and 0 < t ≤ t0 we have

Kr
α(F, tr)p ≤ c

(
Kr

0(E
αF, t)p + tr ‖EαF‖p(R)

)
.

Proof. Let g ∈W r
p (R) be arbitrary. Then the Leibniz rule gives

(e−αxg(x))(r) =
r∑

i=0

(
r

i

)
(−α)r−ie−αxg(i)(x) (7.1)

and hence for G = E−αg using Proposition 4.4 with α = 0 we get

‖EαG(r)‖p(R) ≤
r∑

i=0

(
r

i

)
|α|r−i‖g(i)‖p(R)

≤ c
(
‖g‖p(R) + ‖g(r)‖p(R)

)
≤ c

(
‖EαF − g‖(R) + ‖g(r)‖p(R) + ‖EαF‖p(R)

)
.

Since also ‖Eα(F − G)‖p(R) = ‖EαF − g‖p(R) the standard K-functional argu-
ments prove the theorem.

The lower estimate is given in the next theorem.

Theorem 7.2. Let r ∈ N, α 6= 0 and 1 ≤ p ≤ ∞. Then for F ∈ Lp(Eα)(R),
0 < t ≤ t0 and j = 0, 1, . . . , r there holds

tr−j K
j
0(E

αF, tj)p ≤ cKr
α(F, tr)p,

where we have set K0
0(f, 1)p(R) = ‖f‖p(R).

Proof. Let G ∈ ACr−1
loc (R) such that G,G(r) ∈ Lp(Eα)(R) be arbitrary. From

(7.1) with α and j instead of −α and r and Corollary 4.5 we get

‖(EαG)(j)‖p(R) ≤
j∑

i=0

(
j

i

)
|α|j−i‖EαG(i)‖p(R) ≤ c ‖EαG(r)‖p(R).

Hence

tr−j K
j
0(E

αF, tj)p ≤ tr−j ‖EαF − EαG‖p(R) + tr‖(EαG)(j)‖p(R)

≤ c
(
‖Eα(F −G)‖p(R) + tr‖EαG(r)‖p(R)

)
,

which proves the theorem by taking infimum on G.
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Now, Theorems 7.1, 7.2 and 5.1 with α = 0 give the characterization

Theorem 7.3. Let r ∈ N, α 6= 0 and 1 ≤ p ≤ ∞. Then for F ∈ Lp(Eα)(R)
and 0 < t ≤ t0 we have

Kr
α(F, tr)p ∼ ωr(EαF, t)p(R) + tr ‖EαF‖p(R).

Remark 7.4. The additional term in the characterization above cannot be
dropped or replaced by a modulus of smoothness of the function EαF as we
observed in Remark 1.3.

The last theorem implies the following relation between K-functionals of the
class Kr

α(F, tr)p, α 6= 0.

Corollary 7.5. Let r ∈ N, α1, α2 6= 0 and 1 ≤ p ≤ ∞. Then for F ∈
Lp(Eα1)(R) and 0 < t ≤ t0 we have

Kr
α1

(F, tr)p ∼ Kr
α2

(Eα1−α2F, tr)p.

Remark 7.6. Consider the space

C(χγ)[0,∞) = {f : χγf ∈ C(0,∞), ∃ lim
x→0+0

χγf}.

For functions f ∈ C(χγ)[0,∞) we may define a slightly different functional than
(1.5) imposing the additional restriction g ∈ C(χγ)[0,∞) on the functions g on
which the infimum is taken. Let us denote this K-functional by

K(f, tr;C(χγ)[0,∞), ACr−1
loc , ϕrDr).

Theorem 1.2 with p = ∞ holds for this K-functional too. This fact follows from
the equivalence

K(f, tr;C(χγ)(0,∞), ACr−1
loc , ϕrDr) ≤ K(f, tr;C(χγ)[0,∞), ACr−1

loc , ϕrDr)

≤ cK(f, tr;C(χγ)(0,∞), ACr−1
loc , ϕrDr),

valid for r ∈ N, γ ∈ R and f ∈ C(χγ)[0,∞). The first inequality is obvious –
an infimum on a more narrow class is taken in the second K-functional. The
second inequality follows by a careful examination of the proofs of Theorems
2.1.1 and 6.1.1 in [3] – the functions Gt there belong to C(χγ)[0,∞) if f does.

The same observations are true if we require χγf to have limit at ∞ or to
have limits at 0 and at ∞.
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