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Abstract
We present a characterization of the approximation errors of the Post-
Widder and the Gamma operators in L,(0,00), 1 < p < oo, with a weight
27 for any real v. Two types of characteristics are used — weighted K-
functionals of the approximated function itself and the classical fixed step
moduli of smoothness taken on a simple modification of it.
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1 Introduction

The Post-Widder operator is given by

P(f,x) = F(ls)/ooo f (%) efvvsti—v, (1.1)

where f is a measurable function defined on (0,00), T' denotes as usual the

Gamma function and s is a positive real parameter. This operator for integer s

is actually the Post-Widder real inversion formula for the Laplace transform.
The Gamma operator, introduced by A. Lupas and M. Miiller [9], is given

by
1 xS\ _y g QU
Gs<f~’”>:m/0 F5) et (1.2)

The two operators are closely related. If for real o we denote the power

function by x*(z) = z for > 0 and set 7,(u) = 1y, then

Gs(f,2) = Poa(fox™! oo, X7 (@), (1.3)

Both operators have a simple action on the power functions. Direct application
of the definition of the Gamma function gives

_sT(s+1—-a)

o) oo = S

PS(XQ): SQF(S) X

x<. (1.4)



These formulae show that the two operators preserve the functions x°(z) = 1
and x!(z) = z.

Both operators were extensively studied. Here we only discuss results on
characterizing their rate of convergence in terms of proper K-functionals. In
view of (1.3) all results formulated below for one of the operators can easily be
proved for the other too.

ForreN;1<p<oo,veR, D= % and ¢ = x we consider the weighted
K-functionals:

KI(fit")p = K (175 Ly(xX7)(0,00), AC[ ., 0" D)
=inf {|xX(f =)l + X" D gl : g € AC;,.1(0,00)},  (1.5)

defined for every f € m._1+L,(x”)(0,00) and ¢ > 0. By 7 we denote the space
of all algebraic polynomials of degree k. AClkoc(a,b) =1{g9 : g9.9,...,9% ¢
ACla,b] Ya < @ < b < b} and AC[a,b] is the set of the absolutely continuous
functions on [a, b]. Above and in what follows L., (x”)(0,0) can be replaced by
the spaces C(x7)(0,00) = {f : x7f € C(0,00)}, where C(a,b) is the space of
all continuous functions bounded on (a,b). When in (1.5) g € AC]." is such
that either f — g ¢ L,(x7) or D"g ¢ L,(x"¢") we assume that ||[x7(f — g)|l, +
t"l[x7¢" D gllp = +o0.

Note that the weight in the second term in the right-hand side of (1.5) is
X", We use two notations (¢ and x) for one and the same function in order to
underline the different role of the two multipliers in the discussions in Sections
2 and 3.

The direct theorem for the approximation error of the Gamma operator in
L,, 1 <p < oo, without weights is proved by Totik [12]:

If = Go(Pllp < cK3(f: 57Ny

In the same article [12] a weak converse theorem of the form

K§(f s )p <es™ <Z 1f = Gr(Hllp + ||f|p>
k=2

is obtained. Here and in the sequel we denote by ¢ positive numbers independent
of the functions f, the parameter ¢ below and the parameter s of the operators.
The numbers ¢ may differ at each occurrence.

The book of Ditzian and Totik [3] extends the above direct result to weights
equivalent to w(z) = 27 (1 4+ x)7>~ with arbitrary real exponents 7o, ¥oo. The
converse result for the same weights is given as a statement for the equivalent
rates of convergence in terms of weighted Ditzian-Totik moduli.

The question for the validity of strong converse theorems (in the terminology
of [2]) complementing the direct estimates remained open for a while. In 2002
Sangiiesa [11] proved the strong converse theorem of type A for v = 0, p = oo,
namely

K§(f,5 oo S ellf = Po(f)llco-



As far as we know this is the only strong converse theorem of type A for the
Post-Widder or the Gamma operators proved by now. As for strong converse
theorems of type B, two results have recently been published. In [7] Guo, Liu,
Qi and Zhang proved that for v = 0 and 1 < p < oo there is a constant m > 1
such that

E§(fon )y < c(lf = GalDllp + 1f = Gan () -

The other result is a similar strong converse theorem of type B, proved by Qi
and Guo in [10] for —2 <y < 0 and p = cc.

One of the main results of this article is a strong converse theorem of type
A for the Post-Widder and the Gamma operator for v € R and 1 < p < oo.

Theorem 1.1. There are positive numbers N, M such that for every v € R,
s>N(*+1),1<p<ooand f €m + Ly(x")(0,00) we have

0= Rl < (240 K2 07, (1.6)
and
K2(f, (45) ), < (n VLI Vs 1) WU - B )
o ’ p = \/g s S p
with

_21-4V2
8 —-2V2

The same inequalities are true if Py is replaced by G.

= 2.966824...

Inequalities like (1.6) are well-known. For example, they are proved in [12]
and [3], but with bigger constants. The inverse inequality (1.7) seems to be new
(except v =0, p = 00). It comes with a very small constant k. Thus, the ratio
IX(f = Ps(/)lp /K2(f, (45)~"), is bounded between two numbers with ratio
less than 6 when s is big enough!

Theorem 1.1 remains true (up to the value of the constants) if the weight
X7 is replaced by any equivalent on (0, 00) weight.

The K-functional (1.5) is characterized in [3, Chapter 6] by the weighted
Ditzian-Totik moduli of smoothness. But it turns out that K7(f,t"), has a
simple characterization in terms of the classical (unweighted fixed-step) moduli
of smoothness wy,(F,t),®). Following the ideas of [5] we obtain

Theorem 1.2. Letr € N, a € R, 1 < p < o0, 0 <t < tg and f €
Ly(x*~/7)(0,00).

a) Ifa#1—r,2—r,...,—1,0, then

Koy (£t )p ~ wr((X* ) 0 &, ) pmy + 17 [[(XV ) 0 Ellp(r)-



b) Ifa=1—r2—r,...,—1,0, then
t (ot )~ wr(XF) 0 &, 8)pmy + 17 T (X F) 0 &, 1) p(w)-

By &€ and £ we denote the exponential function and its powers, i.e. &(z) =
e*, &% x) = e*,a € R. By U(f,t) ~ O(f,t) we mean that there exists ¢ such
that c=1O(f,t) < U(f,t) < cO(f,t) for all f and ¢ under consideration.

The assertions of Theorem 1.2 follow from Theorems 6.6 and 7.3 proved
below. Let us mention that Theorem 6.6 improves the result of [4, Theorem 1
with 6 = &].

Remark 1.3. The characterization of K;q/p(f: t"), splits into two types,

which cannot be unified. Indeed, let ¥ € C"(R), v» # 0, be with a finite
support. Set F,(z) = ¢ (n~'z), n € N. Then wy(Fy,t),m®) ~ n~k+1/P ¢k and

wr(Frw t)p(]R) + tr_kwk(an t)p(R) ~ n_k+1/ptrv k=0,1,...,m

where wo(F,t),r) means [|F||,r). Hence, any two of the above quantities are
not equivalent with constants independent of n and ¢ € (0, 1]. See also Corollary
5.3.

From Theorem 1.1 and Theorem 1.2 we immediately get

Theorem 1.4. Let y € R, 1 < p < oo, f € Ly(x?)(0,00) and s > N(v* + 1),
where N is from Theorem 1.1.

CL) If’y 7& -1- 1/p7 _1/p7 then

IXT(f = Ps(FNlp0,00) ~ IIX7(f = Gs(f)llp(0,00)
~ WZ((X’YJrl/pf) © 83 Sil/z)p(R) + 571 ||(X’y+1/pf) © 8||p(R)-

b) If y=—-1—1/p,—1/p, then

||X’Y(f - PS(f))Hp(O,OO) ~ ”X’Y(f - GS(f))Hp(O,OO)
~wa(XTTPf) 0 €, 57Y2) iy + 5T 20 (TP ) 0 €, 571%) w).

In particular, for the case v = 0, p = co we obtain

1 = Ps(f)lloo(o,00) ~ w2(f 0 €57 2) omy + s 2wi(f o & 572wy

Remark 1.5. If f € my+L,(x")(0,00) as in Theorem 1.1, then in the character-
ization of the errors above f is to be replaced by fo such that fo € L,(x”)(0, c0)
and f - fO € my.

The results of this paper have been announced in [6].

The paper is organized as follows. Section 2 contains the inequalities on
which the proof of Theorem 1.1 is based. In Section 3 we give the proof of
this theorem. Next, Section 4 is devoted to imbedding inequalities needed in



the proof of the characterization of the K-functional K7(f,t"), by the classical
moduli of smoothness. In Section 5 we give several auxiliary results on K-
functionals. The proof of Theorem 1.2 naturally splits into two parts. In Section
6 we characterize K!(f,t"), by K-functionals on the real line with exponential
weights taken on a modification of the function. In Section 7 we proceed further
to estimate this weighted K-functionals by the classical moduli of smoothness
by modifying the function again.

2 Inequalities for the Post-Widder operator

For 8 € R and s > max{0, 5} we set

k1(B,s) = T

gi—1 oo ruls /o 2j-3 dy dv
; =5 — -1 P eyt — j=2,3,4;
55(6:9) <2j—3>!r<s>/o / (y ) TR

Sﬁfl 0o - v
A1(8,5) :m/o |(v—s5—1)*—s—1le""v* 57-
5,871 0o B v
0.0 =Fg [ 082 g
A dv
Xs(B5) = F(s)/o v s — 202,

The quantities x;(8,s), A;(5,s) will be used in the inequalities established
in Propositions 2.4 — 2.9. It is important for us that they remain bounded by
absolute constants for # € R and s > 3% + 8.

Note that the signs of (7 — 1)2773 and (% —1) in the definition of x; coincide
for every y from the integration range. Hence, the inner integral is always a non-
negative number. This fact will be used in Propositions 2.5 and 2.6.

Lemma 2.1. For § € R and s > max{0, 8} we have

1(8,8) 1= BB + Dra(B, 957 (2.1
w0 - = |0+ 00+ - 2| e
(o) = = |+ 06+ 5pa(.s) - LB - B o)

Proof. Applying twice integration by parts we get for j > 2

[ (G- 1)2j_3y—ﬁdy _G=DP? (B2 - (- )
1 \y y 2j — 2 (27 —2)(2j — 1)

B+2-2B+2 -1 [*(z N7" _sdy

' [G) oy

@i -2 1) y ! y




When we plug this formula with z = v/s in the definition of x; we get

si—t , (B+2j —2)si1t ,
k;(8,s) = WT(QJ —2,8) — (2j — 1;! T(25—1,9)
+ (/B + 2.] - Q)S(ﬂ + 2.7 - 1) H/j_;,_l(ﬂ,s), (24)
where -
T(m,s) =3 (=1)m+(" 1+2). (2.5)
S (L ()

As usual the product is 1 for an upper bound, which is smaller than the lower
bound. Direct calculations show that formulae (2.4) — (2.5) remain true for
j = 1. From (2.5) we get
T(0,s) =1, T(1,8) =0, T(2,8) =5, T(3,s) =252,
T(4,8) =3s2(1+2s71), T(5,5) =4s 3(5+ 657 1).
Now, applying (2.4) with j = 1,2 and 3 we complete the proof. O

Lemma 2.2. There exists an absolute constant M, such that for every s > (3248
and B € R we have

2

ma(8.9) 1) < a2 (2.6)
2

”2(5,5);' SMllJ;ﬁ ; (2.7)
2

Kg(ﬁ,s) — é’ < M1 1 —:6 . (28)

Proof. In view of Lemma 2.1 it is enough to prove the existence of a constant
M such that

0<kj(B,s) <My Vj=1,234 BeR, s>p3>+8. (2.9)

First, we shall prove (2.9) for j = 1, which, in turn, will be used when
establishing (2.9) for the other j’s. Note that (2.1) implies 0 < k1(3,s) < 1 for
-1 < B8<0,ki(-1,8) = k1(0,8) =1 and 1 < k1(B,s) for B < —1 or 0 < 3.
For 8 < 0 using

MWJ)Gﬂjl>“@ﬂtm>ﬁﬂwgéﬂ—m)

with m = [—f] and m = [—f] + 1 we get

(—6] .\ —1
1 B +1
1_S§1_W§,€1(5,3)H(1—5j1) <1 (2.10)



Now the last inequality in (2.10) implies
(5]

s)< [ (1 4+ =0
i=1

which verifies (2.9) for j =1 and 8 < 0. For § > 0 using

N

- Z) < X (AT < BT < /e

with m =[] and m = [3] + 1 we get

18 .
11§15[ﬂ]§nl(,@,s)n(lﬁz)§l. (2.11)

. S
1=0

[

Having in mind that ﬁ < ﬁ2+8 < 5 we see as in the first case that the last
inequality in (2.11) 1mphes (2 9) for j=1and 8 > 0.
In order to prove (2.9) for j =2, 3 and 4 we estimate from above the inner

integral in the definition of x;(3,s). For j > 1 we have

v/s v 2j—-1 d v/s 2j—1 .
_gay v - _3_
—~ 1 Brd _ (, _ ) B=2j 4
/1 <sy ) Y Y /1 § Y Y Y

v/s 2j—1 _ ) 2j ) _
< [T ()" e = L () e
1 j \s

Hence

v/s 2j-1 d d

_gay _, sav

) _ — 1 B —v,s 7
K‘J*‘rl(ﬁ?‘s) (2] 7 1 'F 5) / / < ) ) y € v v

< ‘sJ /00 (’U 1)2j 14 o B—2j ﬁ+2j] 7vvsdv
GG Jo \s z

sd ® 2j git8 0 S\% _, . gdv
~ame ), G- v g, (0) e
- (2])3—1)(2,3) If(fsf .

si+HB+25 2 w27\ 57T (s — B — 27+ k)
g Y () ()

- jo(‘”k (7) kljo (1+3)

$T(s = B) s¥T(s = B-2)) 8 < w(2\T7(, B+2% i
e een ey (k)U(l )




Therefore

sPT(s — B) s¥T(s — B — 25
I'(s) I'(s—p)

) (B}

Direct calculations for j = 1,2, 3 give

(29)'k+1(8,s) < T5(0,s) + )Tj(ﬁ +24,8), (2.12)

where

Ty(b,s) =1+bb—1)s!

Ta(b,s) =3 +2(3—Tb+3b%)s™ + (—Gb + 116 — 6b® + b*)s™2;

Ts(b,5) = 15 4 5(26 — 33b + 9b?)s " + (120 — 404b 4 3756 — 130b® + 15b*)s 72
+ (—120b + 274b* — 2256% + 85b* — 156° + b°)s ™3

and in particular

T1(0,8) =1; Ty(0,8) =34 65" T3(0,s) = 15+ 1305~ + 1205 2.

Substituting in (2.12) the above values of T;(b,s) with b = 0 and b = § + 27,
using (2.9) with j = 1 and the inequality

2T (s — B —29) <l B+i\ "
_ 1-— < M.
I(s — ) 131 ( s ) -
valid for @ < ‘QIS < %, we prove (2.9) for j = 2, 3, 4 and complete the
proof of the lemma. O

Remark 2.3. Note that the lower and upper estimates in (2.10) and (2.11)
imply directly (2.6).

Proposition 2.4. For every f € L,(x7)(0,00), 1 <p < o0, and s > max{0, v+
p~ 1} we have

X" Ps(F)llp < w1(y + 271 )X Fllp, (2.13)
where k1(B, s) is estimated in (2.6) for s > 3% + 8.

Proof. From (1.1) we get

n =i (G )



Applying the generalized Minkowski inequality in this representation we get

([ wrinre)
<§Z>/Ow{/ow‘(?)ﬁf(?)l
= FS(Z)/OOO {/OOO \yﬁf(y)|pcjj!}pe‘"vs—ﬁ‘i’

— m(8,5) {/W |yﬂf<y>\piy}'i .

1
R —y)
X v

Putting 3 = v+ p~! in the above inequality we prove (2.13). O

Proposition 2.5. For every g such that ¢*D?g € L,(x7)(0,00), 1 < p < oo,
and s > max{0,v + p~1} we have

X" (Ps(g) = 9) llp < 57 'ka(v + 071, 9)IX0° D?gll, (2.14)

where k2(B3, s) is estimated in (2.7) for s > (5% + 8.

Proof. Applying P to the Taylor expansion of g

o) = 9(0) + (v —2)g (@) + | (g — u)g"(w) du

xT

we get in view of (1.4)

Pu(gvs) = 9(0) = 15 | N / M ) g duer d—

and hence

1 [y _ dy _, . dv
2| Py(g,2) — g(x)] < @/0 /1 (sy_1>y ﬁ(xy)ﬁ+2|g”(a:y)|?e vt

Now we apply the arguments from the proof of Proposition 2.4 in order to get
(2.14). O

Proposition 2.6. For every g such that *D*g € L,(x7)(0,00), 1 < p < o0,
and s > max{0,vy + p~*} we have

where k3(B3,s) is estimated in (2.8) for s > (2 + 8.

1 1.
X7 <P5(9)923 1<P2D29*§5 2903D39>

p
< s Zrs(y+p L s) X ¢ Dlgllp,  (2.15)



Proof. Applying P to the Taylor expansion of g

(y — x)Qg”(x) + (y — x)gg///(x)

we get as in the proof of Proposition 2.5

1 _
o 35 2 @Dg()

2
1 /00/”/3<v )3 By Bed) dy _, ,dv
< — ——1) y (xy Dg(xy)| — e “v° —.
@ S b s (o) IR Gl et

Now we apply the arguments from the proof of Proposition 2.4 in order to get
(2.15). O

Py(g.x) - g(z) — 2512 (@) D%g(x) -

Proposition 2.7. For every f € L,(x?)(0,00), 1 < p < 00, and s > max{0,y+
p~1} we have

IX"¢* D2 Ps(f)llp < sha(y +p~ 1 )X flp- (2.16)
There is an absolute constant My such that
M(B,8) < V2 + My(1+p%)s™? (2.17)
for every B € R,s > 32 + 8.

Proof. Substituting v = su/z in (1.1) we get

1 > d
Pfa) =5 | e s ura S

Differentiating the above expression twice with respect to x and making the
inverse substitution u = zv/s we arrive at

D?P,(f,z) = I;f(_;)/ooof (%) [(v—5-1)>—5—1] e‘”vsci—v.

Hence

272D Py(f, )]

S

Now we apply the arguments from the proof of Proposition 2.4 in order to
get (2.16). The estimate of A\; uses standard arguments — the Cauchy-Schwarz

10



inequality. We have
s (s) M (B, 5)

o 1/2 00 1/2
< {/ (v—s— 1)2—8—1)26_%3_[3%} {/ e_”vs_ﬂdv}
0 v 0 v

={T(s=0+4)—4(s+1)I(s—0+3)+2(s+1)(Bs+2)T'(s — 5+ 2)
—4s(s +1)°T(s — B+ 1) + s%(s + 1)°T(s — B)}/2I(s — B)*/2.

Hence
’ — — _ 2 _ 1/2
Mi(B.s) < ° FF(‘ES) A) {2 ;2 +45$(5 b, B 1)(52 6+2)}
<V2+ My(1+3%)s .
This proves (2.17). -

Proposition 2.8. For every g such that >D?g € L,(x7)(0,00), 1 < p < o0,
and s > max{0,vy + p~1} we have

IX"¢*D*Py(g)llp < sha(y +p7" 5)lIX7¢* D]l (2.18)
There is an absolute constant Ms such that
Aa(B3,8) < V2 + Ms(1+ 3%)s™? (2.19)
for every B €R,s > 32 +38.

Proof. Differentiating (1.1) twice with respect to x, substituting v = su/x in
the right-hand side integral, differentiating the resulting expression twice with
respect to z and making the inverse substitution u = zv/s we arrive at

D4Ps(g,x) = {f(:)/ooo (ﬁ)2D2g (%) [(Ufsf?))z 7873] 67vvsd£'

S v

Hence
2?4\ D*Py(g, )|

sP o run B2 , (Tv , y Sﬁﬁdv
Sr(s)/o (?) ‘Dg(?>‘|(”*3*3) —s—3e v =

Now we apply the arguments from the proof of Proposition 2.4 in order to get
(2.18). As in the proof of Proposition 2.7 we estimate Ay by

1/2
M(B.5) < & Fr(ﬁs; 3) {2 18+ 42(& +3) 36485+ 3)5(52 135+ 14)}
<V2+ Ms(1+%)s 1.

This proves (2.19). O

11



Proposition 2.9. For every g such that >D?g € L,(x7)(0,00), 1 < p < o0,
and s > max{0,vy + p~*} we have

IX"0*D*Py(g)]lp < Vsra(y +p7", 8) X9 D], (2.20)
There is an absolute constant Mg such that
A3(B,8) <14 Mg(14 3?)s™! (2.21)

for every B € R,s > 32 + 8.

Proof. Differentiating (1.1) twice with respect to x, substituting v = su/x in
the right-hand side integral, differentiating the resulting expression once with
respect to 2 and making the inverse substitution v = zv/s we arrive at

-3

D3Py(g,7) = % /000 (%)QDQQ (a:?v) [v—s—2] e_”vsci—v.

Hence

8 ° B+2 d

S v v —» s_gdv

xﬁ“\DSPs(g,xns@/ (52) P2 (2) o= s = 2ot
0

Now we apply the arguments from the proof of Proposition 2.4 in order to get
(2.20). As in the proof of Proposition 2.7 we estimate A3 by

As(B,8) < s — ) {1+52+3ﬂ+4

T'(s) s

This proves (2.21). O

1/2
} <14 Mg(14 3%)s™ 1

Remark 2.10. The constant 1 in (2.13) of Proposition 2.4 is exact for p = oo
as the example of fy(x) = 277 shows. The same example can be used to show
that the constants k9 in (2.14) of Proposition 2.5 and k3 in (2.15) of Proposition
2.6 are exact for p = co when vy # 0, —1 and v # 0, —1, —2, —3 respectively. For
the exceptional values of v an additional logarithmic factor has to be introduced
in the definition of the extremal function f;. The constants are also exact for
1 < p < oco. This can be seen if we multiply the extremal functions for p = oo
with the characteristic function of the interval [¢,e~!] and let € — 0+

Remark 2.11. The constants A; in (2.16), (2.18) and (2.20) are not exact.

Remark 2.12. If the Post-Widder operator P, is replaced by the Gamma
operator G, then the results of this section remain true with slight changes.
The necessary modifications are:

a) In Propositions 2.4 and 2.5 the restriction on s is s > max{0, —y—p~1—1}
and x;(y+p~!,s) are replaced by r;j(—y —p~' —1,s), i =1,2.

12



b) In Proposition 2.6 the restriction on s is s > max{2, —y —p~! — 1} and
estimate (2.15) changes to

X' | Gs(g) —g — #*D% 20D’
* 2(s=1) 3(s—1(s—2) /],
Rs(y+p~',s
A
where

st o ru/s /oy 3 dy dv
= = ~ 1 B+3%Y —wv 3—27.
s =g [ (5 71) e

R3(0, s) satisfies (2.8) as k3 does.

c¢) In Proposition 2.7 the restriction on s is s > max{0,—y — p~* — 1} and
A (v +p~t, s) is replaced by A\ (—y —p~t —1,5).
d) In Proposition 2.8 the restriction on s is s > max{0, —y —p~' — 1} and
Xo(y +p~L,s) is replaced by Ao(—vy — p~! —1,s), where
sP=1

I'(s)

oy

A2(B, 8) = / (v—s+1)?—s+1le“v
0

X2(3, 5) satisfies (2.19) as Ay does.

e) In Proposition 2.9 the restriction on s is s > max{0, —y —p~' — 1} and
A3(v +p~1, ) is replaced by A3(—y — p~! — 1, 5), where

< sPTz [0 v s QU
As(0,s) == F(s)/o |lv—s+1le v 57.

A3(f3, 5) satisfies (2.21) as A3 does.

3 A characterization of the Post-Widder opera-
tor error

Now we are ready to prove Theorem 1.1.

Proof. Both sides of (1.6) and (1.7) do not change if we subtract a linear function
from f. So we may assume that f € L,(x7)(0,00).

For every g € AC}. (0, 00) such that g, 9>D?g € L,(x7)(0,00) we have from
Propositions 2.4 and 2.5

IX"(Psf = Dllp < IX"Ps(f = Dllp + IX"(Psg — Dl + IX(f = Dllp
< (k1 + DIX(f = 9)llp + s~ r2llX 0> D?gllp
< max{r1 + 1,4k H|[X" (f — 9)|lp + (45) " {|x"¢*D?gl| }-
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(The arguments v + p~*

infimum on g we get

and s of kj,\; are omitted in the proof.) Taking

RS = Dl < maxto + 1 awa) 6, (£45)
P
which, in view of (2.6), (2.7), proves (1.6).

In order to prove (1.7) for a given f € L,(x?)(0,00) we set g = P2f. Then
©*D*g € L,(x)(0,00) in view of Propositions 2.7 and 2.8 (with g = Psf) and
hence we can apply Proposition 2.6. A consecutive application of Propositions
2.6, 2.8 and 2.7 gives

‘ ! (pgf -P2f - 2—15302D2P82f - 3irchSD?’Pff) ,

< e DRl < B2y P

< By pRpRp, 4 22 DR 1 - P,

< %&HXWQDZPfpr +rsda A X7 (f = Paf)lp- (3.1)

Using Propositions 2.9 and 2.7 we obtain
I @*D*P2f|l, < 5" Xslx70* D P f |l
< VPNl TP D P fllp + 512 s X D2 Pa(f = Paf)llp
< PNl P DPPE fllp + 82X X (f = Pof) - (3.2)

From (3.1), Proposition 2.4 and (3.2) we obtain

1
g||x7¢2D2P3pr
1

<
_‘ 2s

1
(P21 = P2 = DR - DO )

p
1
+IIXTPI(Pf = Fllp + @llx'yw?’D?’Pfpr

K3 A
< fshe

X7 D2 P2 f||,, + 3 A A2||XY (f — Ps f)llp

A3 A1 A3
SR ~ Pl g WD + S (7~ Pop)l,

S

Hence

/Q% + K3A1 Ao + 1/3/\1/\33_1/

2
9 _ 4%3)\2 _ 4/3)\38_1/2 ||X’Y(f - PSf)”P (33)

1
LID P, <
provided that 2 — 4k3zAo — 4/3)\35_1/2 > 0. This inequality is valid for s >
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N(42 + 1) if we take into account (2.8), (2.19) and (2.21). Therefore
1 1
K (£.35) <G = P2l + 0D P2,
p

KJ% + K3A1 Ao + 1/3)\1)\3871/2
2— 4&3/\2 — 4/3/\33_1/2

<(1+m+ N

In view of the estimates of x; and A; this inequality proves (1.7) and completes
the proof of Theorem 1.1 for the Post-Widder operator Ps. The proof for the
Gamma operator G4 is the same as we take into account Remark 2.12. O

In the proof of Theorem 1.1 (see (3.3) above) we have established the fol-
lowing statement which is of importance in itself.

Proposition 3.1. There are positive numbers N, M such that for every v € R,
s>N(?*+1),1<p<ooand f €m + Ly(x")(0,0) we have

— tM—+M
8§-2v2 s

Remark 3.2. The proof of the theorem follows an idea from [2]. The inequality
rsAo < 3 (here 1 is the coefficient in front of s~'¢?D?g in the left-hand side of
(2.15)) is crucial. The fact that the power —2 of s in front of ¢3D3g in (2.15)
is less than —% is also of high importance. The values of the constants in the

remaining propositions of Section 2 are not essential in this proof.
Remark 3.3. From Proposition 2.4, (3.3) and (1.6) we get

5 1 v +1
S

Lheenril, < )1 =Pl

1
X7 (f = P2 )lp + ZSIIX”@QDQRfpr < 2.98[X7(f = Paf)llp

< 6K, (f, 413) (3.4)

p

for s big enough. This means that P2 f provides a realization of the K-functional
K. (f,(4s)™1),. The same is true for the other powers P™ f of the operator. For
example, for m =1 from (3.3) and Proposition 2.7 we get

1 1 1
I D?P.fly < X6 D2 P2 fllp + 5o I DPPAPS — Dy
<271 (f = Bl (35)

for s big enough. Now (3.5) and (1.6) implies an inequality for P f similar to
(3.4).

4 Imbedding inequalities

The proof of the characterization of the K-functional K (f,t"), is based on
several imbedding inequalities. As it is known for g € W'[a,b] there holds

(b= Y 99 lpgay < € (gl + O = ) 97 Npias )+ 5= 0,157, (41)
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where the constant ¢ depends only on r (see e.g. [1, p. 38]). As usual W][a,b]
denotes the space of the functions g € AC;  [a,b] for which f, f) € L,[a,b].
Using (4.1) one can show (cf. [4])

Proposition 4.1. Letr € N, y € R and 1 < p < co. Then for every g €
ACT1(0,00) such that g,x"g") € L,(x")(0,00) we have

loc
I 9D p0.00) < € (I Glp0.00) + X797 p000) )+ 5= 0,1, 0,7, (4.2)
where the constant ¢ depends only on v and r.
Proof. Using (4.1), we get for a >0 and j =0,1,...,r,
X" g9 pa,20) < max{1,2777} a?™ [[gD) |10 20)
< ¢ (Igllfa 201 + & 19 llfa2a))
< e (Il 2t + IX0H 9 ppa2), (43)

where the constant ¢ depends only on ~ and r.

To prove (4.2) we divide the interval (0,00) by the points ap = 2F, k € Z
and apply (4.3) on every interval [ag,ak+1]. Thus the case p = oo is settled.
If p < oo, we further raise both sides of (4.3) to power p, use the inequality
(A+ B)P < 2P~1(AP + BP), sum the inequalities in k& and finally raise to power
1/p. O

We derive the following corollary from Proposition 4.1, using the well-known
Hardy’s inequalities (see [8, p. 245]).

Corollary 4.2. Let r € N, i € {0,1,...,7—1}, 1 < p < oo and v € R be
such that v #1—r—1/p,...,—i —1/p. Then for g € AClrozl(O, o0) such that
9,X"9") € L,(x7)(0,00) there hold

g 0,000 < I 9V po,00)y J =it L r =1, (44)

where the constant ¢ depends only on min{|y+j+1/p| : j=4,9+1,...,r—1},
v and r.

Proof. 1t is enough to prove the statement for i = j = r—1, since the general case
follows from it by iteration. Since g,x"g(™ € L,(x”)(0,00), then Proposition
4.1 yields that x"~1g("=1 € L,(x7)(0,00), i.e. X7~ 1g"=1) € L,(0,0).

First, we consider the case v +r — 1 < —1/p. From Holder’s inequality
we get [* g™ ()] dy < c[Xx"" 9" ||p0,a) for 0 < z < a, which implies g(") €
L1[0,a]. Moreover, the assumption [g" "1 (z)| > ¢ > 0 in a neighborhood of
the origin would imply x**"~! € L,[0, 1], which contradicts v+ —1 < —1/p.
Hence, there exists a sequence {&,} such that &, — 0+ 0 and g™~V (&,) — 0
as n — oo. Combining these two facts with the representation ¢g("=(x) =
g + [ 9T (y) dy, 0 < a,€ < a we get

r=D(z) = “ g x 00 .
g () /09 () dy, € (0,00), (4.5)

16



and now Hardy’s inequalities prove (4.4).
In a similar way in the case y+r—1 > —1/p we show that the representation

g(r—l)(x) = — [oo gt (y)dy, =z € (0,00), (4.6)

holds and once again Hardy’s inequalities prove (4.4). O

Corollary 4.2 shows that, except for few values of -y, the conclusion of Propo-
sition 4.1 can be improved by omitting [[x”gl[p(0,0c) from the right-hand side of
(4.2). Be aware that the condition g € L,(x”)(0, c0) is necessary for the validity
of (4.4) as the example of g(z) = 2/ shows. Comparing Corollary 4.2 with [4,
Lemma 3] we see that the conclusions are similar but the assumptions differ.

As a consequence of (4.5) and (4.6) we get the following simple description
of the boundary behaviour of g.

Corollary 4.3. Let g € AC}'(0,00) be such that g,x"g'" € Ly(x")(0,00).
Then:

a) if y+r—1+1/p<0 thenlim, o109 (x) =0 for 0 <j <r;

b) if 0 < y+i+1/p <1 forsomei=1,2,...,7—1 thenlim, o099 (z) =0
for 0 <j <i andlim,_o g9 () =0 fori < j <r;

¢) if 0 <~y +1/p then lim,_o g9 (x) =0 for 0 < j < 7;

d) ify = —m—1/p for somem =0,1,...,7—1 then lim, g0 g") (z) = 0 for
i=0,1,...,m—1andlimy_.o g9 (x) =0 for j =m-+1,m+2,...,r—1.

Note that the value j = m is not considered in d).

We shall give a characterization of the weighted K-functional K] /p( £t )p
by means of K-functionals on R with the weight £€*. That is why, to clear
that additional exponential weight, we shall need the analogue of the above
inequalities for such weights.

Proposition 4.4. (c¢f. [4]) Let r € N, a € R and 1 < p < co. Then for every
G € AC HR) such that G,G") € L,(€%)(R) we have

loc
1E°GD @y < e (I1EGlpmy + 1€°C iz ) 5= 01,1,

where the constant ¢ depends only on a and r.

Proof. We divide the real line by the points ax = k, k € Z, and apply the
inequality (4.1) on each interval [ag, agy1]. O

Now, Proposition 4.4 and Corollary 4.2 imply

Corollary 4.5. Letr e N, a € R, a #0 and 1 < p < oco. Then for every
G € AC] M(R) such that G,G") € L,(€%)(R) we have

HSQG(j)Hp(R) < CHSQG(T)HP(R), 7=0,1,...,m,

where the constant ¢ depends only on a and r.
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Proof. It is enough to prove the statement for j = r — 1, since the general case
follows from it by iteration. Since G,G(™ € L,(£%)(R), then Proposition 4.4
yields that GU=Y € L,(€%)(R). Now the statement follows from (4.4) with
r=1and a =+ 1/p # 0 by the substitution GO~ (y) = g(e¥). O

5 Auxiliary relations about K-functionals

In establishing the result in Theorem 1.2, we shall first relate K7(f,t"), to the
K-functional

Ko(Fit")y = inf  {[|€*(F = G)p@) + " [E°CT |},
GEACT N (R)

loc

where F' € L,(EY)(R), r € N, o € R and t > 0. Note that the two norms in the
definition of the K-functional have one and the same exponential weight.

Theorem 5.1. Letr e NyaeR, 1 <p<oo,0<t<tyand F € L,(E)(R).
Then
:K;(Fa tr)p ~ WT(F7 t)p(fi”‘)(]R)

where

wr(F, ) peey(m) = S IEXALF | p(r)- (5.1)

Proof. The proof follows the lines of its classical analogue (the case a = 0)
based upon the properties of the modulus w,(F, t)p(goc)(R) and the construction
of modified Steklov functions (see e.g. [1, p. 177-178]). Let us note that the
quantity in (5.1) is well defined since e*®+") ~ 2% uniformly for z € R and for
0 < h <t <ty where tg > 0 is fixed. O

Definition (5.1) reduces to the classical modulus of smoothness w;.(F,t)pm)
in the unweighted case a = 0.

In the proof of Theorem 6.1.b) we shall use the following characterization of
a K-functional, which is a simple modification of the classical unweighted one.

Lemma 5.2. ForreN, 1 <p<oo, 0<t <ty and F € L,(R) there holds

el oy {IF = Gl + 716 ey + 16 e}
~ WT(F; t)p(]R) + tr71W1 (F, t)p(]R) .

Proof. Since for any G € W (R) and 0 < t <ty we have
wr(Fyt)pm) < ¢ (||F —Glpm + trHG(T”'p(R))
and

" (F b)) < ¢ (|1F = Gllpmw) + 7 I1G lpr))
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there holds the lower estimate

wr(Fyt)p@) + 7 w1 (F ) pw)

<c_ it {IF-c G C1G )
7CGE%/{/1;(R) I oy + "1l o) + " 1G" |p(w)

To prove the converse inequality we set for any F' € L,(R) and ¢ > 0

r

6w =30 () g [ [ F (o4 En 00 e

=1

Then
I1F = Gellpm) < wr(Fyt)pm), (5.2)
tTHGET)”p(R) < cwr(Fot)pm), (5.3)
and
|Gy < ct™rwi (F ) ). (5.4)

Now, inequalities (5.2) — (5.4) imply the upper estimate of the K-functional.
The proof of the assertion is completed. O

From Lemma 5.2 and Proposition 4.4 with a = 0 we get

Corollary 5.3. Forr e N, 1<p<oo, 0<t <ty and F € L,(R) there holds

wr(Fyt)pm) + " w1 (Fyt)pmy < ¢ (wr(Fyt)pmy + (| Fllpm)) -

6 A characterization of K| ,, (f,1"), by K—func-
tionals on the real line with an exponential
weight

First, we establish the upper estimate.
Theorem 6.1. Letre N, a e R, 1 <p<ocand f € Lp(x"_l/P)(O,oo).

a) If « #0 and 0 < ¢, then
K(;fl/p(ﬁ t")p < Ko (f o &t )pm)-
b) If a =0 and 0 <t < tgy, then

K"y (Ft)p < e (KG(f 0 &t )pmy + 17 Ko (f 0 & t)p(m)) -
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Proof. For f € L,(x*~'/?)(0,00) set F' = f o €. For every G € AC; ' (R) such
that G,G" € L,(€%)(R) we set g = G olog. In order to prove assertion a)
using the standard K-functional arguments it is enough to show that

XY = Dllpo,00) < € (F = G)llpemy; (6.1)
X4 g 0,00y < ClI€XGT ). (6.2)
Indeed, from (6.1) and (6.2) we get for every G € AC;, ' (R) such that G, G(") €
L,(E*)(R) the estimate
Koy (ft7)p < IXOTY2(F = 9llpo,00) + 7 IX 20" p0,00)
< e (IE"(F = Ol + ¢ 11€°G iz )
Taking infimum on G in the above inequality we get a).

By simple change of the variables we see that (6.1) is true with ¢ = 1 as
equality. For the proof of (6.2) we use Corollary 4.5 and get

X(x—l/P-i-TX—r Z m,«,j(G(j) o log)

I (G 0 108) o = |
j=1

p(0,00)

< mes 182G @y < el G |pw)

Jj=1

with appropriate integers m,. ;.

In the proof of b) we use the previous notations. Now we cannot use Corol-
lary 4.5 in the proof of the analogue of (6.2) because a = 0. Instead, from
Proposition 4.4 with @ = 0 we get G’ € L,(R). Then

Ix~P (G 0 108) ™ lp(o0.00) = HX_”WX‘T > my;(GY) olog)

j=1 p(0,00)
<> I 1G9 ey
j=1
< (16" + 16w ) - (6.3)

where at the last step we use once again Proposition 4.4 with o = 0 and G’ and
r — 1 at the place of G and r. Using (6.1) with a = 0 and (6.3) we get

Kl (Ftp < nf o IF =Gl + 16 e + 2716 e |

< e (KG(f 0 &t )pmy + 17T KG(f 0 & t)piwy)

where at the last step we use Lemma 5.2 and Theorem 5.1. This completes the
proof. O
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Remark 6.2. The upper estimate in the last theorem is not exact for a =
1—=r,2—r,...,—1, as it follows from Remark 1.3 and Theorems 6.6.b) and 7.3
below.

Let us now proceed to the lower estimate.

Theorem 6.3. Letre N, a#1—-r2—r...,—1,1<p<oo, 0<t <ty and
f € Ly(x*'/7)(0,00). Then for j =1,2,...,r there holds

KL (fol,t!)y <KLy, (fit")p

Proof. Let g € AC].*(0,00) and g, x"g(™ € L,(x*~/?)(0,00). We write

loc
(go&) =3 n;&(g" o)
=1

with appropriate positive integers n;;. Then, using Corollary 4.2 with 7 = 1
and v = a — 1/p, we get

i
1€%(9 0 &)y < D~ my 1€ (91 0 €)llpamy

1=1
j
=3 0 I g 0,00
1=1
<e|x* P g 0,00

Combining the above inequality with the equality |E%(f o & — go &)|lymr) =
[xe—YP(f - 9)|lp(0,00) and the condition ¢ < ¢y we complete the proof by stan-
dard K-functional arguments. O

Remark 6.4. In the case r = 1 Theorems 6.1 and 6.3 provide the equivalence

Koty ~ Ko (Fo €, )y

for all values of a.

The inequalities we have proven so far enable us to find K-functonals on the
real line equivalent to Kg_l/p(f, t")p fora#1—7r,2—r,...,—1. To settle the
cases o =1—1r,2—r,...,—1 we shall relate them to the case o = 0. Note that
the value @ = 0 is acceptable for the hypotheses of Theorem 6.3.

Theorem 6.5. Letr € N, r >2 m=1,2,....,r—1,1<p < oo and f €
L,(x~™~1/?)(0,00). Then

K yp (£ t)p ~ K2y (T 587 (6.4)
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Proof. Set F = x~™f. For any G € AC] 1(0,00) such that G,x"G(") €

loc

L,(x~1/?)(0,00) we set g = x™G. From the Leibniz rule and Corollary 4.2
with i =1 and v = —1/p we get

I g 000y = X TP (0 G) (0,00

" r m)! _ —
2 ()i e s

j=r—m J
<ellx VPG p0.00)-

IN

And since trivially
X~ YP(f = 9llp0.00) = IXTP(F = G)llp(o,00) (6.5)
we get by standard K-functional arguments
imfl/p(cﬁ tT)P < CKil/p(F7 tr)P'
The converse inequality
Kil/p(F; tT)ZJ < CKim—l/p(f? tr)p
will follow from (6.5) and
X PG p0,00) < X g p0,00)s G =X, (6.6)

valid for any g € AC;1(0,00) such that g, x"g" € L,(x ™ '/?)(0,00). By

loc
the Leibniz rule we have

60w = 3 () e e, 6)

= J (m—1)!

If m < r—1 then we observe that Corollary 4.2 withi = m+1andy=-m—1/p
implies for j=m+1,...,r—1

I~ gD,y < e ™ P g | 0,00)- (6.8)
We shall show that

m
Hx—m—l/p Z(_I)T—j (Z) (m+r—j— 1)!ng(j)

Jj=0

p(0,00)

< el P 0,00 (6.9)

Then (6.7) — (6.9) imply (6.6) as (6.8) is not necessary in case m = r — 1. So it
remains to prove (6.9).
First, putting g(z) = 2™ in (6.7), we get
m .
=0

2 i) =1 (m =)
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and hence

oy (T (A= = 1)
j:o(_l) (;)M =0 (6.10)

Next, we expand ¢/), j = 0,1,...,m, by the Taylor expansion at the point
u > 0 up to the derivative of order m + 1 and after rearranging the summands
according to the order of the derivatives, we get

Z(—l)r*j (Z) (m+r—j—1)algl)(z)
=0
m 14 .
=3 | S () e - o
=0 | j=0 :
+> (-1 (;) W x’ /x(x —y)" gt (y) dy.
=0 ‘ u

Now, taking into consideration (6.10), we get

+Z(—1)’“ur,m,kxm*’“/ y*gm ) (y) dy, (6.11)

where for k£ =1,2,..., m we have put

o B ()2 )

J (m — j)!

v (o)

In order to get a simpler representation than (6.11), we shall take the limit
u — 04 0. Before that we emphasize on three facts. It was established in
Corollary 4.2 d) that

—~

i (0) — — _
uggnwg (u)=0, £=0,1,...,m—1. (6.12)

Since



and Holder’s inequality gives

u/l g (y) d?!‘ < uflogul' "R NP gm0 )

we get

li (M) (y) = 0. 1
Jim u g™ (u) =0 (6.13)

From x'~1/Pg(m+1) ¢ [,[0,1] and x'/? € L [0,1] we get
x g™t e L1]0,1]. (6.14)

Now, taking the limit v — 040 in (6.11) (for an arbitrary fixed positive z) and
having in mind (6.12) — (6.14), we get the representation

jm0<1>” (5ot =i - ity 0

e T / yF g™ () dy.
0

Finally, Hardy’s inequality applied to the right-hand side of the above formula
implies (6.9). This completes the proof of the theorem. O

Combining the results from Theorems 6.1, 6.3, 6.5 and 5.1 we get

Theorem 6.6. Let r € N, a € R, 1 < p < o0, 0 <t < tg and f €
Lp(x*~/7)(0, 00).

a) Ifa#1—-r2—r,...,—1,0, then
Ko )p ~ KL (f o &,87)p ~ wi(f 0 & 1) peay(m)-
b) Ifa=1—r2—r,...,—1,0, then

K(Z—l/p(f’ tr)p ~ WT((Xaf) © Eat)p(R) + tr_lwl((Xaf) © Eat)p(]R)-

Remark 6.7. The second term in the relation in b) cannot be dropped or
replaced by a modulus of different order of the same function as it was shown
in Remark 1.3.

Remark 6.8. Although

Koy (fit")p < cwr(f 0 € t)peaym)

in the cases a =1—71,2—r,...,—1 as well, the converse inequality is not valid
for these values of a. For the sake of simplicity we shall consider only the case
p=o00. Let « = —m, where m € {1,2,...,r—1}. Then for f,,(z) = 2™ we have
fm € C(X’m)(O,oo), Kim_l/p(fm,tr)oo = 0 while wr(fm o eat)oo(él—m)(]R) =
(ef™ —1)" #0.
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7 A characterization of X/, (F,t"), by the classical
moduli of smoothness

Again first we shall establish the upper estimate.

Theorem 7.1. Letr € R, a € R and 1 < p < co. Then for F € L,(€*)(R)
and 0 < t < tg we have

Ko (Frt)p < ¢ (KG(EVF t)p + 1" €7 Fllpm)) -

Proof. Let g € W (R) be arbitrary. Then the Leibniz rule gives

(e g(2))" = <r> (—a) e gV () (7.1)

im0 \'
and hence for G = £~ %¢ using Proposition 4.4 with o = 0 we get
ay(r S r r—1 %
126l < 3 (7)ol =15l
i=0
< (gl + 9l )
<c (I€°F = gl + 19 lpm + 1€ F lpm)) -

Since also [|E(F — G)|[p®) = [|E“F — gl[pr) the standard K-functional argu-
ments prove the theorem. O

The lower estimate is given in the next theorem.

Theorem 7.2. Letr € N, a # 0 and 1 < p < co. Then for F € L,(E*)(R),
0<t<tyandj=0,1,...,r there holds

I (EXF, 1), < e KL (F,t7),,
where we have set X§(f, 1)pw) = ||f]lpw)-
Proof. Let G € AC;!(R) such that G,G") € L,(€*)(R) be arbitrary. From

loc

(7.1) with a and j instead of —« and r and Corollary 4.5 we get

j .
o ] J ) —1 o 7 o' T
IE 6 sy < Y- (7t 160l < 1660
=0

Hence
I KY(ENFL ), < 0 E7F — E°Gym) + 1 (E°G)D
< (IE°(F = @)l + ¢ 11E° G ym) )
which proves the theorem by taking infimum on G. O
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Now, Theorems 7.1, 7.2 and 5.1 with a = 0 give the characterization

Theorem 7.3. Let r € N, a # 0 and 1 < p < oco. Then for F € L,(€*)(R)
and 0 < t <ty we have

Ko (Fit")p ~ wr(EVF, ) pm) + 1" |EYF | p(w)-

Remark 7.4. The additional term in the characterization above cannot be
dropped or replaced by a modulus of smoothness of the function E*F as we
observed in Remark 1.3.

The last theorem implies the following relation between K-functionals of the
class K[, (F,t")p, o # 0.

Corollary 7.5. Let r € N, aj,a0 # 0 and 1 < p < oco. Then for F €
L,(E*)(R) and 0 < t <ty we have

Ko, (Fyt7)p ~ KL, (ET2E 7).
Remark 7.6. Consider the space

CO0,00) = {f + X'f € C(0,00), 3 lim 7},

For functions f € C(x7)[0, 00) we may define a slightly different functional than
(1.5) imposing the additional restriction g € C(x7)[0,00) on the functions g on
which the infimum is taken. Let us denote this K-functional by
K(f,t";C(x")[0,00), AC].', " D").
Theorem 1.2 with p = oo holds for this K-functional too. This fact follows from
the equivalence
K(f,1":C(x")(0,00), AC},. 1, 0" D") < K(f,7:C(x)[0,00), AC], .1, " D")

loc loc

< cK(f,t";,C(x7)(0,00), AC]; -1, 0" D),

valid for r € N, v € R and f € C(x7)[0,00). The first inequality is obvious —
an infimum on a more narrow class is taken in the second K-functional. The
second inequality follows by a careful examination of the proofs of Theorems
2.1.1 and 6.1.1 in [3] — the functions G; there belong to C'(x7)[0, c0) if f does.

The same observations are true if we require x? f to have limit at oo or to
have limits at 0 and at oco.
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