A Characterization of Weighted Approximations by the Post-Widder and the Gamma Operators

Borislav R. Draganov

Kamen G. Ivanov

Abstract

We present a characterization of the approximation errors of the Post-Widder and the Gamma operators in $L_p(0,\infty)$, $1 \le p \le \infty$, with a weight x^{γ} for any real γ . Two types of characteristics are used – weighted K-functionals of the approximated function itself and the classical fixed step moduli of smoothness taken on a simple modification of it.

AMS classification: 41A25, 41A27, 41A35, 41A36. Key words and phrases: Gamma operator, Post-Widder operator, rate of convergence, K-functional, modulus of smoothness.

1 Introduction

The Post-Widder operator is given by

$$P_s(f,x) = \frac{1}{\Gamma(s)} \int_0^\infty f\left(\frac{xv}{s}\right) e^{-v} v^s \frac{dv}{v},\tag{1.1}$$

where f is a measurable function defined on $(0, \infty)$, Γ denotes as usual the Gamma function and s is a positive real parameter. This operator for integer s is actually the Post-Widder real inversion formula for the Laplace transform.

The Gamma operator, introduced by A. Lupas and M. Müller [9], is given by

$$G_s(f,x) = \frac{1}{\Gamma(s+1)} \int_0^\infty f\left(\frac{xs}{v}\right) e^{-v} v^{s+1} \frac{dv}{v}.$$
 (1.2)

The two operators are closely related. If for real α we denote the power function by $\chi^{\alpha}(x) = x^{\alpha}$ for x > 0 and set $\tau_s(u) = \frac{s+1}{s}u$, then

$$G_s(f,x) = P_{s+1}(f \circ \chi^{-1} \circ \tau_s, \chi^{-1}(x)).$$
(1.3)

Both operators have a simple action on the power functions. Direct application of the definition of the Gamma function gives

$$P_s(\chi^{\alpha}) = \frac{\Gamma(s+\alpha)}{s^{\alpha}\Gamma(s)}\chi^{\alpha}, \quad G_s(\chi^{\alpha}) = \frac{s^{\alpha}\Gamma(s+1-\alpha)}{\Gamma(s+1)}\chi^{\alpha}.$$
 (1.4)

These formulae show that the two operators preserve the functions $\chi^0(x) = 1$ and $\chi^1(x) = x$.

Both operators were extensively studied. Here we only discuss results on characterizing their rate of convergence in terms of proper K-functionals. In view of (1.3) all results formulated below for one of the operators can easily be proved for the other too.

For $r \in \mathbb{N}$, $1 \le p \le \infty$, $\gamma \in \mathbb{R}$, $D = \frac{d}{dx}$ and $\varphi = \chi$ we consider the weighted K-functionals:

$$K_{\gamma}^{r}(f,t^{r})_{p} = K(f,t^{r};L_{p}(\chi^{\gamma})(0,\infty), AC_{loc}^{r-1},\varphi^{r}D^{r})$$

= inf { $\|\chi^{\gamma}(f-g)\|_{p} + t^{r}\|\chi^{\gamma}\varphi^{r}D^{r}g\|_{p} : g \in AC_{loc}^{r-1}(0,\infty)$ }, (1.5)

defined for every $f \in \pi_{r-1} + L_p(\chi^{\gamma})(0,\infty)$ and t > 0. By π_k we denote the space of all algebraic polynomials of degree k. $AC_{loc}^k(a,b) = \{g : g,g',\ldots,g^{(k)} \in AC[\bar{a},\bar{b}] \; \forall a < \bar{a} < \bar{b} < b\}$ and $AC[\bar{a},\bar{b}]$ is the set of the absolutely continuous functions on $[\bar{a},\bar{b}]$. Above and in what follows $L_{\infty}(\chi^{\gamma})(0,\infty)$ can be replaced by the spaces $C(\chi^{\gamma})(0,\infty) = \{f : \chi^{\gamma}f \in C(0,\infty)\}$, where C(a,b) is the space of all continuous functions **bounded** on (a,b). When in (1.5) $g \in AC_{loc}^{r-1}$ is such that either $f - g \notin L_p(\chi^{\gamma})$ or $D^rg \notin L_p(\chi^{\gamma}\varphi^r)$ we assume that $\|\chi^{\gamma}(f-g)\|_p + t^r \|\chi^{\gamma}\varphi^r D^r g\|_p = +\infty$.

Note that the weight in the second term in the right-hand side of (1.5) is $\chi^{\gamma+r}$. We use two notations (φ and χ) for one and the same function in order to underline the different role of the two multipliers in the discussions in Sections 2 and 3.

The direct theorem for the approximation error of the Gamma operator in L_p , $1 \le p \le \infty$, without weights is proved by Totik [12]:

$$||f - G_s(f)||_p \le cK_0^2(f, s^{-1})_p.$$

In the same article [12] a weak converse theorem of the form

$$K_0^2(f, s^{-1})_p \le cs^{-1}\left(\sum_{k=2}^s \|f - G_k(f)\|_p + \|f\|_p\right)$$

is obtained. Here and in the sequel we denote by c positive numbers independent of the functions f, the parameter t below and the parameter s of the operators. The numbers c may differ at each occurrence.

The book of Ditzian and Totik [3] extends the above direct result to weights equivalent to $w(x) = x^{\gamma_0}(1+x)^{\gamma_{\infty}}$ with arbitrary real exponents $\gamma_0, \gamma_{\infty}$. The converse result for the same weights is given as a statement for the equivalent rates of convergence in terms of weighted Ditzian-Totik moduli.

The question for the validity of strong converse theorems (in the terminology of [2]) complementing the direct estimates remained open for a while. In 2002 Sangüesa [11] proved the strong converse theorem of type A for $\gamma = 0$, $p = \infty$, namely

$$K_0^2(f, s^{-1})_\infty \le c \|f - P_s(f)\|_\infty$$

As far as we know this is the only strong converse theorem of type A for the Post-Widder or the Gamma operators proved by now. As for strong converse theorems of type B, two results have recently been published. In [7] Guo, Liu, Qi and Zhang proved that for $\gamma = 0$ and $1 \le p \le \infty$ there is a constant m > 1 such that

$$K_0^2(f, n^{-1})_p \le c \left(\|f - G_n(f)\|_p + \|f - G_{mn}(f)\|_p \right).$$

The other result is a similar strong converse theorem of type B, proved by Qi and Guo in [10] for $-2 \le \gamma \le 0$ and $p = \infty$.

One of the main results of this article is a strong converse theorem of type A for the Post-Widder and the Gamma operator for $\gamma \in \mathbb{R}$ and $1 \leq p \leq \infty$.

Theorem 1.1. There are positive numbers N, M such that for every $\gamma \in \mathbb{R}$, $s \geq N(\gamma^2 + 1), 1 \leq p \leq \infty$ and $f \in \pi_1 + L_p(\chi^{\gamma})(0, \infty)$ we have

$$\|\chi^{\gamma}(f - P_s(f))\|_p \le \left(2 + M\frac{\gamma^2 + 1}{s}\right) K_{\gamma}^2(f, (4s)^{-1})_p \tag{1.6}$$

and

$$K_{\gamma}^{2}(f,(4s)^{-1})_{p} \leq \left(\kappa + M\frac{1}{\sqrt{s}} + M\frac{\gamma^{2} + 1}{s}\right) \|\chi^{\gamma}(f - P_{s}(f))\|_{p}$$
(1.7)

with

$$\kappa = \frac{21 - 4\sqrt{2}}{8 - 2\sqrt{2}} = 2.966824...$$

The same inequalities are true if P_s is replaced by G_s .

Inequalities like (1.6) are well-known. For example, they are proved in [12] and [3], but with bigger constants. The inverse inequality (1.7) seems to be new (except $\gamma = 0$, $p = \infty$). It comes with a very small constant κ . Thus, the ratio $\|\chi^{\gamma}(f - P_s(f))\|_p / K_{\gamma}^2(f, (4s)^{-1})_p$ is bounded between two numbers with ratio less than 6 when s is big enough!

Theorem 1.1 remains true (up to the value of the constants) if the weight χ^{γ} is replaced by any equivalent on $(0, \infty)$ weight.

The K-functional (1.5) is characterized in [3, Chapter 6] by the weighted Ditzian-Totik moduli of smoothness. But it turns out that $K^r_{\gamma}(f, t^r)_p$ has a simple characterization in terms of the classical (unweighted fixed-step) moduli of smoothness $\omega_k(F, t)_{p(\mathbb{R})}$. Following the ideas of [5] we obtain

Theorem 1.2. Let $r \in \mathbb{N}$, $\alpha \in \mathbb{R}$, $1 \leq p \leq \infty$, $0 < t \leq t_0$ and $f \in L_p(\chi^{\alpha-1/p})(0,\infty)$.

a) If
$$\alpha \neq 1 - r, 2 - r, \dots, -1, 0$$
, then

$$K^r_{\alpha-1/p}(f,t^r)_p \sim \omega_r((\chi^{\alpha}f) \circ \mathcal{E},t)_{p(\mathbb{R})} + t^r \, \|(\chi^{\alpha}f) \circ \mathcal{E}\|_{p(\mathbb{R})}.$$

b) If $\alpha = 1 - r, 2 - r, \dots, -1, 0$, then

$$K^{r}_{\alpha-1/p}(f,t^{r})_{p} \sim \omega_{r}((\chi^{\alpha}f) \circ \mathcal{E},t)_{p(\mathbb{R})} + t^{r-1}\omega_{1}((\chi^{\alpha}f) \circ \mathcal{E},t)_{p(\mathbb{R})}.$$

By \mathcal{E} and \mathcal{E}^{α} we denote the exponential function and its powers, i.e. $\mathcal{E}(x) = e^x, \mathcal{E}^{\alpha}(x) = e^{\alpha x}, \alpha \in \mathbb{R}$. By $\Psi(f,t) \sim \Theta(f,t)$ we mean that there exists c such that $c^{-1}\Theta(f,t) \leq \Psi(f,t) \leq c\Theta(f,t)$ for all f and t under consideration.

The assertions of Theorem 1.2 follow from Theorems 6.6 and 7.3 proved below. Let us mention that Theorem 6.6 improves the result of [4, Theorem 1 with $\theta = \mathcal{E}$].

Remark 1.3. The characterization of $K_{\alpha-1/p}^r(f,t^r)_p$ splits into two types, which cannot be unified. Indeed, let $\psi \in C^r(\mathbb{R}), \ \psi \neq 0$, be with a finite support. Set $F_n(x) = \psi(n^{-1}x), \ n \in \mathbb{N}$. Then $\omega_k(F_n,t)_{p(\mathbb{R})} \sim n^{-k+1/p} t^k$ and

$$\omega_r(F_n, t)_{p(\mathbb{R})} + t^{r-k} \omega_k(F_n, t)_{p(\mathbb{R})} \sim n^{-k+1/p} t^r, \quad k = 0, 1, \dots, r,$$

where $\omega_0(F, t)_{p(\mathbb{R})}$ means $||F||_{p(\mathbb{R})}$. Hence, any two of the above quantities are not equivalent with constants independent of n and $t \in (0, 1]$. See also Corollary 5.3.

From Theorem 1.1 and Theorem 1.2 we immediately get

Theorem 1.4. Let $\gamma \in \mathbb{R}$, $1 \leq p \leq \infty$, $f \in L_p(\chi^{\gamma})(0, \infty)$ and $s \geq N(\gamma^2 + 1)$, where N is from Theorem 1.1.

a) If
$$\gamma \neq -1 - 1/p, -1/p$$
, then
 $\|\chi^{\gamma}(f - P_s(f))\|_{p(0,\infty)} \sim \|\chi^{\gamma}(f - G_s(f))\|_{p(0,\infty)}$
 $\sim \omega_2((\chi^{\gamma+1/p}f) \circ \mathcal{E}, s^{-1/2})_{p(\mathbb{R})} + s^{-1} \|(\chi^{\gamma+1/p}f) \circ \mathcal{E}\|_{p(\mathbb{R})}.$

b) If $\gamma = -1 - 1/p, -1/p$, then

$$\begin{aligned} \|\chi^{\gamma}(f - P_s(f))\|_{p(0,\infty)} &\sim \|\chi^{\gamma}(f - G_s(f))\|_{p(0,\infty)} \\ &\sim \omega_2((\chi^{\gamma+1/p}f) \circ \mathcal{E}, s^{-1/2})_{p(\mathbb{R})} + s^{-1/2} \omega_1((\chi^{\gamma+1/p}f) \circ \mathcal{E}, s^{-1/2})_{p(\mathbb{R})}. \end{aligned}$$

In particular, for the case $\gamma = 0, p = \infty$ we obtain

$$||f - P_s(f)||_{\infty(0,\infty)} \sim \omega_2(f \circ \mathcal{E}, s^{-1/2})_{\infty(\mathbb{R})} + s^{-1/2} \omega_1(f \circ \mathcal{E}, s^{-1/2})_{\infty(\mathbb{R})}$$

Remark 1.5. If $f \in \pi_1 + L_p(\chi^{\gamma})(0, \infty)$ as in Theorem 1.1, then in the characterization of the errors above f is to be replaced by f_0 such that $f_0 \in L_p(\chi^{\gamma})(0, \infty)$ and $f - f_0 \in \pi_1$.

The results of this paper have been announced in [6].

The paper is organized as follows. Section 2 contains the inequalities on which the proof of Theorem 1.1 is based. In Section 3 we give the proof of this theorem. Next, Section 4 is devoted to imbedding inequalities needed in the proof of the characterization of the K-functional $K_{\gamma}^{r}(f, t^{r})_{p}$ by the classical moduli of smoothness. In Section 5 we give several auxiliary results on Kfunctionals. The proof of Theorem 1.2 naturally splits into two parts. In Section 6 we characterize $K_{\gamma}^{r}(f,t^{r})_{p}$ by K-functionals on the real line with exponential weights taken on a modification of the function. In Section 7 we proceed further to estimate this weighted K-functionals by the classical moduli of smoothness by modifying the function again.

$\mathbf{2}$ Inequalities for the Post-Widder operator

For $\beta \in \mathbb{R}$ and $s > \max\{0, \beta\}$ we set

$$\begin{aligned} \kappa_1(\beta,s) &:= \frac{s^{\beta}\Gamma(s-\beta)}{\Gamma(s)};\\ \kappa_j(\beta,s) &:= \frac{s^{j-1}}{(2j-3)!\Gamma(s)} \int_0^\infty \int_1^{v/s} \left(\frac{v}{sy} - 1\right)^{2j-3} y^{-\beta} \frac{dy}{y} e^{-v} v^s \frac{dv}{v}, \quad j = 2, 3, 4;\\ \lambda_1(\beta,s) &:= \frac{s^{\beta-1}}{\Gamma(s)} \int_0^\infty |(v-s-1)^2 - s - 1| e^{-v} v^{s-\beta} \frac{dv}{v};\\ \lambda_2(\beta,s) &:= \frac{s^{\beta-1}}{\Gamma(s)} \int_0^\infty |(v-s-3)^2 - s - 3| e^{-v} v^{s-\beta} \frac{dv}{v};\\ \lambda_3(\beta,s) &:= \frac{s^{\beta-\frac{1}{2}}}{\Gamma(s)} \int_0^\infty |v-s-2| e^{-v} v^{s-\beta} \frac{dv}{v}; \end{aligned}$$

BT (

The quantities $\kappa_j(\beta, s), \lambda_j(\beta, s)$ will be used in the inequalities established in Propositions 2.4 - 2.9. It is important for us that they remain bounded by absolute constants for $\beta \in \mathbb{R}$ and $s \geq \beta^2 + 8$. Note that the signs of $(\frac{v}{sy} - 1)^{2j-3}$ and $(\frac{v}{s} - 1)$ in the definition of κ_j coincide

for every y from the integration range. Hence, the inner integral is always a nonnegative number. This fact will be used in Propositions 2.5 and 2.6.

Lemma 2.1. For $\beta \in \mathbb{R}$ and $s > \max\{0, \beta\}$ we have

$$\kappa_1(\beta, s) - 1 = \beta(\beta + 1)\kappa_2(\beta, s)s^{-1}; \qquad (2.1)$$

$$\kappa_2(\beta, s) - \frac{1}{2} = \left[(\beta + 2)(\beta + 3)\kappa_3(\beta, s) - \frac{\beta + 2}{3} \right] s^{-1};$$
(2.2)

$$\kappa_3(\beta,s) - \frac{1}{8} = \left[(\beta+4)(\beta+5)\kappa_4(\beta,s) - \frac{2\beta+5}{12} \right] s^{-1} - \frac{\beta+4}{5} s^{-2}.$$
 (2.3)

Proof. Applying twice integration by parts we get for $j \ge 2$

$$\begin{split} \int_{1}^{z} \left(\frac{z}{y}-1\right)^{2j-3} y^{-\beta} \frac{dy}{y} &= \frac{(z-1)^{2j-2}}{2j-2} - \frac{(\beta+2j-2)(z-1)^{2j-1}}{(2j-2)(2j-1)} \\ &+ \frac{(\beta+2j-2)(\beta+2j-1)}{(2j-2)(2j-1)} \int_{1}^{z} \left(\frac{z}{y}-1\right)^{2j-1} y^{-\beta} \frac{dy}{y}. \end{split}$$

When we plug this formula with z = v/s in the definition of κ_j we get

$$\kappa_{j}(\beta,s) = \frac{s^{j-1}}{(2j-2)!}T(2j-2,s) - \frac{(\beta+2j-2)s^{j-1}}{(2j-1)!}T(2j-1,s) + \frac{(\beta+2j-2)(\beta+2j-1)}{s}\kappa_{j+1}(\beta,s),$$
(2.4)

where

$$T(m,s) = \sum_{k=0}^{m} (-1)^{m-k} {m \choose k} \prod_{i=0}^{k-1} \left(1 + \frac{i}{s}\right).$$
(2.5)

As usual the product is 1 for an upper bound, which is smaller than the lower bound. Direct calculations show that formulae (2.4) - (2.5) remain true for j = 1. From (2.5) we get

$$\begin{split} T(0,s) &= 1, \ T(1,s) = 0, \ T(2,s) = s^{-1}, \ T(3,s) = 2s^{-2}, \\ T(4,s) &= 3s^{-2}(1+2s^{-1}), \ T(5,s) = 4s^{-3}(5+6s^{-1}). \end{split}$$

Now, applying (2.4) with j = 1, 2 and 3 we complete the proof.

Lemma 2.2. There exists an absolute constant M_1 such that for every $s \ge \beta^2 + 8$ and $\beta \in \mathbb{R}$ we have

$$|\kappa_1(\beta, s) - 1| \le M_1 \frac{1 + \beta^2}{s};$$
 (2.6)

$$\left|\kappa_2(\beta,s) - \frac{1}{2}\right| \le M_1 \frac{1+\beta^2}{s};\tag{2.7}$$

$$\left|\kappa_{3}(\beta,s) - \frac{1}{8}\right| \le M_{1} \frac{1+\beta^{2}}{s}.$$
 (2.8)

Proof. In view of Lemma 2.1 it is enough to prove the existence of a constant M_2 such that

$$0 < \kappa_j(\beta, s) \le M_2 \quad \forall \ j = 1, 2, 3, 4, \ \beta \in \mathbb{R}, \ s \ge \beta^2 + 8.$$
 (2.9)

First, we shall prove (2.9) for j = 1, which, in turn, will be used when establishing (2.9) for the other j's. Note that (2.1) implies $0 < \kappa_1(\beta, s) < 1$ for $-1 < \beta < 0$, $\kappa_1(-1, s) = \kappa_1(0, s) = 1$ and $1 < \kappa_1(\beta, s)$ for $\beta < -1$ or $0 < \beta$. For $\beta < 0$ using

$$\kappa_1(\beta, s) = \left(1 - \frac{\beta + 1}{s}\right) \dots \left(1 - \frac{\beta + m}{s}\right) \frac{s^{\beta + m} \Gamma(s - \beta - m)}{\Gamma(s)}$$

with $m = [-\beta]$ and $m = [-\beta] + 1$ we get

$$1 - \frac{1}{s} \le 1 - \frac{[-\beta] + 1 + \beta}{s} \le \kappa_1(\beta, s) \prod_{i=1}^{[-\beta]} \left(1 - \frac{\beta + i}{s}\right)^{-1} \le 1.$$
 (2.10)

Now the last inequality in (2.10) implies

$$\kappa_1(\beta, s) \le \prod_{i=1}^{[-\beta]} \left(1 + \frac{-\beta - i}{s} \right) \le e^{\sum_{i=1}^{[-\beta]} (-\beta - i)s^{-1}} \le e^{\beta^2 (2s)^{-1}} \le \sqrt{e},$$

which verifies (2.9) for j = 1 and $\beta < 0$. For $\beta \ge 0$ using

$$\kappa_1(\beta,s) = \left(1 - \frac{\beta}{s}\right)^{-1} \dots \left(1 - \frac{\beta - m + 1}{s}\right)^{-1} \frac{s^{\beta - m}\Gamma(s - \beta + m)}{\Gamma(s)}$$

with $m = [\beta]$ and $m = [\beta] + 1$ we get

$$1 - \frac{1}{s} \le 1 - \frac{\beta - [\beta]}{s} \le \kappa_1(\beta, s) \prod_{i=0}^{[\beta]} \left(1 - \frac{\beta - i}{s}\right) \le 1.$$
 (2.11)

Having in mind that $\frac{\beta}{s} \leq \frac{\beta^2+8}{5s} \leq \frac{1}{5}$ we see as in the first case that the last inequality in (2.11) implies (2.9) for j = 1 and $\beta \geq 0$. In order to prove (2.9) for j = 2, 3 and 4 we estimate from above the inner

integral in the definition of $\kappa_j(\beta, s)$. For $j \ge 1$ we have

$$\int_{1}^{v/s} \left(\frac{v}{sy} - 1\right)^{2j-1} y^{-\beta} \frac{dy}{y} = \int_{1}^{v/s} \left(\frac{v}{s} - y\right)^{2j-1} y^{-\beta-2j} dy$$

$$\leq \int_{1}^{v/s} \left(\frac{v}{s} - y\right)^{2j-1} dy [1 + v^{-\beta-2j} s^{\beta+2j}] = \frac{1}{2j} \left(\frac{v}{s} - 1\right)^{2j} [1 + v^{-\beta-2j} s^{\beta+2j}].$$

Hence

$$\begin{split} \kappa_{j+1}(\beta,s) &= \frac{s^j}{(2j-1)!\Gamma(s)} \int_0^\infty \int_1^{v/s} \left(\frac{v}{sy} - 1\right)^{2j-1} y^{-\beta} \frac{dy}{y} e^{-v} v^s \frac{dv}{v} \\ &\leq \frac{s^j}{(2j)!\Gamma(s)} \int_0^\infty \left(\frac{v}{s} - 1\right)^{2j} [1 + v^{-\beta - 2j} s^{\beta + 2j}] e^{-v} v^s \frac{dv}{v} \\ &= \frac{s^j}{(2j)!\Gamma(s)} \int_0^\infty \left(\frac{v}{s} - 1\right)^{2j} e^{-v} v^s \frac{dv}{v} + \frac{s^{j+\beta}}{(2j)!\Gamma(s)} \int_0^\infty \left(1 - \frac{s}{v}\right)^{2j} e^{-v} v^{s-\beta} \frac{dv}{v} \\ &= \frac{s^j}{(2j)!} \sum_{k=0}^{2j} (-1)^k \binom{2j}{k} \frac{s^{-k} \Gamma(s+k)}{\Gamma(s)} \\ &+ \frac{s^{j+\beta+2j}}{(2j)!} \sum_{k=0}^{2j} (-1)^k \binom{2j}{k} \frac{s^{-k} \Gamma(s-\beta - 2j+k)}{\Gamma(s)} \\ &= \frac{s^j}{(2j)!} \sum_{k=0}^{2j} (-1)^k \binom{2j}{k} \prod_{i=0}^{k-1} \left(1 + \frac{i}{s}\right) \\ &+ \frac{s^{\beta} \Gamma(s-\beta)}{\Gamma(s)} \frac{s^{2j} \Gamma(s-\beta - 2j)}{\Gamma(s-\beta)} \frac{s^j}{(2j)!} \sum_{k=0}^{2j} (-1)^k \binom{2j}{k} \prod_{i=0}^{k-1} \left(1 - \frac{\beta + 2j}{s} + \frac{i}{s}\right). \end{split}$$

Therefore

$$(2j)!\kappa_{j+1}(\beta,s) \le T_j(0,s) + \frac{s^{\beta}\Gamma(s-\beta)}{\Gamma(s)} \frac{s^{2j}\Gamma(s-\beta-2j)}{\Gamma(s-\beta)} T_j(\beta+2j,s), \quad (2.12)$$

where

$$T_j(b,s) := s^j \sum_{k=0}^{2j} (-1)^k \binom{2j}{k} \prod_{i=0}^{k-1} \left(1 - \frac{b}{s} + \frac{i}{s}\right).$$

Direct calculations for j = 1, 2, 3 give

$$\begin{split} T_1(b,s) &= 1 + b(b-1)s^{-1}; \\ T_2(b,s) &= 3 + 2(3-7b+3b^2)s^{-1} + (-6b+11b^2-6b^3+b^4)s^{-2}; \\ T_3(b,s) &= 15 + 5(26-33b+9b^2)s^{-1} + (120-404b+375b^2-130b^3+15b^4)s^{-2} \\ &+ (-120b+274b^2-225b^3+85b^4-15b^5+b^6)s^{-3} \end{split}$$

and in particular

$$T_1(0,s) = 1; \ T_2(0,s) = 3 + 6s^{-1}; \ T_3(0,s) = 15 + 130s^{-1} + 120s^{-2}.$$

Substituting in (2.12) the above values of $T_j(b, s)$ with b = 0 and $b = \beta + 2j$, using (2.9) with j = 1 and the inequality

$$\frac{s^{2j}\Gamma(s-\beta-2j)}{\Gamma(s-\beta)} = \prod_{i=1}^{2j} \left(1-\frac{\beta+i}{s}\right)^{-1} \le M_3,$$

valid for $\left|\frac{\beta+i}{s}\right| \leq \frac{|\beta|+6}{\beta^2+8} \leq \frac{4}{5}$, we prove (2.9) for j = 2, 3, 4 and complete the proof of the lemma.

Remark 2.3. Note that the lower and upper estimates in (2.10) and (2.11) imply directly (2.6).

Proposition 2.4. For every $f \in L_p(\chi^{\gamma})(0,\infty)$, $1 \le p \le \infty$, and $s > \max\{0, \gamma + p^{-1}\}$ we have

$$\|\chi^{\gamma} P_s(f)\|_p \le \kappa_1(\gamma + p^{-1}, s) \|\chi^{\gamma} f\|_p, \qquad (2.13)$$

where $\kappa_1(\beta, s)$ is estimated in (2.6) for $s \ge \beta^2 + 8$.

Proof. From (1.1) we get

$$x^{\beta}P_{s}(f,x) = \frac{s^{\beta}}{\Gamma(s)} \int_{0}^{\infty} \left[\left(\frac{xv}{s}\right)^{\beta} f\left(\frac{xv}{s}\right) \right] e^{-v} v^{s-\beta} \frac{dv}{v}$$

Applying the generalized Minkowski inequality in this representation we get

$$\begin{split} \left\{ \int_{0}^{\infty} |x^{\beta} P_{s}(f,x)|^{p} \frac{dx}{x} \right\}^{\frac{1}{p}} \\ &\leq \frac{s^{\beta}}{\Gamma(s)} \int_{0}^{\infty} \left\{ \int_{0}^{\infty} \left| \left(\frac{xv}{s}\right)^{\beta} f\left(\frac{xv}{s}\right) \right|^{p} \frac{dx}{x} \right\}^{\frac{1}{p}} e^{-v} v^{s-\beta} \frac{dv}{v} \\ &= \frac{s^{\beta}}{\Gamma(s)} \int_{0}^{\infty} \left\{ \int_{0}^{\infty} |y^{\beta} f(y)|^{p} \frac{dy}{y} \right\}^{\frac{1}{p}} e^{-v} v^{s-\beta} \frac{dv}{v} \\ &= \kappa_{1}(\beta,s) \left\{ \int_{0}^{\infty} |y^{\beta} f(y)|^{p} \frac{dy}{y} \right\}^{\frac{1}{p}}. \end{split}$$

Putting $\beta = \gamma + p^{-1}$ in the above inequality we prove (2.13).

Proposition 2.5. For every g such that $\varphi^2 D^2 g \in L_p(\chi^{\gamma})(0,\infty)$, $1 \leq p \leq \infty$, and $s > \max\{0, \gamma + p^{-1}\}$ we have

$$\|\chi^{\gamma} \left(P_{s}(g) - g\right)\|_{p} \leq s^{-1} \kappa_{2}(\gamma + p^{-1}, s) \|\chi^{\gamma} \varphi^{2} D^{2} g\|_{p},$$
(2.14)

where $\kappa_2(\beta, s)$ is estimated in (2.7) for $s \ge \beta^2 + 8$.

Proof. Applying P_s to the Taylor expansion of g

$$g(y) = g(x) + (y - x)g'(x) + \int_{x}^{y} (y - u)g''(u) \, du$$

we get in view of (1.4)

$$P_s(g,x) - g(x) = \frac{1}{\Gamma(s)} \int_0^\infty \int_x^{xv/s} \left(\frac{xv}{s} - u\right) g''(u) \, du \, e^{-v} v^s \, \frac{dv}{v}$$
$$= \frac{1}{\Gamma(s)} \int_0^\infty \int_1^{v/s} \left(\frac{v}{sy} - 1\right) (xy)^2 g''(xy) \, \frac{dy}{y} \, e^{-v} v^s \, \frac{dv}{v}$$

and hence

$$x^{\beta}|P_{s}(g,x) - g(x)| \leq \frac{1}{\Gamma(s)} \int_{0}^{\infty} \int_{1}^{v/s} \left(\frac{v}{sy} - 1\right) y^{-\beta}(xy)^{\beta+2} |g''(xy)| \frac{dy}{y} e^{-v} v^{s} \frac{dv}{v}$$

Now we apply the arguments from the proof of Proposition 2.4 in order to get (2.14). $\hfill \Box$

Proposition 2.6. For every g such that $\varphi^4 D^4 g \in L_p(\chi^{\gamma})(0,\infty)$, $1 \le p \le \infty$, and $s > \max\{0, \gamma + p^{-1}\}$ we have

$$\left\| \chi^{\gamma} \left(P_{s}(g) - g - \frac{1}{2} s^{-1} \varphi^{2} D^{2} g - \frac{1}{3} s^{-2} \varphi^{3} D^{3} g \right) \right\|_{p} \\ \leq s^{-2} \kappa_{3} (\gamma + p^{-1}, s) \| \chi^{\gamma} \varphi^{4} D^{4} g \|_{p}, \quad (2.15)$$

where $\kappa_3(\beta, s)$ is estimated in (2.8) for $s \ge \beta^2 + 8$.

Proof. Applying P_s to the Taylor expansion of g

$$\begin{split} g(y) &= g(x) + (y-x)g'(x) + \frac{(y-x)^2}{2}g''(x) + \frac{(y-x)^3}{6}g'''(x) \\ &+ \int_x^y \frac{(y-u)^3}{6}D^4g(u)\,du \end{split}$$

we get as in the proof of Proposition 2.5

$$\begin{aligned} x^{\beta} \left| P_{s}(g,x) - g(x) - \frac{1}{2} s^{-1} \varphi^{2}(x) D^{2} g(x) - \frac{1}{3} s^{-2} \varphi^{3}(x) D^{3} g(x) \right| \\ & \leq \frac{1}{6\Gamma(s)} \int_{0}^{\infty} \int_{1}^{v/s} \left(\frac{v}{sy} - 1 \right)^{3} y^{-\beta}(xy)^{\beta+4} |D^{4} g(xy)| \frac{dy}{y} e^{-v} v^{s} \frac{dv}{v}. \end{aligned}$$

Now we apply the arguments from the proof of Proposition 2.4 in order to get (2.15). $\hfill \Box$

Proposition 2.7. For every $f \in L_p(\chi^{\gamma})(0,\infty)$, $1 \le p \le \infty$, and $s > \max\{0, \gamma + p^{-1}\}$ we have

$$\|\chi^{\gamma}\varphi^{2}D^{2}P_{s}(f)\|_{p} \leq s\lambda_{1}(\gamma+p^{-1},s)\|\chi^{\gamma}f\|_{p}.$$
(2.16)

There is an absolute constant M_4 such that

$$\lambda_1(\beta, s) \le \sqrt{2} + M_4(1+\beta^2)s^{-1} \tag{2.17}$$

for every $\beta \in \mathbb{R}, s \ge \beta^2 + 8$.

Proof. Substituting v = su/x in (1.1) we get

$$P_s(f,x) = \frac{1}{\Gamma(s)} \int_0^\infty f(u) e^{-su/x} s^s u^s x^{-s} \frac{du}{u}.$$

Differentiating the above expression twice with respect to x and making the inverse substitution u = xv/s we arrive at

$$D^{2}P_{s}(f,x) = \frac{x^{-2}}{\Gamma(s)} \int_{0}^{\infty} f\left(\frac{xv}{s}\right) \left[(v-s-1)^{2} - s - 1 \right] e^{-v} v^{s} \frac{dv}{v}.$$

Hence

$$\begin{aligned} x^{\beta+2} |D^2 P_s(f,x)| \\ &\leq \frac{s^{\beta}}{\Gamma(s)} \int_0^\infty \left(\frac{xv}{s}\right)^{\beta} \left| f\left(\frac{xv}{s}\right) \right| \left| (v-s-1)^2 - s - 1 \right| e^{-v} v^{s-\beta} \frac{dv}{v}. \end{aligned}$$

Now we apply the arguments from the proof of Proposition 2.4 in order to get (2.16). The estimate of λ_1 uses standard arguments – the Cauchy-Schwarz

inequality. We have

$$s^{-\beta+1}\Gamma(s)\lambda_1(\beta,s)$$

$$\leq \left\{\int_0^\infty \left((v-s-1)^2 - s - 1\right)^2 e^{-v}v^{s-\beta}\frac{dv}{v}\right\}^{1/2} \left\{\int_0^\infty e^{-v}v^{s-\beta}\frac{dv}{v}\right\}^{1/2}$$

$$= \{\Gamma(s-\beta+4) - 4(s+1)\Gamma(s-\beta+3) + 2(s+1)(3s+2)\Gamma(s-\beta+2) - 4s(s+1)^2\Gamma(s-\beta+1) + s^2(s+1)^2\Gamma(s-\beta)\}^{1/2}\Gamma(s-\beta)^{1/2}.$$

Hence

$$\lambda_1(\beta, s) \le \frac{s^{\beta} \Gamma(s-\beta)}{\Gamma(s)} \left\{ 2 + \frac{2+4\beta(\beta-1)}{s} + \frac{\beta(\beta-1)(\beta^2-\beta+2)}{s^2} \right\}^{1/2} \\ \le \sqrt{2} + M_4(1+\beta^2)s^{-1}.$$

This proves (2.17).

Proposition 2.8. For every g such that $\varphi^2 D^2 g \in L_p(\chi^{\gamma})(0,\infty)$, $1 \leq p \leq \infty$, and $s > \max\{0, \gamma + p^{-1}\}$ we have

$$\|\chi^{\gamma}\varphi^{4}D^{4}P_{s}(g)\|_{p} \leq s\lambda_{2}(\gamma+p^{-1},s)\|\chi^{\gamma}\varphi^{2}D^{2}g\|_{p}.$$
(2.18)

There is an absolute constant M_5 such that

$$\lambda_2(\beta, s) \le \sqrt{2} + M_5(1+\beta^2)s^{-1} \tag{2.19}$$

for every $\beta \in \mathbb{R}, s \geq \beta^2 + 8$.

Proof. Differentiating (1.1) twice with respect to x, substituting v = su/x in the right-hand side integral, differentiating the resulting expression twice with respect to x and making the inverse substitution u = xv/s we arrive at

$$D^4 P_s(g, x) = \frac{x^{-4}}{\Gamma(s)} \int_0^\infty \left(\frac{xv}{s}\right)^2 D^2 g\left(\frac{xv}{s}\right) \left[(v-s-3)^2 - s - 3\right] e^{-v} v^s \frac{dv}{v}.$$

Hence

$$\begin{aligned} x^{\beta+4} | D^4 P_s(g, x) | \\ &\leq \frac{s^{\beta}}{\Gamma(s)} \int_0^\infty \left(\frac{xv}{s}\right)^{\beta+2} \left| D^2 g\left(\frac{xv}{s}\right) \right| \left| (v-s-3)^2 - s - 3 \right| e^{-v} v^{s-\beta} \frac{dv}{v}. \end{aligned}$$

Now we apply the arguments from the proof of Proposition 2.4 in order to get (2.18). As in the proof of Proposition 2.7 we estimate λ_2 by

$$\lambda_2(\beta, s) \le \frac{s^{\beta} \Gamma(s - \beta)}{\Gamma(s)} \left\{ 2 + \frac{18 + 4\beta(\beta + 3)}{s} + \frac{36 + \beta(\beta + 3)(\beta^2 + 3\beta + 14)}{s^2} \right\}^{1/2} \\ \le \sqrt{2} + M_5(1 + \beta^2)s^{-1}.$$

This proves (2.19).

Proposition 2.9. For every g such that $\varphi^2 D^2 g \in L_p(\chi^{\gamma})(0,\infty), 1 \leq p \leq \infty$, and $s > \max\{0, \gamma + p^{-1}\}$ we have

$$\|\chi^{\gamma}\varphi^{3}D^{3}P_{s}(g)\|_{p} \leq \sqrt{s}\lambda_{3}(\gamma+p^{-1},s)\|\chi^{\gamma}\varphi^{2}D^{2}g\|_{p},$$
(2.20)

There is an absolute constant M_6 such that

$$\lambda_3(\beta, s) \le 1 + M_6(1 + \beta^2)s^{-1} \tag{2.21}$$

for every $\beta \in \mathbb{R}, s \geq \beta^2 + 8$.

Proof. Differentiating (1.1) twice with respect to x, substituting v = su/x in the right-hand side integral, differentiating the resulting expression once with respect to x and making the inverse substitution u = xv/s we arrive at

$$D^{3}P_{s}(g,x) = \frac{x^{-3}}{\Gamma(s)} \int_{0}^{\infty} \left(\frac{xv}{s}\right)^{2} D^{2}g\left(\frac{xv}{s}\right) \left[v-s-2\right] e^{-v} v^{s} \frac{dv}{v}$$

Hence

$$x^{\beta+3}|D^3P_s(g,x)| \le \frac{s^{\beta}}{\Gamma(s)} \int_0^\infty \left(\frac{xv}{s}\right)^{\beta+2} \left|D^2g\left(\frac{xv}{s}\right)\right| \left|v-s-2\right| e^{-v} v^{s-\beta} \frac{dv}{v}.$$

Now we apply the arguments from the proof of Proposition 2.4 in order to get (2.20). As in the proof of Proposition 2.7 we estimate λ_3 by

$$\lambda_3(\beta, s) \le \frac{s^{\beta} \Gamma(s-\beta)}{\Gamma(s)} \left\{ 1 + \frac{\beta^2 + 3\beta + 4}{s} \right\}^{1/2} \le 1 + M_6(1+\beta^2)s^{-1}.$$
proves (2.21).

This proves (2.21).

Remark 2.10. The constant κ_1 in (2.13) of Proposition 2.4 is exact for $p = \infty$ as the example of $f_0(x) = x^{-\gamma}$ shows. The same example can be used to show that the constants κ_2 in (2.14) of Proposition 2.5 and κ_3 in (2.15) of Proposition 2.6 are exact for $p = \infty$ when $\gamma \neq 0, -1$ and $\gamma \neq 0, -1, -2, -3$ respectively. For the exceptional values of γ an additional logarithmic factor has to be introduced in the definition of the extremal function f_0 . The constants are also exact for $1 \leq p < \infty$. This can be seen if we multiply the extremal functions for $p = \infty$ with the characteristic function of the interval $[\varepsilon, \varepsilon^{-1}]$ and let $\varepsilon \to 0+$.

Remark 2.11. The constants λ_j in (2.16), (2.18) and (2.20) are not exact.

Remark 2.12. If the Post-Widder operator P_s is replaced by the Gamma operator G_s , then the results of this section remain true with slight changes. The necessary modifications are:

a) In Propositions 2.4 and 2.5 the restriction on s is $s > \max\{0, -\gamma - p^{-1} - 1\}$ and $\kappa_j(\gamma + p^{-1}, s)$ are replaced by $\kappa_j(-\gamma - p^{-1} - 1, s), j = 1, 2$.

b) In Proposition 2.6 the restriction on s is $s > \max\{2, -\gamma - p^{-1} - 1\}$ and estimate (2.15) changes to

$$\begin{split} \left\| \chi^{\gamma} \left(G_s(g) - g - \frac{\varphi^2 D^2 g}{2(s-1)} - \frac{2\varphi^3 D^3 g}{3(s-1)(s-2)} \right) \right\|_p \\ & \leq \frac{\bar{\kappa}_3(\gamma + p^{-1}, s)}{s^2} \| \chi^{\gamma} \varphi^4 D^4 g \|_p, \end{split}$$

where

$$\bar{\kappa}_{3}(\beta,s) := \frac{s^{4}}{6\Gamma(s)} \int_{0}^{\infty} \int_{1}^{v/s} \left(\frac{v}{sy} - 1\right)^{3} y^{\beta+3} \frac{dy}{y} e^{-v} v^{s-2} \frac{dv}{v}$$

 $\bar{\kappa}_3(\beta, s)$ satisfies (2.8) as κ_3 does.

- c) In Proposition 2.7 the restriction on s is $s > \max\{0, -\gamma p^{-1} 1\}$ and $\lambda_1(\gamma + p^{-1}, s)$ is replaced by $\lambda_1(-\gamma p^{-1} 1, s)$.
- d) In Proposition 2.8 the restriction on s is $s > \max\{0, -\gamma p^{-1} 1\}$ and $\lambda_2(\gamma + p^{-1}, s)$ is replaced by $\overline{\lambda}_2(-\gamma p^{-1} 1, s)$, where

$$\bar{\lambda}_2(\beta, s) := \frac{s^{\beta-1}}{\Gamma(s)} \int_0^\infty |(v-s+1)^2 - s + 1| e^{-v} v^{s-\beta} \frac{dv}{v}.$$

 $\bar{\lambda}_2(\beta, s)$ satisfies (2.19) as λ_2 does.

e) In Proposition 2.9 the restriction on s is $s > \max\{0, -\gamma - p^{-1} - 1\}$ and $\lambda_3(\gamma + p^{-1}, s)$ is replaced by $\overline{\lambda}_3(-\gamma - p^{-1} - 1, s)$, where

$$\bar{\lambda}_3(\beta, s) := \frac{s^{\beta - \frac{1}{2}}}{\Gamma(s)} \int_0^\infty |v - s + 1| e^{-v} v^{s - \beta} \frac{dv}{v}.$$

 $\bar{\lambda}_3(\beta, s)$ satisfies (2.21) as λ_3 does.

3 A characterization of the Post-Widder operator error

Now we are ready to prove Theorem 1.1.

Proof. Both sides of (1.6) and (1.7) do not change if we subtract a linear function from f. So we may assume that $f \in L_p(\chi^{\gamma})(0,\infty)$.

For every $g \in AC^1_{loc}(0,\infty)$ such that $g, \varphi^2 D^2 g \in L_p(\chi^{\gamma})(0,\infty)$ we have from Propositions 2.4 and 2.5

$$\begin{aligned} \|\chi^{\gamma}(P_{s}f-f)\|_{p} &\leq \|\chi^{\gamma}P_{s}(f-g)\|_{p} + \|\chi^{\gamma}(P_{s}g-g)\|_{p} + \|\chi^{\gamma}(f-g)\|_{p} \\ &\leq (\kappa_{1}+1)\|\chi^{\gamma}(f-g)\|_{p} + s^{-1}\kappa_{2}\|\chi^{\gamma}\varphi^{2}D^{2}g\|_{p} \\ &\leq \max\{\kappa_{1}+1, 4\kappa_{2}\}\{\|\chi^{\gamma}(f-g)\|_{p} + (4s)^{-1}\|\chi^{\gamma}\varphi^{2}D^{2}g\|_{p}\}.\end{aligned}$$

(The arguments $\gamma + p^{-1}$ and s of κ_j, λ_j are omitted in the proof.) Taking infimum on g we get

$$\|\chi^{\gamma}(P_s f - f)\|_p \le \max\{\kappa_1 + 1, 4\kappa_2\}K_{\gamma}\left(f, \frac{1}{4s}\right)_p,$$

which, in view of (2.6), (2.7), proves (1.6).

In order to prove (1.7) for a given $f \in L_p(\chi^{\gamma})(0,\infty)$ we set $g = P_s^2 f$. Then $\varphi^4 D^4 g \in L_p(\chi^{\gamma})(0,\infty)$ in view of Propositions 2.7 and 2.8 (with $g = P_s f$) and hence we can apply Proposition 2.6. A consecutive application of Propositions 2.6, 2.8 and 2.7 gives

$$\begin{aligned} \left\| \chi^{\gamma} \left(P_s^3 f - P_s^2 f - \frac{1}{2s} \varphi^2 D^2 P_s^2 f - \frac{1}{3s^2} \varphi^3 D^3 P_s^2 f \right) \right\|_p \\ &\leq \frac{\kappa_3}{s^2} \| \chi^{\gamma} \varphi^4 D^4 P_s^2 f \|_p \leq \frac{\kappa_3 \lambda_2}{s} \| \chi^{\gamma} \varphi^2 D^2 P_s f \|_p \\ &\leq \frac{\kappa_3 \lambda_2}{s} \| \chi^{\gamma} \varphi^2 D^2 P_s^2 f \|_p + \frac{\kappa_3 \lambda_2}{s} \| \chi^{\gamma} \varphi^2 D^2 P_s (f - P_s f) \|_p \\ &\leq \frac{\kappa_3 \lambda_2}{s} \| \chi^{\gamma} \varphi^2 D^2 P_s^2 f \|_p + \kappa_3 \lambda_2 \lambda_1 \| \chi^{\gamma} (f - P_s f) \|_p. \end{aligned}$$
(3.1)

Using Propositions 2.9 and 2.7 we obtain

$$\begin{aligned} \|\chi^{\gamma}\varphi^{3}D^{3}P_{s}^{2}f\|_{p} &\leq s^{1/2}\lambda_{3}\|\chi^{\gamma}\varphi^{2}D^{2}P_{s}f\|_{p} \\ &\leq s^{1/2}\lambda_{3}\|\chi^{\gamma}\varphi^{2}D^{2}P_{s}^{2}f\|_{p} + s^{1/2}\lambda_{3}\|\chi^{\gamma}\varphi^{2}D^{2}P_{s}(f-P_{s}f)\|_{p} \\ &\leq s^{1/2}\lambda_{3}\|\chi^{\gamma}\varphi^{2}D^{2}P_{s}^{2}f\|_{p} + s^{3/2}\lambda_{3}\lambda_{1}\|\chi^{\gamma}(f-P_{s}f)\|_{p}. \end{aligned}$$
(3.2)

From (3.1), Proposition 2.4 and (3.2) we obtain

$$\begin{split} &\frac{1}{2s} \|\chi^{\gamma} \varphi^2 D^2 P_s^2 f\|_p \\ &\leq \left\| \chi^{\gamma} \left(P_s^3 f - P_s^2 f - \frac{1}{2s} \varphi^2 D^2 P_s^2 f - \frac{1}{3s^2} \varphi^3 D^3 P_s^2 f \right) \right\|_p \\ &+ \|\chi^{\gamma} P_s^2 (P_s f - f)\|_p + \frac{1}{3s^2} \|\chi^{\gamma} \varphi^3 D^3 P_s^2 f\|_p \\ &\leq \frac{\kappa_3 \lambda_2}{s} \|\chi^{\gamma} \varphi^2 D^2 P_s^2 f\|_p + \kappa_3 \lambda_1 \lambda_2 \|\chi^{\gamma} (f - P_s f)\|_p \\ &+ \kappa_1^2 \|\chi^{\gamma} (f - P_s f)\|_p + \frac{\lambda_3}{3s^{3/2}} \|\chi^{\gamma} \varphi^2 D^2 P_s^2 f\|_p + \frac{\lambda_1 \lambda_3}{3s^{1/2}} \|\chi^{\gamma} (f - P_s f)\|_p. \end{split}$$

Hence

$$\frac{1}{4s} \|\chi^{\gamma} \varphi^2 D^2 P_s^2 f\|_p \le \frac{\kappa_1^2 + \kappa_3 \lambda_1 \lambda_2 + 1/3 \lambda_1 \lambda_3 s^{-1/2}}{2 - 4\kappa_3 \lambda_2 - 4/3 \lambda_3 s^{-1/2}} \|\chi^{\gamma} (f - P_s f)\|_p$$
(3.3)

provided that $2 - 4\kappa_3\lambda_2 - 4/3\lambda_3s^{-1/2} > 0$. This inequality is valid for $s \ge 1$

 $N(\gamma^2 + 1)$ if we take into account (2.8), (2.19) and (2.21). Therefore

$$\begin{split} K_{\gamma}\left(f,\frac{1}{4s}\right)_{p} &\leq \|\chi^{\gamma}(f-P_{s}^{2}f)\|_{p} + \frac{1}{4s}\|\chi^{\gamma}\varphi^{2}D^{2}P_{s}^{2}f\|_{p} \\ &\leq \left(1+\kappa_{1}+\frac{\kappa_{1}^{2}+\kappa_{3}\lambda_{1}\lambda_{2}+1/3\lambda_{1}\lambda_{3}s^{-1/2}}{2-4\kappa_{3}\lambda_{2}-4/3\lambda_{3}s^{-1/2}}\right)\|\chi^{\gamma}(f-P_{s}f)\|_{p}. \end{split}$$

In view of the estimates of κ_j and λ_j this inequality proves (1.7) and completes the proof of Theorem 1.1 for the Post-Widder operator P_s . The proof for the Gamma operator G_s is the same as we take into account Remark 2.12.

In the proof of Theorem 1.1 (see (3.3) above) we have established the following statement which is of importance in itself.

Proposition 3.1. There are positive numbers N, M such that for every $\gamma \in \mathbb{R}$, $s \geq N(\gamma^2 + 1), 1 \leq p \leq \infty$ and $f \in \pi_1 + L_p(\chi^{\gamma})(0, \infty)$ we have

$$\frac{1}{4s} \|\chi^{\gamma} \varphi^2 D^2 P_s^2 f\|_p \le \left(\frac{5}{8 - 2\sqrt{2}} + M\frac{1}{\sqrt{s}} + M\frac{\gamma^2 + 1}{s}\right) \|\chi^{\gamma} (f - P_s f)\|_p.$$

Remark 3.2. The proof of the theorem follows an idea from [2]. The inequality $\kappa_3\lambda_2 < \frac{1}{2}$ (here $\frac{1}{2}$ is the coefficient in front of $s^{-1}\varphi^2 D^2 g$ in the left-hand side of (2.15)) is crucial. The fact that the power -2 of s in front of $\varphi^3 D^3 g$ in (2.15) is less than $-\frac{3}{2}$ is also of high importance. The values of the constants in the remaining propositions of Section 2 are not essential in this proof.

Remark 3.3. From Proposition 2.4, (3.3) and (1.6) we get

$$\|\chi^{\gamma}(f - P_{s}^{2}f)\|_{p} + \frac{1}{4s} \|\chi^{\gamma}\varphi^{2}D^{2}P_{s}^{2}f\|_{p} \leq 2.98 \|\chi^{\gamma}(f - P_{s}f)\|_{p}$$
$$\leq 6K_{\gamma}\left(f, \frac{1}{4s}\right)_{p}$$
(3.4)

for s big enough. This means that $P_s^2 f$ provides a realization of the K-functional $K_{\gamma}(f, (4s)^{-1})_p$. The same is true for the other powers $P_s^m f$ of the operator. For example, for m = 1 from (3.3) and Proposition 2.7 we get

$$\frac{1}{2s} \|\chi^{\gamma} \varphi^2 D^2 P_s f\|_p \leq \frac{1}{2s} \|\chi^{\gamma} \varphi^2 D^2 P_s^2 f\|_p + \frac{1}{2s} \|\chi^{\gamma} \varphi^2 D^2 P_s (P_s f - f)\|_p \\
\leq 2.7 \|\chi^{\gamma} (f - P_s f)\|_p$$
(3.5)

for s big enough. Now (3.5) and (1.6) implies an inequality for $P_s f$ similar to (3.4).

4 Imbedding inequalities

The proof of the characterization of the K-functional $K^r_{\gamma}(f, t^r)_p$ is based on several imbedding inequalities. As it is known for $g \in W^r_p[a, b]$ there holds

$$(b-a)^{j} \|g^{(j)}\|_{p[a,b]} \le c \left(\|g\|_{p[a,b]} + (b-a)^{r} \|g^{(r)}\|_{p[a,b]} \right), \quad j = 0, 1, \dots, r, \quad (4.1)$$

where the constant c depends only on r (see e.g. [1, p. 38]). As usual $W_p^r[a, b]$ denotes the space of the functions $g \in AC_{loc}^{r-1}[a, b]$ for which $f, f^{(r)} \in L_p[a, b]$. Using (4.1) one can show (cf. [4])

Proposition 4.1. Let $r \in \mathbb{N}$, $\gamma \in \mathbb{R}$ and $1 \leq p \leq \infty$. Then for every $g \in$ $AC_{loc}^{r-1}(0,\infty)$ such that $g, \chi^r g^{(r)} \in L_p(\chi^{\gamma})(0,\infty)$ we have

$$\|\chi^{\gamma+j}g^{(j)}\|_{p(0,\infty)} \le c \left(\|\chi^{\gamma}g\|_{p(0,\infty)} + \|\chi^{\gamma+r}g^{(r)}\|_{p(0,\infty)}\right), \quad j = 0, 1, \dots, r, \quad (4.2)$$

where the constant c depends only on γ and r.

Proof. Using (4.1), we get for a > 0 and j = 0, 1, ..., r,

$$\begin{aligned} \|\chi^{\gamma+j}g^{(j)}\|_{p[a,2a]} &\leq \max\{1,2^{\gamma+j}\} \, a^{\gamma+j} \, \|g^{(j)}\|_{p[a,2a]} \\ &\leq c \, a^{\gamma} \left(\|g\|_{p[a,2a]} + a^{r} \, \|g^{(r)}\|_{p[a,2a]} \right) \\ &\leq c \left(\|\chi^{\gamma}g\|_{p[a,2a]} + \|\chi^{\gamma+r}g^{(r)}\|_{p[a,2a]} \right), \end{aligned}$$
(4.3)

where the constant c depends only on γ and r.

To prove (4.2) we divide the interval $(0,\infty)$ by the points $a_k = 2^k, k \in \mathbb{Z}$ and apply (4.3) on every interval $[a_k, a_{k+1}]$. Thus the case $p = \infty$ is settled. If $p < \infty$, we further raise both sides of (4.3) to power p, use the inequality $(A+B)^p \leq 2^{p-1}(A^p+B^p)$, sum the inequalities in k and finally raise to power 1/p. \square

We derive the following corollary from Proposition 4.1, using the well-known Hardy's inequalities (see [8, p. 245]).

Corollary 4.2. Let $r \in \mathbb{N}$, $i \in \{0, 1, \dots, r-1\}$, $1 \leq p \leq \infty$ and $\gamma \in \mathbb{R}$ be such that $\gamma \neq 1 - r - 1/p, \dots, -i - 1/p$. Then for $g \in AC_{loc}^{r-1}(0, \infty)$ such that $g, \chi^r g^{(r)} \in L_p(\chi^\gamma)(0,\infty)$ there hold

$$\|\chi^{\gamma+j}g^{(j)}\|_{p(0,\infty)} \le c \,\|\chi^{\gamma+r}g^{(r)}\|_{p(0,\infty)}, \quad j=i,i+1,\dots,r-1,$$
(4.4)

where the constant c depends only on $\min\{|\gamma + j + 1/p| : j = i, i+1, \dots, r-1\},\$ γ and r.

Proof. It is enough to prove the statement for i = j = r-1, since the general case

Proof. It is enough to prove the statement for i = j = r-1, since the general case follows from it by iteration. Since $g, \chi^r g^{(r)} \in L_p(\chi^{\gamma})(0, \infty)$, then Proposition 4.1 yields that $\chi^{r-1}g^{(r-1)} \in L_p(\chi^{\gamma})(0,\infty)$, i.e. $\chi^{\gamma+r-1}g^{(r-1)} \in L_p(0,\infty)$. First, we consider the case $\gamma + r - 1 < -1/p$. From Hölder's inequality we get $\int_x^a |g^{(r)}(y)| dy \le c \|\chi^{\gamma+r}g^{(r)}\|_{p[0,a]}$ for $0 < x \le a$, which implies $g^{(r)} \in$ $L_1[0,a]$. Moreover, the assumption $|g^{(r-1)}(x)| \ge c > 0$ in a neighborhood of the origin would imply $\chi^{\gamma+r-1} \in L_p[0,1]$, which contradicts $\gamma + r - 1 < -1/p$. Hence, there exists a sequence $\{\xi_n\}$ such that $\xi_n \to 0 + 0$ and $g^{(r-1)}(\xi_n) \to 0$ as $n \to \infty$. Combining these two facts with the representation $g^{(r-1)}(x) =$ $g^{(r-1)}(\xi) + \int_{\xi}^{x} g^{(r)}(y) \, dy, \ 0 < x, \xi \le a \text{ we get}$

$$g^{(r-1)}(x) = \int_0^x g^{(r)}(y) \, dy, \quad x \in (0,\infty), \tag{4.5}$$

and now Hardy's inequalities prove (4.4).

In a similar way in the case $\gamma + r - 1 > -1/p$ we show that the representation

$$g^{(r-1)}(x) = -\int_{x}^{\infty} g^{(r)}(y) \, dy, \quad x \in (0,\infty),$$
(4.6)

holds and once again Hardy's inequalities prove (4.4).

Corollary 4.2 shows that, except for few values of γ , the conclusion of Proposition 4.1 can be improved by omitting $\|\chi^{\gamma}g\|_{p(0,\infty)}$ from the right-hand side of (4.2). Be aware that the condition $g \in L_p(\chi^{\gamma})(0,\infty)$ is necessary for the validity of (4.4) as the example of $g(x) = x^j$ shows. Comparing Corollary 4.2 with [4, Lemma 3] we see that the conclusions are similar but the assumptions differ.

As a consequence of (4.5) and (4.6) we get the following simple description of the boundary behaviour of g.

Corollary 4.3. Let $g \in AC_{loc}^{r-1}(0,\infty)$ be such that $g, \chi^r g^{(r)} \in L_p(\chi^{\gamma})(0,\infty)$. Then:

- a) if $\gamma + r 1 + 1/p < 0$ then $\lim_{x \to 0+0} g^{(j)}(x) = 0$ for $0 \le j < r$;
- b) if $0 < \gamma + i + 1/p < 1$ for some i = 1, 2, ..., r 1 then $\lim_{x \to 0+0} g^{(j)}(x) = 0$ for $0 \le j < i$ and $\lim_{x \to \infty} g^{(j)}(x) = 0$ for $i \le j < r$;
- c) if $0 < \gamma + 1/p$ then $\lim_{x \to \infty} g^{(j)}(x) = 0$ for $0 \le j < r$;
- d) if $\gamma = -m 1/p$ for some m = 0, 1, ..., r 1 then $\lim_{x \to 0+0} g^{(j)}(x) = 0$ for j = 0, 1, ..., m 1 and $\lim_{x \to \infty} g^{(j)}(x) = 0$ for j = m + 1, m + 2, ..., r 1.

Note that the value j = m is not considered in d).

We shall give a characterization of the weighted K-functional $K_{\alpha-1/p}^r(f,t^r)_p$ by means of K-functionals on \mathbb{R} with the weight \mathcal{E}^{α} . That is why, to clear that additional exponential weight, we shall need the analogue of the above inequalities for such weights.

Proposition 4.4. (cf. [4]) Let $r \in \mathbb{N}$, $\alpha \in \mathbb{R}$ and $1 \leq p \leq \infty$. Then for every $G \in AC_{loc}^{r-1}(\mathbb{R})$ such that $G, G^{(r)} \in L_p(\mathcal{E}^{\alpha})(\mathbb{R})$ we have

$$\|\mathcal{E}^{\alpha}G^{(j)}\|_{p(\mathbb{R})} \le c\left(\|\mathcal{E}^{\alpha}G\|_{p(\mathbb{R})} + \|\mathcal{E}^{\alpha}G^{(r)}\|_{p(\mathbb{R})}\right), \quad j = 0, 1, \dots, r,$$

where the constant c depends only on α and r.

Proof. We divide the real line by the points $a_k = k$, $k \in \mathbb{Z}$, and apply the inequality (4.1) on each interval $[a_k, a_{k+1}]$.

Now, Proposition 4.4 and Corollary 4.2 imply

Corollary 4.5. Let $r \in \mathbb{N}$, $\alpha \in \mathbb{R}$, $\alpha \neq 0$ and $1 \leq p \leq \infty$. Then for every $G \in AC_{loc}^{r-1}(\mathbb{R})$ such that $G, G^{(r)} \in L_p(\mathcal{E}^{\alpha})(\mathbb{R})$ we have

$$\|\mathcal{E}^{\alpha}G^{(j)}\|_{p(\mathbb{R})} \le c \|\mathcal{E}^{\alpha}G^{(r)}\|_{p(\mathbb{R})}, \quad j = 0, 1, \dots, r,$$

where the constant c depends only on α and r.

Proof. It is enough to prove the statement for j = r - 1, since the general case follows from it by iteration. Since $G, G^{(r)} \in L_p(\mathcal{E}^\alpha)(\mathbb{R})$, then Proposition 4.4 yields that $G^{(r-1)} \in L_p(\mathcal{E}^\alpha)(\mathbb{R})$. Now the statement follows from (4.4) with r = 1 and $\alpha = \gamma + 1/p \neq 0$ by the substitution $G^{(r-1)}(y) = g(e^y)$.

5 Auxiliary relations about *K*-functionals

In establishing the result in Theorem 1.2, we shall first relate $K^r_{\gamma}(f, t^r)_p$ to the K-functional

$$\mathcal{K}^r_{\alpha}(F,t^r)_p = \inf_{G \in AC^{r-1}_{loc}(\mathbb{R})} \{ \|\mathcal{E}^{\alpha}(F-G)\|_{p(\mathbb{R})} + t^r \|\mathcal{E}^{\alpha}G^{(r)}\|_{p(\mathbb{R})} \},\$$

where $F \in L_p(\mathcal{E}^{\alpha})(\mathbb{R}), r \in \mathbb{N}, \alpha \in \mathbb{R}$ and t > 0. Note that the two norms in the definition of the K-functional have one and the same exponential weight.

Theorem 5.1. Let $r \in \mathbb{N}$, $\alpha \in \mathbb{R}$, $1 \leq p \leq \infty$, $0 < t \leq t_0$ and $F \in L_p(\mathcal{E}^{\alpha})(\mathbb{R})$. Then

$$\mathscr{K}^{r}_{\alpha}(F,t^{r})_{p} \sim \omega_{r}(F,t)_{p(\mathscr{E}^{\alpha})(\mathbb{R})}$$

where

$$\omega_r(F,t)_{p(\mathcal{E}^{\alpha})(\mathbb{R})} = \sup_{0 < h \le t} \|\mathcal{E}^{\alpha} \Delta_h^r F\|_{p(\mathbb{R})}.$$
(5.1)

Proof. The proof follows the lines of its classical analogue (the case $\alpha = 0$) based upon the properties of the modulus $\omega_r(F, t)_{p(\mathcal{E}^{\alpha})(\mathbb{R})}$ and the construction of modified Steklov functions (see e.g. [1, p. 177–178]). Let us note that the quantity in (5.1) is well defined since $e^{\alpha(x+h)} \sim e^{\alpha x}$ uniformly for $x \in \mathbb{R}$ and for $0 < h \le t \le t_0$, where $t_0 > 0$ is fixed.

Definition (5.1) reduces to the classical modulus of smoothness $\omega_r(F, t)_{p(\mathbb{R})}$ in the unweighted case $\alpha = 0$.

In the proof of Theorem 6.1.b) we shall use the following characterization of a K-functional, which is a simple modification of the classical unweighted one.

Lemma 5.2. For $r \in \mathbb{N}$, $1 \le p \le \infty$, $0 < t \le t_0$ and $F \in L_p(\mathbb{R})$ there holds

$$\inf_{G \in W_p^r(\mathbb{R})} \left\{ \|F - G\|_{p(\mathbb{R})} + t^r \|G^{(r)}\|_{p(\mathbb{R})} + t^r \|G'\|_{p(\mathbb{R})} \right\} \\ \sim \omega_r(F, t)_{p(\mathbb{R})} + t^{r-1} \omega_1(F, t)_{p(\mathbb{R})}.$$

Proof. Since for any $G \in W_p^r(\mathbb{R})$ and $0 < t \le t_0$ we have

$$\omega_r(F,t)_{p(\mathbb{R})} \le c \left(\|F - G\|_{p(\mathbb{R})} + t^r \|G^{(r)}\|_{p(\mathbb{R})} \right)$$

and

$$t^{r-1}\omega_1(F,t)_{p(\mathbb{R})} \le c\left(\|F-G\|_{p(\mathbb{R})} + t^r \|G'\|_{p(\mathbb{R})}\right)$$

there holds the lower estimate

$$\omega_r(F,t)_{p(\mathbb{R})} + t^{r-1} \omega_1(F,t)_{p(\mathbb{R})} \\ \leq c \inf_{G \in W_p^r(\mathbb{R})} \left\{ \|F - G\|_{p(\mathbb{R})} + t^r \|G^{(r)}\|_{p(\mathbb{R})} + t^r \|G'\|_{p(\mathbb{R})} \right\}.$$

To prove the converse inequality we set for any $F \in L_p(\mathbb{R})$ and t > 0

$$G_t(x) = \sum_{i=1}^r (-1)^{i-1} \binom{r}{i} \frac{1}{t^r} \int_0^t \cdots \int_0^t F\left(x + \frac{i}{r}(y_1 + \dots + y_r)\right) \, dy_1 \cdots \, dy_r.$$

Then

$$||F - G_t||_{p(\mathbb{R})} \le \omega_r(F, t)_{p(\mathbb{R})},\tag{5.2}$$

$$t^r \|G_t^{(r)}\|_{p(\mathbb{R})} \le c \,\omega_r(F, t)_{p(\mathbb{R})},\tag{5.3}$$

and

$$t^{r} \|G_{t}'\|_{p(\mathbb{R})} \le c t^{r-1} \omega_{1}(F, t)_{p(\mathbb{R})}.$$
 (5.4)

Now, inequalities (5.2) – (5.4) imply the upper estimate of the K-functional. The proof of the assertion is completed. $\hfill \Box$

From Lemma 5.2 and Proposition 4.4 with $\alpha = 0$ we get

Corollary 5.3. For $r \in \mathbb{N}$, $1 \le p \le \infty$, $0 < t \le t_0$ and $F \in L_p(\mathbb{R})$ there holds

 $\omega_r(F,t)_{p(\mathbb{R})} + t^{r-1}\omega_1(F,t)_{p(\mathbb{R})} \le c\left(\omega_r(F,t)_{p(\mathbb{R})} + t^r \|F\|_{p(\mathbb{R})}\right).$

6 A characterization of $K^r_{\alpha-1/p}(f,t^r)_p$ by K-functionals on the real line with an exponential weight

First, we establish the upper estimate.

Theorem 6.1. Let $r \in \mathbb{N}$, $\alpha \in \mathbb{R}$, $1 \le p \le \infty$ and $f \in L_p(\chi^{\alpha - 1/p})(0, \infty)$.

a) If $\alpha \neq 0$ and 0 < t, then

$$K^r_{\alpha-1/p}(f,t^r)_p \le c \,\mathcal{K}^r_{\alpha}(f \circ \mathcal{E},t^r)_{p(\mathbb{R})}$$

b) If $\alpha = 0$ and $0 < t \le t_0$, then

$$K^r_{-1/p}(f,t^r)_p \le c \left(\mathcal{K}^r_0(f \circ \mathcal{E},t^r)_{p(\mathbb{R})} + t^{r-1} \mathcal{K}^1_0(f \circ \mathcal{E},t)_{p(\mathbb{R})} \right).$$

Proof. For $f \in L_p(\chi^{\alpha-1/p})(0,\infty)$ set $F = f \circ \mathcal{E}$. For every $G \in AC_{loc}^{r-1}(\mathbb{R})$ such that $G, G^{(r)} \in L_p(\mathcal{E}^{\alpha})(\mathbb{R})$ we set $g = G \circ \log$. In order to prove assertion a) using the standard K-functional arguments it is enough to show that

$$\|\chi^{\alpha-1/p}(f-g)\|_{p(0,\infty)} \le c \,\|\mathcal{E}^{\alpha}(F-G)\|_{p(\mathbb{R})};\tag{6.1}$$

$$\|\chi^{\alpha-1/p+r}g^{(r)}\|_{p(0,\infty)} \le c \,\|\mathcal{E}^{\alpha}G^{(r)}\|_{p(\mathbb{R})}.$$
(6.2)

Indeed, from (6.1) and (6.2) we get for every $G \in AC_{loc}^{r-1}(\mathbb{R})$ such that $G, G^{(r)} \in L_p(\mathcal{E}^{\alpha})(\mathbb{R})$ the estimate

$$K_{\alpha-1/p}^{r}(f,t^{r})_{p} \leq \|\chi^{\alpha-1/p}(f-g)\|_{p(0,\infty)} + t^{r}\|\chi^{\alpha-1/p+r}g^{(r)}\|_{p(0,\infty)}$$
$$\leq c\left(\|\mathcal{E}^{\alpha}(F-G)\|_{p(\mathbb{R})} + t^{r}\|\mathcal{E}^{\alpha}G^{(r)}\|_{p(\mathbb{R})}\right).$$

Taking infimum on G in the above inequality we get a).

By simple change of the variables we see that (6.1) is true with c = 1 as equality. For the proof of (6.2) we use Corollary 4.5 and get

$$\|\chi^{\alpha-1/p+r}(G \circ \log)^{(r)}\|_{p(0,\infty)} = \left\|\chi^{\alpha-1/p+r}\chi^{-r}\sum_{j=1}^{r}m_{r,j}(G^{(j)} \circ \log)\right\|_{p(0,\infty)}$$
$$\leq \sum_{j=1}^{r}|m_{r,j}| \|\mathcal{E}^{\alpha}G^{(j)}\|_{p(\mathbb{R})} \leq c \|\mathcal{E}^{\alpha}G^{(r)}\|_{p(\mathbb{R})}$$

with appropriate integers $m_{r,j}$.

In the proof of b) we use the previous notations. Now we cannot use Corollary 4.5 in the proof of the analogue of (6.2) because $\alpha = 0$. Instead, from Proposition 4.4 with $\alpha = 0$ we get $G' \in L_p(\mathbb{R})$. Then

$$\begin{aligned} \|\chi^{-1/p+r}(G \circ \log)^{(r)}\|_{p(0,\infty)} &= \left\|\chi^{-1/p+r}\chi^{-r}\sum_{j=1}^{r}m_{r,j}(G^{(j)} \circ \log)\right\|_{p(0,\infty)} \\ &\leq \sum_{j=1}^{r}|m_{r,j}| \,\|G^{(j)}\|_{p(\mathbb{R})} \\ &\leq c \,\left(\|G'\|_{p(\mathbb{R})} + \|G^{(r)}\|_{p(\mathbb{R})}\right), \end{aligned}$$
(6.3)

where at the last step we use once again Proposition 4.4 with $\alpha = 0$ and G' and r - 1 at the place of G and r. Using (6.1) with $\alpha = 0$ and (6.3) we get

$$K_{-1/p}^{r}(f,t^{r})_{p} \leq c \inf_{G \in W_{p}^{r}(\mathbb{R})} \left\{ \|F - G\|_{p(\mathbb{R})} + t^{r} \|G^{(r)}\|_{p(\mathbb{R})} + t^{r} \|G'\|_{p(\mathbb{R})} \right\}$$
$$\leq c \left(\mathcal{K}_{0}^{r}(f \circ \mathcal{E},t^{r})_{p(\mathbb{R})} + t^{r-1} \mathcal{K}_{0}^{1}(f \circ \mathcal{E},t)_{p(\mathbb{R})} \right),$$

where at the last step we use Lemma 5.2 and Theorem 5.1. This completes the proof. $\hfill \Box$

Remark 6.2. The upper estimate in the last theorem is not exact for $\alpha = 1 - r, 2 - r, \dots, -1$, as it follows from Remark 1.3 and Theorems 6.6.b) and 7.3 below.

Let us now proceed to the lower estimate.

Theorem 6.3. Let $r \in \mathbb{N}$, $\alpha \neq 1 - r, 2 - r, \ldots, -1$, $1 \leq p \leq \infty$, $0 < t \leq t_0$ and $f \in L_p(\chi^{\alpha-1/p})(0,\infty)$. Then for $j = 1, 2, \ldots, r$ there holds

$$t^{r-j} \mathcal{K}^j_{\alpha}(f \circ \mathcal{E}, t^j)_p \le c \, K^r_{\alpha-1/p}(f, t^r)_p$$

Proof. Let $g \in AC_{loc}^{r-1}(0,\infty)$ and $g, \chi^r g^{(r)} \in L_p(\chi^{\alpha-1/p})(0,\infty)$. We write

$$(g \circ \mathcal{E})^{(j)} = \sum_{i=1}^{j} n_{j,i} \mathcal{E}^i (g^{(i)} \circ \mathcal{E})$$

with appropriate positive integers $n_{j,i}$. Then, using Corollary 4.2 with i = 1 and $\gamma = \alpha - 1/p$, we get

$$\begin{aligned} \|\mathcal{E}^{\alpha}(g \circ \mathcal{E})^{(j)}\|_{p(\mathbb{R})} &\leq \sum_{i=1}^{j} n_{j,i} \, \|\mathcal{E}^{\alpha+i}(g^{(i)} \circ \mathcal{E})\|_{p(\mathbb{R})} \\ &= \sum_{i=1}^{j} n_{j,i} \, \|\chi^{\alpha+i-1/p} g^{(i)}\|_{p(0,\infty)} \\ &\leq c \, \|\chi^{\alpha-1/p+r} g^{(r)}\|_{p(0,\infty)}. \end{aligned}$$

Combining the above inequality with the equality $\|\mathcal{E}^{\alpha}(f \circ \mathcal{E} - g \circ \mathcal{E})\|_{p(\mathbb{R})} = \|\chi^{\alpha-1/p}(f-g)\|_{p(0,\infty)}$ and the condition $t \leq t_0$ we complete the proof by standard K-functional arguments. \Box

Remark 6.4. In the case r = 1 Theorems 6.1 and 6.3 provide the equivalence

$$K^1_{\alpha-1/p}(f,t)_p \sim \mathcal{K}^1_{\alpha}(f \circ \mathcal{E}, t)_p$$

for all values of α .

The inequalities we have proven so far enable us to find K-functonals on the real line equivalent to $K^r_{\alpha-1/p}(f,t^r)_p$ for $\alpha \neq 1-r, 2-r, \ldots, -1$. To settle the cases $\alpha = 1-r, 2-r, \ldots, -1$ we shall relate them to the case $\alpha = 0$. Note that the value $\alpha = 0$ is acceptable for the hypotheses of Theorem 6.3.

Theorem 6.5. Let $r \in \mathbb{N}$, $r \geq 2$, m = 1, 2, ..., r - 1, $1 \leq p \leq \infty$ and $f \in L_p(\chi^{-m-1/p})(0, \infty)$. Then

$$K^{r}_{-m-1/p}(f,t^{r})_{p} \sim K^{r}_{-1/p}(\chi^{-m}f,t^{r})_{p}.$$
 (6.4)

Proof. Set $F = \chi^{-m} f$. For any $G \in AC_{loc}^{r-1}(0,\infty)$ such that $G, \chi^r G^{(r)} \in L_p(\chi^{-1/p})(0,\infty)$ we set $g = \chi^m G$. From the Leibniz rule and Corollary 4.2 with i = 1 and $\gamma = -1/p$ we get

$$\begin{aligned} \|\chi^{-m-1/p+r}g^{(r)}\|_{p(0,\infty)} &= \|\chi^{-m-1/p+r}(\chi^m G)^{(r)}\|_{p(0,\infty)} \\ &\leq \sum_{j=r-m}^r \binom{r}{j} \frac{m!}{(m+j-r)!} \, \|\chi^{-1/p+j}G^{(j)}\|_{p(0,\infty)} \\ &\leq c \, \|\chi^{-1/p+r}G^{(r)}\|_{p(0,\infty)}. \end{aligned}$$

And since trivially

$$\|\chi^{-m-1/p}(f-g)\|_{p(0,\infty)} = \|\chi^{-1/p}(F-G)\|_{p(0,\infty)},$$
(6.5)

we get by standard K-functional arguments

$$K^{r}_{-m-1/p}(f,t^{r})_{p} \leq c K^{r}_{-1/p}(F,t^{r})_{p}.$$

The converse inequality

$$K^{r}_{-1/p}(F,t^{r})_{p} \le c K^{r}_{-m-1/p}(f,t^{r})_{p}$$

will follow from (6.5) and

$$\|\chi^{-1/p+r}G^{(r)}\|_{p(0,\infty)} \le c \,\|\chi^{-m-1/p+r}g^{(r)}\|_{p(0,\infty)}, \quad G = \chi^{-m}g, \tag{6.6}$$

valid for any $g \in AC_{loc}^{r-1}(0,\infty)$ such that $g, \chi^r g^{(r)} \in L_p(\chi^{-m-1/p})(0,\infty)$. By the Leibniz rule we have

$$G^{(r)}(x) = \sum_{j=0}^{r} (-1)^{r-j} {r \choose j} \frac{(m+r-j-1)!}{(m-1)!} x^{-m-r+j} g^{(j)}(x).$$
(6.7)

If m < r-1 then we observe that Corollary 4.2 with i = m+1 and $\gamma = -m-1/p$ implies for $j = m+1, \ldots, r-1$

$$\|\chi^{-m-1/p+j}g^{(j)}\|_{p(0,\infty)} \le c \,\|\chi^{-m-1/p+r}g^{(r)}\|_{p(0,\infty)}.$$
(6.8)

We shall show that

$$\left\| \chi^{-m-1/p} \sum_{j=0}^{m} (-1)^{r-j} {r \choose j} (m+r-j-1)! \chi^{j} g^{(j)} \right\|_{p(0,\infty)} \le c \| \chi^{1-1/p} g^{(m+1)} \|_{p(0,\infty)}.$$
(6.9)

Then (6.7) - (6.9) imply (6.6) as (6.8) is not necessary in case m = r - 1. So it remains to prove (6.9).

First, putting $g(x) = x^m$ in (6.7), we get

$$0 \equiv \sum_{j=0}^{m} (-1)^{r-j} {r \choose j} \frac{(m+r-j-1)!}{(m-1)!} x^{-m-r+j} \frac{m!}{(m-j)!} x^{m-j}$$

and hence

$$\sum_{j=0}^{m} (-1)^{r-j} \binom{r}{j} \frac{(m+r-j-1)!}{(m-j)!} = 0.$$
(6.10)

Next, we expand $g^{(j)}$, j = 0, 1, ..., m, by the Taylor expansion at the point u > 0 up to the derivative of order m + 1 and after rearranging the summands according to the order of the derivatives, we get

$$\sum_{j=0}^{m} (-1)^{r-j} {r \choose j} (m+r-j-1)! x^{j} g^{(j)}(x)$$

$$= \sum_{\ell=0}^{m} \left[\sum_{j=0}^{\ell} (-1)^{r-j} {r \choose j} \frac{(m+r-j-1)!}{(\ell-j)!} x^{j} (x-u)^{\ell-j} \right] g^{(\ell)}(u)$$

$$+ \sum_{j=0}^{m} (-1)^{r-j} {r \choose j} \frac{(m+r-j-1)!}{(m-j)!} x^{j} \int_{u}^{x} (x-y)^{m-j} g^{(m+1)}(y) \, dy.$$

Now, taking into consideration (6.10), we get

$$\sum_{j=0}^{m} (-1)^{r-j} {r \choose j} (m+r-j-1)! x^{j} g^{(j)}(x)$$

$$= \sum_{\ell=0}^{m-1} \left[\sum_{j=0}^{\ell} (-1)^{r-j} {r \choose j} \frac{(m+r-j-1)!}{(\ell-j)!} x^{j} (x-u)^{\ell-j} \right] g^{(\ell)}(u)$$

$$+ \left[\sum_{k=1}^{m} (-1)^{k} \mu_{r,m,k} x^{m-k} u^{k-1} \right] u g^{(m)}(u)$$

$$+ \sum_{k=1}^{m} (-1)^{k} \mu_{r,m,k} x^{m-k} \int_{u}^{x} y^{k} g^{(m+1)}(y) dy, \qquad (6.11)$$

where for $k = 1, 2, \ldots, m$ we have put

$$\mu_{r,m,k} = \sum_{j=0}^{m-k} (-1)^{r-j} {r \choose j} \frac{(m+r-j-1)!}{(m-j)!} {m-j \choose k}$$
$$= (-1)^r {m-1 \choose m-k} \frac{(r+k-1)!}{k!}.$$

In order to get a simpler representation than (6.11), we shall take the limit $u \rightarrow 0 + 0$. Before that we emphasize on three facts. It was established in Corollary 4.2 d) that

$$\lim_{u \to 0+0} g^{(\ell)}(u) = 0, \quad \ell = 0, 1, \dots, m-1.$$
(6.12)

Since

$$u g^{(m)}(u) = u g^{(m)}(1) + u \int_{1}^{u} g^{(m+1)}(y) \, dy$$

and Hölder's inequality gives

$$\left| u \int_{1}^{u} g^{(m+1)}(y) \, dy \right| \le u |\log u|^{1-1/p} \|\chi^{1-1/p} g^{(m+1)}\|_{p(0,\infty)}$$

we get

$$\lim_{u \to 0+0} u g^{(m)}(u) = 0.$$
(6.13)

From $\chi^{1-1/p}g^{(m+1)} \in L_p[0,1]$ and $\chi^{1/p} \in L_{\infty}[0,1]$ we get

$$\chi g^{(m+1)} \in L_1[0,1]. \tag{6.14}$$

Now, taking the limit $u \to 0+0$ in (6.11) (for an arbitrary fixed positive x) and having in mind (6.12) – (6.14), we get the representation

$$\sum_{j=0}^{m} (-1)^{r-j} {r \choose j} (m+r-j-1)! \, x^j g^{(j)}(x)$$
$$= \sum_{k=1}^{m} (-1)^k \mu_{r,m,k} \, x^{m-k} \, \int_0^x y^k g^{(m+1)}(y) \, dy.$$

Finally, Hardy's inequality applied to the right-hand side of the above formula implies (6.9). This completes the proof of the theorem. \Box

Combining the results from Theorems 6.1, 6.3, 6.5 and 5.1 we get

Theorem 6.6. Let $r \in \mathbb{N}$, $\alpha \in \mathbb{R}$, $1 \leq p \leq \infty$, $0 < t \leq t_0$ and $f \in L_p(\chi^{\alpha-1/p})(0,\infty)$.

a) If
$$\alpha \neq 1 - r, 2 - r, \dots, -1, 0$$
, then
 $K^r_{\alpha-1/p}(f, t^r)_p \sim \mathcal{K}^r_{\alpha}(f \circ \mathcal{E}, t^r)_p \sim \omega_r(f \circ \mathcal{E}, t)_{p(\mathcal{E}^{\alpha})(\mathbb{R})}.$

b) If $\alpha = 1 - r, 2 - r, \dots, -1, 0$, then

$$K_{\alpha-1/p}^{r}(f,t^{r})_{p} \sim \omega_{r}((\chi^{\alpha}f)\circ\mathcal{E},t)_{p(\mathbb{R})} + t^{r-1}\omega_{1}((\chi^{\alpha}f)\circ\mathcal{E},t)_{p(\mathbb{R})}.$$

Remark 6.7. The second term in the relation in b) cannot be dropped or replaced by a modulus of different order of the same function as it was shown in Remark 1.3.

Remark 6.8. Although

$$K^r_{\alpha-1/p}(f,t^r)_p \le c\,\omega_r(f\circ\mathcal{E},t)_{p(\mathcal{E}^\alpha)(\mathbb{R})}$$

in the cases $\alpha = 1 - r, 2 - r, \ldots, -1$ as well, the converse inequality is not valid for these values of α . For the sake of simplicity we shall consider only the case $p = \infty$. Let $\alpha = -m$, where $m \in \{1, 2, \ldots, r-1\}$. Then for $f_m(x) = x^m$ we have $f_m \in C(\chi^{-m})(0, \infty), \ K^r_{-m-1/p}(f_m, t^r)_{\infty} \equiv 0$ while $\omega_r(f_m \circ \mathcal{E}, t)_{\infty(\mathcal{E}^{-m})(\mathbb{R})} = (e^{tm} - 1)^r \neq 0$.

7 A characterization of $\mathcal{K}^r_{\alpha}(F, t^r)_p$ by the classical moduli of smoothness

Again first we shall establish the upper estimate.

Theorem 7.1. Let $r \in \mathbb{R}$, $\alpha \in \mathbb{R}$ and $1 \leq p \leq \infty$. Then for $F \in L_p(\mathcal{E}^{\alpha})(\mathbb{R})$ and $0 < t \leq t_0$ we have

$$\mathcal{K}^r_{\alpha}(F,t^r)_p \le c \left(\mathcal{K}^r_0(\mathcal{E}^{\alpha}F,t)_p + t^r \, \|\mathcal{E}^{\alpha}F\|_{p(\mathbb{R})} \right).$$

Proof. Let $g \in W_p^r(\mathbb{R})$ be arbitrary. Then the Leibniz rule gives

$$(e^{-\alpha x}g(x))^{(r)} = \sum_{i=0}^{r} \binom{r}{i} (-\alpha)^{r-i} e^{-\alpha x} g^{(i)}(x)$$
(7.1)

and hence for $G = \mathcal{E}^{-\alpha}g$ using Proposition 4.4 with $\alpha = 0$ we get

$$\begin{aligned} \|\mathcal{E}^{\alpha}G^{(r)}\|_{p(\mathbb{R})} &\leq \sum_{i=0}^{r} \binom{r}{i} |\alpha|^{r-i} \|g^{(i)}\|_{p(\mathbb{R})} \\ &\leq c \left(\|g\|_{p(\mathbb{R})} + \|g^{(r)}\|_{p(\mathbb{R})} \right) \\ &\leq c \left(\|\mathcal{E}^{\alpha}F - g\|_{(\mathbb{R})} + \|g^{(r)}\|_{p(\mathbb{R})} + \|\mathcal{E}^{\alpha}F\|_{p(\mathbb{R})} \right) \end{aligned}$$

Since also $\|\mathcal{E}^{\alpha}(F-G)\|_{p(\mathbb{R})} = \|\mathcal{E}^{\alpha}F-g\|_{p(\mathbb{R})}$ the standard K-functional arguments prove the theorem. \Box

The lower estimate is given in the next theorem.

Theorem 7.2. Let $r \in \mathbb{N}$, $\alpha \neq 0$ and $1 \leq p \leq \infty$. Then for $F \in L_p(\mathcal{E}^{\alpha})(\mathbb{R})$, $0 < t \leq t_0$ and $j = 0, 1, \ldots, r$ there holds

$$t^{r-j} \mathcal{K}^j_0(\mathcal{E}^{\alpha} F, t^j)_p \le c \, \mathcal{K}^r_{\alpha}(F, t^r)_p,$$

where we have set $\mathcal{K}_0^0(f,1)_{p(\mathbb{R})} = \|f\|_{p(\mathbb{R})}$.

Proof. Let $G \in AC_{loc}^{r-1}(\mathbb{R})$ such that $G, G^{(r)} \in L_p(\mathcal{E}^{\alpha})(\mathbb{R})$ be arbitrary. From (7.1) with α and j instead of $-\alpha$ and r and Corollary 4.5 we get

$$\|(\mathcal{E}^{\alpha}G)^{(j)}\|_{p(\mathbb{R})} \leq \sum_{i=0}^{j} \binom{j}{i} |\alpha|^{j-i} \|\mathcal{E}^{\alpha}G^{(i)}\|_{p(\mathbb{R})} \leq c \|\mathcal{E}^{\alpha}G^{(r)}\|_{p(\mathbb{R})}.$$

Hence

$$t^{r-j} \mathcal{K}_0^j (\mathcal{E}^{\alpha} F, t^j)_p \leq t^{r-j} \|\mathcal{E}^{\alpha} F - \mathcal{E}^{\alpha} G\|_{p(\mathbb{R})} + t^r \|(\mathcal{E}^{\alpha} G)^{(j)}\|_{p(\mathbb{R})}$$
$$\leq c \left(\|\mathcal{E}^{\alpha} (F - G)\|_{p(\mathbb{R})} + t^r \|\mathcal{E}^{\alpha} G^{(r)}\|_{p(\mathbb{R})} \right),$$

which proves the theorem by taking infimum on G.

Now, Theorems 7.1, 7.2 and 5.1 with $\alpha = 0$ give the characterization

Theorem 7.3. Let $r \in \mathbb{N}$, $\alpha \neq 0$ and $1 \leq p \leq \infty$. Then for $F \in L_p(\mathcal{E}^{\alpha})(\mathbb{R})$ and $0 < t \leq t_0$ we have

$$\mathcal{K}^{r}_{\alpha}(F,t^{r})_{p} \sim \omega_{r}(\mathcal{E}^{\alpha}F,t)_{p(\mathbb{R})} + t^{r} \|\mathcal{E}^{\alpha}F\|_{p(\mathbb{R})}.$$

Remark 7.4. The additional term in the characterization above cannot be dropped or replaced by a modulus of smoothness of the function $\mathcal{E}^{\alpha}F$ as we observed in Remark 1.3.

The last theorem implies the following relation between K-functionals of the class $\mathcal{K}^r_{\alpha}(F, t^r)_p, \ \alpha \neq 0.$

Corollary 7.5. Let $r \in \mathbb{N}$, $\alpha_1, \alpha_2 \neq 0$ and $1 \leq p \leq \infty$. Then for $F \in L_p(\mathcal{E}^{\alpha_1})(\mathbb{R})$ and $0 < t \leq t_0$ we have

$$\mathcal{K}_{\alpha_1}^r(F,t^r)_p \sim \mathcal{K}_{\alpha_2}^r(\mathcal{E}^{\alpha_1-\alpha_2}F,t^r)_p.$$

Remark 7.6. Consider the space

$$C(\chi^{\gamma})[0,\infty) = \{f \, : \, \chi^{\gamma} f \in C(0,\infty), \exists \lim_{x \to 0+0} \chi^{\gamma} f \}.$$

For functions $f \in C(\chi^{\gamma})[0,\infty)$ we may define a slightly different functional than (1.5) imposing the additional restriction $g \in C(\chi^{\gamma})[0,\infty)$ on the functions g on which the infimum is taken. Let us denote this K-functional by

$$K(f, t^r; C(\chi^{\gamma})[0, \infty), AC_{loc}^{r-1}, \varphi^r D^r).$$

Theorem 1.2 with $p = \infty$ holds for this K-functional too. This fact follows from the equivalence

$$\begin{split} K(f,t^r;C(\chi^{\gamma})(0,\infty),AC_{loc}^{r-1},\varphi^rD^r) &\leq K(f,t^r;C(\chi^{\gamma})[0,\infty),AC_{loc}^{r-1},\varphi^rD^r) \\ &\leq c\,K(f,t^r;C(\chi^{\gamma})(0,\infty),AC_{loc}^{r-1},\varphi^rD^r), \end{split}$$

valid for $r \in \mathbb{N}$, $\gamma \in \mathbb{R}$ and $f \in C(\chi^{\gamma})[0,\infty)$. The first inequality is obvious – an infimum on a more narrow class is taken in the second K-functional. The second inequality follows by a careful examination of the proofs of Theorems 2.1.1 and 6.1.1 in [3] – the functions G_t there belong to $C(\chi^{\gamma})[0,\infty)$ if f does.

The same observations are true if we require $\chi^{\gamma} f$ to have limit at ∞ or to have limits at 0 and at ∞ .

References

- R.A. DeVore, G.G. Lorentz, Constructive Approximation, Berlin, Springer-Verlag, 1993.
- [2] Z. Ditzian, K.G. Ivanov, Strong converse inequalities, J. Anal. Math. 61 (1993) 61-111.

- [3] Z. Ditzian, V. Totik, Moduli of Smoothness, New York, Springer Verlag, 1987.
- [4] Z. Ditzian, V. Totik, K-functionals and weighted moduli of smoothness, J. Approx. Theory 63 (1990) 3-29.
- [5] B.R. Draganov, K.G. Ivanov, A new characterization of weighted Peetre K-functionals, Constr. Approx. 21 (2005) 113-148.
- [6] B.R. Draganov, K.G. Ivanov, A characterization of weighted L_p approximations by the Gamma and the Post-Widder operators, in: Proc. intern. conf. "Constructive Theory of Functions, Varna 2005" (to appear).
- [7] S. Guo, L. Liu, Q. Qi, G. Zhang, A strong converse inequality for left gamma quasi-interpolants in L_p-spaces, Acta Math. Hungar. 105, 1-2 (2004) 17-26.
- [8] G.H. Hardy, J.E. Littlewood, G. Polya, Inequalities, 2nd ed., Cambridge Univ. Press, 1951.
- [9] A. Lupas, M. Müller, Approximationseigenschaften der Gammaoperatoren, Math. Z. 98 (1967) 208-226.
- [10] Q.-L. Qi, S.-S. Guo, Strong converse inequality for left gamma quasiinterpolants, Acta Math. Appl. Sinica 21, 1 (2005) 115-124.
- [11] C. Sangüesa, Lower estimates for centered Bernstein-type operators, Constr. Approx. 18 (2002) 145-159.
- [12] V. Totik, The gamma operators in L^p spaces, Publ. Math. (Debrecen) 32 (1985) 43-55.

B. R. Draganov
Dept. of Mathematics and Informatics
The Sofia University
5 James Bourchier Blvd.
1164 Sofia
Bulgaria
bdraganov@fmi.uni-sofia.bg

K. G. Ivanov
Inst. of Mathematics and Informatics
Bulgarian Academy of Sciences
bl. 8 Acad. G. Bonchev Str.
1113 Sofia
Bulgaria
kamen@math.bas.bg