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Simultaneous approximation by Bernstein
polynomials with integer coefficients

Borislav R. Draganov

Abstract

We prove that several forms of the Bernstein polynomials with integer
coefficients possess the property of simultaneous approximation, that is,
they approximate not only the function but also its derivatives. We estab-
lish direct estimates of the error of that approximation in uniform norm
by means of moduli of smoothness. Moreover, we show that the sufficient
conditions under which those estimates hold are also necessary.
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1 Main results

The Bernstein operator or polynomial is defined for f € C[0,1] and x € [0, 1]
by

Buf(a) = Z_:f (5 ) poste) usto)= ()t - o

Here n € N, where N is the set of the positive integers. It is known that if
f € C[0,1], then
T (1B, f = ] =0,

where || o || is the sup-norm on the interval [0,1]. A best possible estimate
of that convergence can be given by the Ditzian-Totik modulus of smoothness
wi (f,t) of the second order with a varying step, controlled by the weight p(z) :=

V/z(1 —z), in the uniform norm on the interval [0,1]. Tt is defined by (see [4,
Chapter 2, (2.1.2)])

wi(f,t) = sup [|AG,fIl,
0<h<t
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where

Aitp(z)f(x) . {f(x " h(p(x)) B 2f(x) i f(x - h@($))7 v+ hgo(gj) € [07 1]7

0, otherwise.

For all f € C[0,1] and n € N there holds (see [3, Chapter 10, (7.3)], or [2,
Theorem 6.1])

(1.1) IBnf = fIl < cwl(f,n™/?).

Above and henceforward ¢ denotes a positive constant, not necessarily the same
at each occurrence, whose value is independent of f and n.

The estimate (1.1) is best possible in the sense that its converse also holds
true (see [12] and [20], or [3, Chapter 10, (7.3)], or [2, Theorem 6.1])

w2(f,n %) < c||Buf — flI.

The varying-step moduli are quite useful when the approximation is better near
the endpoints of the interval. Such is the case of the Bernstein polynomials,
which interpolate the function at 0 and 1. More importantly, these moduli
(unlike the classical ones) allow better inverse theorems for the best algebraic
approximation since they take into account the effect of the endpoints (see [4,
Chapter 7] and [3, Chapter 8]). Instead of wf,( f,t) we can use the moduli defined
in [9, 10], [7, 13, 14, 15, 19], or [6].

Kantorovich [11] (or e.g. [1, pp. 3-4], or [16, Chapter 2, Theorem 4.1]) in-
troduced an integer modification of B,,. It is given by

Bu(f) () = Z [f (fj) (Z)] 2H(1 - 2)" k.

Above [a] denotes the largest integer that is less than or equal to the real a.
L. Kantorovich showed that if f € C0,1] is such that f(0), f(1) € Z, then

nlggo ||§n(f) - fll=0.
Clearly, the conditions f(0), f(1) € Z are also necessary in order to have

limy, 00 Bn(f)(0) = f(0) and lim,,—,oc By (f)(1) = f(1), respectively.
Following L. Kantorovich and applying (1.1), we get a direct estimate of the



error of B, for f € C[0,1] with f(0), f(1) € Z. For z € [0,1] and n € N we have

|Bu(f)(@) = f(@)] < |Buf(2) = f(2)]

EOOO-POE) -

n—1

(1.2) <|Buf = fll+ ) a1 —a)m*
k=1

n—1
_ 1
< cwl(fin )+ =3 pu(a)
k=1

<cwi(f,n 2+ L
n

We will show that the simultaneous approximation by En( f) satisfies a sim-
ilar estimate. Before stating that result, let us note that another integer modi-
fication of B, f possesses actually better properties regarding simultaneous ap-
proximation. In it, instead of the integer part [a] we use the nearest integer ()
to the real a. More precisely, if @ € R is not the arithmetic mean of two consecu-
tive integers, we set (a) to be the integer at which the minimum min,,cz | —m)|
is attained. When « is right in the middle between two consecutive integers,
we can define (a) to be either of them even without following a given rule. The
results we will prove are valid regardless of our choice in this case.
_ We will denote that integer modification of the Bernstein polynomial by
B, (f), that is, we set

Banw =3 (1(5) (1)) o -y

k=0

for f € C[0,1] and x € [0, 1].
An argument similar to (1.2) yields

1Bulf) — fIl < cw?(finY/2) + =

2n
for all f € C[0,1] with £(0), f(1) € Z and all n € N.

Let us explicitly note that for any fixed n > 2 the operator B, :C [0,1] —
([0, 1] is not bounded in the sense that there does not exist a constant M such
that _

B fll < MIfl ¥ feClo1].

Therefore we cannot drop the quantity 1/n on the right-hand side of the estimate
(1.2), or replace it with c||f||n~!. That operator is not continuous either. On
the other hand, En is bounded but not continuous. Both operators are not
linear. To emphasize the latter we write B,,(f) and B, (f), not B, f and B, f.

Recently, we characterized the rate of the simultaneous approximation by
the Bernstein operator with Jacobi weights in L,-norm, 1 < p < oo (see [5]). In



particular, we showed in [5, Corollary 1.6] (with r = 1) that for all f € C*[0,1]
and n € N there holds
(1.3)
wi(f’7n_1/2)+w1(f’,n_1), s=1,
1(Baf) = fO] < e .
W07 ) (O )+ O s 22,

as, moreover, these estimates cannot be improved. Here wq(F,t) is the ordinary
modulus of continuity in the uniform norm on the interval [0, 1], defined by

wi(Ft):== sup |F(z)— F(y)|.
|z—y[<t
z,y€(0,1]

We will verify that the integer forms of the Bernstein polynomials En and En
satisfy similar direct inequalities. They are stated in the following two theorems.

Theorem 1.1. Let s € N. Let f € C®[0, 1] be such that £(0), f(1), f'(0), f/(1) €
Z and fM(0) = fD(1) = 0,47 =2,...,s. Let also there exist ng € N, ng > s,
such that

f<k> Zf(O)—FSf’(O), k=1,...,s5 n>ng,

n

(5)zrw-(1-2) r. k=n-snotnz

Then for n > ng there holds

1
~ wi(f/’nilm)"_wl(flvnil)"_ﬁv s=1,
(BN =P < e )
BT e (P, 0 O
The constant ¢ is independent of f and n.

Remark 1.2. An analogous result holds for the integer form of the Bernstein
operator defined by means of the ceiling function instead of the integer part.
Then we assume that the reverse inequalities for f(k/n) hold, that is,

f<z> Sf(o)+gf’(0), k=1,...,8 n2no,

The proof is quite similar and we will omit it.

The estimates of the rate of convergence for En are valid under weaker
assumptions.



Theorem 1.3. Let s € N. Let f € C®[0, 1] be such that £(0), f(1), f'(0), f/(1) €
Z and fD0) = f@(1)=0,i=2,...,5. Then forn > 1 there holds

1
_ wp () e (T + o s=1,
I(Bn(f) =S < e ) )
WO ) o (FO )+~ f )+ s 22

The constant c is independent of f and n.

We will also show that the assumptions made in Theorems 1.1 and 1.3 are
necessary in order to have uniform simultaneous approximation. Concerning the
difference between the set of conditions on the derivatives for s =1 and s > 2,
let us note that B and Bn preserve the polynomials of the form px + ¢, Where
p,q € 7 (that is verified just as for the Bernstein operator). Therefore it is not
surprising that there are not any restrictions on the values of the function and
its first derivative at the endpoints except that they must be integers. However,
the requirement that the derivatives of order 2 and higher must be equal to 0
at the endpoints is quite unexpected. Technically, it is related to the fact that
(%)Q(Z) €Zforal kand niff s=0or s = 1.

There is an extensive literature on the approximation of functions by poly-
nomials with integer coefficients. A quite helpful introduction to the subject is
the monograph [1] (see also [16, Chapter 2, §4]). In particular, the extension
of the classical results on simultaneous approximation by algebraic polynomials
with real coefficients to the integer case is due to Gelfond [8] and Trigub [21, 22].
Martinez [17] considered approximation of the derivatives of smooth functions
by means of integer forms of the Bernstein polynomials but the coefficients are
replaced by their integer part after differentiating the Bernstein polynomial of
the function.

Finally, let us note that the approximation by polynomials with integer
coefficients is important because of their computer implementations.

2 Proof of the estimates of the rate of conver-
gence

The integer modifications of the Bernstein polynomials En and én are not

linear. That is why the simplest way to estimate their rate of approximation

is to consider their deviation from the linear operator B, (see (1.2)). We will

apply the same approach to estimate their rate of simultaneous approximation.
Forne Nand k=0,...,n, we set

ba(k) = [f (:) (m (Z)l



and

o= ()0

Then the operators En and En can be written respectively in the form

n

and
k=0
We will use the forward finite difference operator Ay with step h, defined by
Apf(x) = flz+h) = fz), A = An(A;).
Then

(2.1) A} f(z) = Z(—l)i <j>f(x + (s—14)h), =ze€]0,1— shl.
If h =1, we will omit the subscript, writing A := A;. Thus

(2.2) Asb, (k) = i(_ni (j) bo(k+s—1i), k=0,...,n—s;

=0

and analogously for by
As is known, for n > s we have (see [18], or [3, Chapter 10, (2.3)], or [4, p.
125]) that

23 (B ,Z tud (£) prosste). 21
Similarly, for n > s we have
C4) BV = Z b (k) pn—si(2), @ € [0,1],
and
(25) (én(.f))(g)(x) = (n ﬁ' s)! z_: Asi)n(k) Pn—sk(x), z€[0,1].
" k=0

We proceed to the results that relate En and én to By,.



Theorem 2.1. Let s € N. Let f € C*[0, 1] be such that £(0), f(1), f'(0), f/(1) €
Z and fM(0) = fO(1) = 0,7 =2,...,s. Let also there exist ng € N, ng > s,
such that

(2.6) f<i)2f(0)—|—:if’(0), k=1,...,s, n>ng,

n n

(2.7) f(k) > f(1) - <1—k>f’(1), k=n—s,....,n—1, n>no.

Then

1B — BulF)W]| < <w1(f(5), n ) 1) 0o

n
The constant ¢ is independent of f and n.

Remark 2.2. Certainly, it suffices to assume instead of the cumbersome (2.6)-
(2.7) that there exists § € (0,1) such that

> f(0) +z f(0), = €]l0,0],
fla) > f1)— (1 —2)f(1), zel[l-41]

However, it turns out that the conditions (2.6)-(2.7) are also necessary unlike
the ones above (see Theorem 3.2).

Theorem 2.3. Let s € N. Let f € C*[0,1] be such that f(0), f(1), f'(0), f'(1) €
Z and fD0) = f@(1)=0,i=2,...,5. Then

B = Bal )l < e (wr(FOm )4 1) nz

The constant c is independent of f and n.

Now, Theorems 1.1 and 1.3 follow directly from (1.3) and Theorems 2.1 and
2.3, respectively.
Let us establish Theorems 2.1 and 2.3.

Proof of Theorem 2.1. Let n > ng. We make use of (2.3), (2.4), and the iden-
tities 37 (5) = 2% and 32070 po—sk(z) =1 to get

(28) (B (@) = (Bul/) (@)
<2°n°® Jmax (f (i) - l;n(k)) , x€][0,1].

Note that f(k/n) — b, (k) >0, k=0,...,n, because [a] < a.



We will estimate f(k/n) — b, (k) separately for k < s, s+1<k<n—s—1,
and k > n — s. For the middle part, we simply use that if n > 2s + 2, then

() -bo=(EE-FEEDE

—1
n C
<<3—|—1> §W7 k:S+1,,n—S_1

(2.9)

Next, we will show that

(2.10) f(k>-—&xky§;;wﬂf“%n—ﬂ, k=0,...,s

n

We apply Taylor’s formula, as we take into consideration that f(*)(0) = 0 for
1=2,...,8, to arrive at

ew 1(2)=r0+ir0

il () -

That implies

o () (o bro) <5 (5 ()

%wl(f(s),n_l), k=0,...,s.

IN

At the second estimate, we have taken into account the well-known property of
the modulus of continuity

wi(F,rt) < rwi(F,t),

where r € N.
On the other hand, (2.6) and

(2.13) £(0) (2) ot (Z) ez,
OO0t )
Consequently,

(2.14) 5“@2ﬂ®+§f@,kzanw&

Estimates (2.12) and (2.14) imply (2.10).



Finally, we observe that, by symmetry, (2.10) yields

(2.15) f (k) —bu(k) < %wl(f(s),n_l), k=n-—s,...,n.

n

More precisely, with f(x) := f(1 — ) and

we have
()= (7))
(210 ) = bl =),
Wl(f(s, t) = ( t).

Note also that f € C*[0,1], £(0), f'(0) € Z, fP(0) = 0,4 = 2,...
n>ngand k=1,...,s we have by (2.7)

F(5) =1 (") zrw-Lrm =0+ Lo

n n

So, f satisfies the condition (2.6) and, by virtue of (2.10), we have

fC)‘MM<émG@nﬂ7k=W~#

n

As we take into account (2.16), we get (2.15).

Inequalities (2.8)-(2.10) and (2.15) imply the assertion of the theorem.

_ We will use the following elementary lemma in the proof the theorem about

B,.

Lemma 2.4. Let m € Z and o,w € R. If |a — m| < w, then |{a) —

Proof. If w < 1/2, then (&) = m. If, on the other hand, w > 1/2, then

1
|<a>fm\§|<a>fa|+\afm|§§+w§2w.

Proof of Theorem 2.3. We proceed similarly to the proof of the previous theo-
rem. Since the assertion is trivial for n < s, we assume that n > s. We make

use of (2.3) and (2.5) to get

(217) |(Baf)) (@) = (Bul£)(@)




Again we estimate separately the terms |f(k/n) — by (k)| for k <s, s +1 <
k<n-—s—1,and k > n — s. For the middle part, we have similarly to (2.9)

k - c
(2.18) ’f <n) bn(kz)' < e k=s+1,....n—s—1, n>2s+2.
Next, we will show that
k P ¢ (s) ,—1
(2.19) fl=)—buk)| < —wi(fn7), k=0,...,s
n n
By virtue of (2.11), we have

nS

(2.20) ‘f <i) - (f(()) + if’(@))‘ < S (fO,n Y, k=o0,...,s

That implies

ca PE))-(o ()0t ()
< ni (Z)wl(f(s),n_l), k=0,...,s.

We apply Lemma 2.4 with

where the constant ¢ is the one on the right-hand side of (2.21).
Thus we arrive at

G @) bol) o ()

and, consequently,

(2.22)

b (k) — (f(O) + flf’(O))‘ < %wl(ﬂs),n—l), k=0,...,s.

Estimates (2.20) and (2.22) yield (2.19).
Finally, we derive

(2.23) ’f (f;) —l;n(k)‘ < %wl(f(s),n_l)7 k=n—s,...,n.

10



from (2.19) by symmetry just as in the proof of (2.15) with l:)n(k:) replaced with

o= () ()

Inequalities (2.17)-(2.19) and (2.23) imply the assertion of the theorem. O

3 Optimality of the assumptions in Theorems
1.1 and 1.3

We will establish the necessity of the assumptions made in Theorems 1.1 and
1.3. We begin with the operator B,, since stronger results are valid for it.
First of all, let us note that if

(31)  lim [By(f) = f =0 and lim |[(Bu(f)* ~f@) =0,

then £ (0), f@(1) € Zfori =0,...,s. Indeed, as is known, for any g € C*[0, 1]
we have (see e.g. [3, Chapter 2, Theorem 5.6])

g1l < e(llgll +11g1), i=1,....s ~ 1.
Therefore (3.1) implies

(3.2) lim [[(Bo (/)W = f@|I =0, i=0,....5

n—roo

hence £ (0), f)(1) € Z for i = 0,...,s. A similar result holds for B,,.
Theorem 3.1. Let s € N, s > 2, and f € C?[0,1]. If

(33)  lim [|Bu(f) = fI =0 and lim [|(B.(/) ~ f@] =0,

then fD(0) = fD(1)=0,i=2,...,s.

Proof. 1t is sufficient to establish the theorem at the point x = 0; for x = 1 it
follows by symmetry. We use induction on s.
Let s = 2. Relation (3.2), in particular, yields

lim (B, (f))'(0) = £'(0),

n—oo

that is (see (2.5) with s = 1),

(3.4) lim nAb,(0) = f/(0).

n—0o0

Since nAb, (0) € Z for all n, (3.4) implies

nAb,(0) = f/(0) for n large enough;

11



hence

7 7 1 / 1 /
(3.5) bn(1) = bn(0) + — £7(0) = f(0) + — f7(0).
Similarly, from lim,_,o (B, (f))"(0) = f”(0) we derive
(3.6) n(n —1)A%b,(0) = f”(0) for n large enough.
By Taylor’s formula, we have

61 1(2) =0+ 2ros Zros [ (22 o - sropa

Next, we proceed similarly to the proof of Theorem 2.3. We multiply both sides
of the above identity by (g) and rearrange the terms to get

59 1(2)(3) - (r0(5) + a-vro+ o)

——ro+(3) [ . (Z-¢)uor- ropar

Consequently,
1(2)(5)- (ro(5) +@-vro+ o)
1

which shows that for large n we have
(£(2)(5))=10(3) + -7+ £

2
n(n —1)

Therefore

(3.9) bn(2) = £(0) + % 7(0) + F7(0) for n large enough.

Now, fixing some 7 large enough, we deduce from (3.5)-(3.9) that

710) =~ 1)(ba(2) ~ 2a(1) + 5, 0)
== 1) (10 + 2 7 0) + 2
= 2f"(0);

hence f”(0) = 0.

o) -2 (£0)+ 5 1)) + 10)

12



Let the assertion of the theorem hold for some s — 1, s > 3. We will prove
that then it holds for s too.
As we noted in the beginning of the section, (3.3) implies
lim [|(By(f))" = feV] =0
Hence, by virtue of the induction hypothesis, we have f()(0) = 0 for i =
2,...,5s—1.
By Taylor’s formula we have

(3.10) f(i) foy+ = f() (S) f()(O)

(—Q () = 1 (0)) at

We multiply both sides by 1 < k < s we derive the inequality

() () (e () 5()]
SOIOEIGERICGD)

= (19O +wn(FO,nh)

Consequently, for large n we have
kN (n n N YA
) ) -0 +roi ()

(3.11) bn(k) = f(0) + % f'(0) for 0 <k < s and large n.

IN

hence

In order to calculate by, (s), we observe that

. n S\ ° S
lim ( ) (—) = —.
n—oo \ § n S'

We proceed just as in this case s = 2: we multiply both sides of (3.10) by (2)
and rearrange the terms to arrive at

1G)() - (o) o3 (0) + )
< (- ()G aroon () () 0)

N

13



Consequently, for large n

E ) =10(2) +ro(2) + (SR 00 +ron

where 5, € {—1,0,1}. Consequently,

312 b =50+ 20+ (o) ) (7)

Relations (3.11) and (3.12) yield

(3.13) A%, (0) = (< (5!8)2 f<8><0)> +rs,n) (’;) o

On the other hand, since limy, o0 [|[(Bn(f))® — f()|| = 0, and, in particular,
lim,, 00 (B (f))®)(0) = £()(0), we have that

lim LAS&L(O) = f10).

n—oo (n — )!
Taking into account that

| ~
(nﬁi})lﬁb”(o) €7 Vn,

we deduce that for large n there holds

n! -
—— A%, (0) = f(0).
A 0) = 190
That, in combination with (3.13), yields
(3.14) s! <<(;)2 f(s)(0)> + 7“57”) = f)(0) for n large enough.

First of all, this relation implies that the integer f()(0) is divisible by s!,
ie. f(0) = s!m, with some m, € Z. Secondly, it implies that Tspn has
one and the same value for large n; denote it by r5. Thus (3.14) can be reduced
to

Consequently,

It remains to take into account that s®/s! increases on s; hence s°/s! > 9/2
for s > 3, and then |mg| < 3/7, which is possible only if ms; = 0. Thus
& (0) = 0. 0

14



Necessary conditions for the simultaneous approximation by means of En
are given in the following theorem.

Theorem 3.2. Let s € N and f € C*[0,1]. If
(315)  lim [Bu(f) = fll=0 aend lim |[(B.(f)* —f@f =0,

then fA(0) = fO(1) =0, =2,...,s, and there exists ng € N, ng > s, such
that

(3.16) f(f;) Zf(())—k%f’(()), k=1,...,s n>ng,

n

f(k> Zf(l)—(l—:i)f’(l), k=n-—s,...,n—1, n>mnog.

Proof. 1t is sufficient to establish the theorem at the point x = 0; for x = 1 it
follows by symmetry.

We argue as in the proof of the preceding theorem. However, here more
efforts are required.

Using induction on s, we will prove that f(i)(O) =0,7=2,...,s and

(3.17) b (k) = £(0) + Sf’(o), k=1,...,5 n>mno.

with some ng. The latter implies directly the inequalities (3.16) because

f<z> > {f (i) (Z)} (:>_1 :f(0)+%f’(0), k=1,...,s n>no.

As in the proof of Theorem 3.1, we deduce from

lim [|(B,(f)® = f&) =0

n—oo
that there exists ng € N, ng > s, such that

n!
(n—1)!

That directly yields (3.17) for s = 1 and the assertion of the theorem is verified
for s = 1.

In order to complete the proof for larger s, we use that if f € C*[0,1] and
limy, o0 [|(Bn(f))®) — f&)|| = 0, then

(3.18) Alb,(0) = f9D(0), i=1,...,s n>ng.

lim [[(Ba.f)" = (Ba(/)®] = 0;

n—roo

hence

(3.19) lim ((an)<8> (%) — (Bu(f)® (3)) =0, yelo1].

n—oo n

15



By (2.1)-(2.4), after reordering the terms, we arrive at the identity
(320) (Bnf)" (J?) — (Ba(/)® (@)
n—s k+s .
s s J 7 .
s e () (1(2) <00 st
k=0 j=k

We observe that, by virtue of (2.9), for n > 3s+2 and z € [0, 1] there holds
(cf. (2.8))

(3.21) Zi:jzz 1)s+i- ’“<] j k) <f (i) - Bn(j)> Pn—s.k(7)| < n—cﬂ
and
(3:22) ;jil(—l)”jk <j j k) (f (i) - Bn(J)) Pn-sk(2)]| < Tcﬂ

Next, we observe that if n > 4s + 1, then p,_sx(y/n) < cn=5"1 for all
y€[0,1] and k = n—2s,...,n—s. Indeed, since in this case (n—s)/2 < n—2s,
then for k =n — 2s,...,n — s there holds

<nk5> . (:_;) _ (”85) <en®.

Next, we take into account that for n > 4s+1 and k > n—2s we have k > 2s+1;
hence )
i 1
ﬁgn%‘*l’ yE[O,l]
These two relations along with the trivial estimate (1 —y/n)"~*~% < 1 imply
that p,—s x(y/n) <ecn s lforally € [0,1] and k =n—2s,...,n—s,n > 4s+1.
Further, taking also into account that 0 < f(j/n) — b, ( ) <1 and arguing
as in (2.9), we arrive at

(3.23) nz li )T k<jik> <f (i) i’"(j)) -

k=n—2s j=k

< eri Y€ [0, 1].

We subtract (3.21) and (3.22) with = y/n, and (3.23) from (3.20) with
& = y/n, reorder the terms and take into account (3.19) and b,(0) = f(0).
Thus, for y € [0,1], we deduce that
(3.24)

e (1 (2) ) o ()

16




We will evaluate that limit in another way. Clearly,

J J k
. RN AN R f
(25 lim > (-1) (j - k)p“”“ (n) =20 (j - k:)
k=0 k=0
We proceed by induction on s. Relations (3.15) imply
lim |[(Bn ()¢ — fe=Y] =0.

n—oo

Therefore, by virtue of the induction hypothesis, we have that f(*(0) = 0,
1=2,...,s—1,s>2 and

(3.26) ba(i) = FO) + 2 f(0), j=1....s=1 n=ng.
Then Taylor’s formula yields

. . s £(s)
f<i>:f(0)+if/(0)+ilsf$!(0)+0(nS), g=1...,s.

The relations (3.18) with ¢ = s and (3.26) imply

G2r) b =0+ 2 )+ "L f00) 0z
Therefore
and

L) -he) = (5 -1) 190 + o),

(n—s n s!

Now, if we substitute the last two relations into (3.24) and take into account
(3.25), we arrive at

S S

o S () -Seo b (0] <o veby

k=0 j=k

(actually the summand for k = 0 is 0). Consequently, the coefficient of y* is

equal to zero, that is,
_1\s £(s) s
SO0 ()
s! s!

Therefore f(*)(0) = 0 and then, by virtue of (3.27), b,(s) = f(0) + £ f'(0). O
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