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Abstract. We establish two-term strong converse estimates of the rate
of weighted simultaneous approximation by the Szász-Mirakjan operator for
smooth functions in the supremum norm on the non-negative semi-axis. We
consider Jacobi-type weights. The estimates are stated in terms of appro-
priate moduli of smoothness or K-functionals.

1. Main results. The Szász-Mirakjan operator for a function f(x) de-
fined on [0,∞) is given by

Snf(x) =

∞∑

k=0

f

(
k

n

)
sn,k(x), sn,k(x) = e−nx (nx)

k

k!
, n ≥ 1, x ≥ 0,
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as n is not necessarily an integer.
Let C[0,∞) denote the space of the continuous, not necessarily bounded,

functions on [0,∞), and L∞[0,∞) be the space of the essentially bounded Lebesgue
measurable function on [0,∞), equipped with the essential supremum norm ‖◦‖.

We will consider simultaneous approximation by the Szász-Mirakjan op-
erator in the essential supremum norm on [0,∞) with weights of the form

(1.1) w(x) = w(γ0, γ∞;x) =

(
x

1 + x

)γ0

(1 + x)γ∞ .

Let r ∈ N+ and 0 ≤ γ0 < r and γ∞ 6= r. We denote by N+ the set of the
positive integers. In [8, Theorem 1.2] we proved the direct estimate

‖w(Snf − f)(r)‖ ≤ c K̃r(f
(r), n−1)w

for all f ∈ C[0,∞) such that f ∈ ACr−1
loc (0,∞) and wf (r) ∈ L∞[0,∞), and all

n ≥ 1. Here and henceforward c stands for a positive constant (not necessarily
the same at each occurrence), which is independent of the approximated function
f and the degree of the operator n. The K-functional K̃r(f

(r), t)w is defined by

K̃r(f
(r), t)w := inf

{
‖w(f (r) − g(r))‖+ t‖w

(
D̃g

)(r)‖

: g ∈ ACr+1[0,∞), wg(r), w
(
D̃g

)(r) ∈ L∞[0,∞)
}
,

where D̃g(x) := xg′′(x), ACm[0,∞) is the set of the functions which along with
their derivatives up to orderm are absolutely continuous on [a, b] for every [a, b] ⊂
[0,∞).

In the present paper, we will establish the following converse inequality.

Theorem 1.1. Let r ∈ N+ and w = w(γ0, γ∞) be given by (1.1) as

0 ≤ γ0 < r and γ∞ 6= r. Then there exists R ≥ 1 such that for all f ∈ C[0,∞)
with f ∈ ACr−1

loc (0,∞) and wf (r) ∈ L∞[0,∞), and all k, n ≥ 1 with k ≥ Rn there

holds

K̃r(f
(r), n−1)w ≤ c

k

n

(
‖w(Snf − f)(r)‖+ ‖w(Skf − f)(r)‖

)
.

In particular,

K̃r(f
(r), n−1)w ≤ c

(
‖w(Snf − f)(r)‖+ ‖w(SRnf − f)(r)‖

)
.

The constant c > 0 is independent of f , k and n.

The rate of the simultaneous approximation by the Szász-Mirakjan oper-
ator can be estimated by simpler function characteristics—moduli of smoothness.
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We will use the weighted Ditzian-Totik modulus of smoothness ω2
ϕ(f, t)w defined

in [5, p. 56] with ϕ(x) :=
√
x and the weighted modulus of continuity

ω(f, t)w := sup
0<h≤t

‖w−→∆hf‖,

where

−→
∆hf(x) := f(x+ h)− f(x), x ≥ 0.

In [8, Theorem 1.1] it was established that

(1.2) ‖w(Snf − f)(r)‖ ≤ c
(
ω2
ϕ(f

(r), n−1/2)w + ω(f (r), n−1)w

)
, n ≥ n0,

with some n0 ≥ 1 for all f ∈ C[0,∞) such that f ∈ ACr−1
loc (0,∞) and wf (r) ∈

L∞[0,∞) provided that 0 ≤ γ0 < r, whereas γ∞ is arbitrary. Also, there was
shown that the second term on the right above is redundant if 0 < γ0 < r and
γ∞ > 0.

Here we will derive from Theorem 1.1 the following converse estimate.

Theorem 1.2. Let r ∈ N+ and w = w(γ0, γ∞) be given by (1.1) as

0 ≤ γ0 < r and γ∞ 6= r. Then there exist R,n0 ≥ 1 such that for all f ∈ C[0,∞)
with f ∈ ACr−1

loc (0,∞) and wf (r) ∈ L∞[0,∞) there hold

ω2
ϕ(f

(r), n−1/2)w ≤ c
(
‖w(Snf − f)(r)‖+ ‖w(SRnf − f)(r)‖

)
, n ≥ n0,

and

ω(f (r), n−1)w ≤ c
(
‖w(Snf − f)(r)‖+ ‖w(SRnf − f)(r)‖

)
, n ≥ 1.

The constant c > 0 is independent of f and n.

We say that the real-valued functions A(f, n) and B(f, n) are equivalent
and write A(f, n) ∼ B(f, n) for f and n in specified domains iff there exists a
positive constant c such that c−1B(f, n) ≤ A(f, n) ≤ cB(f, n) for all f and n in
the specified domains.

Theorems 1.1 and 1.2, [8, Theorems 1.1 and 1.2], and properties of the K-
functionals and moduli (see [5, Theorem 6.1.1]) imply the following equivalences.

Corollary 1.3. Let r ∈ N+ and w = w(γ0, γ∞) be given by (1.1) as

0 ≤ γ0 < r and γ∞ 6= r. Then there exist R,n0 ≥ 1 such that for all f ∈ C[0,∞)
with f ∈ ACr−1

loc (0,∞) and wf (r) ∈ L∞[0,∞), and all n ≥ n0 there hold

‖w(Snf − f)(r)‖+ ‖w(SRnf − f)(r)‖ ∼ K̃r(f
(r), n−1)w
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∼ ω2
ϕ(f

(r), n−1/2)w + ω(f (r), n−1)w.

In particular, the direct inequality (1.2) and Theorem 1.2 (or Corollary
1.3) readily imply a big O-characterization of the rate of the simultaneous ap-
proximation by the Szász-Mirakjan operator.

Corollary 1.4. Let r ∈ N+ and w = w(γ0, γ∞) be given by (1.1) as

0 ≤ γ0 < r and γ∞ 6= r. Let also f ∈ C[0,∞) be such that f ∈ ACr−1
loc (0,∞) and

wf (r) ∈ L∞[0,∞), and 0 < α ≤ 1. Then

‖w(Snf − f)(r)‖ = O(n−α)

⇐⇒ ω2
ϕ(f

(r), t)w = O(t2α) and ω(f (r), t)w = O(tα).

The approximation of f ′ with (Snf)
′ is closely related to the approxi-

mation by means of the Szász-Mirakjan-Kantorovich operator. This operator is
defined for functions f(x), which are summable on every compact subinterval of
[0,∞), by

S̃nf(x) :=
∞∑

k=0

sn,k(x)n

∫ k+1
n

k

n

f(u) du, x ≥ 0.

We set

F (x) :=

∫ x

0
f(u) du, x ≥ 0.

Then, by virtue of (2.8) below,

S̃nf(x) = (SnF )′ (x).

Now, Theorems 1.1 and 1.2 yield the following converse inequalities for the simul-
taneous approximation by the Szász-Mirakjan-Kantorovich operator in weighted
L∞-spaces.

Theorem 1.5. Let r ∈ N0 and w = w(γ0, γ∞) be given by (1.1) as

0 ≤ γ0 < r + 1 and γ∞ 6= r + 1. Then there exists R ≥ 1 such that for all f(x),
which are summable on every compact subinterval of [0,∞), f ∈ ACr−1

loc (0,∞)

and wf (r) ∈ L∞[0,∞), and all n ≥ 1 there holds

K̃r+1(f
(r), n−1)w ≤ c

(
‖w(S̃nf − f)(r)‖+ ‖w(S̃Rnf − f)(r)‖

)
.

Theorem 1.6. Let r ∈ N0 and w = w(γ0, γ∞) be given by (1.1), as

0 ≤ γ0 < r+1 and γ∞ 6= r+1. Then there exist R,n0 ≥ 1 such that for all f(x),
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which are summable on every compact subinterval of [0,∞), f ∈ ACr−1
loc (0,∞)

and wf (r) ∈ L∞[0,∞) there hold

ω2
ϕ(f

(r), n−1/2)w ≤ c
(
‖w(S̃nf − f)(r)‖+ ‖w(S̃Rnf − f)(r)‖

)
, n ≥ n0,

and

ω(f (r), n−1)w ≤ c
(
‖w(Snf − f)(r)‖+ ‖w(SRnf − f)(r)‖

)
, n ≥ 1.

The constant c > 0 is independent of f and n.

Here the assumption f ∈ ACr−1
loc (0,∞) is to be ignored for r = 0. The

unweighted case, that is w = 1, for r = 0 was considered in [10] in Lp[0,∞),
1 < p ≤ ∞. Weaker converse results for r = 0, but for more general operators
in some instances, were obtained earlier in [5, Theorems 9.3.2 and 10.1.3] and
[14, 15].

The contents of the paper are organized as follows. In the next section we
establish a Voronovskaya-type estimate and several Bernstein-type inequalities
for the simultaneous approximation by the Szász-Mirakjan operator in weighted
L∞-norm. Then, in the last section, we apply them to verify Theorem 1.1 and
by means of the method for proving converse inequalities, described in [4]. There
we also give a proof of Theorem 1.2.

2. Basic assertions. We begin with several notations and known aux-
iliary results.

Let ACm
loc(0,∞) denote the set of the functions which along with their

derivatives up to order m are absolutely continuous on [a, b] for every [a, b] ⊂
(0,∞).

We set sn,k := 0 for k < 0. Direct computations yield the following two
formulas for the derivatives of sn,k(x), k ∈ N0:

s′n,k(x) = n(sn,k−1(x)− sn,k(x))(2.1)

and

s′n,k(x) =
1

x
(k − nx) sn,k(x).(2.2)

For a sequence {ak}k∈Z we define ∆ak := ak−ak−1 and ∆rak := ∆(∆r−1ak).
Set sk(n, x) := sn,k(x). Then iterating (2.1), we get

(2.3) s
(r)
n,k(x) = (−1)rnr∆rsk(n, x).
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Likewise, using (2.2), we get by induction on r the formula (cf. [5, (9.4.9)])

(2.4) s
(r)
n,k(x) = x−rsn,k(x)

∑

0≤i≤r/2

(nx)i
r−2i∑

j=0

dr,i,j(k − nx)j ,

where dr,i,j are constants, whose value is independent of n and k.

For ℓ ∈ N0 we set

(2.5) Tn,ℓ(x) := nℓSn

(
(◦ − x)ℓ

)
(x) =

∞∑

k=0

(k − nx)ℓsn,k(x).

As is known (see [5, Lemma 9.5.5]), we have for ℓ ≥ 1

Tn,ℓ(x) =
∑

1≤ρ≤ℓ/2

dℓ,ρ(nx)
ρ,

where dℓ,ρ are constants, whose value is independent of n. We follow the con-
vention that an empty sum is identically 0. In particular, we have (see e.g. [12,
p. 94])

Tn,0(x) = 1, Tn,1(x) = 0, Tn,2(x) = Tn,3(x) = nx,

Tn,4(x) = 3(nx)2 + nx.
(2.6)

Identity (2.5) yields for m ≥ 1

0 ≤ Tn,2ℓ(x) ≤ c

{
nx, nx ≤ 1,

(nx)ℓ, nx ≥ 1.

Then, by means of Cauchy’s inequality and the identity

∞∑

k=0

sn,k(x) ≡ 1, we get

(2.7) 0 ≤
∞∑

k=0

|k − nx|ℓsn,k(x) ≤
√

Tn,2ℓ(x) ≤ c

{
1, nx ≤ 1,

(nx)ℓ/2, nx ≥ 1.

We will also use the quantities

Tr,n,ℓ(x) :=

∞∑

k=0

(k − nx)ℓs
(r)
n,k(x).

To recall, the forward finite difference of f : [0,∞) → R with step h > 0

is defined by
−→
∆hf(x) := f(x+ h)− f(x), x ≥ 0. We have the following formula
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for its rth iterate,
−→
∆r

h :=
−→
∆h(

−→
∆r−1

h ),

−→
∆r

hf(x) =
r∑

i=0

(−1)i
(
r

i

)
f(x+ (r − i)h), x ≥ 0.

As is known (see [13] or [5, (9.4.3)])

(2.8) (Snf)
(r)(x) = nr

∞∑

k=0

−→
∆r

1/nf

(
k

n

)
sn,k(x), x ≥ 0.

In [8, Proposition 3.1] it was shown that if r ∈ N+ and w = w(γ0, γ∞) is
given by (1.1) with 0 ≤ γ0 < r and γ∞ ∈ R, then for all f ∈ C[0,∞) such that
f ∈ ACr−1

loc (0,∞) and wf (r) ∈ L∞[0,∞), and all n ≥ 1 there holds

(2.9) ‖w(Snf)
(r)‖ ≤ c ‖wf (r)‖.

Next, we will establish a Voronovskaya-type inequality. A basic tool in
its proof is the following formula.

Lemma 2.1. Let r ∈ N+, γ ∈ R and n ≥ 1. Let also f ∈ C[0,∞) be

such that ϕγf ∈ L∞[1,∞), f ∈ ACr+3
loc (0,∞) and ϕ2r+6f (r+4) ∈ L[0, 1]. Then

(
Snf(x)− f(x)− 1

2n
D̃f(x)

)(r)

=
S(r + 2, r)

(r + 1)(r + 2)n2
f (r+2)(x)

+

(
(3r + 2)x

12n2
+

S(r + 3, r)

(r + 1)(r + 2)(r + 3)n3

)
f (r+3)(x)

+
1

(r + 3)!

∞∑

k=0

s
(r)
n,k(x)

∫ k/n

x

(
k

n
− u

)r+3

f (r+4)(u) du, x > 0.

Here S(m, r) :=
1

r!

r∑

i=0

(−1)i
(
r

i

)
(r − i)m are the Stirling numbers of the

second kind.
P r o o f. By [7, Proposition 2.1] with p = 1, g = f , j = r + 2, r + 3,

m = r + 4, w1 = ϕ2j−2 and w2 = ϕ2r+6 we get

(2.10) ϕ2j−2f (j) ∈ L[0, 1], j = r + 2, r + 3.

Then (see e.g. [7, p. 106, (3.11)]) we have

(2.11) lim
u→0+0

uσ+1f (σ+1)(u) = 0, σ = r + 1, r + 2.
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By [8, Lemma 2.2] (the lemma is applicable by virtue of (2.10) with
j = r + 2), we have

(
Snf(x)− f(x)

)(r)
=

r

2n
f (r+1)(x)

+
1

(r + 1)!

∞∑

k=0

s
(r)
n,k(x)

∫ k/n

x

(
k

n
− u

)r+1

f (r+2)(u) du, x > 0.

Next, we integrate by parts the integrals twice, as for the term with k = 0 we
take into consideration (2.10) with j = r + 3 and (2.11). Thus we arrive at

(
Snf(x)− f(x)

)(r)
=

r

2n
f (r+1)(x) +

1

(r + 2)!nr+2
Tr,n,r+2(x)f

(r+2)(x)

+
1

(r + 3)!nr+3
Tr,n,r+3(x)f

(r+3)(x)

+
1

(r + 3)!

∞∑

k=0

s
(r)
n,k(x)

∫ k/n

x

(
k

n
− u

)r+3

f (r+4)(u) du, x > 0.

We will show that

Tr,n,r+2(x) = nr

(
r!S(r + 2, r) +

(r + 2)!

2
nx

)
,

Tr,n,r+3(x) = nr

(
r!S(r + 3, r) +

(r + 3)! (3r + 2)

12
nx

)
.

(2.12)

Then, since (D̃f)(r)(x) = rf (r+1)(x) + xf (r+2)(x), we get the assertion of the
lemma.

By virtue of [8, Lemma 2.1] with ℓ = r + 2, r + 3, we have

Tr,n,r+2(x) = nr(d1 + d2nx)

and

Tr,n,r+3(x) = nr(d3 + d4nx),

where di, i = 1, . . . , 4 are constants whose value is independent of n (and x).

Clearly, s
(r)
n,k(0) = (−1)r−knr

(
r

k

)
for 0 ≤ k ≤ r, and s

(r)
n,k(0) = 0 for k > r.

Therefore,

d1 = n−rTr,n,r+2(0) =

∞∑

k=0

kr+2s
(r)
n,k(0)
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=

r∑

k=0

(−1)r−k

(
r

k

)
kr+2

= r!S(r + 2, r).

Just similarly, we get

d3 = r!S(r + 3, r).

To calculate d2 we use analogous considerations and also Tr,n,r+1(x) ≡
nr(r + 1)! r/2 (see [8, Lemma 2.1]) to obtain

d2 = n−r−1T ′
r,n,r+2(x)

= −n−r(r + 2)Tr,n,r+1(x) + n−r−1Tr+1,n,r+2(x)

=
(r + 2)!

2
.

Similarly, we have

d4 = n−r−1T ′
r,n,r+3(x)

= −n−r(r + 3)Tr,n,r+2(x) + n−r−1Tr+1,n,r+3(x)

= r!
[
(r + 1)S(r + 3, r + 1)− (r + 3)S(r + 2, r)

]

=
(r + 3)! (3r + 2)

12
.

Above we have used that (see [11, Section 3.4])

S(r + 2, r) =

(
r + 2

3

)
+ 3

(
r + 2

4

)

=
r(r + 1)(r + 2)(3r + 1)

24
.

(2.13)

This completes the proof of (2.12). ✷

Proposition 2.2. Let r ∈ N+ and w = w(γ0, γ∞) be given by (1.1) with

0 ≤ γ0 < r and γ∞ ∈ R. Then for all f ∈ C[0,∞) such that f ∈ ACr+3
loc (0,∞)

and wf (r+2), wf (r+3), wϕ4f (r+4) ∈ L∞[0,∞) and all n ≥ 1 there holds

∥∥∥∥∥w
(
Snf − f − 1

2n
D̃f

)(r)
∥∥∥∥∥

≤ c

n2

(
‖wf (r+2)‖+ ‖wϕ2f (r+3)‖+ ‖wϕ4f (r+4)‖

)
+

c

n3
‖wf (r+3)‖.

The constant c > 0 is independent of f and n.
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Remark 2.3. Let us note that wf (r+2), wf (r+3), wϕ4f (r+4) ∈ L∞[0,∞)
implies wϕ2f (r+3) ∈ L∞[0,∞). This can be shown by e.g. [9, Proposition 4.1]
with p = ∞, k = 1, r fixed to be equal to 2, g = f (r+2) and a = 1/2 (or see [6,
Lemma 1]), which yields

(2.14) ‖wϕ2f (r+3)‖[1/2,∞) ≤ c
(
‖wf (r+2)‖[1/2,∞) + ‖wϕ4f (r+4)‖[1/2,∞)

)
.

Here ‖◦‖[1/2,∞) stands for the essential supremum norm on the interval [1/2,∞).

P r o o f o f P r o p o s i t i o n 2.2. Note that ϕ2r+6f (r+4) ∈ L[0, 1]. We set

R̃r,n(x) :=

∞∑

k=0

s
(r)
n,k(x) ρ̃r,x

(
k

n

)
,

where

(2.15) ρ̃r,x(t) :=

∫ t

x
(t− u)r+3 f (r+4)(u) du.

In view of Lemma 2.1, we have

∥∥∥∥∥w
(
Snf − f − 1

2n
D̃f

)(r)
∥∥∥∥∥

≤ c

n2

(
‖wf (r+2)‖+ ‖wϕ2f (r+3)‖

)
+

c

n3
‖wf (r+3)‖+ ‖wR̃r,n‖.

To complete the proof of the proposition, we will show that

(2.16) ‖wR̃r,n‖ ≤ c

n3
‖wf (r+3)‖+ c

n2
‖wϕ4f (r+4)‖.

We use that

(2.17) |ρ̃r,x(t)| ≤
∣∣∣∣
∫ t

x

|t− u|r+3

uγ0+2(1 + u)γ∞−γ0
du

∣∣∣∣ ‖wϕ
4f (r+4)‖.

By Hölder’s inequality we arrive at

(2.18)

∣∣∣∣
∫ t

x

|t− u|r+3

uγ0+2(1 + u)γ∞−γ0
du

∣∣∣∣

≤
∣∣∣∣
∫ t

x

|t− u|r+3

up(γ0+2)
du

∣∣∣∣
1/p ∣∣∣∣

∫ t

x

|t− u|r+3

(1 + u)q(γ∞−γ0)
du

∣∣∣∣
1/q

,

where we have set p := (r + 3)/(γ0 + 2) and q is its conjugate exponent.
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It is quite straightforward to verify that

|t− u|
u

≤ |t− x|
x

for u between x and t. Therefore,

(2.19)

∣∣∣∣
∫ t

x

|t− u|r+3

up(γ0+2)
du

∣∣∣∣
1/p

≤ |t− x|(r+4)/p

xγ0+2
.

Clearly, if u is between x and t, then

(1 + u)γ ≤ (1 + x)γ + (1 + t)γ

for any γ ∈ R. Consequently,

(2.20)

∣∣∣∣
∫ t

x

|t− u|r+3

(1 + u)q(γ∞−γ0)
du

∣∣∣∣
1/q

≤ |t− x|(r+4)/q

(1 + x)γ∞−γ0
+

|t− x|(r+4)/q

(1 + t)γ∞−γ0
.

Combining (2.17)-(2.20), we arrive at the estimate

(2.21) |w(x)ρ̃r,x(t)|

≤
(
1 +

(1 + x)γ∞−γ0

(1 + t)γ∞−γ0

) |t− x|r+4

x2
‖wϕ4f (r+4)‖, x > 0, t ≥ 0.

We consider two cases.
Case 1: nx ≥ 1. Inequality (2.21) implies

(2.22) |w(x)Rr,n(x)| ≤
1

x2

∞∑

k=0

|s(r)n,k(x)|
∣∣∣∣
k

n
− x

∣∣∣∣
r+4

‖wϕ4f (r+4)‖

+
(1 + x)γ∞−γ0

x2

∞∑

k=0

|s(r)n,k(x)|
∣∣∣∣
k

n
− x

∣∣∣∣
r+4(

1 +
k

n

)γ0−γ∞

‖wϕ4f (r+4)‖.

To estimate the first sum above, we apply (2.4) and (2.7) to deduce

1

x2

∞∑

k=0

|s(r)n,k(x)|
∣∣∣∣
k

n
− x

∣∣∣∣
r+4

≤ c

n2

∑

0≤i≤r/2

(nx)i−r−2
r−2i∑

j=0

∞∑

k=0

|k − nx|r+j+4sn,k(x)

≤ c

n2

∑

0≤i≤r/2

r−2i∑

j=0

(nx)(2i−r+j)/2 ≤ c

n2
,

(2.23)
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where at the last inequality we have taken into consideration that 2i− r+ j ≤ 0
for all i and j in the specified range.

We estimate the other sum in (2.22) in a similar way, as we also use
Cauchy’s inequality on the sum on k in order to split |k − nx|r+j+4 and (1 +
k/n)γ0−γ∞ . We have

(1 + x)γ∞−γ0

x2

∞∑

k=0

|s(r)n,k(x)|
∣∣∣∣
k

n
− x

∣∣∣∣
r+4 (

1 +
k

n

)γ0−γ∞

≤ c (1 + x)γ∞−γ0

n2

∑

0≤i≤r/2

(nx)i−r−2
r−2i∑

j=0

∞∑

k=0

|k − nx|r+j+4

(
1 +

k

n

)γ0−γ∞

sn,k(x)

≤ c (1 + x)γ∞−γ0

n2

∑

0≤i≤r/2

(nx)i−r−2
r−2i∑

j=0

√√√√
∞∑

k=0

|k − nx|2(r+j+4)sn,k(x)

×

√√√√
∞∑

k=0

(
1 +

k

n

)2(γ0−γ∞)

sn,k(x).

(2.24)

By (2.7), we have

(2.25)
∞∑

k=0

|k − nx|2(r+j+4)sn,k(x) ≤ c (nx)r+j+4, nx ≥ 1.

It was shown in [5, p. 163] that

(2.26)
∞∑

k=0

(
1 +

k

n

)m

sn,k(x) ≤ c (1 + x)m, x ≥ 0, m ∈ Z.

Then by means of Hölder’s inequality and the identity
∞∑

k=0

sn,k(x) ≡ 1 we derive

(see [5, p. 162–163])

(2.27)

∞∑

k=0

(
1 +

k

n

)2(γ0−γ∞)

sn,k(x) ≤ c (1 + x)2(γ0−γ∞), x ≥ 0.

Combining (2.24), (2.25) and (2.27), we arrive at

(1 + x)γ∞−γ0

x2

∞∑

k=0

|s(r)n,k(x)|
∣∣∣∣
k

n
− x

∣∣∣∣
r+4(

1 +
k

n

)γ0−γ∞

≤ c

n2
.
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Now, (2.22), (2.23) and the last estimate above yield

(2.28) |w(x)R̃r,n(x)| ≤
c

n2
‖wϕ4f (r+4)‖, nx ≥ 1.

Case 2: nx ≤ 1. By means of (2.3) and summation by parts we derive
for n ≥ 1 the relation (cf. (2.8))

R̃r,n(x) = nr
∞∑

k=0

−→
∆r

1/nρ̃r,x

(
k

n

)
sn,k(x).

Consequently,

(2.29) |w(x)R̃r,n(x)| ≤ c nr max
i=0,...,r

∞∑

k=0

∣∣∣∣w(x) ρ̃r,x
(
k + i

n

)∣∣∣∣ sn,k(x).

We will estimate the terms for k = 0 and k = 1 separately. For the sum
on k ≥ 2, we apply (2.21) and Cauchy’s inequality to arrive at

∞∑

k=2

∣∣∣∣w(x) ρ̃r,x
(
k + i

n

)∣∣∣∣ sn,k(x)

≤ 1

x2

∞∑

k=2

(
k + i

n
− x

)r+4

sn,k(x) ‖wϕ4f (r+4)‖

+
(1 + x)γ∞−γ0

x2

∞∑

k=2

(
k + i

n
− x

)r+4(
1 +

k + i

n

)γ0−γ∞

sn,k(x) ‖wϕ4f (r+4)‖

≤ 1

x2

∞∑

k=2

(
k + i

n
− x

)r+4

sn,k(x) ‖wϕ4f (r+4)‖

+
c

x2

√√√√
∞∑

k=2

(
k + i

n
− x

)2(r+4)

sn,k(x)

×

√√√√
∞∑

k=2

(
1 +

k + i

n

)2(γ0−γ∞)

sn,k(x) ‖wϕ4f (r+4)‖.

We will show that

∞∑

k=2

(
k + i

n
− x

)l

sn,k(x) ≤
c x2

nl−2
, l ∈ N+, l ≥ 2,(2.30)
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and

∞∑

k=2

(
1 +

k + i

n

)γ

sn,k(x) ≤ c (nx)2, γ ∈ R,(2.31)

for nx ≤ 1 and i = 0, . . . , r.
Then we will get

(2.32)
∞∑

k=2

∣∣∣∣w(x) ρ̃r,x
(
k + i

n

)∣∣∣∣ sn,k(x) ≤
c

nr+2
‖wϕ4f (r+4)‖, i = 0, . . . , r.

To verify (2.30)–(2.31), we apply [8, (3.16) and (3.17)] to the right-hand
side of the trivial inequalities

∞∑

k=2

(
k + i

n
− x

)l

sn,k(x) ≤ nx

∞∑

k=1

(
k + i

n
− x

)l

sn,k(x)

and

∞∑

k=2

(
1 +

k + i

n

)γ

sn,k(x) ≤ nx

∞∑

k=1

(
1 +

k + i

n

)γ

sn,k(x),

where 0 ≤ x ≤ 1/n, l ∈ N+ and γ ∈ R.
Now, let us consider the terms for k = 0, 1 in (2.29). For k = 0 and i = 0

we again use (2.21) to get directly

|w(x) ρ̃r,x(0)| ≤ c xr+2‖wϕ4f (r+4)‖
≤ c

nr+2
‖wϕ4f (r+4)‖.

(2.33)

It remains to estimate ρ̃r,x(i/n), defined in (2.15), for i = 1, . . . , r+1. To
this end, we expand (i/n − u)r+3 by the binomial formula to get

(2.34)

∣∣∣∣w(x)ρ̃r,x
(
i

n

)∣∣∣∣ ≤ c xγ0
r+3∑

j=0

1

nr−j+3

∣∣∣∣∣

∫ i/n

x
ujf (r+4)(u) du

∣∣∣∣∣ .

Clearly, for j = 2, . . . , r + 3 we have

xγ0

∣∣∣∣∣

∫ i/n

x
ujf (r+4)(u) du

∣∣∣∣∣ ≤ c xγ0
∫ i/n

x
uj−γ0−2du ‖wϕ4f (r+4)‖

≤ c xγ0

n

(
1

nj−γ0−2
+ xj−γ0−2

)
‖wϕ4f (r+4)‖
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≤ c

nj−1
‖wϕ4f (r+4)‖, x ∈ (0, 1/n].

For the integral in (2.34) with j = 0 we have

xγ0

∣∣∣∣∣

∫ i/n

x
f (r+4)(u) du

∣∣∣∣∣ = xγ0
∣∣∣∣f

(r+3)

(
i

n

)
− f (r+3)(x)

∣∣∣∣

≤
(
i

n

)γ0
∣∣∣∣f

(r+3)

(
i

n

)∣∣∣∣+ xγ0 |f (r+3)(x)|

≤ c ‖wf (r+3)‖, x ∈ (0, 1/n].

Similarly, for the integral with j = 1, we have, after integrating by parts,

xγ0

∣∣∣∣∣

∫ i/n

x
uf (r+4)(u) du

∣∣∣∣∣ = xγ0

∣∣∣∣∣

∫ i/n

x
u d f (r+3)(u)

∣∣∣∣∣

≤ 1

n

[(
i

n

)γ0
∣∣∣∣f

(r+3)

(
i

n

)∣∣∣∣+ xγ0 |f (r+3)(x)|
]
+ xγ0

∫ i/n

x
|f (r+3)(u)| du

≤ c

n
‖wf (r+3)‖, x ∈ (0, 1/n].

Thus we have established for nx ≤ 1 and i = 1, . . . , r + 1

(2.35)

∣∣∣∣w(x)ρ̃r,x
(
i

n

)∣∣∣∣ ≤
c

nr+3
‖wf (r+3)‖+ c

nr+2
‖wϕ4f (r+4)‖.

Inequalities (2.29), (2.32), (2.33) and (2.35) yield

|w(x)R̃r,n(x)| ≤
c

n3
‖wf (r+3)‖+ c

n2
‖wϕ4f (r+4)‖, nx ≤ 1.

This along with (2.28) completes the proof of (2.16). ✷

Similar point-wise Voronovskaya-type estimates were established in [1,
Theorem 2] for any r ∈ N0 and w(x) := (1 + x)−2, and also in [2] for general
linear positive operators, which in particular include Sn, for the first and second
derivative and weights w(x) := (1 + x)−m, where m ∈ N+.

We proceed to several Bernstein-type inequalities.

Proposition 2.4. Let r ∈ N+ and w = w(γ0, γ∞) be given by (1.1) as

0 ≤ γ0 < r and γ∞ ∈ R. Then for all f ∈ C[0,∞) such that f ∈ ACr−1
loc (0,∞)

and wf (r) ∈ L∞[0,∞), and all n ≥ 1 there hold:

(a) ‖w(Snf)
(r+1)‖ ≤ cn‖wf (r)‖;
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(b) ‖wϕ2(Snf)
(r+2)‖ ≤ cn‖wf (r)‖.

P r o o f. (a) By virtue of (2.8) with r + 1 in place of r, we have

|(Snf)
(r+1)(x)| = nr+1

∣∣∣∣∣

∞∑

k=0

−→
∆r+1

1/n f

(
k

n

)
sn,k(x)

∣∣∣∣∣

≤ 2nr+1 max
j=0,1

∞∑

k=0

∣∣∣∣
−→
∆r

1/nf

(
k + j

n

)∣∣∣∣ sn,k(x), x ≥ 0.

Let us recall that (see e.g. [3, p. 45])

−→
∆r

hf(x) = hr
∫ r

0
Mr(u)f

(r)(x+ hu) du, x ≥ 0,

where Mr is the r-fold convolution of the characteristic function of [0, 1] with
itself and

0 ≤ Mr(u) ≤ c ur−1, u ∈ [0, r].

Therefore,

(2.36)

∣∣∣∣
−→
∆r

1/nf

(
k

n

)∣∣∣∣ ≤
c

nr

∫ r

0

ur−1

w
(
k+u
n

) du ‖wf (r)‖, k ∈ N0.

Consequently,

(2.37) |w(x)(Snf)
(r+1)(x)|

≤ cnw(x) max
j=0,1

∞∑

k=0

∫ r

0

ur−1

w
(
k+j+u

n

) du sn,k(x) ‖wf (r)‖, x ≥ 0.

It is quite straightforward to obtain (see [8, Proposition 3.1]) that

∫ r

0

ur−1

w
(
k+u
n

) du ≤ c

(
n

k + 1

)γ0 ( n

n+ k

)γ∞−γ0

, k ≥ 0;(2.38)

hence,

∫ r

0

ur−1

w
(
k+u+1

n

) du ≤ c

(
n

k + 1

)γ0 ( n

n+ k

)γ∞−γ0

, k ≥ 0,(2.39)

as well.



Approximation by the Szász-Mirakjan operator 277

It was shown in [5, (10.2.4)] that

∞∑

k=0

(
n

k + 1

)l

sn,k(x) ≤ c x−l, x > 0, l ∈ N0,

This along with (2.26), the identity

∞∑

k=0

sn,k(x) ≡ 1 and Hölder’s inequality yields

(see [5, p. 162–163])

(2.40)

∞∑

k=0

(
n

k + 1

)γ0 ( n

n+ k

)γ∞−γ0

sn,k(x) ≤
c

w(x)
, x > 0,

for all γ0 ≥ 0 and γ∞ ∈ R.

Estimates (2.37)-(2.40) imply (a).

(b) As in the proof of Proposition 2.2 we consider the cases nx ≥ 1 and
nx ≤ 1 separately.

Case 1: nx ≥ 1. We differentiate identity (2.8) twice to get

(Snf)
(r+2)(x) = nr

∞∑

k=0

−→
∆r

1/nf

(
k

n

)
s′′n,k(x).

We note that the series on the right-hand side of (2.8) can be differentiated term-
by-term any number of times because, under the assumptions on f , the resulting
series are uniformly convergent on any finite closed subinterval of [0,∞), as can
be shown by means of the Weierstrass M-test.

Using (2.2) (cf. (2.4) with r = 2), we compute that

s′′n,k(x) =
sn,k(x)

x2
(
−(k − nx) + (k − nx)2 − nx

)
, k ∈ N0.

Therefore,

|w(x)ϕ2(x)(Snf)
(r+2)(x)|

≤ nrw(x)

x

∞∑

k=0

∣∣∣∣
−→
∆r

1/nf

(
k

n

)∣∣∣∣
(
|k − nx|+ (k − nx)2 + nx

)
sn,k(x), x > 0.

Then we combine (2.36) and (2.38) to estimate |−→∆r
1/nf(k/n)| and derive
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the inequality

|w(x)ϕ2(x)(Snf)
(r+2)(x)|

≤ c
w(x)

x

∞∑

k=0

(
n

k + 1

)γ0 ( n

n+ k

)γ∞−γ0

|k − nx|sn,k(x) ‖wf (r)‖

+ c
w(x)

x

∞∑

k=0

(
n

k + 1

)γ0 ( n

n+ k

)γ∞−γ0

(k − nx)2sn,k(x) ‖wf (r)‖

+ cnw(x)

∞∑

k=0

(
n

k + 1

)γ0 ( n

n+ k

)γ∞−γ0

sn,k(x) ‖wf (r)‖.

(2.41)

We further estimate the first two sums above, using Cauchy’s inequality
(2.40) with 2γ0 in place of γ0 and 2γ∞ in place of γ∞, and (2.6), to arrive at

∞∑

k=0

(
n

k + 1

)γ0 ( n

n+ k

)γ∞−γ0

|k − nx|sn,k(x)

≤

√√√√
∞∑

k=0

(
n

k + 1

)2γ0 ( n

n+ k

)2(γ∞−γ0)

sn,k(x)
√

Tn,2(x)

≤ c
√

w−2(x)
√
nx ≤ c

nx

w(x)

(2.42)

and

∞∑

k=0

(
n

k + 1

)γ0 ( n

n+ k

)γ∞−γ0

(k − nx)2sn,k(x)

≤

√√√√
∞∑

k=0

(
n

k + 1

)2γ0 ( n

n+ k

)2(γ∞−γ0)

sn,k(x)
√

Tn,4(x)

≤ c
√

w−2(x)nx = c
nx

w(x)
.

(2.43)

Now, combining (2.41) with (2.42), (2.43) and (2.40), we get

(2.44) |w(x)ϕ2(x)(Snf)
(r+2)(x)| ≤ cn ‖wf (r)‖, nx ≥ 1.

Case 2: nx ≤ 1. We differentiate identity (2.8) with r + 1 in place of r
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and thus get

(Snf)
(r+2)(x) = nr+1

∞∑

k=0

−→
∆r+1

1/n f

(
k

n

)
s′n,k(x).

Then we use (2.2), (2.36), (2.38), (2.39) and (2.42) to get

|w(x)ϕ2(x)(Snf)
(r+2)(x)|

≤ 2nr+1w(x) max
j=0,1

∞∑

k=0

∣∣∣∣
−→
∆r

1/nf

(
k + j

n

)∣∣∣∣ |k − nx|sn,k(x)

≤ cnw(x)

∞∑

k=0

(
n

k + 1

)γ0 ( n

n+ k

)γ∞−γ0

|k − nx|sn,k(x) ‖wf (r)‖

≤ cnw(x)
nx

w(x)
‖wf (r)‖

≤ cn ‖wf (r)‖, x ∈ (0, 1/n].

where at the last estimate we have taken into consideration that nx ≤ 1.
Thus we have established

(2.45) |w(x)ϕ2(x)(Snf)
(r+2)(x)| ≤ cn ‖wf (r)‖, nx ≤ 1.

Estimates (2.44) and (2.45) verify assertion (b). ✷

Since
(
D̃g

)(r)
= rg(r+1) + ϕ2g(r+2), Proposition 2.4 immediately yields

the following inequality.

Corollary 2.5. Let r ∈ N+ and w = w(γ0, γ∞) be given by (1.1) as

0 ≤ γ0 < r and γ∞ ∈ R. Then for all f ∈ C[0,∞) such that f ∈ ACr−1
loc (0,∞)

and wf (r) ∈ L∞[0,∞), and all n ≥ 1 there holds

∥∥w
(
D̃Snf

)(r)∥∥ ≤ cn‖wf (r)‖.

We will also use the following inequalities, which follow from Proposition
2.4 and the embedding inequalities [8, Proposition 2.4].

Corollary 2.6. Let r ∈ N+ and w = w(γ0, γ∞) be given by (1.1) as 0 ≤
γ0 < r and γ∞ 6= r. Then for all f ∈ ACr+1[0,∞) such that wf (r) ∈ L∞[0,∞)

and w
(
D̃f

)(r) ∈ L∞[0,∞), and all n ≥ 1 there hold:

(a) ‖w(Snf)
(r+2)‖ ≤ cn

∥∥w
(
D̃f

)(r)∥∥;

(b) ‖w(S2
nf)

(r+3)‖ ≤ cn2
∥∥w

(
D̃f

)(r)∥∥;
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(c) ‖wϕ2(Snf)
(r+3)‖ ≤ cn

∥∥w
(
D̃f

)(r)∥∥;

(d) ‖wϕ4(Snf)
(r+4)‖ ≤ cn

∥∥w
(
D̃f

)(r)∥∥.

P r o o f. (a) By virtue of [8, (2.15)], we have

(2.46) ‖wf (r+1)‖ ≤ c
∥∥w

(
D̃f

)(r)∥∥.

This shows, in the first place, that wf (r+1) ∈ L∞[0,∞). Then we apply Propo-
sition 2.4(a) with r + 1 in place of r to get

‖w(Snf)
(r+2)‖ ≤ cn‖wf (r+1)‖,

which combined with (2.46) yields (a).

(b) The assertion follows from Proposition 2.4(a) with r+2 in place of r
and Snf in place of f and (a).

(c) Similarly to (a), we apply Proposition 2.4(b) with r + 1 in place of r
and (2.46) to derive

‖wϕ2(Snf)
(r+3)‖ ≤ cn‖wf (r+1)‖

≤ cn
∥∥w

(
D̃f

)(r)∥∥.

(d) We apply Proposition 2.4(b) with r+2 in place of r and wϕ2 in place
of w. Thus we get

(2.47) ‖wϕ4(Snf)
(r+4)‖ ≤ cn‖wϕ2f (r+2)‖.

Let us note that the assumption in Proposition 2.4(b) on the weight exponent at
0 now is 0 ≤ γ0 + 1 < r + 2, which is satisfied. As for the assumptions on the
function, it remains only to observe that wϕ2f (r+2) ∈ L∞[0,∞). It follows from
[8, (2.16)], by virtue of which we have

‖wϕ2f (r+2)‖ ≤ c
∥∥w

(
D̃f

)(r)∥∥.

The last estimate and (2.47) yield (d). ✷

3. Proofs of Theorems 1.1 and 1.2.

P r o o f o f T h e o r em 1.1. We apply the method to establish converse
inequalities given in [4, Theorem 3.2]. This theorem is not directly applicable
because the Voronovskaya-type estimate has a different form—compare [4, (3.4)]
and Proposition 2.2. However, the same idea still works.
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We set gn := S3
nf . First, we will show that gn is in the domain on which

the infimum in the definition of the K-functional K̃r(f
(r), t)w is taken and hence

(3.1) K̃r(f
(r), n−1)w ≤ ‖w(f (r) − g(r)n )‖+ 1

n

∥∥w
(
D̃gn

)(r)∥∥.

Indeed, clearly, gn ∈ ACr+1[0,∞). Next, iterating (2.9), we see that wg(r)n ∈
L∞[0,∞), whereas w

(
D̃gn

)(r) ∈ L∞[0,∞) follows from Corollary 2.5 and (2.9),
which imply

∥∥w
(
D̃gn

)(r)∥∥ =
∥∥w

(
D̃S3

nf
)(r)∥∥

≤ cn‖wS2
nf

(r)‖
≤ cn‖wf (r)‖.

Let I stand for the identity map in the L∞-space with the weight w on
[0,∞). We have, by virtue of (2.9),

‖w(f (r) − g(r)n )‖ =
∥∥w

[
(I + Sn + S2

n)(f − Snf)
](r)∥∥

≤ c ‖w(f − Snf)
(r)‖.

(3.2)

To complete the proof of the theorem, we will show that there exists
R ≥ 1 such that for all n, k ≥ 1 such that k ≥ Rn there holds

(3.3)
1

n

∥∥w
(
D̃gn

)(r)∥∥ ≤ c
k

n

(
‖w(Snf − f)(r)‖+ ‖w(Skf − f)(r)‖

)
.

Then the first assertion of Theorem 1.1 follows from (3.1)-(3.3).
Let k ≥ n ≥ 1. We want to apply Proposition 2.2 with gn in place of f .

To this end, we first verify that wg(r+2)
n , wg(r+3)

n , wϕ4g(r+4)
n ∈ L∞[0,∞). To show

it and, moreover, get estimates of their weighted L∞-norms, we apply Corollary

2.6, (a), (b) and (d) with Snf in place of f (note that w
(
D̃Snf

)(r) ∈ L∞[0,∞)
by Corollary 2.5). Thus we get

‖w(S2
nf)

(r+2)‖ ≤ cn
∥∥w

(
D̃Snf

)(r)∥∥,(3.4)

‖w(S3
nf)

(r+3)‖ ≤ cn2
∥∥w

(
D̃Snf

)(r)∥∥,(3.5)

and

‖wϕ4(S2
nf)

(r+4)‖ ≤ cn
∥∥w

(
D̃Snf

)(r)∥∥.(3.6)

Further, by means of (2.9) with S2
nf in place of f , we get from (3.4) and (3.6)

‖w(S3
nf)

(r+2)‖ ≤ c ‖w(S2
nf)

(r+2)‖ ≤ cn
∥∥w

(
D̃Snf

)(r)∥∥,(3.7)
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and

‖wϕ4(S3
nf)

(r+4)‖ ≤ c ‖wϕ4(S2
nf)

(r+4)‖ ≤ cn
∥∥w

(
D̃Snf

)(r)∥∥.(3.8)

For the application of (2.9) in the latter case, we observe that the assumption on
the weight exponent at 0 is 0 ≤ γ0 + 2 < r + 4, which is satisfied.

Having verified that wg(r+2)
n , wg(r+3)

n , wϕ4g(r+4)
n ∈ L∞[0,∞), we next ap-

ply Proposition 2.2 with k in place of n and gn in place of f to arrive at

1

n

∥∥w
(
D̃gn

)(r)∥∥ ≤ 2k

n

∥∥∥∥∥w
(
Sk(S

3
nf)− S3

nf − 1

2k
D̃(S3

nf)

)(r)
∥∥∥∥∥

+
2k

n

∥∥∥w
(
Sk(S

3
nf)− S3

nf
)(r)∥∥∥

≤ c

nk

(
‖w(S3

nf)
(r+2)‖+ ‖wϕ2(S3

nf)
(r+3)‖+ ‖wϕ4(S3

nf)
(r+4)‖

)

+
c

nk2
‖w(S3

nf)
(r+3)‖+ 2k

n

∥∥∥w
(
Sk(S

3
nf)− S3

nf
)(r)∥∥∥ .

(3.9)

We will estimate the terms on the right.
Similarly as above, we use (2.9) with wϕ2 in place of w and S2

nf in place
of f , and Corollary 2.6(c) with Snf in place of f to get

‖wϕ2(S3
nf)

(r+3)‖ ≤ c ‖wϕ2(S2
nf)

(r+3)‖
≤ cn

∥∥w
(
D̃Snf

)(r)∥∥.
(3.10)

Here the application of (2.9) is justified since the assumption on the weight
exponent at 0 is 0 ≤ γ0 + 1 < r + 3, which is clearly satisfied.

By virtue of (3.7), (3.10) and (3.8), we have

(3.11)
1

nk

(
‖w(S3

nf)
(r+2)‖+ ‖wϕ2(S3

nf)
(r+3)‖+ ‖wϕ4(S3

nf)
(r+4)‖

)

≤ c

k

∥∥w
(
D̃Snf

)(r)∥∥.

Also, by (3.5), we get

(3.12)
1

nk2
‖w(S3

nf)
(r+3)‖ ≤ c

k

∥∥w
(
D̃Snf

)(r)∥∥,

where we have also taken into account that n ≤ k.
To estimate the last term on the right of (3.9) we use the representation

Sk(S
3
nf)− S3

nf = Sk(S
3
nf − f) + (Skf − f) + (f − S3

nf).
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Therefore, using also (2.9) and (3.2), we arrive at

(3.13)
∥∥∥w

(
Sk(S

3
nf)− S3

nf
)(r)∥∥∥ ≤ c

(
‖w(Snf − f)(r)‖+ ‖w(Skf − f)(r)‖

)
.

We combine (3.9) with (3.11)-(3.13) to derive

(3.14)
1

n

∥∥w
(
D̃gn

)(r)∥∥

≤ c

k

∥∥w
(
D̃Snf

)(r)∥∥+ c
k

n

(
‖w(Snf − f)(r)‖+ ‖w(Skf − f)(r)‖

)
.

Next, we will relate
∥∥w

(
D̃Snf

)(r)∥∥ to
∥∥w

(
D̃gn

)(r)∥∥. Using Corollary 2.5
and (2.9), we get

∥∥w
(
D̃Snf

)(r)∥∥ ≤
∥∥w

(
D̃S3

nf
)(r)∥∥+

∥∥w
[
D̃Sn(f − S2

nf)
](r)∥∥

≤
∥∥w

(
D̃gn

)(r)∥∥|+ cn ‖w(f − S2
nf)

(r)‖
≤

∥∥w
(
D̃gn

)(r)∥∥+ cn
∥∥w

[
(I + Sn)(f − Snf)

](r)∥∥

≤
∥∥w

(
D̃gn

)(r)∥∥+ cn ‖w(Snf − f)(r)‖.
Hence (3.14) yields

(3.15)
1

n

∥∥w
(
D̃gn

)(r)∥∥

≤ c

k

∥∥w
(
D̃gn

)(r)∥∥+ c
k

n

(
‖w(Snf − f)(r)‖+ ‖w(Skf − f)(r)‖

)

for all k ≥ n ≥ 1.
Let R ≥ 1 and k ≥ Rn. Then

c

k
≤ c

Rn
,

where c is the constant in (3.15). We fix R so large that c/R ≤ 1/2. Then (3.15)
implies

1

n

∥∥w
(
D̃gn

)(r)∥∥

≤ 1

2n

∥∥w
(
D̃Snf

)(r)∥∥+ c
k

n

(
‖w(Snf − f)(r)‖+ ‖w(Skf − f)(r)‖

)

for all n, k ≥ 1 such that k ≥ Rn; hence the first assertion of the theorem
follows. ✷

In the proof of Theorem 1.2 we will make use of the K-functionals

K2,ϕ(f, t)w := inf
{
‖w(f − g)‖+ t‖wϕ2g′′‖
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: g ∈ AC1
loc(0,∞), wg,wϕ2g′′ ∈ L∞[0,∞)

}

and

K1(f, t)w := inf
{
‖w(f − g)‖+ t‖wg′‖
: g ∈ ACloc(0,∞), wg,wg′ ∈ L∞[0,∞)

}
,

where wf ∈ L∞[0,∞) and t > 0.
Ditzian and Totik [5, Theorem 6.1.1] showed that there exist positive

constants c and t0 such that for all f with wf ∈ L∞[0,∞) and all t ∈ (0, t0] there
holds

(3.16) c−1ω2
ϕ(f, t)w ≤ K2,ϕ(f, t

2)w ≤ c ω2
ϕ(f, t)w.

Analogously to the unweighted case (see e.g. [3, Chapter 6, Theorem 2.4]),
we have

(3.17) c−1ω(f, t)w ≤ K1(f, t)w ≤ c ω(f, t)w, t > 0.

P r o o f o f Th e o r em 1.2. In view of Theorem 1.1 and the left inequal-
ities in (3.16)–(3.17), it is sufficient to show that

K2,ϕ(f, t)w ≤ c K̃r(f, t)w(3.18)

and

K1(f, t)w ≤ c K̃r(f, t)w,(3.19)

where wf ∈ L∞[0,∞) and t > 0.

Let g ∈ ACr+1[0,∞) with wg(r), w
(
D̃g

)(r) ∈ L∞[0,∞) be arbitrarily

fixed. Then, clearly, g(r) ∈ AC1
loc(0,∞). By virtue of [8, (2.16)], we have

‖wϕ2g(r+2)‖ ≤ c
∥∥w

(
D̃f

)(r)∥∥.

This implies that wϕ2
(
g(r)

)′′ ∈ L∞[0,∞) and

K2,ϕ(f, t)w ≤ ‖f − g(r)‖+ t ‖wϕ2
(
g(r)

)′′‖

≤ c
(
‖f − g(r)‖+ t

∥∥w
(
D̃f

)(r)∥∥
)
.

Taking the infimum on g, we straightforwardly arrive at (3.18).
Relation (3.19) is established just similarly by means of [8, (2.15)]. ✷
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