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1 Introduction

We consider the function spaces L∗p[−π, π], 1 ≤ p <∞, and C∗[−π, π], where

L∗p[−π, π] = {f : R→ R : f(x+ 2π) = f(x) a.e., f |[−π,π] ∈ Lp[−π, π]},
C∗[−π, π] = {f ∈ C(R) : f(x+ 2π) = f(x)},

normed, respectively, with the usual Lp-norm over the interval [−π, π] for 1 ≤ p <
∞, denoted by ‖ · ‖p, and the uniform norm over the interval [−π, π], denoted by
‖ · ‖∞.

In a recent paper (see [1]) we have introduced a new modulus of smoothness,
which describes the rate of the best trigonometric approximation. It is defined by

ωTr (f ; t)p := sup
0<h≤t

‖∆2r−1
h Fr−1f‖p, r = 1, 2, . . . ,

where

∆2r−1
h f(x) :=

2r−1∑
k=0

(−1)k
(

2r − 1

k

)
f(x+ ((2r − 1)/2− k)h)

is the symmetric finite difference of order 2r − 1,

Fr−1(f, x) = f(x) +

∫ x

0

Kr−1(t)f(x− t) dt

and

Kr−1(t) =

r−1∑
j=1

a
(r−1)
j

(2j − 1)!
t2j−1, a

(r−1)
j =

∑
1≤l1<···<lj≤r−1

(l1 · · · lj)2.
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It is shown in [1] that for the rate of the best trigonometric approximation ETn (f)p :=
infτ∈Tn ‖f−τ‖p, Tn being the set of all trigonometric polynomials of degree at most
n, we have

ETn (f)p ≤ CrωTr (f ;n−1)p, n ≥ r − 1,(1.1)

and

ωTr (f ; t)p ≤ Crt2r−1
∑

r−1≤k≤1/t

(k + 1)2r−2ETk (f)p, 0 < t ≤ 1

r
.(1.2)

Moreover, we have ωTr (f ; t)p ≡ 0 if and only if f ∈ Tr−1. In that sense the new
modulus of smoothness describes the rate of the best trigonometric approxima-
tion more precisely than the classical one. The modulus of smoothness ωTr (f ; t)p
possesses properties similar to those of the classical one, as it is shown in [1].

Let Ln : L∗p[−π, π]→ L∗p[−π, π], 1 ≤ p <∞, or Ln : C∗[−π, π]→ C∗[−π, π], be
a bounded linear operator that preserves the trigonometric polynomials of degree
n. Then the well-known Lebesgue inequality

‖f − Lnf‖p ≤ (1 + ‖Ln‖)ETn (f)p

and the Jackson-type estimate (1.1) imply

‖f − Lnf‖p ≤ Cr(1 + ‖Ln‖)ωTr (f, n−1)p, n ≥ r − 1.

Similar estimates, using the classical periodic modulus of smoothness, are known.
For instance, G. P. Nevai has proved in [3] the following generalization of a result
of S. M. Nikolskii:

‖f − tnf‖∞ ≤ 2−rωr

(
f ;

2π

2n+ 1

)
∞
λn(x̄) +O

(
ωr(f ;n−1)∞

)
,

where tnf ∈ Tn interpolates f ∈ C∗[−π, π] in the equidistant nodes x̄ = (x−n, . . . , xn),
xk = 2kπ/(2n + 1), k = −n, . . . , n, and λn(x̄) is the Lebesgue constant for the
trigonometric Lagrange interpolation. For similar estimates in uniform norm, con-
cerning the approximation by the partial sums of the Fourier series, one can refer
to [2] and [4].

The trigonometric analogue of Taylor’s formula will allow us to derive a point-
wise estimate of the error f(x) − Ln(f, x) for a smooth f . We need to introduce
several notations to state that result. We define the differential operators

(1.3) Dj =
( d
dx

)2

+ j2I, j = 1, 2, . . . ,

where I is the identity. We also put

D̃n+1 = Dn · · ·D1
d

dx
,

D̂n0 = D1 · · ·Dn,

D̂nk = D1 · · ·Dk−1Dk+1 · · ·Dn, k = 1, . . . , n.
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Let us observe that D̃n+1g = 0, g ∈ C2n+1[a, b], if and only if g ∈ Tn in [a, b]. The
following trigonometric analogue of Taylor’s formula holds true (see [5, §10.8]).

Theorem 1.1 (Taylor’s trigonometric formula). Let f ∈ C2n+1(∆c), where ∆c is
any of the intervals [c, c+ δ], [c− δ, c] or [c− δ, c+ δ] for c ∈ R and δ > 0, and let
also

(1.4) τn,c(f, x) =
D̂n0f(c)

(n!)2
+ 2

n∑
k=1

(−1)k−1

(n− k)! (n+ k)!

×
[
(k2D̂nkf(c)− D̂n0f(c)) cos k(x− c) + kD̂nkf

′(c) sin k(x− c)
]
.

Then τn,cf ∈ Tn, τ
(s)
n,c(f, c) = f (s)(c), s = 0, 1, . . . , 2n, and for x ∈ ∆c we have

(1.5) f(x) = τn,c(f, x) +
1

n! (2n− 1)!!

∫ x

c

(1− cos(x− t))nD̃n+1f(t) dt.

Let −π ≤ x0 < · · · < x2n < π be arbitrary nodes. Let us denote by tn(f, x)
the unique trigonometric polynomial of degree n, which interpolates f in those
nodes. Then the theorem above easily implies a point-wise estimate of the error
f(x)− tn(f, x) for a smooth function f .

Proposition 1.2. Let f ∈ C2n+1[−π, π]. Then

f(x)− tn(f, x) =
1

n! (2n− 1)!!

∫ π

−π
K(x, t)D̃n+1f(t) dt, x ∈ [−π, π],

where

K(x, t) =
(
1− cos[(x− t)+]

)n − 2n∑
k=0

(
1− cos[(xk − t)+]

)n
tnk(x)

and (x− t)+ = max{x− t, 0}.

The contents of the paper are organized as follows. In Section 2 we collect
few auxiliary results, which are necessary for the proof of Taylor’s trigonometric
formula, presented in Section 3. Finally, in the last section we derive point-wise
estimates of the error in the trigonometric interpolation and in the approximation
by convolutional linear operators.

2 Auxiliary results

Let [a, b] be a finite interval such that 0 ∈ [a, b]. We define the convolutional
operator, known as Duhamel’s convolution, ~ : L1[a, b]× L1[a, b]→ L1[a, b],

f ~ g(x) :=

∫ x

0

f(x− t)g(t) dt.

It is easy to verify that it possesses the properties:
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1. f ~ g = g ~ f ;

2. f ~ (g + h) = f ~ g + f ~ h;

3. f ~ (g ~ h) = (f ~ g) ~ h.

Next we introduce a number of notations. We put ϕn(x) = sinnx, n = 1, 2, . . . ,

and Φn = ϕ1 ~ · · · ~ ϕn, Φ̃n = Φn ~ 1, Φ̂n = Φ̃n ~ 1. The propositions bellow
contain some of the properties of Φn, Φ̃n and Φ̂n, but first we prove the following
simple lemma.

Lemma 2.1. Any function of the form

(2.1) f(x) = cx+ a0 +

n∑
k=1

(ak cos kx+ bk sin kx)

has at most 2n+ 1 zeroes in [−π, π), counting the multiplicities, that is, x, 1, cosx,
sinx, . . . , cosnx, sinnx is an extended Chebyshev system in [−π, π). Hence, for
any choice of −π ≤ x1 < · · · < xm < π and positive integers ν1, . . . , νm with
ν1 + · · ·+ νm = 2n+ 1 there exists only one function of the form (2.1) with a fixed
c for which xk is a zero of multiplicity νk, k = 1, . . . ,m.

Proof. It is enough to prove the first part of the statement. We follow a standard
argument assuming the opposite and making use of the well-known Rolle’s theo-
rem. So let us assume that f(x) has at least 2n + 2 zeroes in [−π, π), counting
the multiplicities. Then f ′(x) has at least 2n + 1 zeroes in [−π, π), counting the
multiplicities. But f ′(x) is a trigonometric polynomial of degree n and therefore
it has at most 2n zeroes in [−π, π), counting the multiplicities. This contradiction
verifies the statement of the lemma.

Proposition 2.2. We have

(i) DnΦn = nΦn−1 and DnΦ̂n = nΦ̂n−1 for n = 2, 3, . . . ;

(ii) Φn(x) = cn sinx(1− cosx)n−1, where cn =
n

(2n− 1)!!
, n = 1, 2 . . . ;

(iii) Φ̃n(x) =
1

(2n− 1)!!
(1− cosx)n;

(iv) Φ̂n(x) =
x

n!
+

n∑
k=1

bnk sin kx,

where {bnk} is the unique solution of the linear system

n∑
k=1

kbnk = − 1

n!
,

n∑
k=1

ksbnk = 0, s = 3, 5, . . . , 2n− 1.
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Proof. The first statement of the proposition follows by differentiation of the re-
cursion relation Φn = ϕn ~ Φn−1. Namely, we have( d
dx

)2

Φn(x) =
( d
dx

)2
∫ x

0

sinn(x− t)Φn−1(t) dt = n
d

dx

∫ x

0

cosn(x− t)Φn−1(t) dt

= nΦn−1(x)− n2

∫ x

0

sinn(x− t)Φn−1(t) dt

= nΦn−1(x)− n2Φn(x).

Thus we have got DnΦn = nΦn−1. If we put e1(x) = x, then Φ̂n = Φ̃n ~ 1 =

Φn~1~1 = Φn~e1. Therefore Φ̂n satisfies the same recursion relation as Φn with
Φ̂1(x) = x − sinx instead of Φ1(x) = sinx. Hence we get DnΦ̂n = nΦ̂n−1. This
completes the proof of (i).

To verify (ii), we consider the sequence of trigonometric polynomials

Pn(x) = cn sinx(1− cosx)n−1, cn =
n

(2n− 1)!!
, n ≥ 1.

We shall show that it satisfies the same recursion relation as Φn in (i) and Pn(0) =
0 = Φn(0), P ′n(0) = 0 = Φ′n(0), n ≥ 2. Hence, as P1 = Φ1, we have Pn = Φn, n ≥
2. For n ≥ 2

P ′′n (x) = cn
(
sinx(1− cosx)n−1

)′′
= cn sinx(1− cosx)n−2(n2 − 3n+ 1 + n2 cosx).

Consequently,

DnPn(x) = P ′′n (x) + n2Pn(x)

= cn sinx(1− cosx)n−2(n2 − 3n+ 1 + n2 cosx) + n2cn sinx(1− cosx)n−1

= cn(2n2 − 3n+ 1) sinx(1− cosx)n−2

= ncn−1 sinx(1− cosx)n−2

= nPn−1(x).

We get (iii) by integrating (ii).

It remains to verify (iv). From (i) it follows D̃n+1Φ̂n = n!. Consequently,

Φ̂n(x) = x/n! + a0 +
∑n
k=1(ank cos kx + bnk sin kx) for some constants ank, bnk.

Assertion (iii) implies that Φ̃n is an even function, therefore Φ̂n is an odd one.

This implies that Φ̂n(x) = x/n! +
∑n
k=1 bnk sin kx for some bnk ∈ R. Next we have

Φ̂′n(0) = Φ̃n(0) = 0, which implies

n∑
k=1

kbnk = − 1

n!
.

It is easy to see that Φ̂
(s)
n (0) = 0, s = 2, . . . , 2n − 1, as well. For s even this is

obvious. For s odd we can verify it, for instance, by induction in n. For n = 1
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the statement is trivial as we have shown above. We assume that Φ̂
(s)
n (0) = 0, s =

1, . . . , 2n − 1, and shall verify it for n + 1 in the place of n. We differentiate in x
the equality Dn+1Φ̂n+1(x) = (n+ 1)Φ̂n(x) and get for s = 1, . . . , 2n− 1

Φ̂
(s+2)
n+1 (x) + (n+ 1)2Φ̂

(s)
n+1(x) = (n+ 1)Φ̂(s)

n (x).

Then, putting x = 0, we get Φ̂
(s)
n+1(0) = 0 consecutively for s = 3, 5, . . . , 2n + 1,

which is what we had to show. Now

n∑
k=1

ksbnk = 0, s = 3, 5, . . . , 2n− 1,

follows from Φ̂
(s)
n (0) = 0, s = 3, . . . , 2n− 1 (n > 1). In passing, let us note that the

linear system
n∑
k=1

kbnk = − 1

n!
,

n∑
k=1

ksbnk = 0, s = 3, 5, . . . , 2n− 1;

has a unique solution due to Lemma 2.1. This completes the proof of (iv).

The following representation of Φ̂n(x) has been pointed out to the author by
K. G. Ivanov.

Proposition 2.3. The following formula holds:

(2.2) Φ̂n(x) =
1

n!

(
x−

n∑
k=1

(k − 1)!

(2k − 1)!!
sinx(1− cosx)k−1

)
.

Proof. We just write for n ≥ 1

Jn(x) :=

∫ x

0

sin2n t dt = −
∫ x

0

sin2n−1 t d cos t

= − sin2n−1 x cosx+ (2n− 1)

∫ x

0

cos2 t sin2(n−1) t dt

= − sin2n−1 x cosx+ (2n− 1)

∫ x

0

sin2(n−1) t dt− (2n− 1)

∫ x

0

sin2n t dt.

Therefore

Jn(x) = − sin2n−1 x cosx+ (2n− 1)Jn−1(x)− (2n− 1)Jn(x).

Hence we get the recursion relation

Jn(x) = − 1

2n
sin2n−1 x cosx+

2n− 1

2n
Jn−1(x), n ≥ 1.
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Consequently, noting that J0(x) = x, we get

Jn(x) =
1

2n

( (2n− 1)!!

(2n− 2)!!
x− sin2n−1 x cosx

−
n−1∑
l=1

(2n− 1)(2n− 3) · · · (2n− 2l + 1)

(2n− 2)(2n− 4) · · · (2n− 2l)
sin2n−2l−1 x cosx

)
=

1

2n

( (2n− 1)!!

(2n− 2)!!
x− 1

2
sin2(n−1) x sin 2x

− (2n− 1)!!

2(2n− 2)!!

n−1∑
l=1

(2n− 2l − 2)!!

(2n− 2l − 1)!!
sin2(n−l−1) x sin 2x

)
=

(2n− 1)!!

(2n)!!

(
x− (2n− 2)!!

2(2n− 1)!!
sin2(n−1) x sin 2x

− 1

2

n−1∑
l=1

(2n− 2l − 2)!!

(2n− 2l − 1)!!
sin2(n−l−1) x sin 2x

)
=

(2n− 1)!!

(2n)!!

(
x− 1

2

n−1∑
l=0

(2n− 2l − 2)!!

(2n− 2l − 1)!!
sin2(n−l−1) x sin 2x

)
=

(2n− 1)!!

(2n)!!

(
x− 1

2

n∑
k=1

(2k − 2)!!

(2k − 1)!!
sin2(k−1) x sin 2x

)
=

(2n− 1)!!

(2n)!!

(
x− 1

2

n∑
k=1

(k − 1)!

(2k − 1)!!
2k−1 sin2(k−1) x sin 2x

)
=

(2n− 1)!!

2n+1n!

(
2x−

n∑
k=1

(k − 1)!

(2k − 1)!!
(1− cos 2x)k−1 sin 2x

)
.

Thus we have shown

(2.3) Jn(x) =
(2n− 1)!!

2n+1n!

(
2x−

n∑
k=1

(k − 1)!

(2k − 1)!!
sin 2x(1− cos 2x)k−1

)
.

To finish the proof, we just write

Φ̂n(x) =
1

(2n− 1)!!

∫ x

0

(1− cos t)n dt =
2n+1

(2n− 1)!!

∫ x/2

0

sin2n t dt

=
2n+1

(2n− 1)!!
Jn(x/2).

Hence, making use of (2.3), we get (2.2).

Let [a, b] be a finite interval such that 0 ∈ [a, b]. In [1] we have proved that
Fn : C[a, b]→ C[a, b] can be represented in the form

Fn = A1 · · ·An,
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where the bounded linear operators Aj : C[a, b]→ C[a, b], j = 1, 2, . . . , are defined
by

Aj(f, x) := f(x) + j2

∫ x

0

(x− t)f(t) dt, j = 1, 2, . . .

In the above mentioned investigation we have also shown the following assertion.

Proposition 2.4. The bounded linear operator Aj is invertible and

A−1
j (g, x) = g(x)− j

∫ x

0

sin j(x− t)g(t) dt.

Hence

A−1
j (g, x) =

1

j

∫ x

0

sin j(x− t)g′′(t) dt

for g ∈ C2[a, b] with g(0) = g′(0) = 0.

3 The proof of Taylor’s trigonometric formula

Now we are ready to prove formula (1.5).

Proof of Theorem 1.1. It is enough to prove the assertion of the theorem for c = 0.
Hence it will follow for any c ∈ R by translation. Let τ(x) = a0+a1 cosx+b1 sinx+
· · ·+an cosnx+bn sinnx be the unique trigonometric polynomial of degree at most
n, which interpolates f in x = 0 with multiplicity 2n+ 1, i.e., τ (s)(0) = f (s)(0) for
s = 0, 1, . . . , 2n. Using

Dj cos kx = (j2 − k2) cos kx and Dj sin kx = (j2 − k2) sin kx,

we get

(n!)2a0 = D̂n0τ(0) = D̂n0f(0),

(−1)k−1 (n− k)! (n+ k)!

2k2
ak +

(n!)2

k2
a0 = D̂nkτ(0) = D̂nkf(0), k = 1, . . . , n,

(−1)k−1 (n− k)! (n+ k)!

2k
bk = D̂nkτ

′(0) = D̂nkf
′(0), k = 1, . . . , n.

Hence τn,0(f, x) = τ(x).
It remains to consider the remainder rn(x) = f(x) − τn,0(f, x). Let us put for

the sake of brevity

F (x) =

∫ x

0

(∫ t1

0

· · ·
(∫ t2n

0

D̃n+1f(t2n+1) dt2n+1

)
· · · dt2

)
dt1.
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Obviously, F ∈ C2n+1(∆0) and F (s)(0) = 0, s = 0, 1, . . . , 2n. Now rn(x) = f(x)−
τn,0(f, x) implies D̃n+1rn(x) = D̃n+1f(x), x ∈ ∆0. We have proved in [1] that

(Fng)(2n+1) = D̃n+1g, g ∈ C2n+1(∆0).

Therefore (d/dx)2n+1Fn(rn, x) = D̃n+1rn(x), x ∈ ∆0. Hence, making use of

r
(s)
n (0) = 0, s = 0, 1, . . . , 2n, we get Fn(rn, x) = F (x), x ∈ ∆0, that is,

(3.1) A1 · · ·Anrn = F.

Proposition 2.4 states for g ∈ C2(∆0) with g(0) = g′(0) = 0 that

(3.2) A−1
j g =

1

j
ϕj ~ g′′.

Simple calculations yield for g ∈ C2(∆0) with g(0) = g′(0) = 0

(3.3) (Φk ~ g)′′ = Φk ~ g′′,

and for any g ∈ C(∆0)

(3.4) Φk ~ g(0) = (Φk ~ g)′(0) = 0.

Now (3.1) and (3.2) for j = 1 imply

A2 · · ·Anrn = ϕ1 ~ F ′′ = Φ1 ~ F ′′.

Next, applying again (3.2) (for j = 2), using (3.4) (for k = 1), and then (3.3) (for
k = 1), we have

A3 · · ·Anrn =
1

2
ϕ1 ~ ϕ2 ~ F (4) =

1

2
Φ2 ~ F (4).

Proceeding in this way, we finally get

(3.5) rn =
1

n!
Φn ~ F (2n).

To finish the proof, we write

rn(x) =
1

n!

∫ x

0

(
Φn(x− t)

∫ t

0

D̃n+1f(s) ds

)
dt

= − 1

n!

∫ x

0

(∫ t

0

D̃n+1f(s) ds

)
dΦ̃n(x− t)

=
1

n!

∫ x

0

Φ̃n(x− t)D̃n+1f(t) dt

=
1

n!
Φ̃n ~ D̃n+1f(x).

This completes the proof of the theorem as Proposition 2.2 (iii) states Φ̃n(x) =
1/(2n− 1)!! (1− cosx)n.

9



Remark 3.1. An estimate of the remainder. (Again we discuss the case c = 0.)
The mean value theorem implies

(3.6) rn(x) =
D̃n+1f(ξx)

n! (2n− 1)!!

∫ x

0

(1− cos t)n dt, x ∈ ∆0,

where ξx ∈ ∆0 depends on x. Hence

(3.7) |rn(x)| ≤
‖D̃n+1f‖∞(∆0)

n! (2n− 1)!!

∣∣∣∣∫ x

0

(1− cos t)n dt

∣∣∣∣ , x ∈ ∆0.

Now, using the simple inequality 1− cosx ≤ x2/2, we get

(3.8) |rn(x)| ≤ |x|2n+1

(2n+ 1)!
‖D̃n+1f‖∞(∆0), x ∈ ∆0.

4 Application

Formula (1.5) can be useful in expressing the error in approximation by linear
operators that preserves trigonometric polynomials up to a given degree. Indeed, let
Ln : C[−π, π]→ C[−π, π] be such that Lnf = f if f ∈ Tn and let f ∈ C2n+1[−π, π].
Then we have

(4.1) f − Lnf = (I − Ln)rnf,

where

rn(f, x) =
1

n! (2n− 1)!!

∫ x

c

(1− cos(x− t))nD̃n+1f(t) dt

for some fixed c ∈ [−π, π].
Let −π ≤ x0 < · · · < x2n < π be arbitrary nodes. Then, as it is known, there

exists a unique trigonometric polynomial tn(f, x) of degree n such that tn(f, xk) =
f(xk), k = 0, . . . , 2n. It can be represented in the form

(4.2) tn(f, x) =

2n∑
k=0

f(xk)tnk(x),

where

(4.3) tnk(x) =

2n∏
j=0,j 6=k

sin
x− xj

2

2n∏
j=0,j 6=k

sin
xk − xj

2

.

Now the considerations in the beginning of this section and (1.5) with c = −π easily
yield Proposition 1.2. That proposition implies the following estimates of the error
f(x)− tn(f, x) for smooth functions f .
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Corollary 4.1. Let f ∈ C2n+1[−π, π]. Then we have for x ∈ [−π, π]

(i) |f(x)− tn(f, x)| ≤ πµ(x̄)‖D̃n+1f‖∞
2n(n− 1)! (2n− 1)!!

|(x− x0) . . . (x− x2n)|,

where

µ(x̄) =

2n∑
k=0

(
2n∏

j=0,j 6=k

∣∣∣∣sin xk − xj2

∣∣∣∣
)−1

.

(ii) |f(x)− tn(f, x)| ≤ 2n+1π2µ(x̄)‖D̃n+1f‖∞
a (n− 1)! (2n− 1)!!

∣∣∣∣sin x− x0

2
· · · sin x− x2n

2

∣∣∣∣
for nodes −π + a ≤ x0 < · · · < x2n ≤ π − a, a ∈ (0, π).

Proof. The assertions of the corollary follow easily from the estimate

(4.4)
∣∣(1− cos[(x− t)+])n − (1− cos[(xk − t)+])n

∣∣
≤ n2n−1| cos[(xk − t)+]− cos[(x− t)+]|

and the relation

(4.5) cos[(xk−t)+]−cos[(x−t)+] =



−2 sin
x+ xk − 2t

2
sin

xk − x
2

, t ≤ x, xk,

2 sin2 x− t
2

, xk ≤ t ≤ x,

−2 sin2 xk − t
2

, x ≤ t ≤ xk,

0, t ≥ x, xk.

Now (4.4), (4.5) and the inequality | sinx| ≤ |x| imply

|(1− cos[(x− t)+])n − (cos[(xk − t)+])n| ≤ n2n−1|x− xk|,

therefore, using again the inequality | sinx| ≤ |x| and the fact that
∑2n
k=0 tnk(x) ≡ 1,

we get for any x and t

|K(x, t)| ≤ n2n−1
2n∑
k=0

|x− xk||tnk(x)| ≤ n2−n−1µ(x̄)|x− x0| · · · |x− x2n|.

Hence assertion (i) follows. To verify, (ii) we just have to notice that if −π + a ≤
x0 < · · · < x2n ≤ π − a, where a ∈ (0, π), and x ∈ [−π, π], then

sin
x− t

2
≤

sin
x− xk

2

sin
a

2

, xk ≤ t ≤ x, and sin
xk − t

2
≤

sin
xk − x

2

sin
a

2

, x ≤ t ≤ xk.
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These two estimates, (4.4), (4.5) and the inequality | sinx| ≥ (2/π)|x|, |x| ≤ π/2,
yield for x ∈ [−π, π] and any t

|(1− cos[(x− t)+])n − (cos[(xk − t)+])n| ≤ n2nπ

a

∣∣∣∣sin x− xk2

∣∣∣∣ ,
which, on its turn, implies for x ∈ [−π, π] and any t

|K(x, t)| ≤ n2nπ

a

2n∑
k=0

∣∣∣∣sin x− xk2

∣∣∣∣ |tnk(x)|

=
n2nπµ(x̄)

a

∣∣∣∣sin x− x0

2

∣∣∣∣ · · · ∣∣∣∣sin x− x2n

2

∣∣∣∣ .
Hence assertion (ii) follows.

Remark 4.2. Our conjecture is that for any fixed x′ ∈ [−π, π] the kernel K(x′, t)
does not change its sign in [−π, π]. If that is true, then the mean value theorem
implies the Lagrange-type estimate

f(x)− tn(f, x) =
D̃n+1f(ξx)

(n!)2
ω(x), x ∈ [−π, π],

where f ∈ C2n+1[−π, π], and

ω(x) = x+ a0 +

n∑
k=1

(ak cos kx+ bk sin kx)

is the only function of this form, which vanishes in the nodes {xk}2nk=0 and has no
other zeroes in [−π, π). Actually,

ω(x) = x−
2n∑
k=0

xktnk(x).

Let the bounded linear operator Ln : C∗[−π, π]→ C∗[−π, π] be of the form

(4.6) Ln(f, x) =Mn ∗ f(x) :=

∫ π

−π
Mn(x− t)f(t) dt,

whereMn ∈ L∗1[−π, π]. For any fixed t ∈ [−π, π] we define the 2π-periodic function
ρt : R→ R by

ρt(x) := 1− cos[(x− 2kπ − t)+], x ∈ [(2k − 1)π, (2k + 1)π), k ∈ Z.

It is quite easy to verify the following assertion.
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Proposition 4.3. Let f ∈ C2n+1[−π, π] be 2π-periodic. Let also the bounded linear
operator Ln, defined by (4.6), preserve the trigonometric polynomials of degree n.
Then

f(x)− Ln(f, x) =
1

n! (2n− 1)!!

∫ π

−π
[ρnt (x)−Mn ∗ ρnt (x)]D̃n+1f(t) dt.

Proof. Making use of formula (1.5) with c = −π and changing the order of integra-
tion after that, we get easily the estimate

f(x)− Ln(f, x) =
1

n! (2n− 1)!!

∫ π

−π
(1− cos[(x− t)+])nD̃n+1f(t) dt

− 1

n! (2n− 1)!!

∫ π

−π
Mn(x− t)

(∫ π

−π
(1− cos[(t− u)+])nD̃n+1f(u) du

)
dt

=
1

n! (2n− 1)!!

∫ π

−π

(
(1− cos[(x− t)+])n

−
∫ π

−π
Mn(x− u)(1− cos[(u− t)+])n du

)
D̃n+1f(t) dt.

Thus the proof is completed.

Immediately, Proposition 4.3 yields

Corollary 4.4. Let f ∈ C2n+1[−π, π] be 2π-periodic. Let also the bounded linear
operator Ln, defined by (4.6), preserve the trigonometric polynomials of degree n.
Then

‖f − Lnf‖∞ ≤
2n+1π

n! (2n− 1)!!
(1 + ‖Mn‖1)‖D̃n+1f‖∞.
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