The trigonometric analogue of Taylor's formula and its application

B. R. Draganov

Abstract

A new approach to establishing generalized Taylor's expansions is used to prove the trigonometric analogue of Taylor's formula. We derive point-wise estimates of the error in the trigonometric interpolation and approximation by convolutional linear operators.

Keywords: Taylor's formula, trigonometric interpolation, convolutional operators.
MSC 2000: 42A15, 42A85.

1 Introduction

We consider the function spaces $L_{p}^{*}[-\pi, \pi], 1 \leq p<\infty$, and $C^{*}[-\pi, \pi]$, where

$$
\begin{aligned}
L_{p}^{*}[-\pi, \pi] & =\left\{f: \mathbf{R} \rightarrow \mathbf{R}: f(x+2 \pi)=f(x) \text { a.e., }\left.f\right|_{[-\pi, \pi]} \in L_{p}[-\pi, \pi]\right\} \\
C^{*}[-\pi, \pi] & =\{f \in C(\mathbf{R}): f(x+2 \pi)=f(x)\}
\end{aligned}
$$

normed, respectively, with the usual L_{p}-norm over the interval $[-\pi, \pi]$ for $1 \leq p<$ ∞, denoted by $\|\cdot\|_{p}$, and the uniform norm over the interval $[-\pi, \pi]$, denoted by $\|\cdot\|_{\infty}$.

In a recent paper (see [1]) we have introduced a new modulus of smoothness, which describes the rate of the best trigonometric approximation. It is defined by

$$
\omega_{r}^{T}(f ; t)_{p}:=\sup _{0<h \leq t}\left\|\Delta_{h}^{2 r-1} \mathcal{F}_{r-1} f\right\|_{p}, r=1,2, \ldots,
$$

where

$$
\Delta_{h}^{2 r-1} f(x):=\sum_{k=0}^{2 r-1}(-1)^{k}\binom{2 r-1}{k} f(x+((2 r-1) / 2-k) h)
$$

is the symmetric finite difference of order $2 r-1$,

$$
\mathcal{F}_{r-1}(f, x)=f(x)+\int_{0}^{x} \mathcal{K}_{r-1}(t) f(x-t) d t
$$

and

$$
\mathcal{K}_{r-1}(t)=\sum_{j=1}^{r-1} \frac{a_{j}^{(r-1)}}{(2 j-1)!} t^{2 j-1}, \quad a_{j}^{(r-1)}=\sum_{1 \leq l_{1}<\cdots<l_{j} \leq r-1}\left(l_{1} \cdots l_{j}\right)^{2} .
$$

It is shown in [1] that for the rate of the best trigonometric approximation $E_{n}^{T}(f)_{p}:=$ $\inf _{\tau \in T_{n}}\|f-\tau\|_{p}, T_{n}$ being the set of all trigonometric polynomials of degree at most n, we have

$$
\begin{equation*}
E_{n}^{T}(f)_{p} \leq C_{r} \omega_{r}^{T}\left(f ; n^{-1}\right)_{p}, \quad n \geq r-1 \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega_{r}^{T}(f ; t)_{p} \leq C_{r} t^{2 r-1} \sum_{r-1 \leq k \leq 1 / t}(k+1)^{2 r-2} E_{k}^{T}(f)_{p}, \quad 0<t \leq \frac{1}{r} \tag{1.2}
\end{equation*}
$$

Moreover, we have $\omega_{r}^{T}(f ; t)_{p} \equiv 0$ if and only if $f \in T_{r-1}$. In that sense the new modulus of smoothness describes the rate of the best trigonometric approximation more precisely than the classical one. The modulus of smoothness $\omega_{r}^{T}(f ; t)_{p}$ possesses properties similar to those of the classical one, as it is shown in [1].

Let $L_{n}: L_{p}^{*}[-\pi, \pi] \rightarrow L_{p}^{*}[-\pi, \pi], 1 \leq p<\infty$, or $L_{n}: C^{*}[-\pi, \pi] \rightarrow C^{*}[-\pi, \pi]$, be a bounded linear operator that preserves the trigonometric polynomials of degree n. Then the well-known Lebesgue inequality

$$
\left\|f-L_{n} f\right\|_{p} \leq\left(1+\left\|L_{n}\right\|\right) E_{n}^{T}(f)_{p}
$$

and the Jackson-type estimate (1.1) imply

$$
\left\|f-L_{n} f\right\|_{p} \leq C_{r}\left(1+\left\|L_{n}\right\|\right) \omega_{r}^{T}\left(f, n^{-1}\right)_{p}, \quad n \geq r-1
$$

Similar estimates, using the classical periodic modulus of smoothness, are known. For instance, G. P. Nevai has proved in [3] the following generalization of a result of S. M. Nikolskii:

$$
\left\|f-t_{n} f\right\|_{\infty} \leq 2^{-r} \omega_{r}\left(f ; \frac{2 \pi}{2 n+1}\right)_{\infty} \lambda_{n}(\bar{x})+\mathcal{O}\left(\omega_{r}\left(f ; n^{-1}\right)_{\infty}\right)
$$

where $t_{n} f \in T_{n}$ interpolates $f \in C^{*}[-\pi, \pi]$ in the equidistant nodes $\bar{x}=\left(x_{-n}, \ldots, x_{n}\right)$, $x_{k}=2 k \pi /(2 n+1), k=-n, \ldots, n$, and $\lambda_{n}(\bar{x})$ is the Lebesgue constant for the trigonometric Lagrange interpolation. For similar estimates in uniform norm, concerning the approximation by the partial sums of the Fourier series, one can refer to [2] and [4].

The trigonometric analogue of Taylor's formula will allow us to derive a pointwise estimate of the error $f(x)-L_{n}(f, x)$ for a smooth f. We need to introduce several notations to state that result. We define the differential operators

$$
\begin{equation*}
D_{j}=\left(\frac{d}{d x}\right)^{2}+j^{2} I, \quad j=1,2, \ldots \tag{1.3}
\end{equation*}
$$

where I is the identity. We also put

$$
\begin{aligned}
& \widetilde{D}_{n+1}=D_{n} \cdots D_{1} \frac{d}{d x} \\
& \widehat{D}_{n 0}=D_{1} \cdots D_{n} \\
& \widehat{D}_{n k}=D_{1} \cdots D_{k-1} D_{k+1} \cdots D_{n}, \quad k=1, \ldots, n
\end{aligned}
$$

Let us observe that $\widetilde{D}_{n+1} g=0, g \in C^{2 n+1}[a, b]$, if and only if $g \in T_{n}$ in $[a, b]$. The following trigonometric analogue of Taylor's formula holds true (see [5, §10.8]).
Theorem 1.1 (Taylor's trigonometric formula). Let $f \in C^{2 n+1}\left(\Delta_{c}\right)$, where Δ_{c} is any of the intervals $[c, c+\delta],[c-\delta, c]$ or $[c-\delta, c+\delta]$ for $c \in \mathbf{R}$ and $\delta>0$, and let also

$$
\begin{align*}
\tau_{n, c}(f, x) & =\frac{\widehat{D}_{n 0} f(c)}{(n!)^{2}}+2 \sum_{k=1}^{n} \frac{(-1)^{k-1}}{(n-k)!(n+k)!} \tag{1.4}\\
& \times\left[\left(k^{2} \widehat{D}_{n k} f(c)-\widehat{D}_{n 0} f(c)\right) \cos k(x-c)+k \widehat{D}_{n k} f^{\prime}(c) \sin k(x-c)\right]
\end{align*}
$$

Then $\tau_{n, c} f \in T_{n}, \tau_{n, c}^{(s)}(f, c)=f^{(s)}(c), s=0,1, \ldots, 2 n$, and for $x \in \Delta_{c}$ we have

$$
\begin{equation*}
f(x)=\tau_{n, c}(f, x)+\frac{1}{n!(2 n-1)!!} \int_{c}^{x}(1-\cos (x-t))^{n} \widetilde{D}_{n+1} f(t) d t \tag{1.5}
\end{equation*}
$$

Let $-\pi \leq x_{0}<\cdots<x_{2 n}<\pi$ be arbitrary nodes. Let us denote by $t_{n}(f, x)$ the unique trigonometric polynomial of degree n, which interpolates f in those nodes. Then the theorem above easily implies a point-wise estimate of the error $f(x)-t_{n}(f, x)$ for a smooth function f.

Proposition 1.2. Let $f \in C^{2 n+1}[-\pi, \pi]$. Then

$$
f(x)-t_{n}(f, x)=\frac{1}{n!(2 n-1)!!} \int_{-\pi}^{\pi} K(x, t) \widetilde{D}_{n+1} f(t) d t, \quad x \in[-\pi, \pi],
$$

where

$$
K(x, t)=\left(1-\cos \left[(x-t)_{+}\right]\right)^{n}-\sum_{k=0}^{2 n}\left(1-\cos \left[\left(x_{k}-t\right)_{+}\right]\right)^{n} t_{n k}(x)
$$

and $(x-t)_{+}=\max \{x-t, 0\}$.
The contents of the paper are organized as follows. In Section 2 we collect few auxiliary results, which are necessary for the proof of Taylor's trigonometric formula, presented in Section 3. Finally, in the last section we derive point-wise estimates of the error in the trigonometric interpolation and in the approximation by convolutional linear operators.

2 Auxiliary results

Let $[a, b]$ be a finite interval such that $0 \in[a, b]$. We define the convolutional operator, known as Duhamel's convolution, $\circledast: L_{1}[a, b] \times L_{1}[a, b] \rightarrow L_{1}[a, b]$,

$$
f \circledast g(x):=\int_{0}^{x} f(x-t) g(t) d t
$$

It is easy to verify that it possesses the properties:

1. $f \circledast g=g \circledast f$;
2. $f \circledast(g+h)=f \circledast g+f \circledast h$;
3. $f \circledast(g \circledast h)=(f \circledast g) \circledast h$.

Next we introduce a number of notations. We put $\varphi_{n}(x)=\sin n x, n=1,2, \ldots$, and $\Phi_{n}=\varphi_{1} \circledast \cdots \circledast \varphi_{n}, \widetilde{\Phi}_{n}=\Phi_{n} \circledast 1, \widehat{\Phi}_{n}=\widetilde{\Phi}_{n} \circledast 1$. The propositions bellow contain some of the properties of $\Phi_{n}, \widetilde{\Phi}_{n}$ and $\widehat{\Phi}_{n}$, but first we prove the following simple lemma.

Lemma 2.1. Any function of the form

$$
\begin{equation*}
f(x)=c x+a_{0}+\sum_{k=1}^{n}\left(a_{k} \cos k x+b_{k} \sin k x\right) \tag{2.1}
\end{equation*}
$$

has at most $2 n+1$ zeroes in $[-\pi, \pi)$, counting the multiplicities, that is, $x, 1, \cos x$, $\sin x, \ldots, \cos n x, \sin n x$ is an extended Chebyshev system in $[-\pi, \pi)$. Hence, for any choice of $-\pi \leq x_{1}<\cdots<x_{m}<\pi$ and positive integers ν_{1}, \ldots, ν_{m} with $\nu_{1}+\cdots+\nu_{m}=2 n+1$ there exists only one function of the form (2.1) with a fixed c for which x_{k} is a zero of multiplicity $\nu_{k}, k=1, \ldots, m$.

Proof. It is enough to prove the first part of the statement. We follow a standard argument assuming the opposite and making use of the well-known Rolle's theorem. So let us assume that $f(x)$ has at least $2 n+2$ zeroes in $[-\pi, \pi)$, counting the multiplicities. Then $f^{\prime}(x)$ has at least $2 n+1$ zeroes in $[-\pi, \pi)$, counting the multiplicities. But $f^{\prime}(x)$ is a trigonometric polynomial of degree n and therefore it has at most $2 n$ zeroes in $[-\pi, \pi)$, counting the multiplicities. This contradiction verifies the statement of the lemma.

Proposition 2.2. We have
(i) $D_{n} \Phi_{n}=n \Phi_{n-1}$ and $D_{n} \widehat{\Phi}_{n}=n \widehat{\Phi}_{n-1}$ for $n=2,3, \ldots$;
(ii) $\Phi_{n}(x)=c_{n} \sin x(1-\cos x)^{n-1}$, where $c_{n}=\frac{n}{(2 n-1)!!}, n=1,2 \ldots$;
(iii) $\widetilde{\Phi}_{n}(x)=\frac{1}{(2 n-1)!!}(1-\cos x)^{n}$;
(iv) $\widehat{\Phi}_{n}(x)=\frac{x}{n!}+\sum_{k=1}^{n} b_{n k} \sin k x$,
where $\left\{b_{n k}\right\}$ is the unique solution of the linear system

$$
\left\lvert\, \begin{aligned}
& \sum_{k=1}^{n} k b_{n k}=-\frac{1}{n!} \\
& \sum_{k=1}^{n=1} k^{s} b_{n k}=0, s=3,5, \ldots, 2 n-1
\end{aligned}\right.
$$

Proof. The first statement of the proposition follows by differentiation of the recursion relation $\Phi_{n}=\varphi_{n} \circledast \Phi_{n-1}$. Namely, we have

$$
\begin{aligned}
\left(\frac{d}{d x}\right)^{2} \Phi_{n}(x) & =\left(\frac{d}{d x}\right)^{2} \int_{0}^{x} \sin n(x-t) \Phi_{n-1}(t) d t=n \frac{d}{d x} \int_{0}^{x} \cos n(x-t) \Phi_{n-1}(t) d t \\
& =n \Phi_{n-1}(x)-n^{2} \int_{0}^{x} \sin n(x-t) \Phi_{n-1}(t) d t \\
& =n \Phi_{n-1}(x)-n^{2} \Phi_{n}(x) .
\end{aligned}
$$

Thus we have got $D_{n} \Phi_{n}=n \Phi_{n-1}$. If we put $e_{1}(x)=x$, then $\widehat{\Phi}_{n}=\widetilde{\Phi}_{n} \circledast 1=$ $\Phi_{n} \circledast 1 \circledast 1=\Phi_{n} \circledast e_{1}$. Therefore $\widehat{\Phi}_{n}$ satisfies the same recursion relation as Φ_{n} with $\widehat{\Phi}_{1}(x)=x-\sin x$ instead of $\Phi_{1}(x)=\sin x$. Hence we get $D_{n} \widehat{\Phi}_{n}=n \widehat{\Phi}_{n-1}$. This completes the proof of (i).

To verify (ii), we consider the sequence of trigonometric polynomials

$$
P_{n}(x)=c_{n} \sin x(1-\cos x)^{n-1}, c_{n}=\frac{n}{(2 n-1)!!}, n \geq 1
$$

We shall show that it satisfies the same recursion relation as Φ_{n} in (i) and $P_{n}(0)=$ $0=\Phi_{n}(0), P_{n}^{\prime}(0)=0=\Phi_{n}^{\prime}(0), n \geq 2$. Hence, as $P_{1}=\Phi_{1}$, we have $P_{n}=\Phi_{n}, n \geq$ 2. For $n \geq 2$

$$
\begin{aligned}
P_{n}^{\prime \prime}(x) & =c_{n}\left(\sin x(1-\cos x)^{n-1}\right)^{\prime \prime} \\
& =c_{n} \sin x(1-\cos x)^{n-2}\left(n^{2}-3 n+1+n^{2} \cos x\right) .
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
D_{n} P_{n}(x) & =P_{n}^{\prime \prime}(x)+n^{2} P_{n}(x) \\
& =c_{n} \sin x(1-\cos x)^{n-2}\left(n^{2}-3 n+1+n^{2} \cos x\right)+n^{2} c_{n} \sin x(1-\cos x)^{n-1} \\
& =c_{n}\left(2 n^{2}-3 n+1\right) \sin x(1-\cos x)^{n-2} \\
& =n c_{n-1} \sin x(1-\cos x)^{n-2} \\
& =n P_{n-1}(x)
\end{aligned}
$$

We get (iii) by integrating (ii).
It remains to verify (iv). From (i) it follows $\widetilde{D}_{n+1} \widehat{\Phi}_{n}=n$!. Consequently, $\widehat{\Phi}_{n}(x)=x / n!+a_{0}+\sum_{k=1}^{n}\left(a_{n k} \cos k x+b_{n k} \sin k x\right)$ for some constants $a_{n k}, b_{n k}$. Assertion (iii) implies that $\widetilde{\Phi}_{n}$ is an even function, therefore $\widehat{\Phi}_{n}$ is an odd one. This implies that $\widehat{\Phi}_{n}(x)=x / n!+\sum_{k=1}^{n} b_{n k} \sin k x$ for some $b_{n k} \in \mathbf{R}$. Next we have $\widehat{\Phi}_{n}^{\prime}(0)=\widetilde{\Phi}_{n}(0)=0$, which implies

$$
\sum_{k=1}^{n} k b_{n k}=-\frac{1}{n!}
$$

It is easy to see that $\widehat{\Phi}_{n}^{(s)}(0)=0, s=2, \ldots, 2 n-1$, as well. For s even this is obvious. For s odd we can verify it, for instance, by induction in n. For $n=1$
the statement is trivial as we have shown above. We assume that $\widehat{\Phi}_{n}^{(s)}(0)=0, s=$ $1, \ldots, 2 n-1$, and shall verify it for $n+1$ in the place of n. We differentiate in x the equality $D_{n+1} \widehat{\Phi}_{n+1}(x)=(n+1) \widehat{\Phi}_{n}(x)$ and get for $s=1, \ldots, 2 n-1$

$$
\widehat{\Phi}_{n+1}^{(s+2)}(x)+(n+1)^{2} \widehat{\Phi}_{n+1}^{(s)}(x)=(n+1) \widehat{\Phi}_{n}^{(s)}(x)
$$

Then, putting $x=0$, we get $\widehat{\Phi}_{n+1}^{(s)}(0)=0$ consecutively for $s=3,5, \ldots, 2 n+1$, which is what we had to show. Now

$$
\sum_{k=1}^{n} k^{s} b_{n k}=0, s=3,5, \ldots, 2 n-1
$$

follows from $\widehat{\Phi}_{n}^{(s)}(0)=0, s=3, \ldots, 2 n-1(n>1)$. In passing, let us note that the linear system

$$
\left\lvert\, \begin{aligned}
& \sum_{k=1}^{n} k b_{n k}=-\frac{1}{n!} \\
& \sum_{k=1}^{n} k^{s} b_{n k}=0, s=3,5, \ldots, 2 n-1
\end{aligned}\right.
$$

has a unique solution due to Lemma 2.1. This completes the proof of (iv).
The following representation of $\widehat{\Phi}_{n}(x)$ has been pointed out to the author by K. G. Ivanov.

Proposition 2.3. The following formula holds:

$$
\begin{equation*}
\widehat{\Phi}_{n}(x)=\frac{1}{n!}\left(x-\sum_{k=1}^{n} \frac{(k-1)!}{(2 k-1)!!} \sin x(1-\cos x)^{k-1}\right) \tag{2.2}
\end{equation*}
$$

Proof. We just write for $n \geq 1$

$$
\begin{aligned}
J_{n}(x) & :=\int_{0}^{x} \sin ^{2 n} t d t=-\int_{0}^{x} \sin ^{2 n-1} t d \cos t \\
& =-\sin ^{2 n-1} x \cos x+(2 n-1) \int_{0}^{x} \cos ^{2} t \sin ^{2(n-1)} t d t \\
& =-\sin ^{2 n-1} x \cos x+(2 n-1) \int_{0}^{x} \sin ^{2(n-1)} t d t-(2 n-1) \int_{0}^{x} \sin ^{2 n} t d t
\end{aligned}
$$

Therefore

$$
J_{n}(x)=-\sin ^{2 n-1} x \cos x+(2 n-1) J_{n-1}(x)-(2 n-1) J_{n}(x)
$$

Hence we get the recursion relation

$$
J_{n}(x)=-\frac{1}{2 n} \sin ^{2 n-1} x \cos x+\frac{2 n-1}{2 n} J_{n-1}(x), \quad n \geq 1
$$

Consequently, noting that $J_{0}(x)=x$, we get

$$
\begin{aligned}
& J_{n}(x)= \frac{1}{2 n}\left(\frac{(2 n-1)!!}{(2 n-2)!!} x-\sin ^{2 n-1} x \cos x\right. \\
&\left.\quad-\sum_{l=1}^{n-1} \frac{(2 n-1)(2 n-3) \cdots(2 n-2 l+1)}{(2 n-2)(2 n-4) \cdots(2 n-2 l)} \sin ^{2 n-2 l-1} x \cos x\right) \\
&= \frac{1}{2 n}\left(\frac{(2 n-1)!!}{(2 n-2)!!} x-\frac{1}{2} \sin ^{2(n-1)} x \sin 2 x\right. \\
&\left.\quad-\frac{(2 n-1)!!}{2(2 n-2)!!} \sum_{l=1}^{n-1} \frac{(2 n-2 l-2)!!}{(2 n-2 l-1)!!} \sin ^{2(n-l-1)} x \sin 2 x\right) \\
&= \frac{(2 n-1)!!}{(2 n)!!}\left(x-\frac{(2 n-2)!!}{2(2 n-1)!!} \sin ^{2(n-1)} x \sin 2 x\right. \\
&\left.\quad-\frac{1}{2} \sum_{l=1}^{n-1} \frac{(2 n-2 l-2)!!}{(2 n-2 l-1)!!} \sin ^{2(n-l-1)} x \sin 2 x\right) \\
&= \frac{(2 n-1)!!}{(2 n)!!}\left(x-\frac{1}{2} \sum_{l=0}^{n-1} \frac{(2 n-2 l-2)!!}{(2 n-2 l-1)!!} \sin ^{2(n-l-1)} x \sin 2 x\right) \\
&= \frac{(2 n-1)!!}{(2 n)!!}\left(x-\frac{1}{2} \sum_{k=1}^{n} \frac{(2 k-2)!!}{(2 k-1)!!} \sin ^{2(k-1)} x \sin 2 x\right) \\
&= \frac{(2 n-1)!!}{(2 n)!!}\left(x-\frac{1}{2} \sum_{k=1}^{n} \frac{(k-1)!}{(2 k-1)!!} 2^{k-1} \sin ^{2(k-1)} x \sin 2 x\right) \\
&= \frac{(2 n-1)!!}{2^{n+1} n!}\left(2 x-\sum_{k=1}^{n} \frac{(k-1)!}{(2 k-1)!!}\left(1-\cos ^{2 n} 2 x\right)^{k-1} \sin 2 x\right) .
\end{aligned}
$$

Thus we have shown

$$
\begin{equation*}
J_{n}(x)=\frac{(2 n-1)!!}{2^{n+1} n!}\left(2 x-\sum_{k=1}^{n} \frac{(k-1)!}{(2 k-1)!!} \sin 2 x(1-\cos 2 x)^{k-1}\right) . \tag{2.3}
\end{equation*}
$$

To finish the proof, we just write

$$
\begin{aligned}
\widehat{\Phi}_{n}(x) & =\frac{1}{(2 n-1)!!} \int_{0}^{x}(1-\cos t)^{n} d t=\frac{2^{n+1}}{(2 n-1)!!} \int_{0}^{x / 2} \sin ^{2 n} t d t \\
& =\frac{2^{n+1}}{(2 n-1)!!} J_{n}(x / 2) .
\end{aligned}
$$

Hence, making use of (2.3), we get (2.2).
Let $[a, b]$ be a finite interval such that $0 \in[a, b]$. In [1] we have proved that $\mathcal{F}_{n}: C[a, b] \rightarrow C[a, b]$ can be represented in the form

$$
\mathcal{F}_{n}=A_{1} \cdots A_{n}
$$

where the bounded linear operators $A_{j}: C[a, b] \rightarrow C[a, b], j=1,2, \ldots$, are defined by

$$
A_{j}(f, x):=f(x)+j^{2} \int_{0}^{x}(x-t) f(t) d t, \quad j=1,2, \ldots
$$

In the above mentioned investigation we have also shown the following assertion.
Proposition 2.4. The bounded linear operator A_{j} is invertible and

$$
A_{j}^{-1}(g, x)=g(x)-j \int_{0}^{x} \sin j(x-t) g(t) d t .
$$

Hence

$$
A_{j}^{-1}(g, x)=\frac{1}{j} \int_{0}^{x} \sin j(x-t) g^{\prime \prime}(t) d t
$$

for $g \in C^{2}[a, b]$ with $g(0)=g^{\prime}(0)=0$.

3 The proof of Taylor's trigonometric formula

Now we are ready to prove formula (1.5).
Proof of Theorem 1.1. It is enough to prove the assertion of the theorem for $c=0$. Hence it will follow for any $c \in \mathbf{R}$ by translation. Let $\tau(x)=a_{0}+a_{1} \cos x+b_{1} \sin x+$ $\cdots+a_{n} \cos n x+b_{n} \sin n x$ be the unique trigonometric polynomial of degree at most n, which interpolates f in $x=0$ with multiplicity $2 n+1$, i.e., $\tau^{(s)}(0)=f^{(s)}(0)$ for $s=0,1, \ldots, 2 n$. Using

$$
D_{j} \cos k x=\left(j^{2}-k^{2}\right) \cos k x \quad \text { and } \quad D_{j} \sin k x=\left(j^{2}-k^{2}\right) \sin k x,
$$

we get

$$
\begin{aligned}
& (n!)^{2} a_{0}=\widehat{D}_{n 0} \tau(0)=\widehat{D}_{n 0} f(0), \\
& (-1)^{k-1} \frac{(n-k)!(n+k)!}{2 k^{2}} a_{k}+\frac{(n!)^{2}}{k^{2}} a_{0}=\widehat{D}_{n k} \tau(0)=\widehat{D}_{n k} f(0), k=1, \ldots, n, \\
& (-1)^{k-1} \frac{(n-k)!(n+k)!}{2 k} b_{k}=\widehat{D}_{n k} \tau^{\prime}(0)=\widehat{D}_{n k} f^{\prime}(0), k=1, \ldots, n
\end{aligned}
$$

Hence $\tau_{n, 0}(f, x)=\tau(x)$.
It remains to consider the remainder $r_{n}(x)=f(x)-\tau_{n, 0}(f, x)$. Let us put for the sake of brevity

$$
F(x)=\int_{0}^{x}\left(\int_{0}^{t_{1}} \cdots\left(\int_{0}^{t_{2 n}} \widetilde{D}_{n+1} f\left(t_{2 n+1}\right) d t_{2 n+1}\right) \cdots d t_{2}\right) d t_{1}
$$

Obviously, $F \in C^{2 n+1}\left(\Delta_{0}\right)$ and $\widetilde{\widetilde{D}}^{(s)}(0)=0, s=0,1, \ldots, 2 n$. Now $r_{n}(x)=f(x)-$ $\tau_{n, 0}(f, x)$ implies $\widetilde{D}_{n+1} r_{n}(x)=\widetilde{D}_{n+1} f(x), x \in \Delta_{0}$. We have proved in [1] that

$$
\left(\mathcal{F}_{n} g\right)^{(2 n+1)}=\widetilde{D}_{n+1} g, \quad g \in C^{2 n+1}\left(\Delta_{0}\right)
$$

Therefore $(d / d x)^{2 n+1} \mathcal{F}_{n}\left(r_{n}, x\right)=\widetilde{D}_{n+1} r_{n}(x), x \in \Delta_{0}$. Hence, making use of $r_{n}^{(s)}(0)=0, s=0,1, \ldots, 2 n$, we get $\mathcal{F}_{n}\left(r_{n}, x\right)=F(x), x \in \Delta_{0}$, that is,

$$
\begin{equation*}
A_{1} \cdots A_{n} r_{n}=F \tag{3.1}
\end{equation*}
$$

Proposition 2.4 states for $g \in C^{2}\left(\Delta_{0}\right)$ with $g(0)=g^{\prime}(0)=0$ that

$$
\begin{equation*}
A_{j}^{-1} g=\frac{1}{j} \varphi_{j} \circledast g^{\prime \prime} \tag{3.2}
\end{equation*}
$$

Simple calculations yield for $g \in C^{2}\left(\Delta_{0}\right)$ with $g(0)=g^{\prime}(0)=0$

$$
\begin{equation*}
\left(\Phi_{k} \circledast g\right)^{\prime \prime}=\Phi_{k} \circledast g^{\prime \prime} \tag{3.3}
\end{equation*}
$$

and for any $g \in C\left(\Delta_{0}\right)$

$$
\begin{equation*}
\Phi_{k} \circledast g(0)=\left(\Phi_{k} \circledast g\right)^{\prime}(0)=0 \tag{3.4}
\end{equation*}
$$

Now (3.1) and (3.2) for $j=1$ imply

$$
A_{2} \cdots A_{n} r_{n}=\varphi_{1} \circledast F^{\prime \prime}=\Phi_{1} \circledast F^{\prime \prime}
$$

Next, applying again (3.2) (for $j=2$), using (3.4) (for $k=1$), and then (3.3) (for $k=1$), we have

$$
A_{3} \cdots A_{n} r_{n}=\frac{1}{2} \varphi_{1} \circledast \varphi_{2} \circledast F^{(4)}=\frac{1}{2} \Phi_{2} \circledast F^{(4)}
$$

Proceeding in this way, we finally get

$$
\begin{equation*}
r_{n}=\frac{1}{n!} \Phi_{n} \circledast F^{(2 n)} \tag{3.5}
\end{equation*}
$$

To finish the proof, we write

$$
\begin{aligned}
r_{n}(x) & =\frac{1}{n!} \int_{0}^{x}\left(\Phi_{n}(x-t) \int_{0}^{t} \widetilde{D}_{n+1} f(s) d s\right) d t \\
& =-\frac{1}{n!} \int_{0}^{x}\left(\int_{0}^{t} \widetilde{D}_{n+1} f(s) d s\right) d \widetilde{\Phi}_{n}(x-t) \\
& =\frac{1}{n!} \int_{0}^{x} \widetilde{\Phi}_{n}(x-t) \widetilde{D}_{n+1} f(t) d t \\
& =\frac{1}{n!} \widetilde{\Phi}_{n} \circledast \widetilde{D}_{n+1} f(x) .
\end{aligned}
$$

This completes the proof of the theorem as Proposition 2.2 (iii) states $\widetilde{\Phi}_{n}(x)=$ $1 /(2 n-1)!!(1-\cos x)^{n}$.

Remark 3.1. An estimate of the remainder. (Again we discuss the case $c=0$.) The mean value theorem implies

$$
\begin{equation*}
r_{n}(x)=\frac{\widetilde{D}_{n+1} f\left(\xi_{x}\right)}{n!(2 n-1)!!} \int_{0}^{x}(1-\cos t)^{n} d t, x \in \Delta_{0} \tag{3.6}
\end{equation*}
$$

where $\xi_{x} \in \Delta_{0}$ depends on x. Hence

$$
\begin{equation*}
\left|r_{n}(x)\right| \leq \frac{\left\|\widetilde{D}_{n+1} f\right\|_{\infty\left(\Delta_{0}\right)}}{n!(2 n-1)!!}\left|\int_{0}^{x}(1-\cos t)^{n} d t\right|, x \in \Delta_{0} \tag{3.7}
\end{equation*}
$$

Now, using the simple inequality $1-\cos x \leq x^{2} / 2$, we get

$$
\begin{equation*}
\left|r_{n}(x)\right| \leq \frac{|x|^{2 n+1}}{(2 n+1)!}\left\|\widetilde{D}_{n+1} f\right\|_{\infty\left(\Delta_{0}\right)}, x \in \Delta_{0} \tag{3.8}
\end{equation*}
$$

4 Application

Formula (1.5) can be useful in expressing the error in approximation by linear operators that preserves trigonometric polynomials up to a given degree. Indeed, let $L_{n}: C[-\pi, \pi] \rightarrow C[-\pi, \pi]$ be such that $L_{n} f=f$ if $f \in T_{n}$ and let $f \in C^{2 n+1}[-\pi, \pi]$. Then we have

$$
\begin{equation*}
f-L_{n} f=\left(I-L_{n}\right) r_{n} f \tag{4.1}
\end{equation*}
$$

where

$$
r_{n}(f, x)=\frac{1}{n!(2 n-1)!!} \int_{c}^{x}(1-\cos (x-t))^{n} \widetilde{D}_{n+1} f(t) d t
$$

for some fixed $c \in[-\pi, \pi]$.
Let $-\pi \leq x_{0}<\cdots<x_{2 n}<\pi$ be arbitrary nodes. Then, as it is known, there exists a unique trigonometric polynomial $t_{n}(f, x)$ of degree n such that $t_{n}\left(f, x_{k}\right)=$ $f\left(x_{k}\right), k=0, \ldots, 2 n$. It can be represented in the form

$$
\begin{equation*}
t_{n}(f, x)=\sum_{k=0}^{2 n} f\left(x_{k}\right) t_{n k}(x) \tag{4.2}
\end{equation*}
$$

where

$$
\begin{equation*}
t_{n k}(x)=\frac{\prod_{j=0, j \neq k}^{2 n} \sin \frac{x-x_{j}}{2}}{\prod_{j=0, j \neq k}^{2 n} \sin \frac{x_{k}-x_{j}}{2}} \tag{4.3}
\end{equation*}
$$

Now the considerations in the beginning of this section and (1.5) with $c=-\pi$ easily yield Proposition 1.2. That proposition implies the following estimates of the error $f(x)-t_{n}(f, x)$ for smooth functions f.

Corollary 4.1. Let $f \in C^{2 n+1}[-\pi, \pi]$. Then we have for $x \in[-\pi, \pi]$
(i) $\left|f(x)-t_{n}(f, x)\right| \leq \frac{\pi \mu(\bar{x})\left\|\widetilde{D}_{n+1} f\right\|_{\infty}}{2^{n}(n-1)!(2 n-1)!!}\left|\left(x-x_{0}\right) \ldots\left(x-x_{2 n}\right)\right|$, where

$$
\mu(\bar{x})=\sum_{k=0}^{2 n}\left(\prod_{j=0, j \neq k}^{2 n}\left|\sin \frac{x_{k}-x_{j}}{2}\right|\right)^{-1}
$$

(ii) $\left|f(x)-t_{n}(f, x)\right| \leq \frac{2^{n+1} \pi^{2} \mu(\bar{x})\left\|\widetilde{D}_{n+1} f\right\|_{\infty}}{a(n-1)!(2 n-1)!!}\left|\sin \frac{x-x_{0}}{2} \cdots \sin \frac{x-x_{2 n}}{2}\right|$ for nodes $-\pi+a \leq x_{0}<\cdots<x_{2 n} \leq \pi-a, a \in(0, \pi)$.

Proof. The assertions of the corollary follow easily from the estimate

$$
\begin{align*}
&\left|\left(1-\cos \left[(x-t)_{+}\right]\right)^{n}-\left(1-\cos \left[\left(x_{k}-t\right)_{+}\right]\right)^{n}\right| \tag{4.4}\\
& \leq n 2^{n-1}\left|\cos \left[\left(x_{k}-t\right)_{+}\right]-\cos \left[(x-t)_{+}\right]\right|
\end{align*}
$$

and the relation
(4.5) $\cos \left[\left(x_{k}-t\right)_{+}\right]-\cos \left[(x-t)_{+}\right]= \begin{cases}-2 \sin \frac{x+x_{k}-2 t}{2} \sin \frac{x_{k}-x}{2}, & t \leq x, x_{k}, \\ 2 \sin ^{2} \frac{x-t}{2}, & x_{k} \leq t \leq x, \\ -2 \sin ^{2} \frac{x_{k}-t}{2}, & x \leq t \leq x_{k}, \\ 0, & t \geq x, x_{k},\end{cases}$

Now (4.4), (4.5) and the inequality $|\sin x| \leq|x|$ imply

$$
\left|\left(1-\cos \left[(x-t)_{+}\right]\right)^{n}-\left(\cos \left[\left(x_{k}-t\right)_{+}\right]\right)^{n}\right| \leq n 2^{n-1}\left|x-x_{k}\right|
$$

therefore, using again the inequality $|\sin x| \leq|x|$ and the fact that $\sum_{k=0}^{2 n} t_{n k}(x) \equiv 1$, we get for any x and t

$$
|K(x, t)| \leq n 2^{n-1} \sum_{k=0}^{2 n}\left|x-x_{k}\right|\left|t_{n k}(x)\right| \leq n 2^{-n-1} \mu(\bar{x})\left|x-x_{0}\right| \cdots\left|x-x_{2 n}\right| .
$$

Hence assertion (i) follows. To verify, (ii) we just have to notice that if $-\pi+a \leq$ $x_{0}<\cdots<x_{2 n} \leq \pi-a$, where $a \in(0, \pi)$, and $x \in[-\pi, \pi]$, then
$\sin \frac{x-t}{2} \leq \frac{\sin \frac{x-x_{k}}{2}}{\sin \frac{a}{2}}, x_{k} \leq t \leq x, \quad$ and $\quad \sin \frac{x_{k}-t}{2} \leq \frac{\sin \frac{x_{k}-x}{2}}{\sin \frac{a}{2}}, x \leq t \leq x_{k}$.

These two estimates, (4.4), (4.5) and the inequality $|\sin x| \geq(2 / \pi)|x|,|x| \leq \pi / 2$, yield for $x \in[-\pi, \pi]$ and any t

$$
\left|\left(1-\cos \left[(x-t)_{+}\right]\right)^{n}-\left(\cos \left[\left(x_{k}-t\right)_{+}\right]\right)^{n}\right| \leq \frac{n 2^{n} \pi}{a}\left|\sin \frac{x-x_{k}}{2}\right|
$$

which, on its turn, implies for $x \in[-\pi, \pi]$ and any t

$$
\begin{aligned}
|K(x, t)| & \leq \frac{n 2^{n} \pi}{a} \sum_{k=0}^{2 n}\left|\sin \frac{x-x_{k}}{2}\right|\left|t_{n k}(x)\right| \\
& =\frac{n 2^{n} \pi \mu(\bar{x})}{a}\left|\sin \frac{x-x_{0}}{2}\right| \cdots\left|\sin \frac{x-x_{2 n}}{2}\right|
\end{aligned}
$$

Hence assertion (ii) follows.
Remark 4.2. Our conjecture is that for any fixed $x^{\prime} \in[-\pi, \pi]$ the kernel $K\left(x^{\prime}, t\right)$ does not change its sign in $[-\pi, \pi]$. If that is true, then the mean value theorem implies the Lagrange-type estimate

$$
f(x)-t_{n}(f, x)=\frac{\widetilde{D}_{n+1} f\left(\xi_{x}\right)}{(n!)^{2}} \omega(x), \quad x \in[-\pi, \pi]
$$

where $f \in C^{2 n+1}[-\pi, \pi]$, and

$$
\omega(x)=x+a_{0}+\sum_{k=1}^{n}\left(a_{k} \cos k x+b_{k} \sin k x\right)
$$

is the only function of this form, which vanishes in the nodes $\left\{x_{k}\right\}_{k=0}^{2 n}$ and has no other zeroes in $[-\pi, \pi)$. Actually,

$$
\omega(x)=x-\sum_{k=0}^{2 n} x_{k} t_{n k}(x)
$$

Let the bounded linear operator $L_{n}: C^{*}[-\pi, \pi] \rightarrow C^{*}[-\pi, \pi]$ be of the form

$$
\begin{equation*}
L_{n}(f, x)=\mathcal{M}_{n} * f(x):=\int_{-\pi}^{\pi} \mathcal{M}_{n}(x-t) f(t) d t \tag{4.6}
\end{equation*}
$$

where $\mathcal{M}_{n} \in L_{1}^{*}[-\pi, \pi]$. For any fixed $t \in[-\pi, \pi]$ we define the 2π-periodic function $\rho_{t}: \mathbf{R} \rightarrow \mathbf{R}$ by

$$
\rho_{t}(x):=1-\cos \left[(x-2 k \pi-t)_{+}\right], \quad x \in[(2 k-1) \pi,(2 k+1) \pi), k \in \mathbf{Z}
$$

It is quite easy to verify the following assertion.

Proposition 4.3. Let $f \in C^{2 n+1}[-\pi, \pi]$ be 2π-periodic. Let also the bounded linear operator L_{n}, defined by (4.6), preserve the trigonometric polynomials of degree n. Then

$$
f(x)-L_{n}(f, x)=\frac{1}{n!(2 n-1)!!} \int_{-\pi}^{\pi}\left[\rho_{t}^{n}(x)-\mathcal{M}_{n} * \rho_{t}^{n}(x)\right] \widetilde{D}_{n+1} f(t) d t
$$

Proof. Making use of formula (1.5) with $c=-\pi$ and changing the order of integration after that, we get easily the estimate

$$
\begin{aligned}
f(x) & -L_{n}(f, x)=\frac{1}{n!(2 n-1)!!} \int_{-\pi}^{\pi}\left(1-\cos \left[(x-t)_{+}\right]\right)^{n} \widetilde{D}_{n+1} f(t) d t \\
& -\frac{1}{n!(2 n-1)!!} \int_{-\pi}^{\pi} \mathcal{M}_{n}(x-t)\left(\int_{-\pi}^{\pi}\left(1-\cos \left[(t-u)_{+}\right]\right)^{n} \widetilde{D}_{n+1} f(u) d u\right) d t \\
= & \frac{1}{n!(2 n-1)!!} \int_{-\pi}^{\pi}\left(\left(1-\cos \left[(x-t)_{+}\right]\right)^{n}\right. \\
& \left.-\int_{-\pi}^{\pi} \mathcal{M}_{n}(x-u)\left(1-\cos \left[(u-t)_{+}\right]\right)^{n} d u\right) \widetilde{D}_{n+1} f(t) d t .
\end{aligned}
$$

Thus the proof is completed.
Immediately, Proposition 4.3 yields
Corollary 4.4. Let $f \in C^{2 n+1}[-\pi, \pi]$ be 2π-periodic. Let also the bounded linear operator L_{n}, defined by (4.6), preserve the trigonometric polynomials of degree n. Then

$$
\left\|f-L_{n} f\right\|_{\infty} \leq \frac{2^{n+1} \pi}{n!(2 n-1)!!}\left(1+\left\|\mathcal{M}_{n}\right\|_{1}\right)\left\|\widetilde{D}_{n+1} f\right\|_{\infty}
$$

Acknowledgements. The author is thankful to Prof. Kamen Ivanov, whose help and directions have improved the contents of the paper.

References

[1] Draganov, B. R. A new modulus of smoothness for trigonometric polynomial approximation. East J. Approx., 8, 2002, 465-499.
[2] Natanson, G.I. Some cases when Fourier series yields the best order of approximation. Dokl. Akad. Nauk USSR, 183, 1968, 1254-1257 (in Russian).
[3] Nevai, G.P. On the deviation of trigonometric interpolation sums. Acta Math. Acad. Sci. Hungar., 23, 1972, 203-205 (in Russian).
[4] Nevai, G.P. Remarks to a theorem of G. I. Natanson. Acta Math. Acad. Sci. Hungar., 23, 1972, 219-221 (in Russian).
[5] Schumaker, L.L. Spline functions: basic theory. Wiley-Interscience, New York, 1981.

Borislav R. Draganov
Faculty of Mathematics and Informatics "St. Kl. Ohridski" University of Sofia 5 blvd. J. Bourchier, BG-1164 Sofia BULGARIA
E-mail: bdraganov@fmi.uni-sofia.bg

