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Abstract. A new approach to establishing generalized Taylor’s expansions is used to
prove the trigonometric analogue of Taylor’s formula. We derive point-wise estimates of
the error in the trigonometric interpolation and approximation by convolutional linear
operators.
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1 Introduction
We consider the function spaces Ly[—m, 7], 1 < p < oo, and C*[~, 7], where

Lp[-m 7] ={f:R—=>R: f(z+27) = f(z) ae., fl_rnx € Lpl-7, 7]},

Crl=m 7| ={f € C(R) : f(x +2m) = f(2)},

normed, respectively, with the usual L,-norm over the interval [—m, 7] for 1 <p <
00, denoted by || - ||p, and the uniform norm over the interval [—m, 7], denoted by

Il Moo
In a recent paper (see [1]) we have introduced a new modulus of smoothness,

which describes the rate of the best trigonometric approximation. It is defined by

Wl (fit)p = sup A F i fllp, r=1,2,..,
0<h<t

where

A f) = S (1)t (27“; 1)f(ac (@2 1)/2— k)

k=0
is the symmetric finite difference of order 2r — 1,

Fralfoa) = fla) + | K (1) — ) dt

and

— a; , T_
K =3 gl = Y e,

1Sl1<-~~<lj§’l‘*1



It is shown in [1] that for the rate of the best trigonometric approximation EL (f),, :=
infrer, ||f—7|lp, T being the set of all trigonometric polynomials of degree at most
n, we have

(1.1) Ey(fp < Cwl (fin™Y)p, n>r—1,

and

(12) Wl (i <Ot 3" (k+ 1) ?EL(f)y, 0<t<
r—1<k<1/t

S| =

Moreover, we have w! (f;t), = 0 if and only if f € T,_;. In that sense the new
modulus of smoothness describes the rate of the best trigonometric approxima-
tion more precisely than the classical one. The modulus of smoothness w! (f i)p
possesses properties similar to those of the classical one, as it is shown in [1].

Let Ly : Ly[—n, 7| = Ly[-m, 7], 1 <p < oo, or L, : C*[~m, 7] = C*[~7, 7], be
a bounded linear operator that preserves the trigonometric polynomials of degree
n. Then the well-known Lebesgue inequality

If = Laflly < A+ Lol ES (f)p
and the Jackson-type estimate (1.1) imply
I1f = Lafllp < Cr(U+ Lol wy (fin™ 1y, nzr—1.

Similar estimates, using the classical periodic modulus of smoothness, are known.
For instance, G. P. Nevai has proved in [3] the following generalization of a result
of S. M. Nikolskii:

2m
—in oo<27r 7(37> n(Z r\J3 7100a
1~ taflloe < 270 (5 o) () + Ofen(fin )
where t,, f € T,, interpolates f € C*[—m, 7] in the equidistant nodes T = (z_y,, ..., Zp),

xp = 2kw/(2n 4+ 1), k = —n,...,n, and \,(Z) is the Lebesgue constant for the
trigonometric Lagrange interpolation. For similar estimates in uniform norm, con-
cerning the approximation by the partial sums of the Fourier series, one can refer
to [2] and [4].

The trigonometric analogue of Taylor’s formula will allow us to derive a point-
wise estimate of the error f(z) — L,(f,x) for a smooth f. We need to introduce
several notations to state that result. We define the differential operators

d N2
1.3 D-:(—) 20 j=1,2,...,
where [ is the identity. We also put
~ d
Dn+1 - Dn"'Dliv
dx



Let us observe that D, 419 = 0, g € C2"[a,b], if and only if g € T}, in [a,b]. The
following trigonometric analogue of Taylor’s formula holds true (see [5, §10.8]).

Theorem 1.1 (Taylor’s trigonometric formula). Let f € C?"t1(A,), where A, is
any of the intervals [c,c+ 3], [c—d,c] or [c—d,c+ ] forc € R and § > 0, and let
also

(n))2 CEDRCET]
X [(k2ﬁnkf(c) — Dpof(c)) cosk(z — ¢) + kD f'(c) sin k(z — 0)].

N c n _1\k—1
(1'4> Tn,c(fam) = DnOf( ) + QZ ( 1)
k=1

Then 1, of € T, T,(f();(f, ¢)=f®e), s=0,1,...,2n, and for x € A, we have

(1.5) f(x) = mne(f,z) + 1 i /1(1 — cos(z — t))"Dyy1 f(t) dt.

n!(2n —1

Let —m < g < -+ < xg, < 7 be arbitrary nodes. Let us denote by t,(f,z)
the unique trigonometric polynomial of degree m, which interpolates f in those
nodes. Then the theorem above easily implies a point-wise estimate of the error
f(z) = t,(f,x) for a smooth function f.

Proposition 1.2. Let f € C?"*[—x,7]. Then

@) = talf0) = iy | K@obias@d, o l-nal

where

2n

K(z,t) = (1 - cos[(z —t)1])" = Y (1 = cos[(xx — t)1]) "tk (x)

k=0
and (z — t); = max{z —t,0}.

The contents of the paper are organized as follows. In Section 2 we collect
few auxiliary results, which are necessary for the proof of Taylor’s trigonometric
formula, presented in Section 3. Finally, in the last section we derive point-wise
estimates of the error in the trigonometric interpolation and in the approximation
by convolutional linear operators.

2 Auxiliary results

Let [a,b] be a finite interval such that 0 € [a,b]. We define the convolutional
operator, known as Duhamel’s convolution, ® : L1[a,b] X L1[a,b] — L1[a,b],

f®g():= /Ow flz —1t)g(t)dt.

It is easy to verify that it possesses the properties:



1L f®g=g® f;
2. f@(g+h)=f®g+ f@h;
3. f@(g®h)=(f®g)®h

Next we introduce a number of notations. We put ¢, (z) =sinnz, n=1,2,...,
and @, = 1 ® - ® ¢y, Cin =o,®1, <T>n = <T>n ® 1. The propositions bellow
contain some of the properties of ®,,, ®,, and ®,,, but first we prove the following
simple lemma.

Lemma 2.1. Any function of the form
(2.1) fx)=cx+ag+ Z(ak cos kx + by, sin kx)
k=1

has at most 2n + 1 zeroes in [—m, ), counting the multiplicities, that is, x,1, cosz,

sinz,...,cosnx,sinnz is an extended Chebyshev system in [—m,w). Hence, for
any choice of —m < x1 < -+ < x,, < 7 and positive integers vi,...,Vy, with
v+ 4 U = 2n+ 1 there exists only one function of the form (2.1) with a fized
¢ for which xy is a zero of multiplicity v, k=1,...,m.

Proof. 1t is enough to prove the first part of the statement. We follow a standard
argument assuming the opposite and making use of the well-known Rolle’s theo-
rem. So let us assume that f(x) has at least 2n + 2 zeroes in [—m,7), counting
the multiplicities. Then f’(x) has at least 2n + 1 zeroes in [—m,7), counting the
multiplicities. But f’(z) is a trigonometric polynomial of degree n and therefore
it has at most 2n zeroes in [—m, ), counting the multiplicities. This contradiction
verifies the statement of the lemma. O

Proposition 2.2. We have
(i) D,®,, =nd,_1 and Dn&)n = n:I;n_l form=2,3,...;

n
T n=12...;

A @n—1)

(ii) ®,(x) = cpsinz(l — cosx , where ¢, =

~ 1
(iii) ®p(zr) = —— (1 —cosz)™;

(@) (Qn—l)!!(l

(iv) @n(x) = % + kz:bnk sin kz,
=1

where {bni} is the unique solution of the linear system

o 1
;kbnkz—a,

> kbur =0, s=3,5,...,2n— 1.
k=1



Proof. The first statement of the proposition follows by differentiation of the re-
cursion relation ®,, = ¢,, ® ®,,_;. Namely, we have

(%)2<I>n(x) = (%)2 /Ofﬁ sinn(z —¢)®,_1(t) dt = n% /Oa” cosn(z —t)®,,_1(t) dt

=n®, 1(x) —n? /033 sinn(z —t)®,_1(¢) dt
=n®,_1(x) —n’®,(x).

Thus we have got D, ®,, = n®,_;. If we put e;(z) = x, then </Isn =0, ®1 =
¢, ®1®1 = P, ®ep. Therefore &)n satisfies the same recursion relation as ®,, with
®y(z) = x — sinx instead of ®;(x) = sinz. Hence we get D, ®,, = n®,_;. This
completes the proof of (i).

To verify (ii), we consider the sequence of trigonometric polynomials

n
Pl e = >

P,(x) = ¢y sinz(l — cosx G "2

We shall show that it satisfies the same recursion relation as ®,, in (i) and P, (0)
0=2,(0), P,(0)=0=®,(0), n > 2. Hence, as P, = ®1, we have P, = ®,,, n
2. Forn > 2

AVANI

PY(x) = ¢, (sinz(1 — cosz)" )"
= ¢, sinz(1 —cosz)" 2(n? — 3n + 14 n’cosx).
Consequently,
D, P, (x) = P!(x) + n*P,(x)
=cpsina(l —cosx)" 2(n? — 3n + 1+ n?cosz) +n’c,sinz(l —cosz)" !

=c,(2n* —3n + 1) sinx(1 — cosz)" 2

= nc,_1 sinz(1 — cosz)" 2

= nPn_l(x).

We get (iii) by integrating (ii).

It remains to verify (iv). From (i) it follows D, 1®, = n!. Consequently,
@n(x) = z/n! 4+ ap + Zzzl(ank coskx + by sinkz) for some constants ank, bnk.
Assertion (iii) implies that ®,, is an even function, therefore @, is an odd one.
This implies that &)n(x) =x/nl+ > 1_; bk sinkz for some b, € R. Next we have

®/,(0) = ®,,(0) = 0, which implies

- 1
> kb = ——.
n!
k=1
(s)

It is easy to see that S (0) =0, s =2,...,2n — 1, as well. For s even this is
obvious. For s odd we can verify it, for instance, by induction in n. For n = 1



the statement is trivial as we have shown above. We assume that @%s)(O) =0, s=
1,...,2n — 1, and shall verify it for n + 1 in the place of n. We differentiate in
the equality Dp41Ppt1(z) = (n+ 1)@, (z) and get for s=1,...,2n—1

U (2) + (n 4+ 1280 (2) = (n+ 1)WY (x).

Then, putting x = 0, we get &)2‘21(0) = 0 consecutively for s = 3,5,...,2n + 1,

which is what we had to show. Now

> kbpe =0, s=3,5,....2n—1,
k=1

follows from &)S)(O) =0,s=3,...,2n—1 (n > 1). In passing, let us note that the
linear system
- 1
E kbnk = T
n!
k=1

> kbpe =0, s=3,5....2n— L
k=1

has a unique solution due to Lemma 2.1. This completes the proof of (iv). O

The following representation of &\)71($) has been pointed out to the author by
K. G. Ivanov.

Proposition 2.3. The following formula holds:

n
|

~ 1 k=1 . 1
(2.2) D, (z) = E(m — ’; (<2k:1>)” sinz(1 — cosz)* )

Proof. We just write for n > 1
T xr
In () ::/ sin?" t dt = 7/ sin? !t dcost
0 0
xr
= —sin® tacosz + (2n — 1) / cos? tsin®™ Y ¢ dt
0
xr x
= —sin®" ' zcosx + (2n — 1)/ sin?™ =Y ¢ dt — (2n — 1)/ sin®" t dt.
0 0
Therefore

Jo(z) = —sin®" Pz cosz 4+ (2n — 1)J,_1(z) — (2n — 1)J,,(2).

Hence we get the recursion relation

1 2n —1
Jn(z) = ~5n sin® "2 cosx + n2n In—1(z), n>1




Consequently, noting that Jo(z) = x, we get

1 /(2n—1)! . o
In(z) = ™ (M —sin?" "tz cosx
- S (20— 1)(2n =3) (20 =20 +1) 50 n roosa)
— (2n—2)2n—4)---(2n—21)
1 /(2n -1 Lo oom—1)
= _— —q n Q 2
2n((2n—2)” — 5 sin 2 sin 2x
(2n — DI 2 (20 — 21 — 2)!
27;72 ” 227;71 sin?(* 1= 1)xsin2x)
= (2n)! x—2(2n_1)”sln T sin 2z
n—1
1= 2n—=20=2 gy
— 5 lz msln .'I:SIHQSU)
=1
2n — 1)!! 192 (2n— 21— 2)!!
= (2n ) <x77 (2n ) sin?(n—t- l)xsiHQz)
(2n)!! 2 (2n —20 — 1!
1=0
~ (2n—1) I = k=2 5y
@l (x_2kz:(2k—l)!!bm xmem)
=1
~ (@2n-1N I~ (B=1)! .y 2(k—1)
@)l (x—Q;(le)!'2 sin xstx)
=1
(2n — 1) " (k—1)! X
ST (2m— W(l cos 2x) sm2x)
k=1

Thus we have shown

~(2n—1) " (k—1)! 1
(2.3) In(z) = RETEE (296 — > k=1 sin 2z(1 — cos 2z)* )

To finish the proof, we just write

- 1 x d 2n+1 1/2 9 d
P, = — 1—cost)"dt = —— Sin“"™ ¢ dt
() (2n—1)!!/0 (1= cost) (2n — 1)!!/0 i
2n+1
- J.(z/2).
Gn @2
Hence, making use of (2.3), we get (2.2). O

Let [a,b] be a finite interval such that 0 € [a,b]. In [1] we have proved that
Fn : Cla,b] = Cla,b] can be represented in the form

fn:Al"'Anv



where the bounded linear operators A; : Cla,b] — Cla,b], j =1,2,..., are defined
by

A(fa) = 1@+ 7 [ @-n50d G=1.2...
0
In the above mentioned investigation we have also shown the following assertion.

Proposition 2.4. The bounded linear operator A; is invertible and
A ga) = gla) 5 [ sinjle -~ gt dt.
0

Hence

1 xT
A7\ (g,z) = 3/ sin j(z — £)g" (t) dt
0

for g € C?[a,b] with g(0) = ¢’(0) = 0.

3 The proof of Taylor’s trigonometric formula

Now we are ready to prove formula (1.5).

Proof of Theorem 1.1. It is enough to prove the assertion of the theorem for ¢ = 0.
Hence it will follow for any ¢ € R by translation. Let 7(z) = ap+ay cosz+by sinz+
-+ ++a, cosnz + b, sinnx be the unique trigonometric polynomial of degree at most
n, which interpolates f in z = 0 with multiplicity 2n + 1, i.e., 7(*)(0) = £()(0) for
s=0,1,...,2n. Using

Djcoskzx = (j* — k*)coskr and Djsinkx = (5% — k?) sin kx,
we get

(n)2ag = Dyo7(0) = Dy £(0),
w1 (n—k) (n+k)! (n!)? ~

(1) 577 ax + ~5-a0 = Dy (0) = Daif(0), k=1,....n,
_ | | ~ A
(et OB B (0) = D F(0). k=1...m.

Hence 7, 0(f, z) = 7(x).
It remains to consider the remainder r,(z) = f(x) — Tn,0(f, x). Let us put for
the sake of brevity

F(x) = /0m (/0 . (/o " 5n+1f(t2n+1)dt2n+1>"' dt2) diy.



Obviously, F € C*"*1(Ag) and F()(0) =0, s = 0,1,...,2n. Now r,(z) = f(z) —
Tn,0(f, z) implies Dy, 417, (x) = Dpy1 f(x), © € Ag. We have proved in [1] that

(]:ng)(2n+1) = 5n+1ga g€ C2n+1(AO)'

Therefore (d/dz)* ' Fp(rn,2) = Dpy1rn(z), © € Ag. Hence, making use of
7"1('7,9)(0) = 07 S = 07 ]-7 . '72n7 we get fn(Tn,fE) = F(.’b), x € AO’ that iS7

(3.1) Ay Aprn = F.

Proposition 2.4 states for g € C?(Aq) with g(0) = ¢’(0) = 0 that
1
(3.2) Ajlg = 0@ g"

Simple calculations yield for g € C?(A) with g(0) = ¢'(0) =0

(3:3) (Pr®9)" = ®g",
and for any g € C(Ay)
(3.4) O ® g(0) = (1 ® g)'(0) = 0.

Now (3.1) and (3.2) for j =1 imply
AQ"'AnTn :(pl @Fﬂzq)l(@FN.

Next, applying again (3.2) (for j = 2), using (3.4) (for k = 1), and then (3.3) (for
k =1), we have

1 1
Ag--- Apry, = §¢1 ® o ®F(4) — 5(1)2 @F(4)-
Proceeding in this way, we finally get
1
(3.5) =P ® F@).
n!

To finish the proof, we write

ro(z) = 7;/0 (@n(;z: —t) /Ot Doi1f(s) d5> dt

_ ! </Ot Doyt f() ds) 4,z — 1)

n! Jo
1 (%= ~
== D, (x —t)Dpyr f(t) dt
n! Jo
1~ -
= aq)n ® Dy f(2).

This completes the proof of the theorem as Proposition 2.2 (iii) states ®,(z) =
1/(2n — )N (1 — cos x)™. O



Remark 3.1. An estimate of the remainder. (Again we discuss the case ¢ = 0.)
The mean value theorem implies

5n+1f(fx)

(36) ra(®) = s = on

/ (I —cost)"dt, x € A,
0
where £, € Ag depends on z. Hence

En o0
|7"n( )l S || +1f|| (AO)

(37) n!(2n — 1)

, T € Ag.

/ (1 —cost)™dt
0

Now, using the simple inequality 1 — cosx < 22/2, we get
|x‘2n+l

(3-8) rn ()] < 1 Dnt1f o0y @ € Do

(2n+1)!

4 Application

Formula (1.5) can be useful in expressing the error in approximation by linear
operators that preserves trigonometric polynomials up to a given degree. Indeed, let
L, : C|—m,m] — C|—m, x| be such that L, f = fif f € T,, and let f € C?>" " [—7, 7.
Then we have

(41) f - Lnf = (I - Ln)rnfa
where

ra(f,2) = m [(1 — cos(z — )" Dyy1 f(t) dt

for some fixed ¢ € [—m, 7).

Let —7 < xg < --+ < 29, < 7 be arbitrary nodes. Then, as it is known, there
exists a unique trigonometric polynomial ¢, (f, z) of degree n such that t,(f,xzx) =
flzg), k=0,...,2n. It can be represented in the form

2n

(1.2) ta(fi2) = 3 Flen)tun(a),

where

(4.3) tan(z) = 25

7=0,j#k

Now the considerations in the beginning of this section and (1.5) with ¢ = — easily
yield Proposition 1.2. That proposition implies the following estimates of the error
f(z) = t,(f,x) for smooth functions f.

10



Corollary 4.1. Let f € C*"*[—x n]. Then we have for x € [—m, ]

7 p(Z)| D1 f oo
n(n— 1)1 (2n — 1N

[(x — o) ... (x — z2n)|,

>—1
2n+17r2:u($>||ﬁn+lf”oo ’ . T —To L T — T2n

a(n—1)!(2n— ! 2 ST

(i) 1@~ talf.2)| < 5

where
Tk — Ty

sin
2

u($)=§:< ﬁ

k=0 \j=0,j#k

(i) |f(2) = ta(f,2)] <

fornodes —mt+a<zog<- - <x9p <T™—a, a€ (O,7r).
Proof. The assertions of the corollary follow easily from the estimate
(44) |(1 = cos[(z —t)4])" — (1 — cos|(zy, — t)+])"]
< 02" cos((zx — t)4] — cos[(z — t)4]]

and the relation

r+xp—2t | T —T

—2sin 5 sin 5 t <z K,

2sin2 L_°, e <t <,
(4.5) cos[(zr—t)y]—cos[(z—t)4] = .

—251112ka7 z<t<uxg,

0, t>x,xL.

Now (4.4), (4.5) and the inequality |sinz| < |z| imply
(1 = cos[(w — ) 4])" — (cos[(wr — )4])"| < 12" — axl,

therefore, using again the inequality | sin x| < |z| and the fact that Zilo tok(z) = 1,
we get for any z and ¢

2n
|K (2,t)| <n2" ™t Z |z — 2k ||tar(2)] < 027" u(@)|z — 20| - - |2 — Ton].
k=0

Hence assertion (i) follows. To verify, (ii) we just have to notice that if —7 +a <
g < -+ < Tap <7 — a, where a € (0,7), and x € [—7, 7], then

. T — Tk . T —
sin

. . T —t
sin < czt , v <t<z, and sin k2 < g , r<t<uxp.

11



These two estimates, (4.4), (4.5) and the inequality |sinz| > (2/7)|z|, |x| < 7/2,
yield for x € [—m, 7] and any ¢
n2"m T — T
2

(1 = cos[(x — 1)4])" — (cos(x, — £)4])"] < = |sin

)

a

which, on its turn, implies for « € [—7, 7] and any ¢

2n
n2"mw — T

IA

K (z,1)|

- o (a)
k=0

e - -
n2"mu(T) ‘sinx Zo T — Top

a
Hence assertion (ii) follows. O

Remark 4.2. Our conjecture is that for any fixed «’ € [—7, 7] the kernel K (z/,¢)
does not change its sign in [—m, w]. If that is true, then the mean value theorem
implies the Lagrange-type estimate

@) = to(fa) = 2= u), o e [oml,

where f € C?"Fl[—rm, 7], and
n
wx)=x4+ao+ Z(ak cos kx + by sin kx)
k=1

is the only function of this form, which vanishes in the nodes {x;}2", and has no
other zeroes in [—m, 7). Actually,

2n
w(z) =z — Z Tptnk ().
k=0
Let the bounded linear operator L,, : C*[—m, w] — C*[—7, 7] be of the form

(4.6) Lo(fuz) = My x () = [ Maz— 0)5(0)dt,

—T

where M,, € Li[—n, r]. For any fixed ¢t € [—m, 7] we define the 27-periodic function
pt : R — R by

pe(z) :=1—cos[(x — 2km —t)4], x€[2k—1)m (2k+1)7), k€ Z.

It is quite easy to verify the following assertion.

12



Proposition 4.3. Let f € C?"*l[—m, x| be 2m-periodic. Let also the bounded linear
operator Ly, defined by (4.6), preserve the trigonometric polynomials of degree n.
Then

1 " n n N
1(@) = La(f.2) = oy | @) = Mo+ g2 @)D S
Proof. Making use of formula (1.5) with ¢ = —7 and changing the order of integra-
tion after that, we get easily the estimate

@) = L) = i [0 = coslla = 011" Do 0)

- | Mot [T eosl(e - w2 D s an)

—T

_ m / " ((1 —cosl(z — £)4])"

—T
T

— | Mz —u)(1 — cos[(u—t)4])" du> Doy f(t) dt.

Thus the proof is completed. O
Immediately, Proposition 4.3 yields

Corollary 4.4. Let f € C?"*[—x, 7] be 2n-periodic. Let also the bounded linear
operator Ly, defined by (4.6), preserve the trigonometric polynomials of degree n.

Then
n+1

2 ~
If = Lnflloe < — (1 + [Ma )l Dngr flloo-

'(2n— 1!
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