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Abstract. The rate of convergence of best trigonometric approximation in Lp

and C-norm is characterized by a new modulus of smoothness. This modulus is
equivalent to 0 on the trigonometric polynomials up to a given degree.
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1 Introduction and main results

The approximation by trigonometric polynomials is well investigated. The rate
of convergence in uniform and integral norm was described by the classical
modulus of smoothness due to D. Jackson, S. N. Bernstein, A. Zygmund and
S. B. Stechkin (see for example [4]). This result was extended to any Banach
space of 2π-periodic functions for which translation is continuous isometry by
H. S. Shapiro and Z. Ditzian ([5] and [2]).

Let B be a homogeneous Banach space of 2π-periodic real-valued functions.
We denote by Tn the set of all trigonometric polynomials of degree at most n
and put

ET
n (f)B = inf

τ∈Tn∩B
‖f − τ‖B

for the best trigonometric approximation. It was shown by the authors men-
tioned above that for f ∈ B we have

ET
n (f)B ≤ Crωr(f ;n−1)B ,

ωr(f ; t)B ≤ Crt
r
∑

0≤k≤1/t

(k + 1)r−1ET
k (f)B , 0 < t ≤ t0,

where ωr(f ; t)B is the classical modulus of smoothness defined as follows

ωr(f ; t)B = sup
0<h≤t

‖∆r
hf‖B ,

∆r
hf(x) =

r∑
k=0

(−1)k

(
r

k

)
f(x+ (r/2− k)h).
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Let B denote L∗p[−π, π], 1 ≤ p <∞, or C∗[−π, π] where

L∗p[−π, π] = {f : R → R : f(x+ 2π) = f(x) a.e., f |[−π,π] ∈ Lp[−π, π]}
C∗[−π, π] = {f ∈ C(R) : f(x+ 2π) = f(x)}.

It is interesting to construct a modulus-like function ωT
r (f ; t)p associated with

best trigonometric approximation such that for f ∈ B we have

(1.1) ωT
r (f ; t)p ≡ 0 ⇐⇒ f ∈ Tr−1

(here and further f ∈ Tr−1 in Lp-spaces means that f coincides a.e. with a
trigonometric polynomial of degree at most r − 1; we use that agreement in
similar cases as well) and ωT

r (f ; t)p characterizes the best trigonometric approx-
imation like the classical modulus does. Thus this new modulus of smoothness
describes more precisely (in the sense of (1.1)) the rate of convergence of best
trigonometric approximation than the classical one. The definition of this new
modulus, as we should expect, is more complicated. We shall show that the
modulus of smoothness defined by

(1.2) ωT
r (f ; t)p = sup

0<h≤t
‖∆2r−1

h Fr−1f‖p, r = 1, 2, . . . ,

where

(1.3) Fr−1(f, x) = f(x) +
∫ x

0

Kr−1(t)f(x− t) dt

and

Kr−1(t) =
r−1∑
j=1

a
(r−1)
j

(2j − 1)!
t2j−1, a

(r−1)
j =

∑
1≤l1<···<lj≤r−1

(l1 · · · lj)2,

satisfies (1.1) and the following theorem

Theorem 1.1. Let f ∈ B where B = L∗p[−π, π], 1 ≤ p <∞, or B = C∗[−π, π].
Then

ET
n (f)p ≤ Crω

T
r (f ;n−1)p, n ≥ r − 1,(1.4)

and

ωT
r (f ; t)p ≤ Crt

2r−1
∑

r−1≤k≤1/t

(k + 1)2r−2ET
k (f)p, 0 < t ≤ 1

r
.(1.5)

In particular (1.4) gives the trigonometric analogue of Whitney theorem [6],
as it was observed by Bl. Sendov.

Theorem 1.2. Let f ∈ B where B = L∗p[−π, π], 1 ≤ p <∞, or B = C∗[−π, π].
Then

ET
n−1(f)p ≤ Cnω

T
n (f ;n−1)p.
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Let us observe that although Fr−1f is not generally a 2π-periodic function
∆2r−1

h Fr−1f is. Unlike the various moduli which describe the best algebraic
approximation ωT

r (f ; t)p is based on finite differences only of an odd order thus
ωT

r (f ; t)p is connected with the (2r−1)th finite difference not the rth one. This
is due to the dimensions of the spaces Tr−1 and Πr−1, respectively. To state
our next main result we define the K-functional

(1.6) KT
r (f ; t)p = inf

g∈B2r−1

{
‖f − g‖p + t2r−1‖D̃rg‖p

}
where we have put Bs = {g ∈ B : g, g′, . . . , g(s−1) ∈ AC∗[−π, π], g(s) ∈ B},
AC∗[−π, π] being the set of all 2π-periodic absolutely continuous functions,
D̃rg = Dr−1 · · ·D1g

′ and Djg = g′′ + j2g. We have D̃rg = 0 if and only if
g ∈ Tr−1.

We write ϕ(f ; t) ∼ ψ(f ; t) if and only if there exists a constant C > 0
independent of f and t such that C−1ϕ(f ; t) ≤ ψ(f ; t) ≤ Cϕ(f ; t). The following
result holds

Theorem 1.3. For f ∈ B where B = L∗p[−π, π], 1 ≤ p <∞, or B = C∗[−π, π]
we have

KT
r (f ; t)p ∼ ωT

r (f ; t)p

where ωT
r (f ; t)p and KT

r (f ; t)p are defined in (1.2) and (1.6), respectively.

The full form of this research paper is submitted to East Journal on Ap-
proximations.

2 A new periodic modulus of smoothness

Let [a, b] be an arbitrary finite subinterval of the real line such that 0 ∈ [a, b].
We write X = X[a, b] for any of the functional spaces Lp[a, b], 1 ≤ p < ∞,
or C[a, b] and Xr = Xr[a, b] for the Sobolev spaces W r

p [a, b], 1 ≤ p < ∞, or
Cr[a, b]. We also write B for L∗p[−π, π], 1 ≤ p <∞, or C∗[−π, π]. We write Br

for W ∗r
p [−π, π], 1 ≤ p <∞, or C∗r[−π, π], where

W ∗r
p [−π, π] = {f ∈ L∗p[−π, π] : f, f ′, . . . , f (r−1) ∈ AC∗[−π, π], f (r) ∈ L∗p[−π, π]},

C∗r[−π, π] = {f ∈ C∗[−π, π] : f (k) ∈ C∗[−π, π], k = 1, . . . , r}.

The proof of the main result is based on several auxiliary ones. First we
consider the inverse of the bounded operator Fr : X → X.

Proposition 2.1. We have

F−1
r (g, x) = g(x)−

∫ x

0

Lr(t)g(x− t) dt

where

(2.1) Lr(t) = 2
r∑

j=1

j2r

ω′r(j)
sin jt
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and ωr(x) =
∏r

k=1(x
2 − k2). Hence F−1

r : X → X is bounded.

Formula (2.1) was pointed to the author by K. G. Ivanov. Let Πs denote
the set of all algebraic polynomials of degree at most s.

Proposition 2.2. For Fr defined in (1.3), we have

(a) (Frg)(2r+1) = D̃r+1g, g ∈ X2r+1;

(b) Frτ ∈ Π2r, τ ∈ Tr;

(c) F−1
r P ∈ Tr, P ∈ Π2r.

After these preliminaries we can formulate the main result of the section.
First we introduce the bounded linear operator F̃r−1 : B → B, r ≥ 2

F̃r−1(f, x) = Fr−1(f, x) + P2r−2(f, x)

where Fr−1 is defined in (1.3) and P2r−2(f, x) = −
∑2r−2

k=1 αk(x + π)k/k! is
the unique algebraic polynomial of degree 2r − 2 such that we may have
(F̃r−1f)(s)(−π) = (F̃r−1f)(s)(π), s = 0, 1, . . . , 2r − 3, for any f ∈ B2r−3 and
hence F̃r−1 : Bs → Bs, s ∈ N.

Let I be the identity. For consistency we put F0 = I (K0 = 0) and P0 = 0
and then F̃0 = I.

We introduce the following modulus of smoothness for a function f ∈ B and
t > 0:

ωT
r (f ; t)p = ω2r−1(F̃r−1f ; t)p, r = 1, 2, . . .

where ω2r−1(F ; t)p is the classical periodic modulus of smoothness of order
2r − 1. Let us note that ∆2r−1

h Fr−1f ∈ B for any f ∈ B and

ωT
r (f ; t)p = sup

0<h≤t
‖∆2r−1

h Fr−1f‖p, r = 1, 2, . . . .

In the definition of ωT
r (f ; t)p, ∆2r−1

h F̃r−1f(x) depends only on the values of
f in a neighbourhood of x whose diameter diminishes with h. This can be seen
in the examples at the end of the section. The point 0 in the integration limits
of the integral operator used in the definition of F̃r−1 has been chosen only for
convenience – any other value can be fixed and the definition of ωT

r (f ; t)p is
invariant of this choice.

Now (1.1) follows immediately from Proposition 2.2 (b)-(c) and the definition
of ωT

r (f ; t)p.
The following equivalence result holds.

Theorem 2.3. For f ∈ B where B = L∗p[−π, π], 1 ≤ p <∞, or B = C∗[−π, π]
and any l ∈ N we have

inf
g∈B2r+l−1

{
‖f − g‖p + t2r+l−1‖(d/dx)lD̃rg‖p

}
∼ ω2r+l−1(F̃r−1f ; t)p.
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The proof of this theorem is based on the properties of the operator F̃r−1

(see the propositions above) and those of another bounded linear operator Er−1 :
B → B defined by Er−1(F, x) = F−1

r−1(F, x) + Q2r(F, x) where Q2r(F, x) is an
algebraic polynomial of the form Q2r(F, x) =

∑2r
k=1 βk(x + π)k/k!, depending

on F , such that Er−1F ∈ Bs for any F ∈ Bs for s = 0, 1, . . . , 2r − 1.
Now Theorem 1.3 follows from Theorem 2.3 for l = 0 and the definition of

ωT
r (f ; t)p.

It is easy to verify, using the definition of ωT
r (f ; t)p and some properties of

the operator F̃r−1, that ωT
r (f ; t)p possesses the properties:

1. ωT
r (f + g; t)p ≤ ωT

r (f ; t)p + ωT
r (g; t)p for f, g ∈ B.

2. ωT
r (cf ; t)p = |c|ωT

r (f ; t)p, c is a constant.

3. ωT
r (f ; t)p ≤ ωT

r (f ; t′)p, t ≤ t′.

4. ωT
r (f ; t)p → 0 as t→ 0.

5. ωT
r (f ; t)p ≤ (4 + (r − 1)2t2)ωT

r−1(f ; t)p, r ≥ 2.

6. ωT
1 (f ; t)p ≤ 2‖f‖p and ωT

1 (f ; t)p ≤ t‖f ′‖p, f ∈ B1 (ωT
1 (f ; t)p coincides

with the ordinary modulus of continuity).

7. ωT
r (f ;λt)p ≤ (λ+ 1)2r−1ωT

r (f ; t)p.

8. ωT
r (f ; t)p ≤ t2ωT

r−1(Dr−1f ; t)p, f ∈ B2; r ≥ 2.

9. Marchaud inequality

ωT
r (f ; t)p ≤ Crt

2r−1

(∫ c

t

ωT
r+1(f ;u)p

u2r
du+ ‖f‖p

)
, 0 < t ≤ c

where c is any fixed positive constant.

10. ωT
r (f ; t)p = o(t2r−1) =⇒ f ∈ Tr−1 and f ∈ Tr−1 =⇒ ωT

r (f ; t)p ≡ 0,
1 ≤ p ≤ ∞.

11. ωT
r (f ; t)p = O(t2r−1) ⇐⇒ f ∈W ∗2r−1

p [−π, π], 1 < p ≤ ∞.

12. ωT
r (f ; t)1 = O(t2r−1) ⇐⇒ f (2r−3) ∈ AC∗[−π, π], f (2r−2) ∈ BV [−π, π].

At the end of this section we give the explicit form of the differential operator
D̃r as well as that of Kr−1(t) and ∆2r−1

h F̃r−1f(x) for r = 1, 2.

D̃1g = g′, K0(t) = 0,

D̃2g = g′′′ + g′; K1(t) = t;

∆1
hF̃0f(x) = ∆1

hf(x),

∆3
hF̃1f(x) = ∆3

hf(x) +
∫ 3

2 h

− 3
2 h

k1,h(t)f(x− t) dt,
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where

k1,h(t) =


t+ 3

2h, t ∈ [− 3
2h,−

1
2h],

−2t, t ∈ [− 1
2h,

1
2h],

t− 3
2h, t ∈ [ 12h,

3
2h],

0, otherwise.

3 Best trigonometric approximation

Now we can sketch the proof of our main result concerning the rate of best
trigonometric approximation in L∗p[−π, π], 1 ≤ p <∞, and C∗[−π, π].

Sketch of the proof of Theorem 1.1. To prove (1.4) we follow some methods demon-
strated in [1] and [3] and use the modified Riesz operator

Lr−1,n = I −
r−1∏
j=0

(I −Rj,n) =
r−1∑
i=0

(−1)i
∑

0≤j0<···<ji≤r−1

Rj0,n · · ·Rji,n

where I is the identity and

Rj,n(f, x) =
n−1∑
k=0

(
1− k2 − j2

n2 − j2

)
Ak(x), n > j, j = 1, 2, . . . ,

Ak(x) = Ak(f, x) being the kth term in the Fourier expansion of f .
The inequality (1.5) can be proven similarly to its classical analogue.

References

[1] Z. Ditzian, A K-functional and the rate of convergence of some linear polynomial
operators. Proc. Amer. Math. Soc. 124 (1996), 1773-1781.

[2] Z. Ditzian, Some remarks on approximation theorems on various Banach spaces.
J. Math. Anal. Appl. 77 (1980), 567-576.

[3] Z. Ditzian and K.G. Ivanov, Strong converse inequalities. J. D’Analyse Math.
61 (1993), 61-111.

[4] G.G. Lorentz, Approximation of functions. Chelsea Publishing Company, New
York, 1986.

[5] H.S. Shapiro, Topics in approximation theory. Lecture notes in Math. 187,
Springer-Verlag, Berlin, 1970.

[6] H. Whitney, On functions with bounded nth differences. J. Math Pures Appl.
(9) 36, (1957), 67-95.

6


