A Characterization of Best Algebraic Approximations from Below and from Above in the Multivariate Case

Parvan E. Parvanov

12.04.1998

Department of Mathematics, Higher Transport School
1754 Slatina, Sofia, Bulgaria
e-mail pparvanov @ mail.vvtu.bg

Abstract

In this paper the constrained K-functionals connected with the best multivariate algebraic approximations from below and from above are characterized in terms of moduli of smoothness. The results are a multivariate generalization of those in [2].

1 Introduction.

We consider measurable real-valued bounded (from below or from above) functions defined in every point of the domain $\Omega=\Pi[-\mathbf{1} ; \mathbf{1}]$, where

$$
\Pi[\mathbf{a} ; \mathbf{b}] \stackrel{\text { def }}{=}\left\{\mathbf{x} \in \mathbb{R}^{d} \mid x_{i} \in\left[\min \left\{a_{i}, b_{i}\right\}, \max \left\{a_{i}, b_{i}\right\}\right] \quad \text { for every } i=1, \ldots, d\right\}
$$

\mathbb{R}^{d} is considered as a normed vector space with elements $\mathbf{x}=\left(x_{1}, \ldots, x_{d}\right), \mathbf{a}, \mathbf{b}, \mathbf{y}, \mathbf{h}$ and norm $\|\mathbf{x}\|=\max \left\{\left|x_{1}\right|, \ldots,\left|x_{d}\right|\right\}$. Here $\mathbf{1}$ and $\mathbf{- 1}$ mean respectively $(1, \ldots, 1)$ and $(-1, \ldots,-1)$.

Let X be a measurable subset of Ω. We shall consider the following spaces

$$
L_{p}(X) \stackrel{\text { def }}{=}\left\{f \left\lvert\,\|f\|_{p(X)}=\left\{\int_{X}|f(\mathbf{x})|^{p} d \mathbf{x}\right\}^{\frac{1}{p}}<\infty\right.\right\}
$$

for $p \in[1, \infty)$ (dx means the Lebesgue measure on X) and

$$
L_{\infty}(X) \stackrel{\text { def }}{=}\left\{f \mid\|f\|_{\infty(X)}=\text { ess } \sup \{|f(\mathbf{x})| ; \mathbf{x} \in X\}<\infty\right\}
$$

for $p=\infty$.
α, β are multi-indices. If $\alpha=\left(\alpha_{1}, . ., \alpha_{d}\right), \alpha_{s} \geq 0$ for any $s=1, \ldots, d,|\alpha|=\sum_{i=1}^{d} \alpha_{i}$ is the length of $\alpha . \alpha \geq \beta$ means $\alpha_{s} \geq \beta_{s}$ for any $s=1, \ldots, d, \alpha!=\Pi_{s=1}^{d} \alpha_{s}$! and $\binom{\alpha}{\beta}=\prod_{s=1}^{d}\binom{\alpha_{s}}{\beta_{s}}$.

Let r be natural. By $W_{p}^{r}(X)$ we denote the Sobolev space

$$
W_{p}^{r}(X) \stackrel{\text { def }}{=}\left\{f \mid \sum_{|\alpha|=r}\left\|D^{\alpha} f\right\|_{p(X)}<\infty\right\}, \text { where } \quad D^{\alpha}=\prod_{i=1}^{d} \frac{\partial^{\alpha_{i}}}{\partial x_{i}^{\alpha_{i}}}
$$

For $v \in[-1,1], t>0$ we set $\psi(t, v) \stackrel{\text { def }}{=} t \sqrt{1-v^{2}}+t^{2}$. For $\mathbf{x} \in \Omega$ we denote $\Psi(t, \mathbf{x}) \stackrel{\text { def }}{=}$ $\prod_{s=1}^{d} \psi\left(t, x_{s}\right)$ and $\Psi^{\alpha}(t, \mathbf{x}) \stackrel{\text { def }}{=} \prod_{s=1}^{d} \psi\left(t, x_{s}\right)^{\alpha_{s}}$. A t neighbourhood of the point $\mathbf{x} \in \Omega$ we define by

$$
U(t, \mathbf{x}) \stackrel{\text { def }}{=}\left\{\mathbf{y} \in \Omega\left|\left|x_{s}-y_{s}\right| \leq \psi\left(t, x_{s}\right) \text { for every } s=1, \ldots, d\right\}\right.
$$

Everywhere in this paper c denotes a positive number which may depend on r and d . The c^{\prime} s may differ at each occurrence. If c depends on another parameter we indicate this using indices.

By H_{n} we denote the set of all algebraic polinomials in \mathbb{R}^{d} of total degree not greater than n. The best approximations by algebraic polinomials are given by

$$
E\left(f, H_{n}\right)_{p(X)} \stackrel{\text { def }}{=} \inf \left\{\|f-Q\|_{p(X)} \mid Q \in H_{n}\right\}
$$

and the best approximations from below or from above by algebraic polinomials are given respectively by

$$
\begin{equation*}
E^{-}\left(f, H_{n}\right)_{p(X)} \stackrel{\text { def }}{=} \inf \left\{\|f-Q\|_{p(X)} \mid Q \in H_{n}, Q \leq f\right\} \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
E^{+}\left(f, H_{n}\right)_{p(X)} \stackrel{\text { def }}{=} \inf \left\{\|f-Q\|_{p(X)} \mid Q \in H_{n}, Q \geq f\right\}, \tag{1.2}
\end{equation*}
$$

whenever f is bounded from below or from above respectively.
Let $l=\max \left\{\left[\frac{d}{p}\right]+1, r\right\}([\cdot]-$ integral part $)$. We investigate the K-functionals

$$
\begin{align*}
K_{r}^{-}(f, t)_{p} & =K^{-}\left(f, \Psi(t) ; L_{p}, W_{p}^{r}, W_{p}^{l}\right) \tag{1.3}\\
& \stackrel{\text { def }}{=} \inf \left\{\|f-g\|_{p(\Omega)}+\sum_{|\alpha|=r, l}\left\|\Psi^{\alpha}(t) D^{\alpha} g\right\|_{p(\Omega)} \mid g \leq f, g \in W_{p}^{l}(\Omega)\right\}, \\
K_{r}^{+}(f, t)_{p} & =K^{+}\left(f, \Psi(t) ; L_{p}, W_{p}^{r}, W_{p}^{l}\right) \tag{1.4}\\
& \stackrel{\text { def }}{=} \inf \left\{\|f-g\|_{p(\Omega)}+\sum_{|\alpha|=r, l}\left\|\Psi^{\alpha}(t) D^{\alpha} g\right\|_{p(\Omega)} \mid g \geq f, g \in W_{p}^{l}(\Omega)\right\}
\end{align*}
$$

and

$$
K\left(f, \Psi(t) ; L_{p}, W_{p}^{r}\right) \stackrel{\text { def }}{=} \inf \left\{\|f-g\|_{p(\Omega)}+\sum_{|\alpha|=r}\left\|\Psi^{\alpha}(t) D^{\alpha} g\right\|_{p(\Omega)} \mid g \in W_{p}^{r}(\Omega)\right\}
$$

In [5] we prove the following direct and inverse inequalities for the best constrained approximations in terms of the K-functionals.

Theorem 1.1 Let $1 \leq p \leq \infty$, let r and n be natural, $*=$ " - " or "+" and let $f \in L_{p}(\Omega)$ be bounded from below or from above respectively. Then we have
(d) $\quad E^{*}\left(f, H_{n-1}\right)_{p(\Omega)} \leq c K^{*}\left(f, \Psi\left(n^{-1}\right) ; L_{p}, W_{p}^{r}, W_{p}^{l}\right)$;
(i) $\quad K^{*}\left(f, \Psi\left(n^{-1}\right) ; L_{p}, W_{p}^{r}, W_{p}^{l}\right) \leq c\left(E^{*}\left(f, H_{n-1}\right)_{p(\Omega)}+K\left(f, \Psi\left(n^{-1}\right) ; L_{p}, W_{p}^{r}\right)\right)$.

This inequalities are the reason for the investigation in this paper.
The main result of this paper Theorem 1.5 is a characterization for $r=1$ and $r=2$ of the K-functional (1.3) in terms of appropriate moduli. As a corollary we give a characterization of the best algebraic approximations from below. Similar results for the K-functional (1.4) and for the best algebraic approximations from above follow as a corollary from $E^{+}(f)=E^{-}(-f)$, $K^{+}(f)=K^{-}(-f)$ (with one and the same values of the parameters).

The equivalence between the K-functional from below and a characteristic based on local approximations from below by algebraic polinomials we give in

Theorem 1.2 Let $f \in L_{p}(\Omega)(p \in[1, \infty])$ be bounded from below and let r be a natural number. Then

$$
K_{r}^{-}(f, t)_{p} \sim\left\|\Psi(t, \cdot)^{-\frac{1}{p}} E^{-}\left(f, H_{r-1}\right)_{p(U(t,))}\right\|_{p(\Omega)} \quad \text { for } \quad t \in(0,1] .
$$

Remark 1.1. We consider $K_{r}^{-}(f, t)_{p}$ with argument $t \in(0,1]$ because of Theorem 1.1.
Let $U \subset \mathbb{R}^{d}$ be a convex body. We set

$$
\begin{equation*}
\omega_{r}(f, U)_{p} \stackrel{\text { def }}{=} \sup \left\{\left\|\Delta_{\mathbf{h}, U}^{r} f(\cdot)\right\|_{p(U)} \mid \mathbf{h} \in \mathbb{R}^{d}\right\} \tag{1.5}
\end{equation*}
$$

where

$$
\Delta_{\mathbf{h}, U}^{r} f(\mathbf{x}) \stackrel{\text { def }}{=}\left\{\begin{array}{lr}
\Delta_{\mathbf{h}}^{r} f(\mathbf{x}) & \text { if } \mathbf{x}, \mathbf{x}+r \mathbf{h} \in U ; \\
0 & \text { otherwise }
\end{array}\right.
$$

and

$$
\Delta_{\mathbf{h}}^{r} f(\mathbf{x}) \stackrel{\text { def }}{=} \sum_{i=0}^{r}(-1)^{r-i}\binom{r}{i} f(\mathbf{x}+i \mathbf{h}) .
$$

In order to handle the cases of approximations from below for $r=1$ and $r=2$ we introduce the following characteristics

$$
\begin{equation*}
\tau_{r}^{-}(f, U)_{p} \stackrel{\text { def }}{=}\left\|\sup \left\{\tilde{\Delta}_{\mathbf{h}, U}^{r} f(\cdot) \mid \mathbf{h} \in \mathbb{R}^{d}\right\}\right\|_{p(U)} \tag{1.6}
\end{equation*}
$$

and

$$
\tau_{r}^{-}(f, \Psi(t))_{p(\Omega)} \stackrel{\text { def }}{=}\left\|\sup \left\{\tilde{\Delta}_{\mathbf{h}, U(t,)}^{r} f(\cdot) \mid \mathbf{h} \in \mathbb{R}^{d}\right\}\right\|_{p(\Omega)}
$$

where

$$
\tilde{\Delta}_{\mathbf{h}, U}^{1} f(\mathbf{x}) \stackrel{\text { def }}{=}\left\{\begin{array}{lr}
f(\mathbf{x})-f(\mathbf{x}+\mathbf{h}) & \text { if } \mathbf{x}, \mathbf{x}+\mathbf{h} \in U \\
0 & \text { otherwise }
\end{array}\right.
$$

and

$$
\tilde{\Delta}_{\mathbf{h}, U}^{2} f(\mathbf{x}) \stackrel{\text { def }}{=}\left\{\begin{array}{lr}
2 f(\mathbf{x})-f(\mathbf{x}+\mathbf{h})-f(\mathbf{x}-\mathbf{h}) & \text { if } \mathbf{x}-\mathbf{h}, \mathbf{x}+\mathbf{h} \in U \\
0 & \text { otherwise }
\end{array}\right.
$$

We use the above characteristics in the following Whitney-type Theorem

Theorem 1.3 Let $f \in L_{p}(\Pi)(\Pi=\Pi[\mathbf{a} ; \mathbf{b}], p \in[1, \infty])$ is bounded from below. Then

$$
\begin{array}{lc}
\text { (I) } & E^{-}\left(f, H_{0}\right)_{p(\Pi)}=\tau_{1}^{-}(f, \Pi)_{p} ; \\
(I I) & E^{-}\left(f, H_{1}\right)_{p(\Pi)} \sim \omega_{2}(f, \Pi)_{p}+\tau_{2}^{-}(f, \Pi)_{p} .
\end{array}
$$

Theorem 1.3 is proved in the Section 3.
Let $\Pi=\Pi[\mathbf{a} ; \mathbf{b}]$ and $\pi=\Pi[\mathbf{c} ; \mathbf{d}]$ be such that

$$
\begin{equation*}
\pi \subseteq\left(\Pi-\frac{\mathbf{a}+\mathbf{b}}{2}\right) \subseteq R . \pi \tag{1.7}
\end{equation*}
$$

for some $R \geq 1$, where for $U \subset \mathbb{R}^{d}, \mathbf{y} \in \mathbb{R}^{d}$ and $t>0$ we denote

$$
U+\mathbf{y} \stackrel{\text { def }}{=}\left\{\mathbf{x} \in \mathbb{R}^{d} \mid \mathbf{x}-\mathbf{y} \in U\right\}
$$

and

$$
t U \stackrel{\text { def }}{=}\left\{\mathbf{x} \in \mathbb{R}^{d} \mid t^{-1} \mathbf{x} \in U\right\} .
$$

We use the following characteristic of f .

$$
\begin{equation*}
\tau_{r}(f, \pi)_{p, p(\Pi)} \stackrel{\text { def }}{=}\left\{\int_{\Pi} \frac{1}{\mu(\pi)} \int_{\pi}\left|\Delta_{\mathbf{v}, \Pi}^{r} f(\mathbf{x})\right|^{p} d \mathbf{v} d \mathbf{x}\right\}^{\frac{1}{p}} \tag{1.8}
\end{equation*}
$$

Here $\mu(V)$ denotes the Lebesgue measure of the measurable set V. A relationship between (1.5) and (1.8) is established in [4, Sec.3]. The statement is

Theorem 1.4 If (1.7) is satisfied and $f \in L_{p}(\Omega)(p \in[1, \infty])$ then,

$$
c \tau_{r}(f, \pi)_{p, p(\Pi)} \leq \omega_{r}(f, \Pi)_{p} \leq c R^{d+r} \tau_{r}(f, \pi)_{p, p(\Pi)} .
$$

We set

$$
B(t, \mathbf{x}) \stackrel{\text { def }}{=}\left\{\mathbf{y} \in \mathbb{R}^{d}| | y_{s} \mid \leq \psi\left(t, x_{s}\right) \text { for every } s=1, \ldots, d\right\}
$$

In this paper we investigate the following averaged modulus of smoothness

$$
\begin{equation*}
\tau_{r}(f, \Psi(t))_{p, p(\Omega)} \stackrel{\text { def }}{=}\left\{\int_{\Omega} \Psi(t, \mathbf{x})^{-1} \int_{B(t, \mathbf{x})}\left|\Delta_{\mathbf{v}, \Omega}^{r} f(\mathbf{x})\right|^{p} d \mathbf{v} d \mathbf{x}\right\}^{\frac{1}{p}} \tag{1.9}
\end{equation*}
$$

Using the results from Sections 2, 3, Theorem 1.1 and Theorem 1.4 in Section 4 we give a characterization of the constrained K-functional in terms of appropriate moduli.

Theorem 1.5

$$
\begin{array}{ll}
K^{-}\left(f, \Psi(t), L_{p}, W_{p}^{1}, W_{p}^{l_{1}}\right) \sim \tau_{1}^{-}(f, \Psi(t))_{p(\Omega)}, & l_{1}=\left[\frac{d}{p}\right]+1 ; \\
K^{-}\left(f, \Psi(t), L_{p}, W_{p}^{2}, W_{p}^{l_{2}}\right) \sim \tau_{2}^{-}(f, \Psi(t))_{p(\Omega)}+\tau_{2}(f, \Psi(t))_{p, p(\Omega)}, & l_{2}=\max \left\{2,\left[\frac{d}{p}\right]+1\right\} .
\end{array}
$$

Combining the results of Theorem 1.1 and Theorem 1.5 in Section 4 we give a a characterization of best approximation from below in terms of appropriate moduli.

Theorem 1.6

$$
\begin{gathered}
E^{-}\left(f, H_{n-1}\right)_{p(\Omega)} \leq c \tau_{1}^{-}\left(f, \Psi\left(n^{-1}\right)\right)_{p(\Omega)} \\
E^{-}\left(f, H_{n-1}\right)_{p(\Omega)} \leq c\left\{\tau_{2}^{-}\left(f, \Psi\left(n^{-1}\right)\right)_{p(\Omega)}+\tau_{2}\left(f, \Psi\left(n^{-1}\right)\right)_{p, p(\Omega)}\right\}
\end{gathered}
$$

and for $r=1$ and $r=2$

$$
\tau_{r}^{-}\left(f, \Psi\left(n^{-1}\right)\right)_{p(\Omega)} \leq c\left\{E^{-}\left(f, H_{n-1}\right)_{p(\Omega)}+\tau_{r}\left(f, \Psi\left(n^{-1}\right)\right)_{p, p(\Omega)}\right\} .
$$

In order to prove Theorem 1.3(II) we obtain some results for convex functions. Let $U \subset \mathbb{R}^{d}$ be a convex body. A function $f: U \rightarrow \mathbb{R}$ is called almost midconvex if $\sup \left\{\tilde{\Delta}_{\mathbf{h}, U}^{2} f(\mathbf{x}) \mid \mathbf{h} \in\right.$ $\left.\mathbb{R}^{d}\right\}=0$ holds for every $\mathbf{x} \in U$ except a subset of U with a measure zero. As a corollary from the results in the Section 3 we get

Theorem 1.7 If a function $f: \Pi[\mathbf{a} ; \mathbf{b}] \rightarrow \mathbb{R}$ is almost midconvex then f is equal almost everywhere to a convex function g and $f \geq g$.

2 A characterization of (1.3) in terms of best algebraic local approximation from below.

Here we use methots which are based on ideas of [2], [3] and [5] and prove Theorem 1.2. We start with some notations.

Let N be a fixed natural number. We set

$$
\begin{gathered}
\mathbb{Z}=\{0,1, \ldots, N-1\}^{d} ; \mathbb{Z}^{\prime}=\{0,1, \ldots, N\}^{d} ; \mathbb{E}=\{0,1\}^{d} ; \\
z_{k}=\cos \left(\pi-\frac{k \pi}{N}\right), k=0,1, \ldots, N, z_{-1}=z_{0}=-1, \quad z_{N+1}=z_{N}=1 .
\end{gathered}
$$

For every $\mathbf{j}=\left(j_{1}, j_{2}, \ldots, j_{d}\right) \in \mathbb{Z}$ we denote

$$
\boldsymbol{\Omega}_{\mathbf{j}}=\left[z_{j_{1}}, z_{j_{1}+1}\right] \times \ldots \times\left[z_{j_{d}}, z_{j_{d}+1}\right]
$$

and for every $\mathbf{j} \in \mathbb{Z}^{\prime}$ we denote

$$
\boldsymbol{\Omega}_{\mathbf{j}}^{\prime}=\left[z_{j_{1}-1}, z_{j_{1}+1}\right] \times \ldots \times\left[z_{j_{d}-1}, z_{j_{d}+1}\right] .
$$

We set $\mu(v)=\int_{0}^{v} e^{\frac{-1}{u-u^{2}}} d u / \int_{0}^{1} e^{\frac{-1}{u-u^{2}}} d u$ for $0<v<1, \mu(v)=0$ for $v \leq 0$ and $\mu(v)=1$ for $v \geq 1$. Therefore $\mu \in C^{\infty}(\mathbb{R})$ and we define

$$
\begin{aligned}
& \mu_{0}(v) \stackrel{\text { def }}{=} 1-\mu\left(\left(v-z_{0}\right) /\left(z_{1}-z_{0}\right)\right) ; \\
& \mu_{s}(v) \stackrel{\text { def }}{=} \mu\left(\left(v-z_{s-1}\right) /\left(z_{s}-z_{s-1}\right)\right)\left(1-\mu\left(\left(v-z_{s}\right) /\left(z_{s+1}-z_{s}\right)\right)\right) \quad \text { for } s=1,2, \ldots, N-1 ; \\
& \mu_{N}(v) \stackrel{\text { def }}{=} \mu\left(\left(v-z_{N-1}\right) /\left(z_{N}-z_{N-1}\right)\right) .
\end{aligned}
$$

Finaly for every $\mathbf{j} \in \mathbb{Z}^{\prime}$ we set $\mu_{\mathbf{j}}(\mathbf{x})=\Pi_{s=1}^{d} \mu_{j_{s}}\left(x_{s}\right)$. Therefore for every $\mathbf{x} \in \Omega$ we have

$$
\begin{align*}
0 \leq \mu_{\mathbf{j}}(\mathbf{x}) \leq 1 ; \quad \mu_{\mathbf{j}}(\mathbf{x}) & =0 \text { if } \mathbf{x} \notin \Omega_{\mathbf{j}}^{\prime} \tag{2.1}\\
\sum_{\mathbf{j} \in \mathbb{Z}^{\prime}} \mu_{\mathbf{j}}(\mathbf{x}) & =1 \tag{2.2}
\end{align*}
$$

In the statements below we collect some properties of the above quantities. Let $0<t \leq \frac{1}{2}$ and $N=\left[\frac{2 \pi}{t}\right]+1$. Then we have

$$
\begin{align*}
& \Psi(t, \mathbf{x}) \leq \operatorname{meas}(U(t, \mathbf{x})) \leq 2^{d} \Psi(t, \mathbf{x}) \tag{2.3}\\
& \Psi(t, \mathbf{x}) \sim \Psi(t, \mathbf{y}) \text { for every } \mathbf{y} \in U(t, \mathbf{x}) ; \tag{2.4}\\
& \Psi(t, \mathbf{x}) \sim \Psi(t, \mathbf{x}+\mathbf{y}) \text { for every } \mathbf{y} \in B(t, \mathbf{x}) \tag{2.5}\\
& c \Psi(t, \mathbf{x}) \leq \operatorname{meas}\left(\Omega_{\mathbf{j}}^{\prime}\right) \leq c \Psi(t, \mathbf{y}) \text { for every } x, y \in \Omega_{\mathbf{j}}^{\prime} ; \tag{2.6}\\
& \Omega_{\mathbf{j}}^{\prime} \subset U(t, \mathbf{x}) \text { for any } \mathbf{x} \in \Omega_{\mathbf{j}}^{\prime} . \tag{2.7}
\end{align*}
$$

The inequalities (2.3), (2.4), (2.6) and (2.7) are proved in [3]. (2.5) follows from (2.3), (2.4) and definition of $B(t, \mathbf{x})$.

We prove first the following

Lemma 2.1 Let $0<t \leq \frac{1}{2}$. Then for every $f \in L_{p}(\Omega)$ we have

$$
\begin{align*}
& \left\|\Psi(t, \cdot)^{-\frac{1}{p}} E^{-}\left(f, H_{r-1}\right)_{p(U(t,))}\right\|_{p(\Omega)} \leq c K_{r}^{-}(f, t)_{p} ; \tag{2.8}\\
& K_{r}^{-}(f, t)_{p} \leq c\left\|\Psi(t, \cdot)^{-\frac{1}{p}} E^{-}\left(f, H_{r-1}\right)_{p(U(t, \cdot))}\right\|_{p(\Omega)} .
\end{align*}
$$

Proof. Let us begin with the proof of (2.9). We set

$$
\begin{equation*}
N=\left[\frac{2 \pi}{t}\right]+1 \tag{2.10}
\end{equation*}
$$

and use the notation for $\Omega_{\mathbf{j}}, \Omega_{\mathbf{j}}^{\prime}$ and $\mu_{\mathbf{j}}$ from the beginning of Section 2 . We denote by $Q_{\mathbf{j}} \in H_{r-1}$ the polynomial of best algebraic L_{p} approximation from below of degree $r-1$ to f in $\Omega_{\mathbf{j}}^{\prime}, \mathbf{j} \in \mathbb{Z}^{\prime}$. We set

$$
\begin{equation*}
g(\mathbf{x})=\sum_{\mathbf{j} \in \mathbb{Z}^{\prime}} \mu_{\mathbf{j}}(\mathbf{x}) Q_{\mathbf{j}}(\mathbf{x}) \tag{2.11}
\end{equation*}
$$

From (2.10), (2.11), (2.3), (2.6) and (2.7) we obtain

$$
\begin{align*}
\|f-g\|_{p(\Omega)}^{p} & =\left\|\sum_{\mathbf{j} \in \mathbb{Z}^{\prime}} \mu_{\mathbf{j}}\left(f-Q_{\mathbf{j}}\right)\right\|_{p(\Omega)}^{p} \tag{2.12}\\
& \leq c \sum_{\mathbf{j} \in \mathbb{Z}^{\prime}} \int_{\Omega_{\mathbf{j}}^{\prime}}\left|f(\mathbf{x})-Q_{\mathbf{j}}(\mathbf{x})\right|^{p} d \mathbf{x} \\
& =c \sum_{\mathbf{j} \in \mathbb{Z}^{\prime}} E^{-}\left(f, H_{r-1}\right)_{p\left(\Omega_{\mathbf{j}}^{\prime}\right)}^{p} \\
& =c \sum_{\mathbf{j} \in \mathbb{Z}^{\prime}} \operatorname{meas}\left(\Omega_{\mathbf{j}}^{\prime}\right)^{-1} \int_{\Omega_{\mathbf{j}}^{\prime}} E^{-}\left(f, H_{r-1}\right)_{p\left(\Omega_{\mathbf{j}}^{\prime}\right)}^{p} d \mathbf{x} \\
& \leq c \sum_{\mathbf{j} \in \mathbb{Z}^{\prime}} \operatorname{meas}\left(\Omega_{\mathbf{j}}^{\prime}\right)^{-1} \int_{\Omega_{\mathbf{j}}^{\prime}} E^{-}\left(f, H_{r-1}\right)_{p(U(t, \mathbf{x}))}^{p} d \mathbf{x} \\
& \leq c \sum_{\mathbf{j} \in \mathbb{Z}^{\prime}} \int_{\Omega_{\mathbf{j}}^{\prime}}(\Psi(t, \mathbf{x}))^{-1} E^{-}\left(f, H_{r-1}\right)_{p(U(t, \mathbf{x}))}^{p} d \mathbf{x} \\
& \leq c \int_{\Omega}(\Psi(t, \mathbf{x}))^{-1} E^{-}\left(f, H_{r-1}\right)_{p(U(t, \mathbf{x}))}^{p} d \mathbf{x} \\
& \leq c\left\|\Psi(t, \cdot)^{-\frac{1}{p}} E^{-}\left(f, H_{r-1}\right)_{p(U(t, \cdot))}\right\|_{p(\Omega)}^{p} .
\end{align*}
$$

Fix $\alpha,|\alpha|=r$ or $|\alpha|=l$. Let $\mathbf{x} \in \Omega_{\mathbf{j}}, \mathbf{j} \in \mathbb{Z}$. From the definitions of $\mu(\mathbf{x}), Q_{\mathbf{j}}(\mathbf{x})$ and $g(\mathbf{x})$ we have

$$
\begin{gathered}
g(\mathbf{x})=Q_{\mathbf{j}}(\mathbf{x})+\sum_{\epsilon \in \mathbb{E}} \mu_{\mathbf{j}+\epsilon}(\mathbf{x})\left(Q_{\mathbf{j}+\epsilon}(\mathbf{x})-Q_{\mathbf{j}}(\mathbf{x})\right) \text {, where } \\
\mu_{\mathbf{j}+\epsilon}(\mathbf{x})=\prod_{s ; \epsilon_{s}=1} \mu\left(\frac{x_{s}-z_{j_{s}}}{z_{j_{s}+1}-z_{j_{s}}}\right) \cdot \prod_{s ; \epsilon_{s}=0} \mu\left(1-\left(\frac{x_{s}-z_{j_{s}}}{z_{j_{s}+1}-z_{j_{s}}}\right)\right) .
\end{gathered}
$$

and then from the last equality and $D^{\alpha} Q_{\mathbf{j}}=0$, it follows that

$$
D^{\alpha} g(\mathbf{x})=\sum_{\epsilon \in \mathbb{E}} \sum_{0 \leq \beta \leq \alpha}\binom{\alpha}{\beta} D^{\alpha-\beta} \mu_{\mathbf{j}+\epsilon}(\mathbf{x}) D^{\beta}\left(Q_{\mathbf{j}+\epsilon}(\mathbf{x})-Q_{\mathbf{j}}(\mathbf{x})\right)
$$

Now using (2.6), (2.7), the definitions of $\mu_{\mathbf{j}}, Q_{\mathbf{j}}$ and \mathbb{E} and Markov's inequality $\left((b-a)^{i}\left\|g^{(i)}\right\|_{p[a, b]} \leq c(r)\|g\|_{p[a, b]}\right.$ for $\left.g \in H_{r}\right)$ we have

$$
\begin{aligned}
\left\|\Psi^{\alpha}(t) D^{\alpha} g\right\|_{p\left(\Omega_{\mathbf{j}}\right)} & \leq c \Psi^{\alpha}\left(t, z_{\mathbf{j}}\right)\left\|D^{\alpha} g\right\|_{p\left(\Omega_{\mathbf{j}}\right)} \\
& \leq c \Psi^{\alpha}\left(t, z_{\mathbf{j}}\right) \sum_{\epsilon \in \mathbb{E}} \sum_{\mathbf{0} \leq \beta \leq \alpha}\binom{\alpha}{\beta}\left\|D^{\alpha-\beta} \mu_{\mathbf{j}+\epsilon}\right\|_{\infty\left(\Omega_{\mathbf{j}}\right)}\left\|D^{\beta}\left(Q_{\mathbf{j}+\epsilon}-Q_{\mathbf{j}}\right)\right\|_{p\left(\Omega_{\mathbf{j}}\right)} \\
& \leq c \Psi^{\alpha}\left(t, z_{\mathbf{j}}\right) \sum_{\epsilon \in \mathbb{E}} \sum_{\mathbf{0} \leq \beta \leq \alpha} \prod_{s=1}^{d} \frac{\left\|\mu^{(|\alpha-\beta|)}\right\|_{\infty[0,1]}}{\left|z_{j_{s}+1}-z_{j_{s}}\right|^{\alpha_{s}-\beta_{s}}}\left\|D^{\beta}\left(Q_{\mathbf{j}+\epsilon}-Q_{\mathbf{j}}\right)\right\|_{p\left(\Omega_{\mathbf{j}}\right)} \\
& \leq c \sum_{\epsilon \in \mathbb{E}} \sum_{\mathbf{0} \leq \beta \leq \alpha} \prod_{s=1}^{d}\left|z_{j_{s}+1}-z_{j_{s}}\right|^{\beta_{s}}\left\|D^{\beta}\left(Q_{\mathbf{j}+\epsilon}-Q_{\mathbf{j}}\right)\right\|_{p\left(\Omega_{\mathbf{j}}\right)} \\
& \leq c \sum_{\epsilon \in \mathbb{E}}\left\|Q_{\mathbf{j}+\epsilon}-Q_{\mathbf{j}}\right\|_{p\left(\Omega_{\mathbf{j}}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& \leq c \sum_{\epsilon \in \mathbb{E}}\left(\left\|f-Q_{\mathbf{j}+\epsilon}\right\|_{p\left(\Omega_{\mathbf{j}}\right)}+\left\|f-Q_{\mathbf{j}}\right\|_{p\left(\Omega_{\mathbf{j}}\right)}\right) \\
& \leq c E^{-}\left(f, H_{r-1}\right)_{p\left(\Omega_{\mathbf{j}}^{\prime}\right)}^{p} .
\end{aligned}
$$

Hence

$$
\begin{align*}
\left\|\Psi^{\alpha}(t) D^{\alpha} g\right\|_{p(\Omega)}^{p} & \leq c \sum_{\mathbf{j} \in \mathbb{Z}^{\prime}} E^{-}\left(f, H_{r-1}\right)_{p\left(\Omega_{\mathbf{j}}^{\prime}\right)}^{p} \tag{2.13}\\
& =c \sum_{\mathbf{j} \in \mathbb{Z}^{\prime}} \operatorname{meas}\left(\Omega_{\mathbf{j}}^{\prime}\right)^{-1} \int_{\Omega_{\mathbf{j}}^{\prime}} E^{-}\left(f, H_{r-1}\right)_{p\left(\Omega_{\mathbf{j}}^{\prime}\right)}^{p} d \mathbf{x} \\
& \leq c \sum_{\mathbf{j} \in \mathbb{Z}^{\prime}} \operatorname{meas}\left(\Omega_{\mathbf{j}}^{\prime}\right)^{-1} \int_{\Omega_{\mathbf{j}}^{\prime}} E^{-}\left(f, H_{r-1}\right)_{p(U(t, \mathbf{x}))}^{p} d \mathbf{x} \\
& \leq c \sum_{\mathbf{j} \in \mathbb{Z}^{\prime}} \int_{\Omega_{\mathbf{j}}^{\prime}}(\Psi(t, \mathbf{x}))^{-1} E^{-}\left(f, H_{r-1}\right)_{p(U(t, \mathbf{x}))}^{p} d \mathbf{x} \\
& \leq c \int_{\Omega}(\Psi(t, \mathbf{x}))^{-\frac{1}{p}} E^{-}\left(f, H_{r-1}\right)_{p(U(t, \mathbf{x}))}^{p} d \mathbf{x} \\
& \leq c\left\|\Psi(t, \cdot)^{-\frac{1}{p}} E^{-}\left(f, H_{r-1}\right)_{p(U(t,))}\right\|_{p(\Omega)}^{p} .
\end{align*}
$$

In this way (2.9) follows from (1.3), (2.12) and (2.13).
We turn our attention to (2.8).
Let $\alpha=\left(\alpha_{1}, . ., \alpha_{d}\right),|\alpha|=r$ be multi-index and $\mathbf{z}=\left(z_{1}, \ldots, z_{d}\right) \in \mathbb{R}^{d}$. We define

$$
\left|\mathbf{z}^{\alpha}\right|=\Pi_{i=1}^{d}\left|z_{i}\right|^{\alpha_{i}}
$$

Let $\Pi=\Pi[\mathbf{a} ; \mathbf{b}]$ and let $g \in W_{p}^{l}(\Pi)$. As a corollary from Theorem 2 and Theorem 1 in [3] we get

$$
\begin{equation*}
E^{-}\left(g, H_{r-1}\right)_{p(\Pi)} \leq c \sum_{|\alpha|=r, l}\left|(\mathbf{b}-\mathbf{a})^{\alpha}\right|\left\|D^{\alpha} g\right\|_{p(\Pi)} \tag{2.14}
\end{equation*}
$$

Let g be any function in $W_{p}^{l}(\Omega), g(\mathbf{x}) \leq f(\mathbf{x}), \mathbf{x} \in \Omega$. Then we have (note that $Q \leq g$ implies $Q \leq f$)

$$
E^{-}\left(f, H_{r-1}\right)_{p(U(t, \mathbf{x}))} \leq E^{-}\left(g, H_{r-1}\right)_{p(U(t, \mathbf{x}))}+\|f-g\|_{p(U(t, \mathbf{x}))}
$$

and hence

$$
\begin{align*}
& \left\|\Psi(t, \cdot)^{-\frac{1}{p}} E^{-}\left(f, H_{r-1}\right)_{p(U(t,))}\right\|_{p(\Omega)} \tag{2.15}\\
& \leq\left\|\Psi(t, \cdot)^{-\frac{1}{p}} E^{-}\left(g, H_{r-1}\right)_{p(U(t,))}\right\|_{p(\Omega)}+\left\|\Psi(t, \cdot)^{-\frac{1}{p}}\right\| f-g\left\|_{p(U(t,))}\right\|_{p(\Omega)} .
\end{align*}
$$

Using (2.14), (2.3) and (2.4) we obtain

$$
\begin{align*}
E^{-}\left(g, H_{r-1}\right)_{p(U(t, \mathbf{x})))} & \leq c \sum_{|\alpha|=r, l} \Psi^{\alpha}(t, \mathbf{x})\left\|D^{\alpha} g\right\|_{p(U(t, \mathbf{x}))} \tag{2.16}\\
& \leq c \sum_{|\alpha|=r, l}\left\|\Psi^{\alpha}(t, \cdot) D^{\alpha} g\right\|_{p(U(t, \mathbf{x}))} .
\end{align*}
$$

From Lemma 4 in [3] we have that

$$
\begin{equation*}
\left\|\Psi^{-\frac{1}{p}}(t, \cdot)\right\| G\left\|_{p(U(t,))}\right\|_{p(\Omega)} \leq c\|G\|_{p(\Omega)} \tag{2.17}
\end{equation*}
$$

for $G \in L_{p}(\Omega)$ and $t \in\left(0, \frac{1}{2}\right]$. Then from (2.16) and (2.17) we get

$$
\begin{aligned}
\left\|\Psi^{-\frac{1}{p}}(t, \cdot)\right\| f-g\left\|_{p(U(t,))}\right\|_{p(\Omega)} & \leq c\|f-g\|_{p(\Omega)} ; \\
\left\|\Psi^{-\frac{1}{p}}(t, \cdot)\right\| E^{-}\left(g, H_{r-1}\right)\left\|_{p(U(t,))}\right\|_{p(\Omega)} & \leq c \sum_{|\alpha|=r, l}\left\|\Psi^{\alpha}(t, \cdot) D^{\alpha} g\right\|_{p(\Omega)} .
\end{aligned}
$$

Hence using (2.15) we get

$$
\left\|\Psi^{-\frac{1}{p}}(t, \cdot)\right\| E^{-}\left(f, H_{r-1}\right)\left\|_{p(U(t, \cdot))}\right\|_{p(\Omega)} \leq c\left\{\|f-g\|_{p(\Omega)}+\sum_{|\alpha|=r, l}\left\|\Psi^{\alpha}(t) D^{\alpha} g\right\|_{p(\Omega)}\right\} .
$$

Taking an infimum on all $g \in W_{p}^{r}(\Omega), g \leq f$ in the above inequality we prove (2.8).

Proof of Theorem 1.2. We have to investigate only the case $t \in\left(\frac{1}{2}, 1\right]$, because for $t \in\left(0, \frac{1}{2}\right]$ Theorem 1.2 is equal to Lemma 2.1. Let $t \in\left(\frac{1}{2}, 1\right]$. Then from the definitions of $\Psi(t, \mathbf{x})$ and $U(t, \mathbf{x})$ it follows that

$$
\begin{aligned}
& \left\|\Psi^{-\frac{1}{p}}(t, \cdot) E^{-}\left(f, H_{r-1}\right)_{p(U(t, \cdot))}\right\|_{p(\Omega)} \leq 4^{d} E^{-}\left(f, H_{r-1}\right)_{p(\Omega)} \\
& \leq c\left\|\Psi^{-\frac{1}{p}}\left(\frac{1}{2}, \cdot\right) E^{-}\left(f, H_{r-1}\right)_{p(U(t,))}\right\|_{p(\Omega)} \leq c\left\|\Psi^{-\frac{1}{p}}(t, \cdot) E^{-}\left(f, H_{r-1}\right)_{p(U(t,))}\right\|_{p(\Omega)}
\end{aligned}
$$

Hence from Lemma 2.1(2.8) with $t=\frac{1}{2}$ and the monotonicity of the K-functional (1.3) with respect to t we get

$$
\begin{aligned}
\left\|\Psi^{-\frac{1}{p}}(t, \cdot) E^{-}\left(f, H_{r-1}\right)_{p(U(t,))}\right\|_{p(\Omega)} & \leq c K_{r}^{-}\left(f, \frac{1}{2}\right)_{p} \leq c K_{r}^{-}(f, t)_{p} \\
K_{r}^{-}(f, t)_{p} \leq c E^{-}\left(f, H_{r-1}\right)_{p(\Omega)} & \left.\leq c \| \Psi^{-\frac{1}{p}}(t, \cdot) E^{-}\left(f, H_{r-1}\right)_{p(U(t,))}\right) \|_{p(\Omega)}
\end{aligned}
$$

3 Whitney-type theorems for best approximations from below.

We make use of some properties of the moduli which follows immediately from the definition

$$
\begin{align*}
& \tau_{r}^{-}(f, U)_{p} \leq r\|f\|_{p(U)} \text { for } r=1,2 \quad \text { if } f(\mathbf{x}) \geq 0 \text { for every } \mathbf{x} \in U ; \tag{3.1}\\
& \tau_{2}^{-}(f, U)_{p}=0 \text { if } f \text { is convex on } U ; \tag{3.2}\\
& \tau_{r}^{-}(f+g, U)_{p} \leq \tau_{r}^{-}(f, U)_{p}+\tau_{r}^{-}(g, U)_{p} \text { for } r=1, \quad 2 ; \tag{3.3}\\
& \tau_{2}^{-}\left(f_{+}, U\right)_{p} \leq \tau_{2}^{-}(f, U)_{p}, \text { where } f(\mathbf{x})_{+} \stackrel{\text { def }}{=} \begin{cases}f(\mathbf{x}) & \text { if } f(\mathbf{x}) \geq 0 ; \\
0 \quad \text { otherwise } .\end{cases} \tag{3.4}
\end{align*}
$$

Remark 3.1. In (3.1) and (3.3) we use $\sup \left\{\tilde{\Delta}_{\mathbf{h}, U}^{r} f(\mathbf{x}) \mid \mathbf{h} \in \mathbb{R}^{d}\right\} \geq \tilde{\Delta}_{\mathbf{0}, U}^{r} f(\mathbf{x})=0$.
Remark 3.2. $\tau_{r}^{-}(f-g, U)_{p} \leq \tau_{r}^{-}(f, U)_{p}+\tau_{r}^{-}(g, U)_{p}$ is not true in general. For example $d=1$, $r=2, U=[-1,1], f(x)=$ const and $g(x)=x^{2}$.
Remark 3.3. In (3.4) we use that if $f(\mathbf{x}) \geq 0$ then

$$
\begin{aligned}
\sup \left\{\tilde{\Delta}_{\mathbf{h}, U}^{2} f(\mathbf{x})_{+} \mid \mathbf{h} \in \mathbb{R}^{d}\right\} & =\sup \left\{2 f(\mathbf{x})-f(\mathbf{x}+\mathbf{h})_{+}-f(\mathbf{x}-\mathbf{h})_{+} \mid \mathbf{h} \in \mathbb{R}^{d}\right\} \\
& \leq \sup \left\{\tilde{\Delta}_{\mathbf{h}, U}^{2} f(\mathbf{x}) \mid \mathbf{h} \in \mathbb{R}^{d}\right\}
\end{aligned}
$$

and if $f(\mathbf{x})<0$ then $\sup \left\{\tilde{\Delta}_{\mathbf{h}, U}^{2} f(\mathbf{x})_{+} \mid \mathbf{h} \in \mathbb{R}^{d}\right\}=0 \leq \sup \left\{\tilde{\Delta}_{\mathbf{h}, U}^{2} f(\mathbf{x}) \mid \mathbf{h} \in \mathbb{R}^{d}\right\}$.

Proof of Theorem 1.3(I). The statement (I) of Theorem 1.3 is similar to Theorem 4.1 from [2] and the proof is the same. Let $M=\inf \{f(\mathbf{y}) \mid \mathbf{y} \in \Pi=\Pi[\mathbf{a} ; \mathbf{b}]\}$. Then $E^{-}\left(f, H_{0}\right)_{p(\Pi)}=$ $\|f-M\|_{p(\Pi)}$ and for every $\mathbf{x} \in \Pi$ we have

$$
\begin{aligned}
f(\mathbf{x})-M & =f(\mathbf{x})-\inf \{f(\mathbf{y}) \mid \mathbf{y} \in \Pi\} \\
& =\sup \{f(\mathbf{x})-f(\mathbf{x}+\mathbf{h}) \mid \mathbf{x}+\mathbf{h} \in \Pi\} \\
& =\sup \left\{\tilde{\Delta}_{\mathbf{h}, \Pi}^{1} f(\mathbf{x}) \mid \mathbf{h} \in \mathbb{R}^{d}\right\} .
\end{aligned}
$$

Taking L_{p} norm in this inequality we prove the lemma.

Now we turn our attention to the case $r=2$ (Theorem 1.3 (II)). We start with some lemmas which are conected with the best multivariate algebraic approximations from below of convex functions.

Lemma 3.1 Let $E \subset \Pi[\mathbf{a} ; \mathbf{b}] \subset \mathbb{R}^{d}$ be an open convex body with a measure
$\mu(E)<\frac{1}{2^{d} d!} \mu(\Pi[\mathbf{a} ; \mathbf{b}])$. Then there are $k \in\{1, \ldots, d\}$ and measurable subsets E_{k-} and E_{k+} and for every $\mathbf{x} \in E$ there exist $s(\mathbf{x}) \in \partial E$ and $\mathbf{y}(\mathbf{x}) \in \Pi[\mathbf{a} ; \mathbf{b}] \backslash(E \cup \partial E)$, such that

1) $E=E_{k-} \cup E_{k+}$;
2) If $\mathbf{x} \in E_{k *}(*=+$ or -$), \mathbf{y}(\mathbf{x})-\mathbf{s}(\mathbf{x})=\mathbf{s}(\mathbf{x})-\mathbf{x}=t_{\mathbf{x}} e_{k}$, where e_{k} is the " k-th" unit coordinate vector and $\operatorname{sign}\left(t_{\mathbf{x}}\right)=*$.

Proof. Let $\mathbf{x} \in E$ and $k \in\{1, \ldots, d\}$. We define

$$
\begin{gathered}
E_{k}(\mathbf{x}) \stackrel{\text { def }}{=}\left\{\mathbf{z} \in E \mid z_{i}=x_{i} \forall i=1, \ldots, d, i \neq k\right\} \\
m_{k, E}^{-}(\mathbf{x}) \stackrel{\text { def }}{=} \inf \left\{z_{k} \mid \mathbf{z} \in E_{k}(\mathbf{x})\right\}
\end{gathered}
$$

and

$$
m_{k, E}^{+}(\mathbf{x}) \stackrel{\text { def }}{=} \sup \left\{z_{k} \mid \mathbf{z} \in E_{k}(\mathbf{x})\right\}
$$

From $\mu(E)<\frac{1}{2^{d^{d}!}} \mu(\Pi[\mathbf{a} ; \mathbf{b}])$ and convexity of E we have that there exists $k \in\{1, \ldots, d\}$ such that $m_{k, E}^{+}(\mathbf{x})-m_{k, E}^{-}(\mathbf{x})<\frac{\left|b_{k}-a_{k}\right|}{2}$ for every $\mathbf{x} \in E$. (If we assume that for every $k \in\{1, \ldots, d\}$
there exist $\mathbf{x}(k) \in E$ such that $m_{k, E}^{+}(\mathbf{x}(k))-m_{k, E}^{-}(\mathbf{x}(k)) \geq \frac{\left|b_{k}-a_{k}\right|}{2}$ then from convexity of E we have that $\mu(E) \geq \frac{1}{2^{d} d!} \mu(\Pi[\mathbf{a} ; \mathbf{b}])$.) Thus we reduce the problem for $E \subset \mathbb{R}^{d}$ to the problem for $E_{k}(\mathbf{x}) \subset \mathbb{R}^{1}$. We define

$$
c_{k, E}(\mathbf{x}) \stackrel{\text { def }}{=} \begin{cases}m_{k, E}^{+}(\mathbf{x}) & \text { if } \frac{b_{k}+a_{k}}{2} \leq m_{k, E}^{-}(\mathbf{x}) \\ m_{k, E}^{-}(\mathbf{x})+m_{k, E}^{+}(\mathbf{x})-\frac{b_{k}+a_{k}}{2} & \text { if } \frac{b_{k}+a_{k}}{2} \in\left(m_{k, E}^{-}(\mathbf{x}), m_{k, E}^{+}(\mathbf{x})\right) \\ m_{k, E}^{-}(\mathbf{x}) & \text { if } \frac{b_{k}+a_{k}}{2} \geq m_{k, E}^{+}(\mathbf{x})\end{cases}
$$

We set $E_{k-}=\left\{\mathbf{z} \in E \mid z_{k} \in\left(m_{k, E}^{-}(\mathbf{z}), c_{k, E}(\mathbf{z})\right], E_{k+}=\left\{\mathbf{z} \in E \mid z_{k} \in\left(c_{k, E}(\mathbf{z}), m_{k, E}^{+}(\mathbf{z})\right)\right.\right.$ and let $s(\mathbf{x})=\left(s(\mathbf{x})_{1}, \ldots, s(\mathbf{x})_{d}\right)$ be such that

$$
s(\mathbf{x})_{i} \stackrel{\text { def }}{=} \begin{cases}x_{i} & \text { if } i \neq k \\ m_{k, E}^{*}(\mathbf{x}) & \text { if } i=k \text { and } \mathbf{x} \in E_{k *}, \quad *=+o r-.\end{cases}
$$

The funcions $m_{k, E}^{-}(\mathbf{x})$ and $m_{k, E}^{+}(\mathbf{x})$ are continuos because they are face functions of the convex body E. Then from the construction the subsets E_{k-} and E_{k+} have continuos boundary and then they are measurable. Also from the construction of the subsets E_{k-} and E_{k+} we have $E=E_{k-} \cup E_{k+}, \mathbf{y}(\mathbf{x})=2 \mathbf{s}(\mathbf{x})-\mathbf{x} \in \Pi[\mathbf{a} ; \mathbf{b}] \backslash(E \cup \partial E)$ and if $\mathbf{x} \in E_{k *}(*=+$ or -$)$ then $\mathbf{y}(\mathbf{x})-\mathbf{s}(\mathbf{x})=\mathbf{s}(\mathbf{x})-\mathbf{x}=t_{\mathbf{x}} e_{k}$, where e_{k} is the " k -th" unit coordinate vector and $\operatorname{sign}\left(t_{\mathbf{x}}\right)=*$.

Lemma 3.2 Let f be convex on $\Pi[\mathbf{0} ; \mathbf{a}], f(\mathbf{x}) \geq 0, f(\mathbf{0})=0$ and $p \in[1, \infty)$. Then

$$
\|f\|_{p(\Pi[0 ; \mathbf{a}])} \leq c E\left(f, H_{0}\right)_{p(\Pi[\mathbf{0} \mathbf{; a]})} .
$$

Proof. Let M be such that $E^{-}\left(f, H_{0}\right)_{p}=\|f-M\|_{p}$. If $M=0$ (which is possible for example when $p=1$ and f vanishes in a set E with a measure $\mu(E) \geq \frac{1}{2} \mu(\Pi[\mathbf{0} ; \mathbf{a}])$), then the statement of Lemma 3.2 holds as an equality with constant $c=1$. In the other cases (when $M>0$) we set $E_{*}=\{\mathbf{x} \in \Pi[\mathbf{0} ; \mathbf{a}] \mid \operatorname{sign}(f(\mathbf{x})-M)=*\}$, where $*="-$ "or " + ".

Let $E_{0}=\partial E_{-}$. For $\mathbf{x} \in E_{-}$we define $g(\mathbf{x}) \stackrel{\text { def }}{=} t_{\mathbf{x}} M$, where $\mathbf{x}=t_{\mathbf{x}} \mathbf{y}$ and $\mathbf{y} \in E_{0}$. Since $\int_{E_{-}}(M-f)^{p} \geq \int_{E_{-}}(M-g)^{p}$ and

$$
\mu\left\{\mathbf{x} \in E_{-} \mid\left(1-t_{\mathbf{x}}\right)^{p} \geq \theta\right\}=\mu\left\{\mathbf{x} \in E_{-} \left\lvert\, t_{\mathbf{x}} \leq\left(1-\theta^{\frac{1}{p}}\right)\right.\right\}=\mu\left(E_{-}\right)\left(1-\theta^{\frac{1}{p}}\right)^{d}
$$

we have

$$
\begin{align*}
\int_{E_{-}}(M-f(\mathbf{x}))^{p} d \mathbf{x} & \geq \int_{E_{-}}(M-g(\mathbf{x}))^{p} d \mathbf{x} \tag{3.5}\\
& =M^{p} \int_{E_{-}}\left(1-t_{\mathbf{x}}\right)^{p} d \mathbf{x} \\
& =M^{p} \int_{E_{-}} \int_{0}^{\left(1-t_{\mathbf{x}}\right)^{p}} 1 d \theta d \mathbf{x} \\
& =M^{p} \int_{0}^{1} \int_{\left(1-\theta^{\frac{1}{p}}\right)^{d} E_{-}} 1 d \mathbf{x} d \theta
\end{align*}
$$

$$
\begin{aligned}
& =M^{p} \mu\left(E_{-}\right) \int_{0}^{1}\left(1-\theta^{\frac{1}{p}}\right)^{d} d \theta \\
& =M^{p} \mu\left(E_{-}\right) p \int_{0}^{1} t^{d}(1-t)^{p-1} d t \\
& =\binom{p+d}{d}^{-1} \int_{E_{-}} M^{p} .
\end{aligned}
$$

From (3.5) and the trivial inequality $\int_{E_{-}} f^{p} \leq \int_{E_{-}} M^{p}$ we get

$$
\begin{equation*}
\int_{E_{-}} f^{p} \leq\binom{ p+d}{d} \int_{E_{-}}(M-f)^{p} \tag{3.6}
\end{equation*}
$$

$f-M$ and M are positive numbers in E_{+}. Then the convexity of x^{p} gives

$$
\begin{equation*}
\int_{E_{+}} f^{p} \leq 2^{p-1} \int_{E_{+}}(f-M)^{p}+2^{p-1} \int_{E_{+}} M^{p} . \tag{3.7}
\end{equation*}
$$

If we assume that $\mu\left(E_{-}\right)<\frac{1}{2^{d d!}!} \mu(\Pi[\mathbf{0} ; \mathbf{a}])$ then from Lemma 3.1 (with $E=E_{-}$) and the convexity of f we have that $M-f(\mathbf{x}) \leq f(\mathbf{y}(\mathbf{x}))-M(f(\mathbf{s}(\mathbf{x}))=M)$ for any $\mathbf{x} \in E_{-}$. Take the power $p-1$ in the both sides of the last inequality and integrating on $\mathbf{x} \in E_{-}$we obtain

$$
\int_{E_{-}}(M-f(\mathbf{x}))^{p-1} d \mathbf{x} \leq \int_{E_{-}}(f(\mathbf{y}(\mathbf{x}))-M)^{p-1} d \mathbf{x}<\int_{E_{+}}(f(\mathbf{y})-M)^{p-1} d \mathbf{y} .
$$

But this is a contradiction, because from the characterization of the element of best approximation (see [7]) we have

$$
\int_{\Pi[0 ; \mathbf{a}]}(f(\mathbf{x})-M)^{p-1} \operatorname{sign}(f(\mathbf{x})-M) d \mathbf{x}=0 .
$$

Therefore $\mu\left(E_{-}\right) \geq \frac{1}{2^{d} d!} \mu(\Pi[\mathbf{0} ; \mathbf{a}])$ i.e. $\mu\left(E_{+}\right) \leq\left(2^{d} d!-1\right) \mu\left(E_{-}\right)$.
Then using the last one, (3.5), (3.6) and (3.7) we obtain

$$
\begin{equation*}
\int_{E_{+}} f^{p} \leq 2^{p-1} \int_{E_{+}}(f-M)^{p}+2^{p-1}\binom{p+d}{d}\left(2^{d} d!-1\right) \int_{E_{-}}(M-f)^{p} . \tag{3.8}
\end{equation*}
$$

Now from (3.6) and (3.8) it follows

$$
\|f\|_{p(\Pi[0 ; \mathbf{a}])} \leq c\|f-M\|_{p(\Pi[\mathbf{0} \mathbf{;} \mathbf{a})} .
$$

Lemma 3.3 If f is convex in $\Pi[\mathbf{a} ; \mathbf{b}]$ then $E^{-}\left(f, H_{1}\right)_{p(\Pi[\mathbf{a} ; \mathbf{b}])} \leq c E\left(f, H_{1}\right)_{p(\Pi[\mathbf{a} ; \mathbf{b}])}$.

Proof. Without loss of generality we may assume that $f(\mathbf{y})=\liminf _{\mathbf{x} \rightarrow \mathbf{y}} f(\mathbf{x})$ for every boundary point \mathbf{y} of $\Pi[\mathbf{a} ; \mathbf{b}]$. Let $Q(\mathbf{x})$ be the first degree polinomial of best L_{p} approximation
to f. The function $f-Q$ is convex and let its minimum be achieved (from the above assumtion) at the point $\mathbf{u} \in \Pi[\mathbf{a} ; \mathbf{b}]$. Applying Lemma 3.2 to the convex function

$$
g(\mathbf{x})=f(\mathbf{x})-Q(\mathbf{x})-(f(\mathbf{u})-Q(\mathbf{u}))
$$

separately on the parallelepipeds $\Pi[\mathbf{u} ; \alpha \mathbf{a}+(\mathbf{1}-\alpha) \mathbf{b}]$, where $\alpha=\left(\alpha_{1} \ldots \alpha_{d}\right) \in\{0,1\}^{d}$ we have

$$
\|g\|_{p(\Pi[\mathbf{u} ; \alpha \mathbf{a}+(\mathbf{1}-\alpha) \mathbf{b}])} \leq c E\left(g, H_{0}\right)_{p(\Pi[\mathbf{u} ; \alpha \mathbf{a}+(\mathbf{1}-\alpha) \mathbf{b}])} \leq c\|g+(f(\mathbf{u})-Q(\mathbf{u}))\|_{p(\Pi[\mathbf{u} ; \alpha \mathbf{a}+(\mathbf{1}-\alpha) \mathbf{b}])}
$$

for every $\alpha \in\{0,1\}^{d}$.
Now adding the above inequalities raised to the power p and then take the power $\frac{1}{p}$ of the sum we obtain

$$
\|f-Q-(f(\mathbf{u})-Q(\mathbf{u}))\|_{p(\Pi[\mathbf{a} ; \mathbf{b}])} \leq c\|f-Q\|_{p(\Pi[\mathbf{a} ; \mathbf{b}])}=c E\left(f, H_{1}\right)_{p(\Pi[\mathbf{a} ; \mathbf{b}])} .
$$

But $f(\mathbf{x}) \geq Q(\mathbf{x})+f(\mathbf{u})-Q(\mathbf{u})$ and $Q(x)+f(\mathbf{u})-Q(\mathbf{u}) \in H_{1}$. Then

$$
E^{-}\left(f, H_{1}\right)_{p(\Pi[\mathbf{a} ; \mathbf{b}])} \leq\|f-Q-(f(\mathbf{u})-Q(\mathbf{u}))\|_{p(\Pi[\mathbf{a} ; \mathbf{b}])} \leq c E\left(f, H_{1}\right)_{p(\Pi[\mathbf{a} ; \mathbf{b}])} .
$$

In order to get the result for the approximations from below by linear functions we need some statements which are more complificated than in case $d=1$.

Let $A=\mathbf{A}_{1} \ldots \mathbf{A}_{d+1}$ be d-dimensional simplex. If $\mathbf{x} \in A$, then $\mathbf{x}=\sum_{i=1}^{d+1} \alpha_{i}(\mathbf{x}) \mathbf{A}_{i}$, where $\alpha_{i}(\mathbf{x}) \geq 0$ and $\sum_{i=1}^{d+1} \alpha_{i}(\mathbf{x})=1$. $\alpha_{1}(\mathbf{x}), \ldots, \alpha_{d+1}(\mathbf{x})$ are usually called barycentric coordinates of \mathbf{x} with respect to $\mathbf{A}_{1}, \ldots, \mathbf{A}_{d+1}$.

For $n>d$ and $i=1 \ldots n-1$ we consider the following subsets of A

$$
\begin{equation*}
M_{k, i}^{n}=\left\{\mathbf{x} \in A \left\lvert\, \alpha_{k}(\mathbf{x}) \geq \frac{i}{n}\right.\right\} \tag{3.9}
\end{equation*}
$$

Let $i_{k}(\mathbf{x})=\left[\alpha_{k}(\mathbf{x}) n\right]$, i.e. $\alpha_{k}(\mathbf{x}) \in\left[\frac{i_{k}(\mathbf{x})}{n}, \frac{i_{k}(\mathbf{x})+1}{n}\right)$. Using that $\sum_{k=1}^{d+1} \alpha_{k}(\mathbf{x})=1$ we obtain

$$
\begin{equation*}
\sum_{k=1}^{d+1} i_{k}(\mathbf{x}) \in[n-d, n] \tag{3.10}
\end{equation*}
$$

Lemma 3.4 Let $A=\mathbf{A}_{1} \ldots \mathbf{A}_{d+1}$ be d-dimensional simplex on $\mathbb{R}^{d}, \quad p \in[1, \infty), f \in L_{p}(A)$ be non-negative in A and $f\left(\mathbf{A}_{i}\right)=0$ for every $i=1, \ldots, d+1$. Then

$$
\|f\|_{p(A)} \leq c \tau_{2}^{-}(f, A)_{p}
$$

Proof. Let $n>d$ and $i=1, \ldots, n-1$ be integer. We define

$$
\begin{equation*}
D_{\mathbf{x}}^{n, i} f(\mathbf{y}) \stackrel{\text { def }}{=}-i f(\mathbf{y})+n f(\mathbf{x})-(n-i) f\left(\mathbf{y}+\frac{n}{n-i}(\mathbf{x}-\mathbf{y})\right) . \tag{3.11}
\end{equation*}
$$

We need the following inequality

$$
\begin{equation*}
D_{\mathbf{x}}^{n, i} f^{p}\left(\mathbf{A}_{k}\right) \leq\left(D_{\mathbf{x}}^{n, i} f\left(\mathbf{A}_{k}\right)\right)_{+}^{p} \quad \text { for } \mathbf{x} \in M_{k, i}^{n} \tag{3.12}
\end{equation*}
$$

From (3.11) and $f\left(\mathbf{A}_{k}\right)=0$ it follows that

$$
\begin{aligned}
f(\mathbf{x}) & =\frac{1}{n} D_{\mathbf{x}}^{n, i} f\left(\mathbf{A}_{k}\right)+\frac{i}{n} f\left(\mathbf{A}_{k}\right)+\frac{n-i}{n} f\left(\mathbf{A}_{k}+\frac{n}{n-i}\left(\mathbf{x}-\mathbf{A}_{k}\right)\right) \\
& =\frac{1}{n} D_{\mathbf{x}}^{n, i} f\left(\mathbf{A}_{k}\right)+\frac{i-1}{n} f\left(\mathbf{A}_{k}\right)+\frac{n-i}{n} f\left(\mathbf{A}_{k}+\frac{n}{n-i}\left(\mathbf{x}-\mathbf{A}_{k}\right)\right)
\end{aligned}
$$

Hence the trivial inequality $D_{\mathbf{x}}^{n, i} f\left(\mathbf{A}_{k}\right) \leq\left(D_{\mathbf{x}}^{n, i} f\left(\mathbf{A}_{k}\right)\right)_{+}$and convexity of x^{p} for $p \geq 1$ give

$$
\begin{aligned}
f^{p}(\mathbf{x}) & \leq\left(\frac{1}{n}\left(D_{\mathbf{x}}^{n, i} f\left(\mathbf{A}_{k}\right)\right)_{+}+\frac{i-1}{n} f\left(\mathbf{A}_{\mathbf{k}}\right)+\frac{n-i}{n} f\left(\mathbf{A}_{k}+\frac{n}{n-i}\left(\mathbf{x}-\mathbf{A}_{k}\right)\right)\right)^{p} \\
& \leq \frac{1}{n}\left(D_{\mathbf{x}}^{n, i} f\left(\mathbf{A}_{k}\right)\right)_{+}^{p}+\frac{i-1}{n} f^{p}\left(\mathbf{A}_{k}\right)+\frac{n-i}{n} f^{p}\left(\mathbf{A}_{\mathbf{k}}+\frac{n}{n-i}\left(\mathbf{x}-\mathbf{A}_{k}\right)\right) .
\end{aligned}
$$

Also from (3.11) and $f^{p}\left(\mathbf{A}_{k}\right)=0$ it follows that

$$
\begin{aligned}
f^{p}(\mathbf{x}) & =\frac{1}{n} D_{\mathbf{x}}^{n, i} f^{p}\left(\mathbf{A}_{k}\right)+\frac{i}{n} f^{p}\left(\mathbf{A}_{k}\right)+\frac{n-i}{n} f^{p}\left(\mathbf{A}_{k}+\frac{n}{n-i}\left(\mathbf{x}-\mathbf{A}_{k}\right)\right) \\
& =\frac{1}{n} D_{\mathbf{x}}^{n, i} f^{p}\left(\mathbf{A}_{k}\right)+\frac{i-1}{n} f^{p}\left(\mathbf{A}_{k}\right)+\frac{n-i}{n} f^{p}\left(\mathbf{A}_{k}+\frac{n}{n-i}\left(\mathbf{x}-\mathbf{A}_{k}\right)\right) .
\end{aligned}
$$

The last two inequalities prove (3.12). Using (3.9), (3.10) and (3.12) we derive

$$
\begin{align*}
& \sum_{k=1}^{d+1} \sum_{i=1}^{n-1} \int_{M_{k, i}^{n}}\left(D_{\mathbf{x}}^{n, i} f\left(\mathbf{A}_{k}\right)\right)_{+}^{p} d \mathbf{x} \tag{3.13}\\
& \geq \sum_{k=1}^{d+1} \sum_{i=1}^{n-1} \int_{M_{k, i}^{n}} n f^{p}(\mathbf{x})-(n-i) f^{p}\left(\mathbf{A}_{k}+\frac{n}{n-i}\left(\mathbf{x}-\mathbf{A}_{k}\right)\right) d \mathbf{x} \\
& =n\left(\sum_{k=1}^{d+1} \sum_{i=1}^{n-1} \int_{M_{k, i}^{n}} f^{p}(\mathbf{x}) d \mathbf{x}-(d+1) \sum_{i=1}^{n-1}\left(\frac{n-i}{n}\right)^{d+1} \int_{A} f^{p}(\mathbf{x}) d \mathbf{x}\right) \\
& =n\left(\sum_{k=1}^{d+1} \sum_{i=1}^{n-1} i \int_{M_{k, i}^{n}} f^{p}(\mathbf{x}) d \mathbf{x}-(d+1) \sum_{i=1}^{n-1}\left(\frac{i}{n}\right)^{d+1} \int_{A} f^{p}(\mathbf{x}) d \mathbf{x}\right) \\
& =n\left(\sum_{k=1}^{d+1} \int_{A} i_{k}(\mathbf{x}) f^{p}(\mathbf{x}) d \mathbf{x}-(d+1) n \sum_{i=1}^{n-1} \frac{1}{n}\left(\frac{i}{n}\right)^{d+1} \int_{A} f^{p}(\mathbf{x}) d \mathbf{x}\right) \\
& \geq n\left((n-d)-(d+1) n \int_{0}^{1} t^{d+1} d t\right) \int_{A} f^{p}(\mathbf{x}) d \mathbf{x} \\
& =n \frac{n-d(d+2)}{d+2} \int_{A} f^{p}(\mathbf{x}) d \mathbf{x} .
\end{align*}
$$

Here in third line we use that the map $\mathbf{x} \mapsto \mathbf{A}_{k}+\frac{n}{n-i}\left(\mathbf{x}-\mathbf{A}_{k}\right)$ is affine with a center on \mathbf{A}_{k} and stretchs the simplex $M_{k, i}^{n}$ to the simplex A.

Immediately from (3.11) (the definition of $D_{\mathbf{x}}^{n, i} f(\mathbf{y})$) we have

$$
D_{\mathbf{x}}^{n, 1} f(\mathbf{y})=\sum_{j=1}^{n-1} j \tilde{\Delta}_{\frac{\mathbf{x}-\mathbf{y}}{n-1}}^{2} f\left(\mathbf{y}+j \frac{\mathbf{x}-\mathbf{y}}{n-1}\right)
$$

and

$$
D_{\mathbf{x}}^{n, i} f(\mathbf{y})=i D_{\mathbf{x}}^{n-i+1,1} f(\mathbf{y})+(n-i) D_{\mathbf{y}+\frac{n-i+1}{n-i}(\mathbf{x}-\mathbf{y})}^{i, 1} f\left(\mathbf{y}+\frac{n}{n-i}(\mathbf{x}-\mathbf{y})\right)
$$

Hence

$$
D_{\mathbf{x}}^{n, i} f(\mathbf{y})=i \sum_{s=1}^{n-i} s \tilde{\Delta}_{\frac{\mathbf{x}-\mathbf{y}}{n-i}}^{2} f\left(\mathbf{y}+s \frac{\mathbf{x}-\mathbf{y}}{n-i}\right)+(n-i) \sum_{s=n-i+1}^{n-1}(n-s) \tilde{\Delta}_{\frac{\mathbf{x}-\mathbf{y}}{n-i}}^{2} f\left(\mathbf{y}+s \frac{\mathbf{x}-\mathbf{y}}{n-i}\right) .
$$

Using the above equality, (3.12) and the definition (1.6) we obtain

$$
\begin{align*}
& \left\{\sum_{k=1}^{d+1} \sum_{i=1}^{n-1} \int_{M_{k, i}^{n}}\left(D_{\mathbf{x}}^{n, i} f\left(\mathbf{A}_{k}\right)\right)_{+}^{p} d \mathbf{x}\right\}^{\frac{1}{p}} \tag{3.14}\\
& \leq \sum_{k=1}^{d+1} \sum_{i=1}^{n-1}\left\{\int_{M_{k, i}^{n}}\left(D_{\mathbf{x}}^{n, i} f\left(\mathbf{A}_{k}\right)\right)_{+}^{p} d \mathbf{x}\right\}^{\frac{1}{p}} \\
& \leq \sum_{k=1}^{d+1} \sum_{i=1}^{n-1}\left(i \sum_{s=1}^{n-1} s\left\{\int_{M_{k, i}^{n}}\left(\tilde{\Delta}_{\frac{x-\mathbf{A}_{k}}{n-i}}^{2} f\left(\mathbf{A}_{k}+s \frac{\mathbf{x}-\mathbf{A}_{k}}{n-i}\right)\right)_{+}^{p} d \mathbf{x}\right\}^{\frac{1}{p}}\right. \\
& \left.+(n-i) \sum_{s=n-i+1}^{n-1}(n-s)\left\{\int_{M_{k, i}^{n}}\left(\tilde{\Delta}_{\frac{\mathbf{x}-\mathbf{A}_{k}}{n-i}}^{2} f\left(\mathbf{A}_{k}+s \frac{\mathbf{x}-\mathbf{A}_{k}}{n-i}\right)\right)_{+}^{p} d \mathbf{x}\right\}^{\frac{1}{p}}\right) \\
& \leq \sum_{k=1}^{d+1} \sum_{i=1}^{n-1}\left(i \sum_{s=1}^{n-i} s\left\{\int_{M_{k, i}^{n}}\left(\sup \left\{\left.\tilde{\Delta}_{\mathbf{h}, A}^{2} f\left(\mathbf{A}_{k}+s \frac{\mathbf{x}-\mathbf{A}_{k}}{n-i}\right) \right\rvert\, \mathbf{h} \in \mathbb{R}^{d}\right\}\right)^{p} d \mathbf{x}\right\}^{\frac{1}{p}}\right. \\
& \left.+(n-i) \sum_{s=n-i+1}^{n-1}(n-s)\left\{\int_{M_{k, i}^{n}}\left(\sup \left\{\left.\tilde{\Delta}_{\mathbf{h}, A}^{2} f\left(\mathbf{A}_{k}+s \frac{\mathbf{x}-\mathbf{A}_{k}}{n-i}\right) \right\rvert\, \mathbf{h} \in \mathbb{R}^{d}\right\}\right)^{p} d \mathbf{x}\right\}^{\frac{1}{p}}\right) \\
& =\sum_{k=1}^{d+1} \sum_{i=1}^{n-1}\left(i \sum_{s=1}^{n-1} s\left(\frac{n-i}{s}\right)^{\frac{d}{p}}\left\{\int_{M_{k, n-s}^{n}}\left(\sup \left\{\tilde{\Delta}_{\mathbf{h}, A}^{2} f(\mathbf{x}) \mid \mathbf{h} \in \mathbb{R}^{d}\right\}\right)^{p} d \mathbf{x}\right\}^{\frac{1}{p}}\right. \\
& \left.+(n-i) \sum_{s=n-i+1}^{n-1}(n-s)\left(\frac{n-i}{s}\right)^{\frac{d}{p}}\left\{\int_{M_{k, n-s}^{n}}\left(\sup \left\{\tilde{\Delta}_{\mathbf{h}, A}^{2} f(\mathbf{x}) \mid \mathbf{h} \in \mathbb{R}^{d}\right\}\right)^{p} d \mathbf{x}\right\}^{\frac{1}{p}}\right) \\
& \leq\left[\sum_{k=1}^{d+1} \sum_{i=1}^{n-1}\left(i \sum_{s=1}^{n-i} s\left(\frac{n-i}{s}\right)^{\frac{d}{p}}+(n-i) \sum_{s=n-i+1}^{n-1}(n-s)\left(\frac{n-i}{s}\right)^{\frac{d}{p}}\right)\right] \\
& \times\left\{\int_{A}\left(\sup \left\{\tilde{\Delta}_{\mathbf{h}, A}^{2} f(\mathbf{x}) \mid \mathbf{h} \in \mathbb{R}^{d}\right\}\right)^{p} d \mathbf{x}\right\}^{\frac{1}{p}} \\
& \leq c_{n} \tau_{2}^{-}(f, A)_{p}
\end{align*}
$$

The inequalites (3.13) and (3.14) with $n=(d+1)^{2}$ prove the lemma.

Let $U \subset \mathbb{R}^{d}$ be a polytope and let $f \in L_{p}(U)(p \in[1, \infty))$ be bounded from below. We set

$$
\begin{equation*}
C_{U} f(\mathbf{x}) \stackrel{\text { def }}{=} \inf \left\{\sum_{i=1}^{d+1} \alpha_{i} f\left(\mathbf{x}_{i}\right) \mid \mathbf{x}=\sum_{i=1}^{d+1} \alpha_{i} \mathbf{x}_{i}, \sum_{i=1}^{d+1} \alpha_{i}=1, \alpha_{i} \geq 0, \mathbf{x}_{i} \in U, i=1, \ldots, d+1\right\} . \tag{3.15}
\end{equation*}
$$

Immediately from (3.15) and [6] we have
(3.16) $C_{U} f$ is convex on U, continuous on every open subset of U and Lipschitz function on every compact subset of the interior of U;
If h is convex and is majorized by f on U then $h(\mathbf{x}) \leq C_{U} f(\mathbf{x})$ for all $\mathbf{x} \in U$, i.e. $C_{U} f$ is the biggest convex minorant of f in U.

For $g: U \rightarrow \mathbb{R}$, let epigraph of g be the set $\operatorname{epi}(g)=\left\{(\mathbf{x}, t) \in \mathbb{R}^{d+1} \mid \mathbf{x} \in U, t \geq g(\mathbf{x})\right\}$. We say $\mathbf{x} \in U$ is extreme with respect to the convex function g if $g(\mathbf{x})<\infty$ and g is not linear on any relatively open segment containing \mathbf{x}. Hence \mathbf{x} is extreme with respect to g if and only if $(\mathbf{x}, g(\mathbf{x}))$ is an extreme point of epi(g).

Let $E P(g) \subset U$ be the set of extreme points with respect to the convex function g. Then from (3.15) and (3.17) it follows that
(3.18) for any positive ϵ and for any $\mathbf{x} \in E P\left(C_{U} f\right)$ there exists $\mathbf{y} \in U$, such that $\|\mathbf{x}-\mathbf{y}\|<\epsilon$ and $\left|f(\mathbf{y})-C_{U} f(\mathbf{x})\right|<\epsilon$.

Lemma 3.5 Let $\Pi=\Pi[\mathbf{a} ; \mathbf{b}]$ and $f \in L_{p}(\Pi)(p \in[1, \infty))$ be bounded from below. Then

$$
\left\|f-C_{\Pi} f\right\|_{p(\Pi)} \leq \tau_{2}^{-}(f, \Pi)_{p}
$$

Proof. We denote with $\mathbf{A}_{1}, \ldots, \mathbf{A}_{2^{d}}$ the vertices of Π. From (3.15) it follows that $\inf \{f(\mathbf{y}) \mid \mathbf{y} \in \Pi\} \leq C_{\Pi} f(\mathbf{x}) \leq f(\mathbf{x})$ for every $\mathbf{x} \in \Pi$ and hence $f-C_{\Pi} f \in L_{p}(\Pi)$.

Let ϵ be arbitrary positive. From the absolute continuity of the Lebesgue integral there is a positive $\eta<\frac{1}{2} \min \left\{\max \left\{a_{i} ; b_{i}\right\}-\min \left\{a_{i} ; b_{i}\right\} \mid i=1, \ldots, d\right\}$, such that

$$
\begin{equation*}
\left\|f-C_{\Pi} f\right\|_{p(\Pi \backslash \Pi(\eta))} \leq \epsilon, \tag{3.19}
\end{equation*}
$$

where $\Pi(\eta)=\Pi[\mathbf{c} ; \mathbf{h}], c_{i} \xlongequal{\text { def }} \min \left\{a_{i} ; b_{i}\right\}+\eta$ and $h_{i} \xlongequal{\text { def }} \max \left\{a_{i} ; b_{i}\right\}-\eta$ for every $i=1, \ldots, d$.
The set $\Pi(\eta)$ is compact subset of the interior of Π and then (3.16) gives that there exists a positive constant L such that

$$
\begin{equation*}
\left|C_{\Pi} f(\mathbf{x})-C_{\Pi} f(\mathbf{y})\right| \leq L\|\mathbf{x}-\mathbf{y}\| \text { for any two points } \mathbf{x}, \mathbf{y} \in \Pi(\eta) \tag{3.20}
\end{equation*}
$$

For $i=1, \ldots, d$ we set $n_{i} \stackrel{\text { def }}{=}\left[\epsilon \frac{\left|h_{i}-c_{i}\right|}{3 L}\right]+1$ and let $\mathbb{Z}(\epsilon) \stackrel{\text { def }}{=}\left\{\mathbf{j} \in \mathbb{Z}^{d} \mid j_{i} \in\left[0, n_{i}\right], i=1, \ldots, d\right\}$. For every $\mathbf{j} \in \mathbb{Z}(\epsilon)$ we set $\mathbf{z}_{\mathbf{j}} \stackrel{\text { def }}{=}\left(c_{1}+j_{1} \frac{\left(h_{1}-c_{1}\right)}{n_{1}}, \ldots, c_{d}+j_{d} \frac{\left(h_{d}-c_{d}\right)}{n_{d}}\right) \in \Pi(\eta)$.

As a corollary from the theorem of J.-C. Aggeri (Krein-Milman's type theorem for convex functions (see [1])) we derive that for every $\mathbf{x} \in \Pi(\eta)$ and every $\delta>0$ there exist points $\mathbf{y}_{i}(\mathbf{x}, \delta) \in$ $E P\left(C_{\Pi} f\right) i=1, \ldots, d+1$ with $\mathbf{x}=\sum_{i=1}^{d+1} \alpha_{i} \mathbf{y}_{i}(\mathbf{x}, \delta)$,
$\sum_{i=1}^{d+1} \alpha_{i}=1, \alpha_{i} \geq 0$ for which $C_{\Pi} f(\mathbf{x}) \geq \sum_{i=1}^{d+1} \alpha_{i} C_{\Pi} f\left(\mathbf{y}_{i}(\mathbf{x}, \delta)\right)-\delta$.
Let $E P(\epsilon) \stackrel{\text { def }}{=}\left\{\left.\mathbf{y}_{i}\left(\mathbf{z}_{\mathbf{j}}, \frac{\epsilon}{3}\right) \right\rvert\, i=1, \ldots, d+1, \mathbf{j} \in \mathbb{Z}(\epsilon)\right\}$.
This is a $m-$ points set where $m \leq(d+1) \prod_{i=1}^{d}\left(n_{i}+1\right)$.
We define

$$
s_{1}(\mathbf{x}) \stackrel{\text { def }}{=} \min \left\{\sum_{i=1}^{d+1} \alpha_{i} C_{\Pi} f\left(\mathbf{a}_{i}\right) \mid \mathbf{x}=\sum_{i=1}^{d+1} \alpha_{i} \mathbf{a}_{i}, \sum_{i=1}^{d+1} \alpha_{i}=1, \alpha_{i} \geq 0, \mathbf{a}_{i} \in E P(\epsilon)\right\} .
$$

This is a first degree convex interpolation spline for $C_{\Pi} f$ with knots in $E P(\epsilon)$.
For every $\mathbf{x} \in \Pi(\eta)$ we have that there exist set of points $\left\{\mathbf{z}_{\mathbf{j}(\mathbf{x}, i)}\right\}_{i=1}^{d+1}$, such that $\mathbf{x}=\sum_{i=1}^{d+1} \alpha_{i} \mathbf{z}_{\mathbf{j}(\mathbf{x}, i)}, \quad \sum_{i=1}^{d+1} \alpha_{i}=1, \alpha_{i} \geq 0, \mathbf{j}(\mathbf{x}, i) \in \mathbb{Z}(\epsilon)$ and $\left|\mathbf{z}_{\mathbf{j}(\mathbf{x}, i)}-\mathbf{x}\right| \leq \frac{\epsilon}{3 L}$ for $i=1, \ldots, d+1$ For this points (3.20) gives

$$
\left|C_{\Pi} f(\mathbf{x})-C_{\Pi} f\left(\mathbf{z}_{\mathbf{j}(\mathbf{x}, i)}\right)\right| \leq \frac{\epsilon}{3} \forall i=1, \ldots, d+1
$$

Using the definitions of $s_{1}(\mathbf{x}), E P(\epsilon)$, the points $\left\{\mathbf{z}_{\mathbf{j}(\mathbf{x}, i)}\right\}_{i=1}^{d+1}$ and the last inequality we obtain

$$
\begin{aligned}
0 \leq s_{1}(\mathbf{x})-C_{\Pi} f(\mathbf{x}) & \leq \sum_{i=1}^{d+1} \alpha_{i} \sum_{k=1}^{d+1} \alpha_{i, k} C_{\Pi} f\left(\mathbf{y}_{k}\left(\mathbf{z}_{\mathbf{j}(\mathbf{x}, i)}, \frac{\epsilon}{3}\right)\right)-C_{\Pi} f(\mathbf{x}) \\
& \leq \sum_{i=1}^{d+1} \alpha_{i}\left(C_{\Pi} f\left(\mathbf{z}_{\mathbf{j}(\mathbf{x}, i)}\right)+\frac{\epsilon}{3}\right)-C_{\Pi} f(\mathbf{x}) \\
& \leq \sum_{i=1}^{d+1} \alpha_{i}\left(\left(C_{\Pi} f(\mathbf{x})+\frac{\epsilon}{3}\right)+\frac{\epsilon}{3}\right)-C_{\Pi} f(\mathbf{x}) \\
& \leq \epsilon \frac{2}{3}
\end{aligned}
$$

Using s_{1} and (3.18) we can find a first degree interpolation spline $s(\mathbf{x})$ with knots $\left\{\mathbf{y}_{1}, \ldots, \mathbf{y}_{m}\right\} \in \Pi$ such that $C_{\Pi} f(\mathbf{x}) \leq s(\mathbf{x}) \leq C_{\Pi} f(\mathbf{x})+\epsilon$ for $\mathbf{x} \in \Pi(\eta)$ and $f\left(\mathbf{y}_{i}\right)=s\left(\mathbf{y}_{i}\right)$, $i=1, \ldots, m$.

Suppose $\Pi(\eta) \subset \cup_{i=1}^{k} D_{i}$ where $D_{i}=\mathbf{y}_{i_{1}} \ldots \mathbf{y}_{i_{d+1}}$ are d-dimensional simplecies with $\left\{\mathbf{y}_{i_{1}}, \ldots, \mathbf{y}_{i_{d+1}}\right\} \subset\left\{\mathbf{y}_{1}, \ldots, \mathbf{y}_{m}\right\}$ and the restrictions of $s(\mathbf{x})$ on D_{i} are affine functions.
Then from (3.19)

$$
\begin{align*}
\left\|f-C_{\Pi} f\right\|_{p(\Pi)}^{p} & =\left\|f-C_{\Pi} f\right\|_{p(\Pi(\eta))}^{p}+\left\|f-C_{\Pi} f\right\|_{p(\Pi \backslash \Pi(\eta))}^{p} \tag{3.21}\\
& \leq \sum_{i=1}^{k}\left\|f-C_{\Pi} f\right\|_{p\left(D_{i} \cap \Pi(\eta)\right)}^{p}+\epsilon^{p} .
\end{align*}
$$

Using the definitions of $C_{\Pi} f$ and s, trivial equality $(f-s)=(f-s)_{+}-(s-f)_{+}$, applying Lemma 3.4 to $(f-s)_{+}$in D_{i} and properties (3.1), (3.2) and (3.4), we get

$$
\begin{equation*}
\left\|f-C_{\Pi} f\right\|_{p\left(D_{i} \cap \Pi(\eta)\right)} \leq\|f-s\|_{p\left(D_{i} \cap \Pi(\eta)\right)}+\left\|s-C_{\Pi} f\right\|_{p\left(D_{i} \cap \Pi(\eta)\right)} \tag{3.22}
\end{equation*}
$$

$$
\begin{aligned}
& \leq\left\|(f-s)_{+}\right\|_{p\left(D_{i} \cap \Pi(\eta)\right)}+\left\|(s-f)_{+}\right\|_{p\left(D_{i} \cap \Pi(\eta)\right)}+\epsilon \mu\left(D_{i} \cap \Pi(\eta)\right)^{\frac{1}{p}} \\
& \leq\left\|(f-s)_{+}\right\|_{p\left(D_{i}\right)}+\left\|(s-f)_{+}\right\|_{p\left(D_{i} \cap \Pi(\eta)\right)}+\epsilon \mu\left(D_{i} \cap \Pi(\eta)\right)^{\frac{1}{p}} \\
& \leq c \tau_{2}^{-}\left((f-s)_{+}, D_{i}\right)_{p}+\left\|s-C_{\Pi} f\right\|_{p\left(D_{i} \cap \Pi(\eta)\right)}+\epsilon \mu\left(D_{i} \cap \Pi(\eta)\right)^{\frac{1}{p}} \\
& \leq c \tau_{2}^{-}\left((f-s), D_{i}\right)_{p}+2 . \epsilon \mu\left(D_{i} \cap \Pi(\eta)\right)^{\frac{1}{p}} \\
& \leq c \tau_{2}^{-}\left((f-s), D_{i}\right)_{p}+2 . \epsilon \mu\left(D_{i}\right)^{\frac{1}{p}} \\
& \leq c \tau_{2}^{-}\left(f, D_{i}\right)_{p}+2 \epsilon \mu\left(D_{i}\right)^{\frac{1}{p}} .
\end{aligned}
$$

The inequalities (3.21) and (3.22) give

$$
\begin{aligned}
\left\|f-C_{\Pi} f\right\|_{p(\Pi)} & \leq c\left\{\sum_{i=1}^{k}\left(\tau_{2}^{-}\left(f, D_{i}\right)_{p}+2 \epsilon \mu\left(D_{i}\right)^{\frac{1}{p}}\right)^{p}\right\}^{\frac{1}{p}}+\epsilon \\
& \leq c\left\{\sum_{i=1}^{k} \tau_{2}^{-}\left(f, D_{i}\right)_{p}^{p}\right\}^{\frac{1}{p}}+2 \epsilon\left(\sum_{i=1}^{k} \mu\left(D_{i}\right)\right)^{\frac{1}{p}}+\epsilon \\
& \leq c \tau_{2}^{-}(f, \Pi)_{p}+(2 \mu(\Pi)+1) \epsilon \\
& \leq c\left(\tau_{2}^{-}(f, \Pi)_{p}+\epsilon\right) .
\end{aligned}
$$

Lemma 3.5 is proved.

Lemma 3.6 Under the assumtion of Lemma 3.5 we have

$$
E^{-}\left(f, H_{1}\right)_{p(\Pi)} \sim E\left(f, H_{1}\right)_{p(\Pi)}+\tau_{2}^{-}(f, \Pi)_{p} .
$$

Proof. The inequality $C_{\Pi} f \leq f$ implies

$$
E^{-}\left(f, H_{1}\right)_{p(\Pi)} \leq E^{-}\left(C_{\Pi} f, H_{1}\right)_{p(\Pi)}+\left\|f-C_{\Pi} f\right\|_{p(\Pi)} .
$$

Lemma 3.3 applied to $C_{\Pi} f$ gives

$$
E^{-}\left(C_{\Pi} f, H_{1}\right)_{p(\Pi)} \leq c E\left(C_{\Pi} f, H_{1}\right)_{p(\Pi)} .
$$

Combining the above two inequalities and

$$
E\left(C_{\Pi} f, H_{1}\right)_{p(\Pi)} \leq E\left(f, H_{1}\right)_{p(\Pi)}+\left\|f-C_{\Pi} f\right\|_{p(\Pi)}
$$

we prove the direct inequality in view of Lemma 3.5. In order to get the other direction of the equivalence in Lemma 3.6 we estimate both terms of its right-hand side by $E^{-}\left(f, H_{1}\right)_{p(\Pi)}$. Obviously $E\left(f, H_{1}\right)_{p(\Pi)} \leq E^{-}\left(f, H_{1}\right)_{p(\Pi)}$. Let $Q \in H_{1}$ be such that $f \geq Q$ and $E^{-}\left(f, H_{1}\right)_{p(\Pi)}=\|f-Q\|_{p(\Omega)}$. From the property (3.1) we have

$$
\tau_{2}^{-}(f, \Pi)_{p}=\tau_{2}^{-}(f-Q, \Pi)_{p} \leq 2\|f-Q\|_{p(\Pi)}=2 E^{-}\left(f, H_{1}\right)_{p(\Pi)} .
$$

Hence

$$
E\left(f, H_{1}\right)_{p(\Pi)}+\tau_{2}^{-}(f, \Pi)_{p} \leq 3 E^{-}\left(f, H_{1}\right)_{p(\Pi)} .
$$

Proof of Theorem 1.3(II). Using that $E\left(f, H_{r-1}\right)_{p(\Pi)} \sim \omega_{r}(f, \Pi)_{p}$ (see[4]), as a corollary from the last lemma we obtain Theorem 1.3(II). Here the result for $p=\infty$ is trivial.

Proof of Theorem 1.7. From the definition we have that the almost midconvex function is bounded from above. Then Theorem 1.7 follows from Lemma 3.5.

4 Main results.

Proof of Theorem 1.5.

Here we use the ideas from [1]. Utilizing Theorem 1.3(I) and Theorem 1.2 we obtain a characterization of $K^{-}\left(f, \Psi(t), L_{p}, W_{p}^{1}, W_{p}^{l_{1}}\right)$. We demonstrate the proof in the more complicated case- $r=2$.

Using $K_{2}^{-}(f, \rho t) \leq \max \left\{1, \rho^{l_{2}}\right\} K_{2}^{-}(f, t)$ for $\rho>0$, Theorem 1.2, Theorem 1.3(II), Theorem 1.4 (with $r=2, \pi=\frac{1}{2} B(t, \mathbf{x}), \Pi=U(t, \mathbf{x})$ and $R=2$), (1.8) and (1.9) we have

$$
\begin{align*}
& K_{2}^{-}(f, t)_{p} \sim K_{2}^{-}(f, \rho t)_{p} \tag{4.1}\\
& \sim\left\|\Psi(t, \cdot)^{-\frac{1}{p}} E^{-}\left(f, H_{r-1}\right)_{p(U(t, \cdot))}\right\|_{p(\Omega)} \\
& \sim\left\|\Psi(t, \cdot)^{-\frac{1}{p}}\left\{\omega_{2}(f, U(\rho t, \cdot))_{p}+\tau_{2}^{-}(f, U(\rho t, \cdot))_{p}\right\}\right\|_{p(\Omega)} \\
& \sim\left\|\Psi(t, \cdot)^{-\frac{1}{p}}\left\{\tau_{2}\left(f, \frac{1}{2} B(\rho t, \cdot)\right)_{p, p(U(\rho t, \cdot))}+\tau_{2}^{-}(f, U(\rho t, \cdot))_{p}\right\}\right\|_{p(\Omega)} \\
& \sim\left\|\Psi(t, \cdot)^{-\frac{1}{p}}\left\{\int_{U(\rho t, \cdot)} \Psi(\rho t, \cdot)^{-1} \int_{\frac{1}{2} B(\rho t, \cdot)}\left|\Delta_{\mathbf{v}, U(\rho t, \cdot)}^{2} f(\mathbf{y})\right|^{p} d \mathbf{v} d \mathbf{y}\right\}^{\frac{1}{p}}\right\|_{p(\Omega)} \\
& +\left\|\Psi(t, \cdot)^{-\frac{1}{p}}\left\{\int_{U(\rho t, \cdot)}\left[\sup \left\{\tilde{\Delta}_{\mathbf{h}, U(\rho t,)}^{2} f(\mathbf{y}) \mid \mathbf{h} \in \mathbb{R}^{d}\right\}\right]^{p} d \mathbf{y}\right\}^{\frac{1}{p}}\right\|_{p(\Omega)} .
\end{align*}
$$

From (2.4) with $d=1$ and the definitions of $\Psi(t, \mathbf{x})$ and $U(t, \mathbf{x})$ (see also [2], Lemma 3) we have

$$
\begin{array}{llll}
\Psi\left(\frac{1}{6} t, \mathbf{x}\right) \leq \Psi(t, \mathbf{y}) & \text { for every } & \mathbf{y} \in U\left(\frac{1}{6} t, \mathbf{x}\right) \text { and } \quad \mathbf{x} \in \Omega \quad \text { and } \\
\Psi(t, \mathbf{y}) \leq \Psi(4 t, \mathbf{x}) & \text { for every } \quad \mathbf{y} \in U(t, \mathbf{x}) \text { and } \quad \mathbf{x} \in \Omega \tag{4.3}
\end{array}
$$

Then using (2.3), (2.4), (4.2) and Lemma 2.1 we get

$$
\begin{aligned}
& \left\|\Psi(t, \cdot)^{-\frac{1}{p}}\left\{\int_{U\left(\frac{1}{6} t, \cdot\right)} \Psi\left(\frac{1}{6} t, \cdot\right)^{-1} \int_{\frac{1}{2} B\left(\frac{1}{6} t,\right)}\left|\Delta_{\mathbf{v}, U\left(\frac{1}{6} t,\right)}^{2} f(\mathbf{y})\right|^{p} d \mathbf{v} d \mathbf{y}\right\}^{\frac{1}{p}}\right\|_{p(\Omega)} \\
& \leq c\left\|\Psi(t, \cdot)^{-\frac{1}{p}}\left\{\int_{U\left(\frac{1}{6} t, \cdot\right)} \Psi(t, \mathbf{y})^{-1} \int_{\frac{1}{2} B(t, \mathbf{y})}\left|\Delta_{\mathbf{v}, U(t, \mathbf{y})}^{2} f(\mathbf{y})\right|^{p} d \mathbf{v} d \mathbf{y}\right\}^{\frac{1}{p}}\right\|_{p(\Omega)} \\
& \sim\left\|\Psi\left(\frac{1}{6} t, \cdot\right)^{-\frac{1}{p}}\left\{\int_{U\left(\frac{1}{6} t, \cdot\right)} \Psi(t, \mathbf{y})^{-1} \int_{\frac{1}{2} B(t, \mathbf{y})}\left|\Delta_{\mathbf{v}, U(t, \mathbf{y})}^{2} f(\mathbf{y})\right|^{p} d \mathbf{v} d \mathbf{y}\right\}^{\frac{1}{p}}\right\|_{p(\Omega)} \\
& \sim \tau_{2}(f, \Psi(t))_{p, p(\Omega)} .
\end{aligned}
$$

Using the same arguments we have that

$$
\left\|\Psi(t, \cdot)^{-\frac{1}{p}}\left\{\int_{U\left(\frac{1}{6} t,\right)} \sup \left\{\left.\tilde{\Delta}_{\mathbf{h}, U\left(\frac{1}{6} t,\right)}^{2} f(\mathbf{y}) \right\rvert\, \mathbf{h} \in \mathbb{R}^{d}\right\}^{p} d \mathbf{y}\right\}^{\frac{1}{p}}\right\|_{p(\Omega)} \leq c \tau_{2}^{-}(f, \Psi(t))_{p(\Omega)} .
$$

Then from (4.1) with $\rho=\frac{1}{6}$ we get the inequality

$$
K^{-}\left(f, \Psi(t), L_{p}, W_{p}^{2}, W_{p}^{l_{2}}\right) \leq c\left\{\tau_{2}^{-}(f, \Psi(t))_{p(\Omega)}+\tau_{2}(f, \Psi(t))_{p, p(\Omega)}\right\}
$$

The proof of the opposite inequality is the same. Using Lemma 2.1, (4.3) and (2.4) we get

$$
\begin{aligned}
& \tau_{2}(f, \Psi(t))_{p, p(\Omega)} \\
& \sim\left\|\Psi\left(\frac{1}{2} t, \cdot\right)^{-\frac{1}{p}}\left\{\int_{U\left(\frac{1}{2} t, \cdot\right)} \Psi(t, \mathbf{y})^{-1} \int_{\frac{1}{2} B(t, \mathbf{y})}\left|\Delta_{\mathbf{v}, U(t, \mathbf{y})}^{2} f(\mathbf{y})\right|^{p} d \mathbf{v} d \mathbf{y}\right\}^{\frac{1}{p}}\right\|_{p(\Omega)} \\
& \leq c\left\|\Psi(t, \cdot)^{-\frac{1}{p}}\left\{\int_{U\left(\frac{1}{6} t,\right)} \Psi(t, \mathbf{y})^{-1} \int_{\frac{1}{2} B(t, \mathbf{y})}\left|\Delta_{\mathbf{v}, U(t, \mathbf{y})}^{2} f(\mathbf{y})\right|^{p} d \mathbf{v} d \mathbf{y}\right\}^{\frac{1}{p}}\right\|_{p(\Omega)} \\
& \leq c\left\|\Psi(t, \cdot)^{-\frac{1}{p}}\left\{\int_{U(4 t, \cdot)} \Psi(4 t, \cdot)^{-1} \int_{\frac{1}{2} B(4 t,)}\left|\Delta_{\mathbf{v}, U(4 t,)}^{2} f(\mathbf{y})\right|^{p} d \mathbf{v} d \mathbf{y}\right\}^{\frac{1}{p}}\right\|_{p(\Omega)}
\end{aligned}
$$

In the same way we have that

$$
\tau_{2}^{-}(f, \Psi(t))_{p(\Omega)} \leq c\left\|\Psi(t, \cdot)^{-\frac{1}{p}}\left\{\int_{U(4 t, \cdot)} \sup \left\{\tilde{\Delta}_{\mathbf{h}, U(4 t,)}^{2} f(\mathbf{y}) \mid \mathbf{h} \in \mathbb{R}^{d}\right\}^{p} d \mathbf{y}\right\}^{\frac{1}{p}}\right\|_{p(\Omega)}
$$

Then from (4.1) with $\rho=4$ we get the inequality

$$
\tau_{2}^{-}(f, \Psi(t))_{p(\Omega)}+\tau_{2}(f, \Psi(t))_{p, p(\Omega)} \leq c K^{-}\left(f, \Psi(t), L_{p}, W_{p}^{2}, W_{p}^{l_{2}}\right)
$$

The following result for the unconstrained K-functional is valid (see [4] Theorem 1.3).

Lemma 4.1

$$
c \tau_{r}(f, \Psi(t))_{p, p(\Omega)} \leq K\left(f, \Psi(t), L_{p}, W_{p}^{r}\right) \leq c \tau_{r}(f, \Psi(t))_{p, p(\Omega)}
$$

Proof of Theorem 1.6. Applying Theorem 1.5 together with Theorem 1.1 and Lemma 4.1 we obtain Theorem 1.6.

References

[1] A. Brønsted, Milman's Theorem for Convex Functions. Math. Scand. 19, (1966), 5-10.
[2] V. H. Hristov and K. G. Ivanov, Characterization of Best Approximation from Below and from Above. Proc. of the Conference on Appr. Theory, Kecskemet, (1990).
[3] V. H. Hristov and K. G. Ivanov, Operators for Onesided Approximation by Algebraic Polinomials in $L_{p}\left([-1,1]^{d}\right)$. Mathematica Balcanica (new series) 2,4, (1988), 374-390.
[4] H. Johnen and K. Scherer, On the Equavilance of the K-functional and Moduli of Continuity and some Applications. in "Constructive Theory of Functions of Several Variables ", Id. W. Schampp, K. Zeller, (1977), 119-140.
[5] P. E. Parvanov, Characterization of Best Multivariate Approximatoin from Below and from Above in Terms of K-functional. Mathematica Balcanica (new series), 11, 1-2, (1997), 37-50.
[6] A. W. Roberts and D. E. Varberg, Convex functions,. Academic Press, New York and London, (1973) Sec.41.
[7] A. F. Timan, Theory of Approximatoin of Real variable functions.(in Russian), Fizmatgiz, Moscou, (1960).

