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Abstract

In this paper the constrained K-functionals connected with the best multivariate algebraic
approximations from below and from above are characterized in terms of moduli of smoothness.
The results are a multivariate generalization of those in [2].

1 Introduction.

We consider measurable real-valued bounded (from below or from above) functions defined in
every point of the domain ) = II[ — 1; 1], where

II[a; b] def {x eRrR? | z; € [min{a;, b}, max{a;, b;}]  for every i=1,... ,d}.

R? is considered as a normed vector space with elements x = (z1,...,74), a, b, y, h and norm
|x|| = max{|z1],...,|xq|}. Here 1 and —1 mean respectively (1,...,1) and (—1, ..., —1).
Let X be a measurable subset of (2. We shall consider the following spaces

1
def P
L™ {11 o = { [ oopax)” <o
for p € [1,00) (dx means the Lebesgue measure on X) and

Loo(X) E{S | If ooty = ess sup {|f(x)] ; x € X} < oo},

for p = oo.

a, B are multi-indices. If & = (ay,..,q), as > 0 for any s = 1,...,d, |a| = X%, a; is the
length of a. a > 3 means o, > 3 for any s = 1,...,d, a! = 1%_, ;! and (g) =11, (‘;)

Let r be natural. By W (X) we denote the Sobolev space

d )
€ o o 8(%
Wy (X) dzf{f XD f|rp<x><oo}, where D* =T 7o

la|=r i=1



For v € [—1,1], t > 0 we set ¥(t,v) o tvV/1 —v? + t2. For x € Q we denote ¥(t,x) o

1%, %(t, zs) and Wo(t, x) = o 1%, (¢, z5)*. A t neighbourhood of the point x € Q we define
by

U(t,x) = of {y € Q| |zs —ys| < U(t,x5) for every s=1,...,d}.
Everywhere in this paper ¢ denotes a positive number which may depend on r and d. The c¢'s
may differ at each occurrence. If ¢ depends on another parameter we indicate this using indices.

By H,, we denote the set of all algebraic polinomials in R? of total degree not greater than
n. The best approximations by algebraic polinomials are given by

E(f, Ha)px) = inf {|If = Qllpx) | Q € Hy |

and the best approximations from below or from above by algebraic polinomials are given
respectively by

(1.1) E™(f, Ha)px) © nf {|f = Qllpx) | Q€ Hy , Q< f}
and
(1.2) E*(f, Hy)po) € it {[If = Qllpx) | Q€ Ha , Q> f},

whenever f is bounded from below or from above respectively.
Let | = max { {%} +1, 7“} ([-]— integral part ). We investigate the K-functionals

(1L3) K;(fit)y = K= (f,9(t); L, Wy, W})
“ inf{Hf gl + 3 1Dy | 9<f geW;m)},

|a|=m,l

(L4) K (f1), = K*(f,0);L, W, W})

o inf{||f dllyey + X 1) Dllpey | 9> f . g€ WHQ) }

|a|=r,l
and
r ef a « T
K(f,qJ(t);Lp,wp)d:mf{||f gl + X 1192 (0) D0 |gewp<9>}'
lo|=r

In [5] we prove the following direct and inverse inequalities for the best constrained approximations
in terms of the K-functionals.



Theorem 1.1 Let 1 < p < oo, let r and n be natural, x = “—*“ or “+ < and let f € L,(S2) be
bounded from below or from above respectively. Then we have

(&) E*(f,Hut)piey < K™ (£,0(n71); L, Wy, W)
@) K (£ 0 Ly, Wy, Wh) < e (B (f, Hut)poy + K (£,9(071); L, Wy)) -

This inequalities are the reason for the investigation in this paper.

The main result of this paper Theorem 1.5 is a characterization for r = 1 and r = 2 of
the K-functional (1.3) in terms of appropriate moduli. As a corollary we give a characterization
of the best algebraic approximations from below. Similar results for the K-functional (1.4) and
for the best algebraic approximations from above follow as a corollary from E*(f) = E=(—f) ,
K*(f) = K~ (—f) (with one and the same values of the parameters).

The equivalence between the K-functional from below and a characteristic based on local
approximations from below by algebraic polinomials we give in

Theorem 1.2 Let f € L,(2) (p € [1,00]) be bounded from below and let r be a natural number.
Then

_ -1 _
Kr (f7t)17 ~ ||\Ij(t7) rE (f7 HT—l)p(U(t,~))||p(Q) fOT te (07 ]-]

Remark 1.1. We consider K, (f,t), with argument ¢ € (0, 1] because of Theorem 1.1.
Let U C R? be a convex body. We set

(1.5) wr(f,U)p = sup {1 AL o Ollpwy | b€ R

where )
, af | ALf(x) if x,x+rh € U;
Ahﬂf(x) - { 0 otherwise

and
r def - r—i T :
8410 & 31 () o+ i),
=0
In order to handle the cases of approximations from below for » = 1 and r = 2 we introduce
the following characteristics

(1.6) (£, 0), € [ sup{Ap,f() | heRrYuw
and o .
7 (f U ()p) = IIsup{AL pe /() | he Ry,

where

X of | f(x)—f(x+h) if x, x+heU;
Alll’Uf(X) = { 0 otherwise

and
X def | 2f(x)— f(x+h)— f(x—h) if x—h, x+heU;
A%’Uﬂx) - { 0 otherwise.

We use the above characteristics in the following Whitney-type Theorem



Theorem 1.3 Let f € L,(II) (I =II[a;b], p € [1,00]) is bounded from below. Then

(I) E_<f7 HO)p(H) = Tl_<f7 H)P7
(II) E_<f7 Hl)p(n) ~ w2(f7 H)p + TE(f? H)P

Theorem 1.3 is proved in the Section 3.
Let IT = II[a; b] and 7 = II[c; d] be such that

a+b

(1.7) mC (H — ) C R

for some R > 1, where for U C R? | y € R? and ¢ > 0 we denote

def

U+y<E{xecr? | x—yecU}

and
tU Y (xer? | t'x e U}.

We use the following characteristic of f.

D=

(1.9 Sty & { [ [ 18 soavax)

Here (V') denotes the Lebesgue measure of the measurable set V. A relationship between (1.5)
and (1.8) is established in [4, Sec.3]. The statement is

Theorem 1.4 If (1.7) is satisfied and f € L,(2) (p € [1,00]) then,
et (f, Mppm < wr(f. 1)y < eRTTT(f, 1) (-

We set

B(t,x) ¥ {y e R | |ys| < (t,x,) for every s =1, ...,d} :

In this paper we investigate the following averaged modulus of smoothness

(19) (£ () pote) { Lestf |Ac,gf<x>|pdvdx}p

Using the results from Sections 2, 3, Theorem 1.1 and Theorem 1.4 in Section 4 we give a
characterization of the constrained K-functional in terms of appropriate moduli.

Theorem 1.5

E=(f,9(t), Ly, Wy, W) ~ 71 (f, W(8))piy h=4+1;
K= (f,9(t), Ly, W2, W) ~ 13 (£, 80y + 72l U () )y, L2 = max{2, 4] +1}.



Combining the results of Theorem 1.1 and Theorem 1.5 in Section 4 we give a a characterization
of best approximation from below in terms of appropriate moduli.

Theorem 1.6
E~(f, Ho1)pey < cmp (f, ¥ (n71))pe);

E~(f, Hy1)py) < {75 (f, 0(n™"))p) + 72, ¥ (0 ))ppio}

and forr =1 and r =2

7 (£ D))y < AE(f Hom)p) + 7 (f (07 )ppo }-

In order to prove Theorem 1.3(I1) we obtain some results for convex functions. Let U C R?
be a convex body. A function f : U — R is called almost midconvez if sup{A%’Uf(x) | he
R} = 0 holds for every x € U except a subset of U with a measure zero. As a corollary from
the results in the Section 3 we get

Theorem 1.7 If a function f : Ila;b] — R is almost midconvex then f is equal almost
everywhere to a convex function g and f > g.

2 A characterization of (1.3) in terms of best algebraic
local approximation from below.

Here we use methots which are based on ideas of [2], [3] and [5] and prove Theorem 1.2. We
start with some notations.
Let N be a fixed natural number. We set

z={0,1, ... N—-1}; 727={0, 1, ..., N}*; E={0, 1}%

k
2 = cos(m — WW), k=0,1,...N, 2.1 =2z0=—1, zy;1 =2y = 1.

For every j = (ji1, j2, -, ja) € Z we denote
Q= [z, zp] X o X 25, Zj,41]

and for every j € Z' we denote

Q./] - [Zj1—17 Zj1+1] X X Zgg-1 Zjd—i_l]'



We set u(v) = [g eﬁdu/ Iy et du for 0 < v < 1, p(v) =0 for v <0 and p(v) =1 for
v > 1. Therefore p € C*°(R) and we define

Ho(v) = 1= (v = 20) /(21 = 20));
Hs(0) < (v = 21) /(2 = 20 0)) (L = (v = 2) /(201 = ) for s =1, 2,y N = 1;
pin(v) = u((v = 2n-1)/(2n — 2n-1))-
Finaly for every j € Z' we set y;(x) = I19_, ;. (xs). Therefore for every x € Q we have
(2.1) 0<py(x) <15 py(x) = 04if x¢
(2.2 S = 1
jez’

In the statements below we collect some properties of the above quantities. Let 0 < t <
and N = [27”} + 1. Then we have

1
2

(2.3) U(t,x) < meas(U(t,x)) < 20(t,x);

(2.4) U(t,x) ~ ( y) for everyy € U(t,x);

(2.5) U(t,x) ~V(t,x+y) for everyy € B(t,x);

(2.6) cU(t,x) < meas(%) < cV(t,y) for every x, y € €;
(2.7) Q; CU(t,x) for any x € €.

The inequalities (2.3), (2.4), (2.6) and (2.7) are proved in [3]. (2.5) follows from (2.3), (2.4)
and definition of B(t, x).
We prove first the following

Lemma 2.1 Let 0 <t < % Then for every f € L,(2) we have
1 _

(2.8) ()" » E™(f, Heet)pwpllpe) < K (f, 1)

(2.9) Ko (f o)y < cl[¥(t, ) 2 E-(f, Hr—1)pwe,) llpe)

Proof. Let us begin with the proof of (2.9). We set
2
(2.10) N = [ :] +1

and use the notation for {25, ; and g from the beginning of Section 2. We denote by Q; € H, 4
the polynomial of best algebraic L, approximation from below of degree r — 1 to f in %, j € Z".
We set

(2.11) 9(x) = > mi(x)Q5(x)

jeZ/



From (2.10), (2.11), (2.3), (2.6) and (2.7) we obtain

(2.12) If =glpey = 1122 mf = @l
jez’

< o3 [ 1F60 - Qi) dx
jez' "

= C Z E_(f, Hr_l)p(ﬂl)
jez!

= c)y meas(Qj)_l CET(f, Heoa )y dx
ez s

< ¢ meas(€) CET(f Heo1 ). 4%
jeZ! J

< ¢y i, (W(t,x))"E~(f, Hy 1)y %
jez' "l

“ET(f, Hrfl)Z(U(t,x))dX

-1
< oVt )TPE(f, He)pwiey e

IA
(@)
S
=

Fix o, o] =7 or |a| =1. Let x € €4, j € Z. From the definitions of u(x), Q;j(x) and g(x)

we have

( + Z :uJ+€ Q,H-E( ) Qj (X)) , where

eEE

.TS — . Z.
o ) g ()
s;es=1 Rjs+1 — Zjs 5;€s=0 Zjs+1 Zjs

and then from the last equality and D*Q); = 0, it follows that
« _
-3 ¥ (6) D* g (3) D7 (Qge(x) = Q3())
ecE 0<B<a

Now using (2.6), (2.7), the definitions of y;, Q5 and E and Markov's inequality
(0= a)'llglpfas) < c(r)|9llpfas) for g € H, ) we have

[C ) D llpey) < Ut 2)1DGllpcey)

< WY Y (g)nm%enmmﬁnDﬂ@m—@j>up<sm

ecE 0<f<a

a HM(‘ HooOl
S cV t » % Z Z H [ —Bs HDﬂ (Q,H—e QJ) ||p
ceF 0<B<a s=1 |2,
d
< CZ Z H |st+1 — Zjs BSHDB (Qj+s - Qj) ||p(Qj)
ecE 0<fB<a s=1
< e [1Qjre — Qillpeey)

ecE



IN

¢ (I = Qurelloay + IS = Qilloe)

ccl&
< cE(/, Hr—l)i(g})-

Hence

(2.13) () Dlha) < e3> B (f Hra)ya
/A

= cheas /E (f, H_ 1) dx

jeZ!

-1 _
c Z meas(QJ’-) . E (f, Hr71>§<u<t,x»dx

jeZ! J

c Z / 1B (f, HT—l)Z(U(t,x))dX

jeZ/ Q
c/sz@(tax)) "B (S Hra )y 00X
< Wt )P E(f, He)pwien b

In this way (2.9) follows from (1.3), (2.12) and (2.13).
We turn our attention to (2.8).
Let a = (ay,..,aq), |a| = r be multi-index and z = (z1, ..., 25) € RY. We define

IN

IN

IA

Oé’_

|z H?:l‘zi o

Let IT = II[a; b] and let g € W(II). As a corollary from Theorem 2 and Theorem 1 in [3] we get

(2.14) E~(g.H )y < ¢ Y |(b—a)| [D°glym)

|a|=mr,l

Let g be any function in W}(Q2), g(x) < f(x) , x € Q. Then we have (note that @ < g
implies @ < f)

E~(f, Hi—1)pwex) < E7(9, He-1)pwex) + |f — 9llpwax)

and hence

(215) ||\Ij(ta')7EE_(f7 HT—l)p(U(t,- ||p
1 _1
<Nt )" »E (g, He—1)pwepllpe + 1Y E )7 ILf = gllpwe ) e

Using (2.14), (2.3) and (2.4) we obtain

(2.16) E~ (g, He)pwisxy) < ¢ Y Ux)D%|lpw
la|=r,l

< e >0 19 ) Dllpwisx)-
|a|=m,l



From Lemma 4 in [3] we have that
1
(2.17) =2 (@ )Gl lipe) < cllGllpe)

for G € L,() and t € (0, 3]. Then from (2.16) and (2.17) we get
== IS = gllowen o < lf = gl

_1 _ a «@
107> (&, )E (g, He-)llpweplloe < ¢ D 194t ) Dlpe)

la|=r,l

Hence using (2.15) we get

|a|=mr,l

> (&, IE™(f Hy—1) lpw e e {Hf 9l + 22 (D gllpe }

Taking an infimum on all g € W[ (©2) , g < f in the above inequality we prove (2.8). O

Proof of Theorem 1.2. We have to investigate only the case ¢ € (%, 1], because for t € (0, %]
Theorem 1.2 is equal to Lemma 2.1. Let t € (%, 1]. Then from the definitions of ¥(¢,x) and
U(t,x) it follows that

1977 (t, ) E~(f, He-t)pw ey o) < 4B (f, Ho1)po)
it _ _1 _
< W (5 ) ET (S Hea)pwieo o) < el 77 (&) ET(f He)pwe,n llpe)

—_

2
Hence from Lemma 2.1(2.8) with ¢ = £ and the monotonicity of the K-functional (1.3) with
respect to t we get

_1 B .1 _
™7 (L, ) E(f, Hr—1)pwie,)) llpe) cK; (f@)p <K, (fit)p;

_ _ _1 _
K, (fit)y <cE (f,Hr1)pi) < |82 () E™(f, He1)pw, ) llpe)

IA

3 Whitney-type theorems for best approximations
from below.

We make use of some properties of the moduli which follows immediately from the definition

(3.1) 7. ([,U)p < v || fllpw) forr=1, 2 if f(x) >0 foreveryxecU;
(3.2) 7, (f,U), =0 if f is conver on U ;

(3.3) T (f+eUp =<7 (fU) + 7, (g.U) forr=1, 2;

(3.4 Uy 75 (D where f, {1099 100 2 0

9



Remark 3.1. In (3.1) and (3.3) we use sup{A} , f(x) | heR¥} > Ay, f(x)=0.

Remark 3.2. 7, (f—g,U), < 7. (f,U), + 7, (g9, U), is not true in general. For example d = 1,
r=2U=[-1,1], f(z) = const and g(x) = 2.

Remark 3.3. In (3.4) we use that if f(x) > 0 then

sup{Af ;f(x)+ |h € R} =sup{2f(x) — f(x +h). — f(x —h); | h e R}
< sup{A} ; f(x) | h € R}

and if f(x) < 0 then sup{A} , f(x); | heRr¥} =0 <sup{A},f(x) | heRr}.

Proof of Theorem 1.3(I). The statement (I) of Theorem 1.3 is similar to Theorem 4.1 from
2] and the proof is the same. Let M = inf{f(y) | y € II = IIja;b]}. Then E~(f, Ho)pm) =
|f — M]||pary and for every x € II we have

f(x) =M = f(x)—nt{f(y) | y€lIl}
ZSup{Ji(X)—f(X-i-h) | x+h ell}
— sup{Ahnf(x) | her?).

Taking L, norm in this inequality we prove the lemma. O

Now we turn our attention to the case r = 2( Theorem 1.3 (II) ). We start with some
lemmas which are conected with the best multivariate algebraic approximations from below of
convex functions.

Lemma 3.1 Let E C [a;b] C R? be an open convex body with a measure
W(E) < gazu(fa;b]) . Then there are k € {1,...,d} and measurable subsets Ej,_ and Ey, and
for every x € E there exist s(x) € OF and y(x) € l[a;b] \ (F'UJE), such that

2)Ifx € Ep (x = +or — ), y(x) —s(x) = s(x) — x = txey, where ey is the “k-th“ unit
coordinate vector and sign(ty) = *.

Proof. Let x € E and k € {1,...,d}. We define
Ex) Y {zeFE|n=aVi=1,..,d,i#k},

mip(x) € inf {2, |z € By(x) }
and

miip(x) < sup {2z | 2 € By(x) } .
From p(FE) < simp(Ilfa;b]) and convexity of E we have that there exists k € {1,...,d} such
that my p(x) — my p(x) < M for every x € E. (If we assume that for every k € {1, ...,d}

10



there exist x(k) € E such that m; p(x(k)) — my p(x(k)) > “’LQ'““' then from convexity of £ we
have that p(E) > z74([a; b]).) Thus we reduce the problem for £ C R? to the problem for
Ex(x) C R'. We define

sz(X) if bﬁTak < mI;,E<X)
k(%) € S Mg p(%) + myf p(x) — B i B e (g p(x), mp(x))
my, p(X) if BEes >l p(x).

We set Ey_ = {z EE |z € (m,;E(z),ckE(z)} , By = {z EE |z € (ck,E(z),m;E(z» and let
s(x) = (s(x)1, ..., $(x)q) be such that

S(X)<d£f{ T if 1 £k

Y mpe(x) if i=k and X € B, *=+or — .

The funcions my, 5(x) and m; p(x) are continuos because they are face functions of the convex
body E. Then from the construction the subsets Ey_ and Fj, have continuos boundary and
then they are measurable. Also from the construction of the subsets Ej,_ and Ejy, we have
E = Ey_ UE, y(x) = 2s(x) —x € l[a;b] \ (FUOE) and if x € Ey, (x = + or — ) then
y(x) — s(x) = s(x) — x = txe, where ¢ is the “k-th* unit coordinate vector and sign(tx) = *.

(]

Lemma 3.2 Let f be conver on I1[0;a], f(x) >0, f(0)=0 andp € [1,00). Then

I f llp(mosa)y < cE(f, Ho)p(uioa))-

Proof. Let M be such that E~(f, Hy), = ||f — M||,- If M = 0 (which is possible for example
when p = 1 and f vanishes in a set E with a measure p(E) > u(I1[0; al)), then the statement
of Lemma 3.2 holds as an equality with constant ¢ = 1. In the other cases (when M > 0) we set
E,={x€Il[0;a] | sign(f(x) — M) = x*}, where ¥ = “— “ or “+4 ¢,

Let Ey = OE_. For x € E_ we define g(x) ef txM, where x = tyy and y € Ej,. Since
Jp_ (M = f)P > [p_(M — g)? and

p{xe B | A=ty > 0 =p{x € B | t<(1—05)} = p(B)(1-07),
we have
(3.5) fo (M = f)pdx = [ (M = g(x)dx

— M / (1 — t)Pdx
E

tr
_ P / / 1d6dx
E_JO

1
_ M / / . 1dxdd
0 J(1-07)diE_

11



— MPu(E-) /1(1 —9v)do

0
1
= Mpu(E,)p/ t4(1 — )P tdt
0

—1
_(p+d p
_( d) [

From (3.5) and the trivial inequality [ f? < [p MP we get

(36) [ < (p;d) [ ar-gy.

f— M and M are positive numbers in E,. Then the convexity of xP gives
(3.7) / fr< 2p_1/ (f = M)P 42071 MP.
By By By

If we assume that p(E_) < 5754(I1[0; a]) then from Lemma 3.1 (with E = E_) and the convexity
of f we have that M — f(x) < f(y(x)) — M ( f(s(x)) =M ) for any x € E_. Take the power
p — 1 in the both sides of the last inequality and integrating on x € E_ we obtain

(fly() = M) dx < [ (fly) = M) "dy.

Ey

[ = gyt <

E_ E_

But this is a contradiction, because from the characterization of the element of best approximation
(see [7]) we have

/H[O;a](f(x) — M)p_lsign(f(x) — M)dX =0.

Therefore p(E_) > 5imp(I1[0;a]) ie. p(EL) < (24! — 1)u(E-).
Then using the last one, (3.5), (3.6) and (3.7) we obtain

d
(3.8) /E+ <ol /E+(f — M)+ 2p—1<p*d‘ ><2dd! ~1) /E (M — f).
Now from (3.6) and (3.8) it follows

I fllpmoia)) < cll.f — M||pjosa))-

Lemma 3.3 If fis convex in Il[a; b] then E~(f, H1)pman)) < ¢ E(f, H1)pijab)-

Proof. Without loss of generality we may assume that f(y) = liminfx ., f(x) for every
boundary point y of II[a; b]. Let Q(x) be the first degree polinomial of best L, approximation

12



to f. The function f — @ is convex and let its minimum be achieved (from the above assumtion)
at the point u € Il[a; b]. Applying Lemma 3.2 to the convex function

separately on the parallelepipeds IT[u; aa + (1 — a)b] , where a = (a1 ... aq) € {0, 1} we have

Hng(H[u;aaHl—a)b}) <c E(g, HO)p(H[uzanr(l—a)b]) < C||g + (f(u) - Q(“))Hp(ﬂ[u;aaﬂl—a)b])

for every o € {0, 1}
Now adding the above inequalities raised to the power p and then take the power L of the
sum we obtain

1f = Q — (f(u) = Q())lpaap) < cllf = Qllparamy = ¢ E(f, Hi)pajam)-
But f(x) > Q(x) + f(u) — Q(u) and Q(x) + f(u) — Q(u) € H,. Then
E~(f, Hi)pap)) < If — Q — (f(0) — Q(0))|lpiam)) < ¢ E(f, H1)p(an)-

(]
In order to get the result for the approximations from below by linear functions we need
some statements which are more complificated than in case d = 1.
Let A= A;...Ag be d-dimensional simplex. If x € A, then x = Y% a;(x)A;, where
a;(x) >0 and S5 ay(x) = 1. a1(X), ..., agy1(x) are usually called barycentric coordinates of x
with respect to Ay, ..., Ay
Forn>dandi=1...n— 1 we consider the following subsets of A

(3.9) MP = {xeA | ax)> " .

S

Let i, (x) = [o(x)n], i.e. op(x) € [ X)H) Using that 2¢*! a(x) = 1 we obtain

n

o
=

(3.10) ir(x) € [n—d, n].

1

T

Lemma 3.4 Let A= A;... Ay be d-dimensional simplex on R?, p € [1, 00), f € Ly(A) be
non-negative in A and f(A;) =0 for every i=1,...,d+ 1. Then

| fllpcay < ery (f, A)p.

Proof. Let n >d and i =1,...,n — 1 be integer. We define
] e . . n
(3.11) Dy f(y) € —if (y) +nf(x) = (n =) f(y + ——(x=¥)).

13



We need the following inequality
(3.12) DM fP(AL) < (DM f(AR))E for x € My,
From (3.11) and f(Ag) = 0 it follows that

FO) = DA + (A + -

n —

A pmipay + T ray +

n n n n—i
Hence the trivial inequality D™ f(Ay) < (D™ f(Ag))+ and convexity of 2P for p > 1 give

n

7769 < (DRI AD)s + 1A +

(A) + 2

(A k- D))

- A).

< (P AR+

(Ak +

Also from (3.11) and fP(Ag) = 0 it follows that

F00) = DR (AL + (A +

(Ap+ ——(x — Ay))

= DU (AR + (A + A+ - A

The last two inequalities prove (3.12). Using (3.9), (3.10) and (3.12) we derive

d+1n—1

(3.13) ZZ/n D f(A)” dx
k=1 i=1
d+1n—1

2303 [ 700 = (0= DAk - A

k=1 =1

=(§§/"ﬂ¢k4mwijﬁw/ﬂ®w)

e i
n(;; /n e (x)dx — (d+1 Z( ) /fp dx)
=n (Cli:l/ ik(x) fP(x)dx — (d+ 1)n z; 711 (;)dﬂ Afp(x)dx>

>n ((n —d)—(d+ 1)n /01 td+1dt> ; fP(x)dx
I ddid; 2) /Afp(x)dx.

Here in third line we use that the map x +— A} + -"=(x — A}) is affine with a center on A; and
stretchs the simplex M}, to the simplex A.

14



Immediately from (3.11) (the definition of D7 f(y)) we have

D2t f(y ZJA %y f( y+J7y>

1
and . . n
DR f(y) = iDE I f(y) 4 (0 = D5 a5+ ——(x— )
Hence
n—1
D) =i S By + ) =) S ()AL, fy+ D),
s=1 s=n—i+1

Using the above equality, (3.12) and the definition (1.6) we obtain

|—

(3.14) {dfnzl/ (Dpif(An)" dx}

k=1 1i=1
d+1n—1 :
< DY f(Ay))" dx
>5[, (o), ax)
d+1n—1 n—i p %
< 3 (123{/n <A%A,€f(Ak—|—s _Ak)> dx}
k=1i=1 \ s=1 ki n= -t )
=) s:nii+l(n_8) {/ K (A%;Aikf(Ak_l_s n—t )>+dx}p>
< dan_:l (inifs {/ § (Sup{AhAf(Ak s Azk) | he Rd}>pdx}p
k=1i=1 \ s=1 ki o
n—1 . p %
+n—1i) > (n—ys) {/M” <sup{Ai7Af(Ak + s Ak) | he Rd}> dx} )
s=n—i+1 ki n—1
dln=1 [ n—i . g ~ ) :
SEE (S () ([, frtShari 1 nexy o
k=1 =1 s=1 k,n—s
tn—i) Y (n—s) (”S‘Z> {/M (sup{A3 f(x) | he Rd})pdx}p>
s=n—i+1 k,n—s

d+17§:1 (i%:is(n_i)g"‘(n_ﬂs:z_:;l(”_s) (n;z)i)]

X {/A (sup{AiAf(x) | he Rd})p dx}p

< cnTy (f, A)p-

The inequalites (3.13) and (3.14) with n = (d + 1)? prove the lemma.
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Let U C R? be a polytope and let f € L,(U) (p € [1,00) ) be bounded from below. We set

qor o, [ = il o
(3.15) Cuf(x) S inf> aif(xi) [x =D ax;, > a;=1,0;>0, x,€U, i=1,...,d+1;.

i=1 i=1 i=1
Immediately from (3.15) and [6] we have

(3.16) Cuf is convex on U, continuous on every open subset of U

and Lipschitz function on every compact subset of the interior of U,
(3.17) If h is convex and is majorized by f on U then h(x) < Cyf(x)

for all xe U, i.e. Cyf is the biggest convex minorant of f in U.

For g : U — R, let epigraph of g be the set epi(g) = {(x,t) €e R | x € U, t > g(x)}.
We say x € U is extreme with respect to the convex function g if g(x) < oo and g is not linear
on any relatively open segment containing x. Hence x is extreme with respect to ¢ if and only
if (x,g(x)) is an extreme point of epi(g).

Let EP(g) C U be the set of extreme points with respect to the convex function g. Then
from (3.15) and (3.17) it follows that

(3.18) for any positive € and for any x € EP(Cyf) there exists y € U, such that
[x =yl <€ and [f(y) — Cuf(x)| <e

Lemma 3.5 Let Il =1II[a;b] and f € L,(II) (p € [1,00)) be bounded from below. Then

||f - CHf”p(H) < 72_(f> H)p'

Proof. We denote with Ay, ..., Ay the vertices of II. From (3.15) it follows that
inf{f(y) | y € I} <Cnf(x) < f(x) for every x €Il and hence f — Cnf € L,(II).

Let € be arbitrary positive. From the absolute continuity of the Lebesgue integral there is
a positive n < 2 min {max{a;; b;} — min{a;;b;} | i =1,...,d}, such that

(3.19) I = Crfllpamnmy) < €
where I1(n) = I[c; h], ¢; & min{a;; b;} + 7 and h; % max{a; b;} — n for every i = 1, ... d.

The set II(n) is compact subset of the interior of IT and then (3.16) gives that there exists
a positive constant L such that

(3.20) |ICnf(x) — Cuf(y)| < Ll|x —y|| for any two points x,y € II(n).

For i = 1,...,d we set nZ o { [ c’q + 1 and let Z(e ) o { ezt ji€0,n, i = 1,...,d}.
For every j € Z( we set zJ = <01 —|—j hl cl) o Ca+ Ja (ha )> € I1(n).

16



As a corollary from the theorem of J.-C. Aggeri ( Krein-Milman’s type theorem for convex
functions (see [1])) we derive that for every X € II(n) and every 0 > 0 there exist points y;(x, ) €
EP(CHf) i=1,...,d+ 1 with x = X" a,y:(x, 6),

S =1, o 2 0 for which Cpif(x) > S o, Crif(yi(x,6)) — 0.
Let EP(e) © det {yi(z, §) li=1,..,d+1, je z( )}
This is a m— points set where m < (d + 1) [T, (n; + 1).

We define
ot d+1 d+1 d+1
s51(x) = min {Z oCnf(ay) [x=) ma, Y a;=1,0,>0, a; € EP(G)}.
i=1 i—1 =1

This is a first degree convex interpolation spline for Cy f with knots in EP(e).
d+1
For every x € II(n) we have that there exist set of points {zj(x Z-)} , such that
x = Y 0izgnn, S a =1, a; >0, j(x,i) € Z(e) and |Zjpx) — X| < gpfori=1,..,d+1
For this points (3.20) gives

1Cnf(x) = Cruf(zjxi)| <

d+1
Using the definitions of s1(x), EP(e€), the points {zj(x7i)}‘—1 and the last inequality we
obtain -

+
—_

€

o st (e ) ot

d+1
( Zsz 3) Cnf( )
e

Cnf(x ) Cnf(x)

0 <s1(x) — Cnf(x

IA
QU ﬁ
—_ =

IN
M

)
_

[\
M M

IN
M
Ll po

Using s; and (3.18) we can find a first degree interpolation spline s(x) with knots
{y1,..-,¥m} € I such that Cpf(x) < s(x) < Cnf(x) + € for x € II(n) and f(y;) = s(yi),
1=1,....m

Suppose II(n) C UL, D; where D; =y, ...y,,,, are d-dimensional simplecies with

{¥iis - ¥ien ) €{y1,---,¥Ym} and the restrictions of s(x) on D; are affine functions.
Then from (3.19)
(3.21) 1f = Cuflyay = ILf = Cufllpmey + 1f = Cufllhanmem)

k
<D = Cuflpm,aney) + €

Using the definitions of Cf and s, trivial equality (f —s) = (f — )+ — (s — f)+, applying
Lemma 3.4 to (f — s)4 in D; and properties (3.1), (3.2) and (3.4), we get

(3:22) If = Cufllpinumy < I1f = sllpinnmy) + 15 = Crf lpoinmam)
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< N(F = )+ llowirnmy + 165 = Fe low,omen) + ea(D; N 1))
<N = 8)+ oo + ||<s — )iy + en(Di N II(n)) 7
< ety ((F = 8)4: Do)y + |15 = Cufllp(irminy + el D; N T(1))
< ety ((f = ), Di)p + 2.eu(D; NT1())7

D=

Lemma 3.5 is proved. O

Lemma 3.6 Under the assumtion of Lemma 3.5 we have

E~(f, H1)p am ~ E(f, Hl)p(H) + 75 (f, 1),

Proof. The inequality Cry f < f implies
E™(f, H)puy < E™(Cuf, H)pa + 1f = Cuufllpm
Lemma 3.3 applied to Cri f gives
E=(Cuf, Hi)par) < cE(Cuf, Hi)pm
Combining the above two inequalities and
E(Cuf, Hi)pmy < E(f, H)pan + [/ = Cuf oy

we prove the direct inequality in view of Lemma 3.5. In order to get the other direction of
the equivalence in Lemma 3.6 we estimate both terms of its right-hand side by E~(f, H1)pm
Obviously E(f, H)pmy < E~(f, Hi)pa- Let @ € Hy be such that f > @ and

E=(f, Hi)pa = || f — Qllp)- From the property (3.1) we have

7y (f; D)y =75 (f — Q,10), < 2| f — QHP(H) =2E"(f, Hl)p(ﬂ)

18



Hence
E<f7 Hl)p(H) + T;(fa H)p < 3E7(f7 Hl)P(H)

Proof of Theorem 1.3(II). Using that E(f, H,_1)pa ~ w,(f,II), (see[4]), as a corollary from
the last lemma we obtain Theorem 1.3(II). Here the result for p = oo is trivial. 0

Proof of Theorem 1.7. From the definition we have that the almost midconvex function is
bounded from above. Then Theorem 1.7 follows from Lemma 3.5. O

4 Main results.

Proof of Theorem 1.5.

Here we use the ideas from [1]. Utilizing Theorem 1.3(I) and Theorem 1.2 we obtain a
characterization of K~ (f, W(t), L,, W, W/t). We demonstrate the proof in the more complicated
case- 1 = 2.

Using K5 (f, pt) < maz{1,p2} K5 (f,t) for p > 0, Theorem 1.2, Theorem 1.3(IT), Theorem
14 (withr =2, 7 = $B(t,x), I = U(t,x) and R =2 ), (1.8) and (1.9) we have

(4.1) Ky (f:1)p ~ Ky (f, pt)p
~ ()P E(f, He1)pwe o)
~ (8, al £, U ot )y + 75 (F U oty Hlpe
(67l 3 B oty + 757 U6t Dol

1

5
1
P

’Bh—‘

~ ([, -)”

. r
W(t,-) » / U t,~*1/ A2 . Pivd
Wt L 8 Sy

1

p(2)

_I_

w(t, ) [sup{A ;) F(y) | her]dy
U(pt,-)

p(Q)

From (2.4) with d = 1 and the definitions of ¥(¢,x) and U(¢,x) ( see also [2], Lemma 3 ) we
have

(4.2) \IJ((l3

x) < VU(t,y) for every yEU(Gt x) and x € and
(4.3) U(t,y) < U(4t,x) for every y e U(t,x) and x € Q.

Then using (2.3), (2.4), (4.2) and Lemma 2.1 we get
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. p(€2)
1
_1 _ 5
<c|V(t,-) {/ U(t,y) 1/1 A2 e F )] dvdy}
U(gt) 5 B(t,
p()
1 1 1
~ TVGED T gy T 180 vdvd
(6 ) {U(ét,-) t,y) 1B(ty | vy (¥)IPdv y} N
p

~ To(f, U (t))pp(r)-

Using the same arguments we have that

w(t, ) { L, PAA a0 F )| heRd}pdy} < o7y (£ U(1)) o

p()

Then from (4.1) with p = ; we get the inequality
K= (f,¥(t), Ly, W]f, W;iz) <c{n (f, \Ij(t))p(ﬁ) + 72(f, \Il(t>>p7p(9)}-

The proof of the opposite inequality is the same. Using Lemma 2.1, (4.3) and (2.4) we get

1 1 ,
()
1
) {U(étv') t:¥) 1B(Ly | xS ¥
()
1 P
< \Ift,.—i/ \114@.71/ A2 pivd
<c ( ) {U(4t,.) ( ) %B(4t)‘ v,U(4t,) (Y)‘ Vy} .
p

In the same way we have that

7y (f, U(1))piey) < ¢

_1 X2 d
W(t,-) > {/U(%) sup{Ay vy f(y) | heR }de}

p(2)
Then from (4.1) with p = 4 we get the inequality
75 (O ())p) + 72(f, () ppiey < K™ (f, W), Ly, Wy, W2).

The following result for the unconstrained K-functional is valid (see [4] Theorem 1.3).
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Lemma 4.1
T (f, W (E))ppir) < K (fv\p(t)aLmeT) < e (f, V() ppie)

Proof of Theorem 1.6. Applying Theorem 1.5 together with Theorem 1.1 and Lemma 4.1 we
obtain Theorem 1.6. O
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