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Abstract

In this paper the constrained K-functionals connected with the best multivariate algebraic
approximations from below and from above are characterized in terms of moduli of smoothness.
The results are a multivariate generalization of those in [2].

1 Introduction.

We consider measurable real-valued bounded (from below or from above) functions defined in
every point of the domain Ω = Π[− 1;1], where

Π[a;b]
def
=
{
x ∈ Rd | xi ∈ [min{ai, bi},max{ai, bi}] for every i = 1, . . . , d

}
.

Rd is considered as a normed vector space with elements x = (x1, . . . , xd), a, b, y, h and norm
‖x‖ = max{|x1|, . . . , |xd|}. Here 1 and −1 mean respectively (1, ..., 1) and (−1, ...,−1).

Let X be a measurable subset of Ω. We shall consider the following spaces

Lp(X)
def
=

{
f | ‖f‖p(X) =

{∫
X
|f(x)|pdx

} 1
p

<∞
}
,

for p ∈ [1,∞) (dx means the Lebesgue measure on X) and

L∞(X)
def
=
{
f | ‖f‖∞(X) = ess sup {|f(x)| ; x ∈ X} <∞

}
,

for p = ∞.
α, β are multi-indices. If α = (α1, .., αd), αs ≥ 0 for any s = 1, ..., d, |α| =

∑d
i=1 αi is the

length of α. α ≥ β means αs ≥ βs for any s = 1, ..., d, α! = Πd
s=1αs! and

(
α
β

)
= Πd

s=1

(
αs

βs

)
.

Let r be natural. By W r
p (X) we denote the Sobolev space

W r
p (X)

def
=

f |
∑
|α|=r

‖Dαf‖p(X) <∞

 , where Dα =
d∏

i=1

∂αi

∂xαi
i

.
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For v ∈ [−1, 1], t > 0 we set ψ(t, v)
def
= t

√
1− v2 + t2. For x ∈ Ω we denote Ψ(t,x)

def
=∏d

s=1 ψ(t, xs) and Ψα(t,x)
def
=
∏d

s=1 ψ(t, xs)
αs . A t neighbourhood of the point x ∈ Ω we define

by

U(t,x)
def
= {y ∈ Ω | |xs − ys| ≤ ψ(t, xs) for every s = 1, ..., d} .

Everywhere in this paper c denotes a positive number which may depend on r and d. The c‘s
may differ at each occurrence. If c depends on another parameter we indicate this using indices.

By Hn we denote the set of all algebraic polinomials in Rd of total degree not greater than
n. The best approximations by algebraic polinomials are given by

E(f,Hn)p(X)
def
= inf

{
‖f −Q‖p(X) | Q ∈ Hn

}
and the best approximations from below or from above by algebraic polinomials are given
respectively by

E−(f,Hn)p(X)
def
= inf

{
‖f −Q‖p(X) | Q ∈ Hn , Q ≤ f

}
(1.1)

and

E+(f,Hn)p(X)
def
= inf

{
‖f −Q‖p(X) | Q ∈ Hn , Q ≥ f

}
,(1.2)

whenever f is bounded from below or from above respectively.
Let l = max

{[
d
p

]
+ 1 , r

}
([·]− integral part ). We investigate the K-functionals

K−
r (f, t)p = K−

(
f,Ψ(t);Lp,W

r
p ,W

l
p

)
(1.3)

def
= inf

‖f − g‖p(Ω) +
∑

|α|=r,l

‖Ψα(t)Dαg‖p(Ω) | g ≤ f , g ∈ W l
p(Ω)

 ,

K+
r (f, t)p = K+

(
f,Ψ(t);Lp,W

r
p ,W

l
p

)
(1.4)

def
= inf

‖f − g‖p(Ω) +
∑

|α|=r,l

‖Ψα(t)Dαg‖p(Ω) | g ≥ f , g ∈ W l
p(Ω)


and

K
(
f,Ψ(t);Lp,W

r
p

)
def
= inf

‖f − g‖p(Ω) +
∑
|α|=r

‖Ψα(t)Dαg‖p(Ω) | g ∈ W r
p (Ω)

 .
In [5] we prove the following direct and inverse inequalities for the best constrained approximations

in terms of the K-functionals.
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Theorem 1.1 Let 1 ≤ p ≤ ∞, let r and n be natural, ∗ = “− “ or “ + “ and let f ∈ Lp(Ω) be
bounded from below or from above respectively. Then we have

(d) E∗(f,Hn−1)p(Ω) ≤ cK∗
(
f,Ψ(n−1);Lp,W

r
p ,W

l
p

)
;

(i) K∗
(
f,Ψ(n−1);Lp,W

r
p ,W

l
p

)
≤ c

(
E∗(f,Hn−1)p(Ω) +K

(
f,Ψ(n−1);Lp,W

r
p

))
.

This inequalities are the reason for the investigation in this paper.
The main result of this paper Theorem 1.5 is a characterization for r = 1 and r = 2 of

the K-functional (1.3) in terms of appropriate moduli. As a corollary we give a characterization
of the best algebraic approximations from below. Similar results for the K-functional (1.4) and
for the best algebraic approximations from above follow as a corollary from E+(f) = E−(−f) ,
K+(f) = K−(−f) (with one and the same values of the parameters).

The equivalence between the K-functional from below and a characteristic based on local
approximations from below by algebraic polinomials we give in

Theorem 1.2 Let f ∈ Lp(Ω) (p ∈ [1,∞]) be bounded from below and let r be a natural number.
Then

K−
r (f, t)p ∼ ‖Ψ(t, ·)−

1
pE−(f,Hr−1)p(U(t,·))‖p(Ω) for t ∈ (0, 1].

Remark 1.1. We consider K−
r (f, t)p with argument t ∈ (0, 1] because of Theorem 1.1.

Let U ⊂ Rd be a convex body. We set

ωr(f, U)p
def
= sup

{
‖∆r

h,Uf(·)‖p(U) | h ∈ Rd
}

(1.5)

where

∆r
h,Uf(x)

def
=

{
∆r

hf(x) if x,x + rh ∈ U ;
0 otherwise

and

∆r
hf(x)

def
=

r∑
i=0

(−1)r−i

(
r

i

)
f(x + ih).

In order to handle the cases of approximations from below for r = 1 and r = 2 we introduce
the following characteristics

τ−r (f, U)p
def
= ‖ sup{∆̃r

h,Uf(·) | h ∈ Rd}‖p(U)(1.6)

and
τ−r (f,Ψ(t))p(Ω)

def
= ‖ sup{∆̃r

h,U(t,·)f(·) | h ∈ Rd}‖p(Ω),

where

∆̃1
h,Uf(x)

def
=

{
f(x)− f(x + h) if x, x + h ∈ U ;
0 otherwise

and

∆̃2
h,Uf(x)

def
=

{
2f(x)− f(x + h)− f(x− h) if x− h, x + h ∈ U ;
0 otherwise.

We use the above characteristics in the following Whitney-type Theorem

3



Theorem 1.3 Let f ∈ Lp(Π) (Π = Π[a;b], p ∈ [1,∞]) is bounded from below. Then

(I) E−(f,H0)p(Π) = τ−1 (f,Π)p;
(II) E−(f,H1)p(Π) ∼ ω2(f,Π)p + τ−2 (f,Π)p.

Theorem 1.3 is proved in the Section 3.
Let Π = Π[a;b] and π = Π[c;d] be such that

π ⊆
(

Π− a + b

2

)
⊆ R.π(1.7)

for some R ≥ 1, where for U ⊂ Rd , y ∈ Rd and t > 0 we denote

U + y
def
= {x ∈ Rd | x− y ∈ U}

and
tU

def
= {x ∈ Rd | t−1x ∈ U}.

We use the following characteristic of f.

τr(f, π)p,p(Π)
def
=

{∫
Π

1

µ(π)

∫
π
|∆r

v,Πf(x)|pdvdx
} 1

p

.(1.8)

Here µ(V ) denotes the Lebesgue measure of the measurable set V . A relationship between (1.5)
and (1.8) is established in [4, Sec.3]. The statement is

Theorem 1.4 If (1.7) is satisfied and f ∈ Lp(Ω) (p ∈ [1,∞]) then,

cτr(f, π)p,p(Π) ≤ ωr(f,Π)p ≤ cRd+rτr(f, π)p,p(Π).

We set
B(t,x)

def
=
{
y ∈ Rd | |ys| ≤ ψ(t, xs) for every s = 1, ..., d

}
.

In this paper we investigate the following averaged modulus of smoothness

(1.9) τr(f,Ψ(t))p,p(Ω)
def
=

{∫
Ω

Ψ(t,x)−1
∫

B(t,x)
|∆r

v,Ωf(x)|pdvdx
} 1

p

.

Using the results from Sections 2, 3, Theorem 1.1 and Theorem 1.4 in Section 4 we give a
characterization of the constrained K-functional in terms of appropriate moduli.

Theorem 1.5

K−(f,Ψ(t), Lp,W
1
p ,W

l1
p ) ∼ τ−1 (f,Ψ(t))p(Ω), l1 =

[
d
p

]
+ 1;

K−(f,Ψ(t), Lp,W
2
p ,W

l2
p ) ∼ τ−2 (f,Ψ(t))p(Ω) + τ2(f,Ψ(t))p,p(Ω), l2 = max{2,

[
d
p

]
+ 1}.

4



Combining the results of Theorem 1.1 and Theorem 1.5 in Section 4 we give a a characterization
of best approximation from below in terms of appropriate moduli.

Theorem 1.6
E−(f,Hn−1)p(Ω) ≤ cτ−1 (f,Ψ(n−1))p(Ω);

E−(f,Hn−1)p(Ω) ≤ c{τ−2 (f,Ψ(n−1))p(Ω) + τ2(f,Ψ(n−1))p,p(Ω)}

and for r = 1 and r = 2

τ−r (f,Ψ(n−1))p(Ω) ≤ c{E−(f,Hn−1)p(Ω) + τr(f,Ψ(n−1))p,p(Ω)}.

In order to prove Theorem 1.3(II) we obtain some results for convex functions. Let U ⊂ Rd

be a convex body. A function f : U → R is called almost midconvex if sup{∆̃2
h,Uf(x) | h ∈

Rd} = 0 holds for every x ∈ U except a subset of U with a measure zero. As a corollary from
the results in the Section 3 we get

Theorem 1.7 If a function f : Π[a;b] → R is almost midconvex then f is equal almost
everywhere to a convex function g and f ≥ g.

2 A characterization of (1.3) in terms of best algebraic

local approximation from below.

Here we use methots which are based on ideas of [2], [3] and [5] and prove Theorem 1.2. We
start with some notations.

Let N be a fixed natural number. We set

Z = {0, 1, ..., N − 1}d ; Z′ = {0, 1, ..., N}d ; E = {0, 1}d;

zk = cos(π − kπ

N
), k = 0, 1, ..., N, z−1 = z0 = −1, zN+1 = zN = 1.

For every j = (j1, j2, ..., jd) ∈ Z we denote

Ωj = [zj1 , zj1+1]× ... × [zjd
, zjd+1]

and for every j ∈ Z′ we denote

Ω′
j = [zj1−1, zj1+1]× ... × [zjd−1, zjd+1].
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We set µ(v) =
∫ v
0 e

−1

u−u2 du/
∫ 1
0 e

−1

u−u2 du for 0 < v < 1, µ(v) = 0 for v ≤ 0 and µ(v) = 1 for
v ≥ 1. Therefore µ ∈ C∞(R) and we define

µ0(v)
def
= 1− µ((v − z0)/(z1 − z0));

µs(v)
def
= µ((v − zs−1)/(zs − zs−1))(1− µ((v − zs)/(zs+1 − zs))) for s = 1, 2, ..., N − 1;

µN(v)
def
= µ((v − zN−1)/(zN − zN−1)).

Finaly for every j ∈ Z′ we set µj(x) = Πd
s=1µjs(xs). Therefore for every x ∈ Ω we have

0 ≤ µj(x) ≤ 1; µj(x) = 0 if x /∈ Ω′
j;(2.1) ∑

j∈Z′
µj(x) = 1.(2.2)

In the statements below we collect some properties of the above quantities. Let 0 < t ≤ 1
2

and N =
[

2π
t

]
+ 1. Then we have

Ψ(t,x) ≤ meas(U(t,x)) ≤ 2dΨ(t,x);(2.3)

Ψ(t,x) ∼ Ψ(t,y) for every y ∈ U(t,x);(2.4)

Ψ(t,x) ∼ Ψ(t,x + y) for every y ∈ B(t,x);(2.5)

cΨ(t,x) ≤ meas(Ω′
j) ≤ cΨ(t,y) for every x, y ∈ Ω′

j;(2.6)

Ω′
j ⊂ U(t,x) for any x ∈ Ω′

j.(2.7)

The inequalities (2.3), (2.4), (2.6) and (2.7) are proved in [3]. (2.5) follows from (2.3), (2.4)
and definition of B(t,x).

We prove first the following

Lemma 2.1 Let 0 < t ≤ 1
2
. Then for every f ∈ Lp(Ω) we have

‖Ψ(t, ·)−
1
pE−(f,Hr−1)p(U(t,·))‖p(Ω) ≤ cK−

r (f, t)p;(2.8)

K−
r (f, t)p ≤ c‖Ψ(t, ·)−

1
pE−(f,Hr−1)p(U(t,·))‖p(Ω).(2.9)

Proof. Let us begin with the proof of (2.9). We set

N =
[
2π

t

]
+ 1(2.10)

and use the notation for Ωj, Ω′
j and µj from the beginning of Section 2. We denote by Qj ∈ Hr−1

the polynomial of best algebraic Lp approximation from below of degree r − 1 to f in Ω′
j, j ∈ Z′.

We set

g(x) =
∑
j∈Z′

µj(x)Qj(x).(2.11)
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From (2.10), (2.11), (2.3), (2.6) and (2.7) we obtain

‖f − g‖p
p(Ω) = ‖

∑
j∈Z′

µj(f −Qj)‖p
p(Ω)(2.12)

≤ c
∑
j∈Z′

∫
Ω′

j

|f(x)−Qj(x)|pdx

= c
∑
j∈Z′

E−(f,Hr−1)
p
p(Ω′

j
)

= c
∑
j∈Z′

meas(Ω′
j)
−1
∫
Ω′

j

E−(f,Hr−1)
p
p(Ω′

j
)dx

≤ c
∑
j∈Z′

meas(Ω′
j)
−1
∫
Ω′

j

E−(f,Hr−1)
p
p(U(t,x))dx

≤ c
∑
j∈Z′

∫
Ω′

j

(Ψ(t,x))−1E−(f,Hr−1)
p
p(U(t,x))dx

≤ c
∫
Ω
(Ψ(t,x))−1E−(f,Hr−1)

p
p(U(t,x))dx

≤ c‖Ψ(t, ·)−
1
pE−(f,Hr−1)p(U(t,·))‖p

p(Ω).

Fix α , |α| = r or |α| = l. Let x ∈ Ωj, j ∈ Z. From the definitions of µ(x), Qj(x) and g(x)
we have

g(x) = Qj(x) +
∑
ε∈E

µj+ε(x) (Qj+ε(x)−Qj(x)) , where

µj+ε(x) =
∏

s; εs=1

µ

(
xs − zjs

zjs+1 − zjs

)
.
∏

s; εs=0

µ

(
1−

(
xs − zjs

zjs+1 − zjs

))
.

and then from the last equality and DαQj = 0, it follows that

Dαg(x) =
∑
ε∈E

∑
0≤β≤α

(
α

β

)
Dα−βµj+ε(x)Dβ (Qj+ε(x)−Qj(x))

Now using (2.6), (2.7), the definitions of µj, Qj and E and Markov‘s inequality
( (b− a)i‖g(i)‖p[a,b] ≤ c(r)‖g‖p[a,b] for g ∈ Hr ) we have

‖Ψα(t)Dαg‖p(Ωj) ≤ cΨα(t, zj)‖Dαg‖p(Ωj)

≤ cΨα(t, zj)
∑
ε∈E

∑
0≤β≤α

(
α

β

)
‖Dα−βµj+ε‖∞(Ωj)‖D

β (Qj+ε −Qj) ‖p(Ωj)

≤ cΨα(t, zj)
∑
ε∈E

∑
0≤β≤α

d∏
s=1

‖µ(|α−β|)‖∞[0,1]

|zjs+1 − zjs |αs−βs
‖Dβ (Qj+ε −Qj) ‖p(Ωj)

≤ c
∑
ε∈E

∑
0≤β≤α

d∏
s=1

|zjs+1 − zjs |βs‖Dβ (Qj+ε −Qj) ‖p(Ωj)

≤ c
∑
ε∈E

‖Qj+ε −Qj‖p(Ωj)
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≤ c
∑
ε∈E

(
‖f −Qj+ε‖p(Ωj) + ‖f −Qj‖p(Ωj)

)
≤ cE−(f,Hr−1)

p
p(Ω′

j
).

Hence

‖Ψα(t)Dαg‖p
p(Ω) ≤ c

∑
j∈Z′

E−(f,Hr−1)
p
p(Ω′

j
)(2.13)

= c
∑
j∈Z′

meas(Ω′
j)
−1
∫
Ω′

j

E−(f,Hr−1)
p
p(Ω′

j
)dx

≤ c
∑
j∈Z′

meas(Ω′
j)
−1
∫
Ω′

j

E−(f,Hr−1)
p
p(U(t,x))dx

≤ c
∑
j∈Z′

∫
Ω′

j

(Ψ(t,x))−1E−(f,Hr−1)
p
p(U(t,x))dx

≤ c
∫
Ω
(Ψ(t,x))−

1
pE−(f,Hr−1)

p
p(U(t,x))dx

≤ c‖Ψ(t, ·)−
1
pE−(f,Hr−1)p(U(t,·))‖p

p(Ω).

In this way (2.9) follows from (1.3), (2.12) and (2.13).
We turn our attention to (2.8).
Let α = (α1, .., αd), |α| = r be multi-index and z = (z1, ..., zd) ∈ Rd. We define

|zα| = Πd
i=1|zi|αi

Let Π = Π[a;b] and let g ∈ W l
p(Π). As a corollary from Theorem 2 and Theorem 1 in [3] we get

E−(g,Hr−1)p(Π) ≤ c
∑

|α|=r,l

|(b− a)α| ‖Dαg‖p(Π).(2.14)

Let g be any function in W l
p(Ω), g(x) ≤ f(x) , x ∈ Ω. Then we have (note that Q ≤ g

implies Q ≤ f)

E−(f,Hr−1)p(U(t,x)) ≤ E−(g,Hr−1)p(U(t,x)) + ‖f − g‖p(U(t,x))

and hence

‖Ψ(t, ·)−
1
pE−(f,Hr−1)p(U(t,·))‖p(Ω)(2.15)

≤ ‖Ψ(t, ·)−
1
pE−(g,Hr−1)p(U(t,·))‖p(Ω) + ‖Ψ(t, ·)−

1
p‖f − g‖p(U(t,·))‖p(Ω).

Using (2.14), (2.3) and (2.4) we obtain

E−(g,Hr−1)p(U(t,x))) ≤ c
∑

|α|=r,l

Ψα(t,x)‖Dαg‖p(U(t,x))(2.16)

≤ c
∑

|α|=r,l

‖Ψα(t, ·)Dαg‖p(U(t,x)).
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From Lemma 4 in [3] we have that

‖Ψ− 1
p (t, ·)‖G‖p(U(t,·))‖p(Ω) ≤ c‖G‖p(Ω)(2.17)

for G ∈ Lp(Ω) and t ∈ (0, 1
2
]. Then from (2.16) and (2.17) we get

‖Ψ− 1
p (t, ·)‖f − g‖p(U(t,·))‖p(Ω) ≤ c‖f − g‖p(Ω);

‖Ψ− 1
p (t, ·)‖E−(g,Hr−1)‖p(U(t,·))‖p(Ω) ≤ c

∑
|α|=r,l

‖Ψα(t, ·)Dαg‖p(Ω).

Hence using (2.15) we get

‖Ψ− 1
p (t, ·)‖E−(f,Hr−1)‖p(U(t,·))‖p(Ω) ≤ c

‖f − g‖p(Ω) +
∑

|α|=r,l

‖Ψα(t)Dαg‖p(Ω)

 .
Taking an infimum on all g ∈ W r

p (Ω) , g ≤ f in the above inequality we prove (2.8). �

Proof of Theorem 1.2. We have to investigate only the case t ∈ (1
2
, 1], because for t ∈ (0, 1

2
]

Theorem 1.2 is equal to Lemma 2.1. Let t ∈ (1
2
, 1]. Then from the definitions of Ψ(t,x) and

U(t,x) it follows that

‖Ψ− 1
p (t, ·)E−(f,Hr−1)p(U(t,·))‖p(Ω) ≤ 4dE−(f,Hr−1)p(Ω)

≤ c‖Ψ− 1
p (

1

2
, ·)E−(f,Hr−1)p(U(t,·))‖p(Ω) ≤ c‖Ψ− 1

p (t, ·)E−(f,Hr−1)p(U(t,·))‖p(Ω).

Hence from Lemma 2.1(2.8) with t = 1
2

and the monotonicity of the K-functional (1.3) with
respect to t we get

‖Ψ− 1
p (t, ·)E−(f,Hr−1)p(U(t,·))‖p(Ω) ≤ cK−

r (f,
1

2
)p ≤ cK−

r (f, t)p ;

K−
r (f, t)p ≤ cE−(f,Hr−1)p(Ω) ≤ c‖Ψ− 1

p (t, ·)E−(f,Hr−1)p(U(t,·))‖p(Ω).

�

3 Whitney-type theorems for best approximations

from below.

We make use of some properties of the moduli which follows immediately from the definition

τ−r (f, U)p ≤ r ‖f‖p(U) for r = 1 , 2 if f(x) ≥ 0 for every x ∈ U ;(3.1)

τ−2 (f, U)p = 0 if f is convex on U ;(3.2)

τ−r (f + g, U)p ≤ τ−r (f, U)p + τ−r (g, U)p for r = 1 , 2;(3.3)

τ−2 (f+, U)p ≤ τ−2 (f, U)p, where f(x)+
def
=

{
f(x) if f(x) ≥ 0;
0 otherwise.

(3.4)
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Remark 3.1. In (3.1) and (3.3) we use sup{∆̃r
h,Uf(x) | h ∈ Rd} ≥ ∆̃r

0,Uf(x) = 0.
Remark 3.2. τ−r (f−g, U)p ≤ τ−r (f, U)p + τ−r (g, U)p is not true in general. For example d = 1,
r = 2, U = [−1, 1], f(x) = const and g(x) = x2.
Remark 3.3. In (3.4) we use that if f(x) ≥ 0 then

sup{∆̃2
h,Uf(x)+ | h ∈ Rd} = sup{2f(x)− f(x + h)+ − f(x− h)+ | h ∈ Rd}

≤ sup{∆̃2
h,Uf(x) | h ∈ Rd}

and if f(x) < 0 then sup{∆̃2
h,Uf(x)+ | h ∈ Rd} = 0 ≤ sup{∆̃2

h,Uf(x) | h ∈ Rd}.

Proof of Theorem 1.3(I). The statement (I) of Theorem 1.3 is similar to Theorem 4.1 from
[2] and the proof is the same. Let M = inf{f(y) | y ∈ Π = Π[a;b]}. Then E−(f,H0)p(Π) =
‖f −M‖p(Π) and for every x ∈ Π we have

f(x)−M = f(x)− inf{f(y) | y ∈ Π}
= sup{f(x)− f(x + h) | x + h ∈ Π}
= sup{∆̃1

h,Πf(x) | h ∈ Rd}.

Taking Lp norm in this inequality we prove the lemma. �

Now we turn our attention to the case r = 2( Theorem 1.3 (II) ). We start with some
lemmas which are conected with the best multivariate algebraic approximations from below of
convex functions.

Lemma 3.1 Let E ⊂ Π[a;b] ⊂ Rd be an open convex body with a measure
µ(E) < 1

2dd!
µ(Π[a;b]) . Then there are k ∈ {1, ..., d} and measurable subsets Ek− and Ek+ and

for every x ∈ E there exist s(x) ∈ ∂E and y(x) ∈ Π[a;b] \ (E ∪ ∂E), such that
1) E = Ek− ∪ Ek+;
2) If x ∈ Ek∗ (∗ = + or − ), y(x)− s(x) = s(x) − x = txek, where ek is the “k-th“ unit

coordinate vector and sign(tx) = ∗.

Proof. Let x ∈ E and k ∈ {1, ..., d}. We define

Ek(x)
def
= {z ∈ E | zi = xi ∀i = 1, ..., d , i 6= k } ,

m−
k,E(x)

def
= inf {zk | z ∈ Ek(x) }

and
m+

k,E(x)
def
= sup {zk | z ∈ Ek(x) } .

From µ(E) < 1
2dd!

µ(Π[a;b]) and convexity of E we have that there exists k ∈ {1, ..., d} such

that m+
k,E(x) − m−

k,E(x) < |bk−ak|
2

for every x ∈ E. (If we assume that for every k ∈ {1, ..., d}
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there exist x(k) ∈ E such that m+
k,E(x(k)) −m−

k,E(x(k)) ≥ |bk−ak|
2

then from convexity of E we
have that µ(E) ≥ 1

2dd!
µ(Π[a;b]).) Thus we reduce the problem for E ⊂ Rd to the problem for

Ek(x) ⊂ R1. We define

ck,E(x)
def
=


m+

k,E(x) if bk+ak

2
≤ m−

k,E(x)

m−
k,E(x) +m+

k,E(x)− bk+ak

2
if bk+ak

2
∈
(
m−

k,E(x),m+
k,E(x)

)
m−

k,E(x) if bk+ak

2
≥ m+

k,E(x).

We set Ek− =
{
z ∈ E | zk ∈ (m−

k,E(z), ck,E(z)
]
, Ek+ =

{
z ∈ E | zk ∈ (ck,E(z),m+

k,E(z)
)

and let

s(x) = (s(x)1, ..., s(x)d) be such that

s(x)i
def
=

{
xi if i 6= k
m∗

k,E(x) if i = k and x ∈ Ek∗, ∗ = + or − .

The funcions m−
k,E(x) and m+

k,E(x) are continuos because they are face functions of the convex
body E. Then from the construction the subsets Ek− and Ek+ have continuos boundary and
then they are measurable. Also from the construction of the subsets Ek− and Ek+ we have
E = Ek− ∪ Ek+, y(x) = 2s(x) − x ∈ Π[a;b] \ (E ∪ ∂E) and if x ∈ Ek∗ (∗ = + or − ) then
y(x)− s(x) = s(x)− x = txek, where ek is the “k-th“ unit coordinate vector and sign(tx) = ∗.

�

Lemma 3.2 Let f be convex on Π[0; a], f(x) ≥ 0, f(0) = 0 and p ∈ [1,∞). Then

‖f‖p(Π[0;a]) ≤ cE(f,H0)p(Π[0;a]).

Proof. Let M be such that E−(f,H0)p = ‖f −M‖p. If M = 0 (which is possible for example
when p = 1 and f vanishes in a set E with a measure µ(E) ≥ 1

2
µ(Π[0; a])), then the statement

of Lemma 3.2 holds as an equality with constant c = 1. In the other cases (when M > 0) we set
E∗ = {x ∈ Π[0; a] | sign(f(x)−M) = ∗}, where ∗ = “− “ or “ + “ .

Let E0 = ∂E−. For x ∈ E− we define g(x)
def
= txM, where x = txy and y ∈ E0. Since∫

E−
(M − f)p ≥

∫
E−

(M − g)p and

µ {x ∈ E− | (1− tx)
p ≥ θ} = µ

{
x ∈ E− | tx ≤ (1− θ

1
p )
}

= µ(E−)(1− θ
1
p )d,

we have ∫
E−

(M − f(x))pdx ≥
∫

E−
(M − g(x))pdx(3.5)

= Mp
∫

E−
(1− tx)

pdx

= Mp
∫

E−

∫ (1−tx)p

0
1dθdx

= Mp
∫ 1

0

∫
(1−θ

1
p )dE−

1dxdθ
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= Mpµ(E−)
∫ 1

0
(1− θ

1
p )ddθ

= Mpµ(E−)p
∫ 1

0
td(1− t)p−1dt

=

(
p+ d

d

)−1 ∫
E−
Mp.

From (3.5) and the trivial inequality
∫
E−
fp ≤

∫
E−
Mp we get

∫
E−
fp ≤

(
p+ d

d

)∫
E−

(M − f)p.(3.6)

f −M and M are positive numbers in E+. Then the convexity of xp gives∫
E+

fp ≤ 2p−1
∫

E+

(f −M)p + 2p−1
∫

E+

Mp.(3.7)

If we assume that µ(E−) < 1
2dd!

µ(Π[0; a]) then from Lemma 3.1 (with E = E−) and the convexity
of f we have that M − f(x) ≤ f(y(x))−M ( f(s(x)) = M ) for any x ∈ E−. Take the power
p− 1 in the both sides of the last inequality and integrating on x ∈ E− we obtain∫

E−
(M − f(x))p−1dx ≤

∫
E−

(f(y(x))−M)p−1dx <
∫

E+

(f(y)−M)p−1dy.

But this is a contradiction, because from the characterization of the element of best approximation
(see [7]) we have ∫

Π[0;a]
(f(x)−M)p−1sign(f(x)−M)dx = 0.

Therefore µ(E−) ≥ 1
2dd!

µ(Π[0; a]) i.e. µ(E+) ≤ (2dd!− 1)µ(E−).
Then using the last one, (3.5), (3.6) and (3.7) we obtain

∫
E+

fp ≤ 2p−1
∫

E+

(f −M)p + 2p−1

(
p+ d

d

)
(2dd!− 1)

∫
E−

(M − f)p.(3.8)

Now from (3.6) and (3.8) it follows

‖f‖p(Π[0;a]) ≤ c‖f −M‖p(Π[0;a]).

�

Lemma 3.3 If f is convex in Π[a;b] then E−(f,H1)p(Π[a;b]) ≤ c E(f,H1)p(Π[a;b]).

Proof. Without loss of generality we may assume that f(y) = lim infx→y f(x) for every
boundary point y of Π[a;b]. Let Q(x) be the first degree polinomial of best Lp approximation
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to f . The function f −Q is convex and let its minimum be achieved (from the above assumtion)
at the point u ∈ Π[a;b]. Applying Lemma 3.2 to the convex function

g(x) = f(x)−Q(x)− (f(u)−Q(u)),

separately on the parallelepipeds Π[u;αa + (1− α)b] , where α = (α1 . . . αd) ∈ {0, 1}d we have

‖g‖p(Π[u;αa+(1−α)b]) ≤ c E(g,H0)p(Π[u;αa+(1−α)b]) ≤ c‖g + (f(u)−Q(u))‖p(Π[u;αa+(1−α)b])

for every α ∈ {0, 1}d.
Now adding the above inequalities raised to the power p and then take the power 1

p
of the

sum we obtain

‖f −Q− (f(u)−Q(u))‖p(Π[a;b]) ≤ c‖f −Q‖p(Π[a;b]) = c E(f,H1)p(Π[a;b]).

But f(x) ≥ Q(x) + f(u)−Q(u) and Q(x) + f(u)−Q(u) ∈ H1. Then

E−(f,H1)p(Π[a;b]) ≤ ‖f −Q− (f(u)−Q(u))‖p(Π[a;b]) ≤ c E(f,H1)p(Π[a;b]).

�

In order to get the result for the approximations from below by linear functions we need
some statements which are more complificated than in case d = 1.

Let A = A1 . . .Ad+1 be d-dimensional simplex. If x ∈ A, then x =
∑d+1

i=1 αi(x)Ai, where
αi(x) ≥ 0 and

∑d+1
i=1 αi(x) = 1. α1(x), ..., αd+1(x) are usually called barycentric coordinates of x

with respect to A1, . . . ,Ad+1.
For n > d and i = 1 . . . n− 1 we consider the following subsets of A

Mn
k,i = {x ∈ A | αk(x) ≥ i

n
}.(3.9)

Let ik(x) = [αk(x)n], i.e. αk(x) ∈ [ ik(x)
n
, ik(x)+1

n
). Using that

∑d+1
k=1 αk(x) = 1 we obtain

d+1∑
k=1

ik(x) ∈ [n− d, n].(3.10)

Lemma 3.4 Let A = A1 . . .Ad+1 be d-dimensional simplex on Rd, p ∈ [1 , ∞) , f ∈ Lp(A) be
non-negative in A and f(Ai) = 0 for every i = 1, . . . , d+ 1. Then

‖f‖p(A) ≤ cτ−2 (f, A)p.

Proof. Let n > d and i = 1, ..., n− 1 be integer. We define

Dn,i
x f(y)

def
= −if(y) + nf(x)− (n− i)f(y +

n

n− i
(x− y)).(3.11)
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We need the following inequality

Dn,i
x fp(Ak) ≤ (Dn,i

x f(Ak))
p
+ for x ∈Mn

k,i.(3.12)

From (3.11) and f(Ak) = 0 it follows that

f(x) =
1

n
Dn,i

x f(Ak) +
i

n
f(Ak) +

n− i

n
f(Ak +

n

n− i
(x−Ak))

=
1

n
Dn,i

x f(Ak) +
i− 1

n
f(Ak) +

n− i

n
f(Ak +

n

n− i
(x−Ak))

Hence the trivial inequality Dn,i
x f(Ak) ≤ (Dn,i

x f(Ak))+ and convexity of xp for p ≥ 1 give

fp(x) ≤
(

1

n
(Dn,i

x f(Ak))+ +
i− 1

n
f(Ak) +

n− i

n
f(Ak +

n

n− i
(x−Ak))

)p

≤ 1

n
(Dn,i

x f(Ak))
p
+ +

i− 1

n
fp(Ak) +

n− i

n
fp(Ak +

n

n− i
(x−Ak)).

Also from (3.11) and fp(Ak) = 0 it follows that

fp(x) =
1

n
Dn,i

x fp(Ak) +
i

n
fp(Ak) +

n− i

n
fp(Ak +

n

n− i
(x−Ak))

=
1

n
Dn,i

x fp(Ak) +
i− 1

n
fp(Ak) +

n− i

n
fp(Ak +

n

n− i
(x−Ak)).

The last two inequalities prove (3.12). Using (3.9), (3.10) and (3.12) we derive

d+1∑
k=1

n−1∑
i=1

∫
Mn

k,i

(
Dn,i

x f(Ak)
)p

+
dx(3.13)

≥
d+1∑
k=1

n−1∑
i=1

∫
Mn

k,i

nfp(x)− (n− i)fp(Ak +
n

n− i
(x−Ak))dx

= n

(
d+1∑
k=1

n−1∑
i=1

∫
Mn

k,i

fp(x)dx− (d+ 1)
n−1∑
i=1

(
n− i

n

)d+1 ∫
A
fp(x)dx

)

= n

(
d+1∑
k=1

n−1∑
i=1

i
∫

Mn
k,i
\Mn

k,i+1

fp(x)dx− (d+ 1)
n−1∑
i=1

(
i

n

)d+1 ∫
A
fp(x)dx

)

= n

(
d+1∑
k=1

∫
A
ik(x)fp(x)dx− (d+ 1)n

n−1∑
i=1

1

n

(
i

n

)d+1 ∫
A
fp(x)dx

)

≥ n
(
(n− d)− (d+ 1)n

∫ 1

0
td+1dt

) ∫
A
fp(x)dx

= n
n− d(d+ 2)

d+ 2

∫
A
fp(x)dx.

Here in third line we use that the map x 7→ Ak + n
n−i

(x−Ak) is affine with a center on Ak and
stretchs the simplex Mn

k,i to the simplex A.
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Immediately from (3.11) (the definition of Dn,i
x f(y)) we have

Dn,1
x f(y) =

n−1∑
j=1

j∆̃2
x−y
n−1

f(y + j
x− y

n− 1
)

and
Dn,i

x f(y) = iDn−i+1,1
x f(y) + (n− i)Di,1

y+n−i+1
n−i

(x−y)
f(y +

n

n− i
(x− y))

Hence

Dn,i
x f(y) = i

n−i∑
s=1

s∆̃2
x−y
n−i

f(y + s
x− y

n− i
) + (n− i)

n−1∑
s=n−i+1

(n− s)∆̃2
x−y
n−i

f(y + s
x− y

n− i
).

Using the above equality, (3.12) and the definition (1.6) we obtain

{
d+1∑
k=1

n−1∑
i=1

∫
Mn

k,i

(
Dn,i

x f(Ak)
)p

+
dx

} 1
p

(3.14)

≤
d+1∑
k=1

n−1∑
i=1

{∫
Mn

k,i

(
Dn,i

x f(Ak)
)p

+
dx

} 1
p

≤
d+1∑
k=1

n−1∑
i=1

i n−i∑
s=1

s

{∫
Mn

k,i

(
∆̃2

x−Ak
n−i

f(Ak + s
x−Ak

n− i
)

)p

+

dx

} 1
p

+(n− i)
n−1∑

s=n−i+1

(n− s)

{∫
Mn

k,i

(
∆̃2

x−Ak
n−i

f(Ak + s
x−Ak

n− i
)

)p

+

dx

} 1
p


≤

d+1∑
k=1

n−1∑
i=1

i n−i∑
s=1

s

{∫
Mn

k,i

(
sup{∆̃2

h,Af(Ak + s
x−Ak

n− i
) | h ∈ Rd}

)p

dx

} 1
p

+(n− i)
n−1∑

s=n−i+1

(n− s)

{∫
Mn

k,i

(
sup{∆̃2

h,Af(Ak + s
x−Ak

n− i
) | h ∈ Rd}

)p

dx

} 1
p


=

d+1∑
k=1

n−1∑
i=1

i n−i∑
s=1

s
(
n− i

s

) d
p

{∫
Mn

k,n−s

(
sup{∆̃2

h,Af(x) | h ∈ Rd}
)p
dx

} 1
p

+(n− i)
n−1∑

s=n−i+1

(n− s)
(
n− i

s

) d
p

{∫
Mn

k,n−s

(
sup{∆̃2

h,Af(x) | h ∈ Rd}
)p
dx

} 1
p


≤

d+1∑
k=1

n−1∑
i=1

i n−i∑
s=1

s
(
n− i

s

) d
p

+ (n− i)
n−1∑

s=n−i+1

(n− s)
(
n− i

s

) d
p


×
{∫

A

(
sup{∆̃2

h,Af(x) | h ∈ Rd}
)p
dx
} 1

p

≤ cnτ
−
2 (f, A)p.

The inequalites (3.13) and (3.14) with n = (d+ 1)2 prove the lemma.
�
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Let U ⊂ Rd be a polytope and let f ∈ Lp(U) (p ∈ [1,∞) ) be bounded from below. We set

CUf(x)
def
= inf

{
d+1∑
i=1

αif(xi) | x =
d+1∑
i=1

αixi,
d+1∑
i=1

αi = 1, αi ≥ 0, xi ∈ U, i = 1, ..., d+ 1

}
.(3.15)

Immediately from (3.15) and [6] we have

CUf is convex on U, continuous on every open subset of U(3.16)

and Lipschitz function on every compact subset of the interior of U ;

If h is convex and is majorized by f on U then h(x) ≤ CUf(x)(3.17)

for all x ∈ U, i.e. CUf is the biggest convex minorant of f in U.

For g : U → R, let epigraph of g be the set epi(g) = {(x, t) ∈ Rd+1 | x ∈ U, t ≥ g(x)}.
We say x ∈ U is extreme with respect to the convex function g if g(x) < ∞ and g is not linear
on any relatively open segment containing x. Hence x is extreme with respect to g if and only
if (x, g(x)) is an extreme point of epi(g).

Let EP (g) ⊂ U be the set of extreme points with respect to the convex function g. Then
from (3.15) and (3.17) it follows that

for any positive ε and for any x ∈ EP (CUf) there exists y ∈ U, such that(3.18)

‖x− y‖ < ε and |f(y)− CUf(x)| < ε.

Lemma 3.5 Let Π = Π[a;b] and f ∈ Lp(Π) ( p ∈ [1,∞)) be bounded from below. Then

‖f − CΠf‖p(Π) ≤ τ−2 (f,Π)p.

Proof. We denote with A1, ...,A2d the vertices of Π. From (3.15) it follows that
inf{f(y) | y ∈ Π} ≤ CΠf(x) ≤ f(x) for every x ∈ Π and hence f − CΠf ∈ Lp(Π).

Let ε be arbitrary positive. From the absolute continuity of the Lebesgue integral there is
a positive η < 1

2
min {max{ai; bi} −min{ai; bi} | i = 1, ..., d} , such that

‖f − CΠf‖p(Π\Π(η)) ≤ ε,(3.19)

where Π(η) = Π[c;h], ci
def
= min{ai; bi}+ η and hi

def
= max{ai; bi} − η for every i = 1, ..., d.

The set Π(η) is compact subset of the interior of Π and then (3.16) gives that there exists
a positive constant L such that

|CΠf(x)− CΠf(y)| ≤ L‖x− y‖ for any two points x, y ∈ Π(η).(3.20)

For i = 1, ..., d we set ni
def
=
[
ε |hi−ci|

3L

]
+ 1 and let Z(ε)

def
=
{
j ∈ Zd | ji ∈ [0, ni], i = 1, ..., d

}
.

For every j ∈ Z(ε) we set zj
def
=
(
c1 + j1

(h1−c1)
n1

, ..., cd + jd
(hd−cd)

nd

)
∈ Π(η).
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As a corollary from the theorem of J.-C. Aggeri ( Krein-Milman’s type theorem for convex
functions (see [1])) we derive that for every x ∈ Π(η) and every δ > 0 there exist points yi(x, δ) ∈
EP (CΠf) i = 1, ..., d+ 1 with x =

∑d+1
i=1 αiyi(x, δ),∑d+1

i=1 αi = 1, αi ≥ 0 for which CΠf(x) ≥ ∑d+1
i=1 αiCΠf(yi(x, δ))− δ.

Let EP (ε)
def
=
{
yi(zj,

ε
3
) | i = 1, ..., d+ 1, j ∈ Z(ε)

}
.

This is a m− points set where m ≤ (d+ 1)
∏d

i=1(ni + 1).
We define

s1(x)
def
= min

{
d+1∑
i=1

αiCΠf(ai) | x =
d+1∑
i=1

αiai,
d+1∑
i=1

αi = 1, αi ≥ 0, ai ∈ EP (ε)

}
.

This is a first degree convex interpolation spline for CΠf with knots in EP (ε).

For every x ∈ Π(η) we have that there exist set of points
{
zj(x,i)

}d+1

i=1
, such that

x =
∑d+1

i=1 αizj(x,i),
∑d+1

i=1 αi = 1, αi ≥ 0, j(x, i) ∈ Z(ε) and |zj(x,i) − x| ≤ ε
3L

for i = 1, ..., d + 1
For this points (3.20) gives

|CΠf(x)− CΠf(zj(x,i))| ≤
ε

3
∀i = 1, ..., d+ 1

Using the definitions of s1(x), EP (ε), the points
{
zj(x,i)

}d+1

i=1
and the last inequality we

obtain

0 ≤ s1(x)− CΠf(x) ≤
d+1∑
i=1

αi

d+1∑
k=1

αi,kCΠf
(
yk

(
zj(x,i),

ε

3

))
− CΠf(x)

≤
d+1∑
i=1

αi

(
CΠf(zj(x,i)) +

ε

3

)
− CΠf(x)

≤
d+1∑
i=1

αi

(
(CΠf(x) +

ε

3
) +

ε

3

)
− CΠf(x)

≤ ε
2

3

Using s1 and (3.18) we can find a first degree interpolation spline s(x) with knots
{y1, . . . ,ym} ∈ Π such that CΠf(x) ≤ s(x) ≤ CΠf(x) + ε for x ∈ Π(η) and f(yi) = s(yi),
i = 1, . . . ,m.

Suppose Π(η) ⊂ ∪k
i=1Di where Di = yi1 . . .yid+1

are d-dimensional simplecies with
{yi1 , . . . ,yid+1

} ⊂ {y1, . . . ,ym} and the restrictions of s(x) on Di are affine functions.
Then from (3.19)

‖f − CΠf‖p
p(Π) = ‖f − CΠf‖p

p(Π(η)) + ‖f − CΠf‖p
p(Π\Π(η))(3.21)

≤
k∑

i=1

‖f − CΠf‖p
p(Di∩Π(η)) + εp.

Using the definitions of CΠf and s, trivial equality (f − s) = (f − s)+ − (s − f)+, applying
Lemma 3.4 to (f − s)+ in Di and properties (3.1), (3.2) and (3.4), we get

‖f − CΠf‖p(Di∩Π(η)) ≤ ‖f − s‖p(Di∩Π(η)) + ‖s− CΠf‖p(Di∩Π(η))(3.22)
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≤ ‖(f − s)+‖p(Di∩Π(η)) + ‖(s− f)+‖p(Di∩Π(η)) + εµ(Di ∩ Π(η))
1
p

≤ ‖(f − s)+‖p(Di) + ‖(s− f)+‖p(Di∩Π(η)) + εµ(Di ∩ Π(η))
1
p

≤ cτ−2 ((f − s)+, Di)p + ‖s− CΠf‖p(Di∩Π(η)) + εµ(Di ∩ Π(η))
1
p

≤ cτ−2 ((f − s), Di)p + 2.εµ(Di ∩ Π(η))
1
p

≤ cτ−2 ((f − s), Di)p + 2.εµ(Di)
1
p

≤ cτ−2 (f,Di)p + 2εµ(Di)
1
p .

The inequalities (3.21) and (3.22) give

‖f − CΠf‖p(Π) ≤ c

{
k∑

i=1

(τ−2 (f,Di)p + 2εµ(Di)
1
p )p

} 1
p

+ ε

≤ c

{
k∑

i=1

τ−2 (f,Di)
p
p

} 1
p

+ 2ε(
k∑

i=1

µ(Di))
1
p + ε

≤ cτ−2 (f,Π)p + (2µ(Π) + 1)ε

≤ c(τ−2 (f,Π)p + ε).

Lemma 3.5 is proved. �

Lemma 3.6 Under the assumtion of Lemma 3.5 we have

E−(f,H1)p(Π) ∼ E(f,H1)p(Π) + τ−2 (f,Π)p.

Proof. The inequality CΠf ≤ f implies

E−(f,H1)p(Π) ≤ E−(CΠf,H1)p(Π) + ‖f − CΠf‖p(Π).

Lemma 3.3 applied to CΠf gives

E−(CΠf,H1)p(Π) ≤ cE(CΠf,H1)p(Π).

Combining the above two inequalities and

E(CΠf,H1)p(Π) ≤ E(f,H1)p(Π) + ‖f − CΠf‖p(Π)

we prove the direct inequality in view of Lemma 3.5. In order to get the other direction of
the equivalence in Lemma 3.6 we estimate both terms of its right-hand side by E−(f,H1)p(Π).
Obviously E(f,H1)p(Π) ≤ E−(f,H1)p(Π). Let Q ∈ H1 be such that f ≥ Q and
E−(f,H1)p(Π) = ‖f −Q‖p(Ω). From the property (3.1) we have

τ−2 (f,Π)p = τ−2 (f −Q,Π)p ≤ 2‖f −Q‖p(Π) = 2E−(f,H1)p(Π).
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Hence
E(f,H1)p(Π) + τ−2 (f,Π)p ≤ 3E−(f,H1)p(Π).

�

Proof of Theorem 1.3(II). Using that E(f,Hr−1)p(Π) ∼ ωr(f,Π)p (see[4]), as a corollary from
the last lemma we obtain Theorem 1.3(II). Here the result for p = ∞ is trivial. �

Proof of Theorem 1.7. From the definition we have that the almost midconvex function is
bounded from above. Then Theorem 1.7 follows from Lemma 3.5. �

4 Main results.

Proof of Theorem 1.5.
Here we use the ideas from [1]. Utilizing Theorem 1.3(I) and Theorem 1.2 we obtain a

characterization of K−(f,Ψ(t), Lp,W
1
p ,W

l1
p ). We demonstrate the proof in the more complicated

case- r = 2.
Using K−

2 (f, ρt) ≤ max{1, ρl2}K−
2 (f, t) for ρ > 0, Theorem 1.2, Theorem 1.3(II), Theorem

1.4 (with r = 2, π = 1
2
B(t,x), Π = U(t,x) and R = 2 ), (1.8) and (1.9) we have

K−
2 (f, t)p ∼ K−

2 (f, ρt)p(4.1)

∼ ‖Ψ(t, ·)−
1
pE−(f,Hr−1)p(U(t,·))‖p(Ω)

∼ ‖Ψ(t, ·)−
1
p{ω2(f, U(ρt, ·))p + τ−2 (f, U(ρt, ·))p}‖p(Ω)

∼ ‖Ψ(t, ·)−
1
p{τ2(f,

1

2
B(ρt, ·))p,p(U(ρt,·)) + τ−2 (f, U(ρt, ·))p}‖p(Ω)

∼

∥∥∥∥∥∥Ψ(t, ·)−
1
p

{∫
U(ρt,·)

Ψ(ρt, ·)−1
∫

1
2
B(ρt,·)

|∆2
v,U(ρt,·)f(y)|pdvdy

} 1
p

∥∥∥∥∥∥
p(Ω)

+

∥∥∥∥∥∥Ψ(t, ·)−
1
p

{∫
U(ρt,·)

[
sup{∆̃2

h,U(ρt,·)f(y) | h ∈ Rd}
]p
dy

} 1
p

∥∥∥∥∥∥
p(Ω)

.

From (2.4) with d = 1 and the definitions of Ψ(t,x) and U(t,x) ( see also [2], Lemma 3 ) we
have

Ψ(
1

6
t,x) ≤ Ψ(t,y) for every y ∈ U(

1

6
t,x) and x ∈ Ω and(4.2)

Ψ(t,y) ≤ Ψ(4t,x) for every y ∈ U(t,x) and x ∈ Ω.(4.3)

Then using (2.3), (2.4), (4.2) and Lemma 2.1 we get
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∥∥∥∥∥∥Ψ(t, ·)−
1
p

{∫
U( 1

6
t,·)

Ψ(
1

6
t, ·)−1

∫
1
2
B( 1

6
t,·)
|∆2

v,U( 1
6
t,·)f(y)|pdvdy

} 1
p

∥∥∥∥∥∥
p(Ω)

≤ c

∥∥∥∥∥∥Ψ(t, ·)−
1
p

{∫
U( 1

6
t,·)

Ψ(t,y)−1
∫

1
2
B(t,y)

|∆2
v,U(t,y)f(y)|pdvdy

} 1
p

∥∥∥∥∥∥
p(Ω)

∼

∥∥∥∥∥∥Ψ(
1

6
t, ·)−

1
p

{∫
U( 1

6
t,·)

Ψ(t,y)−1
∫

1
2
B(t,y)

|∆2
v,U(t,y)f(y)|pdvdy

} 1
p

∥∥∥∥∥∥
p(Ω)

∼ τ2(f,Ψ(t))p,p(Ω).

Using the same arguments we have that∥∥∥∥∥∥Ψ(t, ·)−
1
p

{∫
U( 1

6
t,·)

sup{∆̃2
h,U( 1

6
t,·)f(y) | h ∈ Rd}pdy

} 1
p

∥∥∥∥∥∥
p(Ω)

≤ cτ−2 (f,Ψ(t))p(Ω).

Then from (4.1) with ρ = 1
6

we get the inequality

K−(f,Ψ(t), Lp,W
2
p ,W

l2
p ) ≤ c{τ−2 (f,Ψ(t))p(Ω) + τ2(f,Ψ(t))p,p(Ω)}.

The proof of the opposite inequality is the same. Using Lemma 2.1, (4.3) and (2.4) we get

τ2(f,Ψ(t))p,p(Ω)

∼

∥∥∥∥∥∥Ψ(
1

2
t, ·)−

1
p

{∫
U( 1

2
t,·)

Ψ(t,y)−1
∫

1
2
B(t,y)

|∆2
v,U(t,y)f(y)|pdvdy

} 1
p

∥∥∥∥∥∥
p(Ω)

≤ c

∥∥∥∥∥∥Ψ(t, ·)−
1
p

{∫
U( 1

6
t,·)

Ψ(t,y)−1
∫

1
2
B(t,y)

|∆2
v,U(t,y)f(y)|pdvdy

} 1
p

∥∥∥∥∥∥
p(Ω)

≤ c

∥∥∥∥∥∥Ψ(t, ·)−
1
p

{∫
U(4t,·)

Ψ(4t, ·)−1
∫

1
2
B(4t,·)

|∆2
v,U(4t,·)f(y)|pdvdy

} 1
p

∥∥∥∥∥∥
p(Ω)

.

In the same way we have that

τ−2 (f,Ψ(t))p(Ω) ≤ c

∥∥∥∥∥∥Ψ(t, ·)−
1
p

{∫
U(4t,·)

sup{∆̃2
h,U(4t,·)f(y) | h ∈ Rd}pdy

} 1
p

∥∥∥∥∥∥
p(Ω)

.

Then from (4.1) with ρ = 4 we get the inequality

τ−2 (f,Ψ(t))p(Ω) + τ2(f,Ψ(t))p,p(Ω) ≤ cK−(f,Ψ(t), Lp,W
2
p ,W

l2
p ).

�

The following result for the unconstrained K-functional is valid (see [4] Theorem 1.3).
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Lemma 4.1
cτr(f,Ψ(t))p,p(Ω) ≤ K

(
f,Ψ(t), Lp,W

r
p

)
≤ cτr(f,Ψ(t))p,p(Ω)

Proof of Theorem 1.6. Applying Theorem 1.5 together with Theorem 1.1 and Lemma 4.1 we
obtain Theorem 1.6. �
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