An Estimation of the Best Monotone Spline
Approximation with the Averaged Moduli of
Smoothness

P. E. Parvanov

05.11.1998

Abstract

In this paper a Jackson-type estimation for the approximation of monotone nondecreasing
funcion f by monotone nondecreasing splines with equally spaced knots in the L, [0, 1]-
norm (1 < p < oo) is obtained. The estimation involves high order Sendov-Popov
averaged moduli of smoothness of the derivative of f and are obtained for function f
with a bounded and measurable derivative. The Chui, Smith and Ward’s technique is
used. The result is a generalization of the results in [2].

1 Introduction.

For 1 < p < oo let L,[0, 1] denote the space of measurable functions whose p-th power is
integrable and let L.[0, 1] denote the space of bounded and measurable functions. Given
f € L,[0,1], define its r-th L,-modulus of smoothness by

def r
wr ()0 < sup {1270 f o 1 0 <t <}

where

. def | i_o(=1)"(7) flx+it) if x,x+rt €[0,1];
At’[o’l]f(x) B { 0 i () otherwise.

Let S(r,n)(r > 1) denote the space of all splines of order r on the n+ 1 equally spaced
knots {%}:;0, ie. s € S(r,n), if s is a polynomial of degree < r — 1 in each interval {%, %}
and s("% is continuous in [0,1]. For r = 1 s is a piecewise constant function without
continuity at the knots.

If f € L,[0,1] is monotone nondecreasing, denote
| def . . :
E,\(f,7)po,1 = inf {||f — 5l 3 s€S8(rn), s nondecreasmg}.

The following two theorems was proved by Leviatan-Mhaskar [2]



Theorem 1 If f possesses a continuous nonnegative derivative ' on [0,1], then there is a
constant c(r) which depends only of v > 2 such that

EL(f, T)ool0,1] < c(rn w1 (f, n_l)oo[l),l]-

Theorem 2 Let 1 < p < oo. If fis the second primitive of f" € L,[0,1] and f is
nondecreasing , then there is a constant c(r) which depends only of r > 3 such that

ErTL(fv 7")p[O,l] < C(T)n#wrf?( ”Jfl)p[O,l}'

For a function f bounded on [0,1] the local modulus of smoothness of order r at the
point z € [0, 1] is the function (see Definition 1.4 of [3])

wn(f,238) 2 sup {\AZ,[o,uf(t)! Ctterhe

IRCNT,
xr 2,$ 2

For 1 < p < oo the r-th order averaged Sendov-Popov modulus of smoothness of a function
f bounded and measurable on [0,1] is (see Definition 1.5 of [3])

7o (£, 8)pio.] E [lwr (£, 5 0) lpfoy-

The following properties of 7, are used (see Theorem 1.5 and Property 5 of [3]). Let
1 <p <ooand f is the primitive of f' € L,[0, 1] then there is a constant ¢(r) which depends
only of » > 2 such that

(1) Tr(f, 5);0[0,1] < C(T)5wr—1(f/, 5);;[0,1]-

Let f be measurable on [0, 1] and k is integer. Then

(2) 7 (f k) pio,1) < K7 (f, 0)pio,)-

The main result of this paper is the following stronger estimation of best monotone
spline approximation.

Theorem 3 Let 1 < p < oo. If fis the primitive of a bounded and measurable on [0,1]
function f' and fis nondecreasing, then there is a constant c(r) which depends only of r > 2
such that

EL(f,m)poy < c(r)n o (fn™ -
Remark 1 For p = oo Theorem 3 coincides with Theorem 1 because of 7.(f, 6)00[071] =

wr(f, 5)00[0,1]-
Remark 2 Theorem 2 follows from Theorem 3 because of (1).

In order to prove the main result we use some statements from [2] .

Lemma 1 Let f be continuously differentiable on [-1,1] and nondecreasing there. Then there
is nondecreasing polynomial P on [-1,1] of degree < r (r > 1) which interpolates f at 0 and
1 and such that



1f = Plloci-11) < e(r) wr(f' Doof-1.
This is Lemma 3.2(i) from [2].
Remark 3 This statement is valid for a nondecreasing function f which is the primitive of
a bounded and measurable function f” (see the proof of Lemma 3.2(i) from [2]).

Lemma 2 Let f be a nondecreasing function which is the primitive of a bounded and measurable
on [—1,1] function f'. Forr > 1 there exists a nondecreasing continuous function g on [-1,1]
such that g interpolates f at -1, 0 and 1 and has the properties:

(1) The restrictions of g to[—1,0] and [0, 1] are polynomials of degree <r;
(1) [1f = glloor-1.17 < e(r) wr(f; Doof-1,113

(i) 319 (0+) = g9 (0-)] < clr) (s Dacp 1

This is Theorem 3.1(i) from [2] accorded to Remark 3.

Lemma 3 Let f be a nondecreasing function which is the primitive of a bounded and measurable
on [—2,2] function f' and let g1 and g, be the piecewise polynomials guaranteed by Lemma
2 for the intervals I = [—2,0] and I = |0,2], respectively. Then

> 1982(04) — i (0)] < e(r) wr(f' 1) sof-22)-
k=1

This is Theorem 3.2(i) from [2] accorded to Remark 3.
The next lemma is similar to Lemma 2 and the proof runs along the lines of that of
Lemma 2.

Lemma 4 Let f be a nondecreasing function which is the primitive of a bounded and measurable
on [—=m,l] (m and [ natural) function f'. For r > 1 there ezists a nondecreasing continuous
function g on [-m,l] such that g interpolates f at -m, 0 and | and has the properties:

(i) The restrictions of g to [—m,0] and [0,1] are polynomials of degree < r;
(”) Hf - g“oo[—m,l} < C(T) wr(fla 1)00[— max{m,l},max{m,l}]

(ii7) >~ 1™ (0+) = g™ (0-)] < e(r) wrlf', ool minfmt),— minfm.1y
k=1

We use also the following fundamental Lemma of Chui, Smith and Ward (see [1] ).

Lemma CSW. Let r > 2 and d = 4r% and let g be a nondecreasing continuous function on
[—3d, 3d], the restriction of which to [—3d,0] and to [0,3d] polynomials of degree < r — 1.
Then there is a nondecreasing spline s of order r and knots at the integers such that

r—1
s = gllp-sasaq = s = gllpi—a.a) < c(r) 3_ 19*(0+) = g™ (0-)].
k=1



2 Main result.

Proof of Theorem 3. It suffices to prove Theorem for n > 12d, where d = 4r%. Let
F(t) = f(i), t € [0,n], and let m = 2 {%} ( [.]-integral part ). Denote I; = [0,3d],
I, = [3d,6d],...,I;,_1 = [3(m — 2)d,3(m — )d] and I, = [3(m — 1)d,n. By Lemma 2 for
each pair of intervals Ip;_y U Iy;, j =1,2,...,% — 1, there exists a monotone nondecreasing
continuous function G; interpolating F' at 6(] — l)d, (67 — 3)d and 6jd, such that G; is a

polynomial of degree < r —1 on I;_; and on I5;. Also,

||F - Gj||OO(I2j—1UI2j) < C(T) w"‘—l(Flv 1)00(12j—1UI2j)'
and
k k .
z IGP((65 — 3)d+) — G (6] — 3)d—)| < (r) Wrr (F', Voo yumay)-

Let we note that the constants in the inequalities are independent of the intervals. We must
note also that the length of I,,, may be > 3d. This is the reason for the using of Lemma 4.
By Lemma 4 for the last pair of intervals I,, 1 U I, there exists a monotone nondecreasing
continuous function G'= interpolating F' at 3(m — 2)d, 3(m — 1)d and n, such that Gm is a
polynomial of degree < r — 1 on I,,_1 and on I,,. Also,

(3) IF = Gl co(tyy0tm) < (1) Wr1 (F" 1) oo(m 20l 1ULn) -

and
r—1

(4) Y IGWEm = 1)d+) — GW B(m — 1)d=)| < e(r) w1 (F', Voot y0t)-
k=1

In the right hand side of (3) and (4) we use that 3d < n — 3(m — 1)d < 6d and I,,_» exists
because m > 2 (n > 12d).

Now by Lemma 3, we may define a continuous nondecreasing function G = G, on
Iy 1 Uly;, j=1,2,..., 7% such that

(5) ||F - G||OO(12j71UI2j) < C(T‘) wT—l(F/’ ]‘)00(12]‘71U12j)7 ]
[ = Glloo(tnr01m) < (1) Wre1 (F's Doo(Ipy—2UlLn1ULn)s J

II/\

vol3o|3

and fori =1,2,...m—1
(6) Z IG®) (3id+) — GM(3id—)| < c(r) wr1(F', 1) o(riumisy)-

Applying Lemma CSW in each pair of intervals I; U I;, 1 we have a spline S; on I; U I; 1
such that S; = G outside [(3i — 1)d, (3i + 1)d] and by (6)
(7) ||Sz - G||oo[(3i—1)d,(3i+1)d] < C(T) wr—l(Fla 1>oo(liuli+1)'
We define the spline

S(t) dot | Si(t) if te[Bi—1)d,(3i+1)d], i=1,2,..,m—1;
| G(t) otherwise.



Now we let s(t) = S(nt), 0 <t < 1. Then s € S(r,n), s is monotone nondecreasing and

using (5), (7) and (2) we obtain

Hf sl = HF—SHZM

<= (||F — Gl + 16 = SI%0)

1
2P
< (Z I = Gl uny) + I1F = Gl _yury + Z G = Slpon)

7j=1

o (i
U
< —c(r) Z/ w1 (' D)oot - ut;)dt
Iz;1Ul;

n =

+/ L F ].)oo(]m Ul — 1UI'm dt+ Z/
Iy —1Ulpy,

LUIi

1
» (3
<o) | X / WA (F i e(r))dt + (Pt elr))dt
12]' 1U12j

n = I 1UIn,

+Z/

I; UIhLl
2p » ,
< gC(T)Tr_l(F (7)) plom]
_ _ P
= c(r) (7' r 1 (f c(r)n o)
p

< e(r) (el ma (F o)
Therefore

(F' t e ))dt)

1f = sllppo.y < c(r)n ' msa (f, 07 ppo,-
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