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Abstract

In this paper a Jackson-type estimation for the approximation of monotone nondecreasing
funcion f by monotone nondecreasing splines with equally spaced knots in the Lp[0, 1]-
norm (1 ≤ p ≤ ∞) is obtained. The estimation involves high order Sendov-Popov
averaged moduli of smoothness of the derivative of f and are obtained for function f
with a bounded and measurable derivative. The Chui, Smith and Ward’s technique is
used. The result is a generalization of the results in [2].

1 Introduction.

For 1 ≤ p < ∞ let Lp[0, 1] denote the space of measurable functions whose p-th power is
integrable and let L∞[0, 1] denote the space of bounded and measurable functions. Given
f ∈ Lp[0, 1], define its r-th Lp-modulus of smoothness by

ωr(f, h)p[0,1]
def
= sup

{
‖∆r

t,[0,1]f(·)‖p[0,1] ; 0 ≤ t ≤ h
}

where

∆r
t,[0,1]f(x)

def
=

{ ∑r
i=0(−1)r−i

(
r
i

)
f(x + it) if x, x + rt ∈ [0, 1];

0 otherwise.

Let S(r, n)(r ≥ 1) denote the space of all splines of order r on the n+1 equally spaced

knots
{

i
n

}n

i=0
, i.e. s ∈ S(r, n), if s is a polynomial of degree ≤ r− 1 in each interval

[
i
n
, i+1

n

]
and s(r−2) is continuous in [0, 1]. For r = 1 s is a piecewise constant function without
continuity at the knots.

If f ∈ Lp[0, 1] is monotone nondecreasing, denote

E↑
n(f, r)p[0,1]

def
= inf

{
‖f − s‖p[0,1] ; s ∈ S(r, n) , s nondecreasing

}
.

The following two theorems was proved by Leviatan-Mhaskar [2]
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Theorem 1 If f possesses a continuous nonnegative derivative f ′ on [0,1], then there is a
constant c(r) which depends only of r ≥ 2 such that

E↑
n(f, r)∞[0,1] ≤ c(r)n−1ωr−1(f

′, n−1)∞[0,1].

Theorem 2 Let 1 ≤ p < ∞. If f is the second primitive of f ′′ ∈ Lp[0, 1] and f is
nondecreasing , then there is a constant c(r) which depends only of r ≥ 3 such that

E↑
n(f, r)p[0,1] ≤ c(r)n−2ωr−2(f

′′, n−1)p[0,1].

For a function f bounded on [0,1] the local modulus of smoothness of order r at the
point x ∈ [0, 1] is the function (see Definition 1.4 of [3])

ωr(f, x; δ)
def
= sup

{
|∆r

h,[0,1]f(t)| ; t, t + rh ∈
[
x− rδ

2
, x +

rδ

2

]}

For 1 ≤ p ≤ ∞ the r-th order averaged Sendov-Popov modulus of smoothness of a function
f bounded and measurable on [0,1] is (see Definition 1.5 of [3])

τr(f, δ)p[0,1]
def
= ‖ωr(f, ·; δ)‖p[0,1].

The following properties of τr are used (see Theorem 1.5 and Property 5 of [3]). Let
1 ≤ p ≤ ∞ and f is the primitive of f ′ ∈ Lp[0, 1] then there is a constant c(r) which depends
only of r ≥ 2 such that

τr(f, δ)p[0,1] ≤ c(r)δωr−1(f
′, δ)p[0,1].(1)

Let f be measurable on [0, 1] and k is integer. Then

τr(f, kδ)p[0,1] ≤ kr+1τr(f, δ)p[0,1].(2)

The main result of this paper is the following stronger estimation of best monotone
spline approximation.

Theorem 3 Let 1 ≤ p ≤ ∞. If f is the primitive of a bounded and measurable on [0,1]
function f ′ and f is nondecreasing, then there is a constant c(r) which depends only of r ≥ 2
such that

E↑
n(f, r)p[0,1] ≤ c(r)n−1τr−1(f

′, n−1)p[0,1].

Remark 1 For p = ∞ Theorem 3 coincides with Theorem 1 because of τr(f, δ)∞[0,1] ≡
ωr(f, δ)∞[0,1].
Remark 2 Theorem 2 follows from Theorem 3 because of (1).

In order to prove the main result we use some statements from [2] .

Lemma 1 Let f be continuously differentiable on [-1,1] and nondecreasing there. Then there
is nondecreasing polynomial P on [-1,1] of degree ≤ r (r ≥ 1) which interpolates f at 0 and
1 and such that
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‖f − P‖∞[−1,1] ≤ c(r) ωr(f
′, 1)∞[−1,1].

This is Lemma 3.2(i) from [2].
Remark 3 This statement is valid for a nondecreasing function f which is the primitive of
a bounded and measurable function f ′ (see the proof of Lemma 3.2(i) from [2]).

Lemma 2 Let f be a nondecreasing function which is the primitive of a bounded and measurable
on [−1, 1] function f ′. For r ≥ 1 there exists a nondecreasing continuous function g on [-1,1]
such that g interpolates f at -1, 0 and 1 and has the properties:

(i) The restrictions of g to [−1, 0] and [0, 1] are polynomials of degree ≤ r;

(ii) ‖f − g‖∞[−1,1] ≤ c(r) ωr(f
′, 1)∞[−1,1];

(iii)
r∑

k=1

|g(k)(0+)− g(k)(0−)| ≤ c(r) ωr(f
′, 1)∞[−1,1].

This is Theorem 3.1(i) from [2] accorded to Remark 3.

Lemma 3 Let f be a nondecreasing function which is the primitive of a bounded and measurable
on [−2, 2] function f ′ and let g1 and g1 be the piecewise polynomials guaranteed by Lemma
2 for the intervals I = [−2, 0] and I = [0, 2], respectively. Then

r∑
k=1

|g(k)
2 (0+)− g

(k)
1 (0−)| ≤ c(r) ωr(f

′, 1)∞[−2,2].

This is Theorem 3.2(i) from [2] accorded to Remark 3.
The next lemma is similar to Lemma 2 and the proof runs along the lines of that of

Lemma 2.

Lemma 4 Let f be a nondecreasing function which is the primitive of a bounded and measurable
on [−m, l] (m and l natural) function f ′. For r ≥ 1 there exists a nondecreasing continuous
function g on [-m,l] such that g interpolates f at -m, 0 and l and has the properties:

(i) The restrictions of g to [−m, 0] and [0, l] are polynomials of degree ≤ r;

(ii) ‖f − g‖∞[−m,l] ≤ c(r) ωr(f
′, 1)∞[−max{m,l},max{m,l}];

(iii)
r∑

k=1

|g(k)(0+)− g(k)(0−)| ≤ c(r) ωr(f
′, 1)∞[−min{m,l},−min{m,l}].

We use also the following fundamental Lemma of Chui, Smith and Ward (see [1] ).

Lemma CSW. Let r ≥ 2 and d = 4r2 and let g be a nondecreasing continuous function on
[−3d, 3d], the restriction of which to [−3d, 0] and to [0, 3d] polynomials of degree ≤ r − 1.
Then there is a nondecreasing spline s of order r and knots at the integers such that

‖s− g‖p[−3d,3d] = ‖s− g‖p[−d,d] ≤ c(r)
r−1∑
k=1

|g(k)(0+)− g(k)(0−)|.
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2 Main result.

Proof of Theorem 3. It suffices to prove Theorem for n > 12d, where d = 4r2. Let
F (t) = f

(
t
n

)
, t ∈ [0, n], and let m = 2

[
n
6d

]
( [.]-integral part ). Denote I1 = [0, 3d],

I2 = [3d, 6d], ..., Im−1 = [3(m − 2)d, 3(m − 1)d] and Im = [3(m − 1)d, n. By Lemma 2 for
each pair of intervals I2j−1 ∪ I2j, j = 1, 2, ..., m

2
− 1, there exists a monotone nondecreasing

continuous function Gj interpolating F at 6(j − 1)d, (6j − 3)d and 6jd, such that Gj is a
polynomial of degree ≤ r − 1 on I2j−1 and on I2j. Also,

‖F −Gj‖∞(I2j−1∪I2j) ≤ c(r) ωr−1(F
′, 1)∞(I2j−1∪I2j).

and
r−1∑
k=1

|G(k)
j ((6j − 3)d+)−G

(k)
j ((6j − 3)d−)| ≤ c(r) ωr−1(F

′, 1)∞(I2j−1∪I2j).

Let we note that the constants in the inequalities are independent of the intervals. We must
note also that the length of Im may be > 3d. This is the reason for the using of Lemma 4.
By Lemma 4 for the last pair of intervals Im−1 ∪ Im, there exists a monotone nondecreasing
continuous function Gm

2
interpolating F at 3(m− 2)d, 3(m− 1)d and n, such that Gm

2
is a

polynomial of degree ≤ r − 1 on Im−1 and on Im. Also,

‖F −Gm
2
‖∞(Im−1∪Im) ≤ c(r) ωr−1(F

′, 1)∞(Im−2∪Im−1∪Im).(3)

and

r−1∑
k=1

|G(k)
m
2

(3(m− 1)d+)−G
(k)
m
2

(3(m− 1)d−)| ≤ c(r) ωr−1(F
′, 1)∞(Im−1∪Im).(4)

In the right hand side of (3) and (4) we use that 3d ≤ n− 3(m− 1)d ≤ 6d and Im−2 exists
because m ≥ 2 (n > 12d).

Now by Lemma 3, we may define a continuous nondecreasing function G = Gj on
I2j−1 ∪ I2j, j = 1, 2, ..., m

2
such that

‖F −G‖∞(I2j−1∪I2j) ≤ c(r) ωr−1(F
′, 1)∞(I2j−1∪I2j), j < m

2
;

‖F −G‖∞(Im−1∪Im) ≤ c(r) ωr−1(F
′, 1)∞(Im−2∪Im−1∪Im), j = m

2
.

(5)

and for i = 1, 2, ...,m− 1

r−1∑
k=1

|G(k)(3id+)−G(k)(3id−)| ≤ c(r) ωr−1(F
′, 1)∞(Ii∪Ii+1).(6)

Applying Lemma CSW in each pair of intervals Ii∪ Ii+1 we have a spline Si on Ii∪ Ii+1

such that Si = G outside [(3i− 1)d, (3i + 1)d] and by (6)

‖Si −G‖∞[(3i−1)d,(3i+1)d] ≤ c(r) ωr−1(F
′, 1)∞(Ii∪Ii+1).(7)

We define the spline

S(t)
def
=

{
Si(t) if t ∈ [(3i− 1)d, (3i + 1)d] , i = 1, 2, ...,m− 1;
G(t) otherwise.
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Now we let s(t) = S(nt), 0 ≤ t ≤ 1. Then s ∈ S(r, n), s is monotone nondecreasing and
using (5), (7) and (2) we obtain

‖f − s‖p
p[0,1] =

1

n
‖F − S‖p

p[0,n]

≤ 2p

n

(
‖F −G‖p

p[0,n] + ‖G− S‖p
p[0,n]

)
≤ 2p

n

m
2
−1∑

j=1

‖F −G‖p
p(I2j−1∪I2j)

+ ‖F −G‖p
p(Im−1∪Im) +

m−1∑
i=1

‖G− S‖p
p(Ii∪Ii+1)


≤ 2p

n
c(r)

m
2
−1∑

j=1

∫
I2j−1∪I2j

ωp
r−1(F

′, 1)∞(I2j−1∪I2j)dt

+
∫

Im−1∪Im

ωp
r−1(F

′, 1)∞(Im−2∪Im−1∪Im)dt +
m−1∑
i=1

∫
Ii∪Ii+1

ωp
r−1(F

′, 1)∞(Ii∪Ii+1)dt

)

≤ 2p

n
c(r)

m
2
−1∑

j=1

∫
I2j−1∪I2j

ωp
r−1(F

′, t; c(r))dt +
∫

Im−1∪Im

ωp
r−1(F

′, t; c(r))dt

+
m−1∑
i=1

∫
Ii∪Ii+1

ωp
r−1(F

′, t; c(r))dt

)

≤ 2p

n
c(r)τ p

r−1(F
′, c(r))p[0,n]

= c(r)
(
n−1τr−1(f

′, c(r)n−1)p[0,1]

)p

≤ c(r)
(
c(r)n−1τr−1(f

′, n−1)p[0,1]

)p
.

Therefore
‖f − s‖p[0,1] ≤ c(r)n−1τr−1(f

′, n−1)p[0,1].
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