An Estimation of the Best Monotone Spline Approximation with the Averaged Moduli of Smoothness

P. E. Parvanov

05.11.1998

Abstract

In this paper a Jackson-type estimation for the approximation of monotone nondecreasing function f by monotone nondecreasing splines with equally spaced knots in the $L_p[0, 1]$ norm $(1 \le p \le \infty)$ is obtained. The estimation involves high order Sendov-Popov averaged moduli of smoothness of the derivative of f and are obtained for function fwith a bounded and measurable derivative. The Chui, Smith and Ward's technique is used. The result is a generalization of the results in [2].

1 Introduction.

For $1 \leq p < \infty$ let $L_p[0,1]$ denote the space of measurable functions whose *p*-th power is integrable and let $L_{\infty}[0,1]$ denote the space of bounded and measurable functions. Given $f \in L_p[0,1]$, define its *r*-th L_p -modulus of smoothness by

$$\omega_r(f,h)_{p[0,1]} \stackrel{\text{def}}{=} \sup \left\{ \|\Delta_{t,[0,1]}^r f(\cdot)\|_{p[0,1]} \; ; \; 0 \le t \le h \right\}$$

where

$$\Delta_{t,[0,1]}^r f(x) \stackrel{\text{def}}{=} \begin{cases} \sum_{i=0}^r (-1)^{r-i} {r \choose i} f(x+it) & if \ x, x+rt \in [0,1]; \\ 0 & otherwise. \end{cases}$$

Let $S(r,n)(r \ge 1)$ denote the space of all splines of order r on the n+1 equally spaced knots $\left\{\frac{i}{n}\right\}_{i=0}^{n}$, i.e. $s \in S(r,n)$, if s is a polynomial of degree $\le r-1$ in each interval $\left[\frac{i}{n}, \frac{i+1}{n}\right]$ and $s^{(r-2)}$ is continuous in [0,1]. For r = 1 s is a piecewise constant function without continuity at the knots.

If $f \in L_p[0,1]$ is monotone nondecreasing, denote

$$E_n^{\uparrow}(f,r)_{p[0,1]} \stackrel{\text{def}}{=} \inf \left\{ \|f - s\|_{p[0,1]} \; ; \; s \in S(r,n) \; , \; s \; nondecreasing \right\}.$$

The following two theorems was proved by Leviatan-Mhaskar [2]

Theorem 1 If f possesses a continuous nonnegative derivative f' on [0,1], then there is a constant c(r) which depends only of $r \ge 2$ such that

$$E_n^{\uparrow}(f,r)_{\infty[0,1]} \le c(r)n^{-1}\omega_{r-1}(f',n^{-1})_{\infty[0,1]}.$$

Theorem 2 Let $1 \leq p < \infty$. If f is the second primitive of $f'' \in L_p[0,1]$ and f is nondecreasing, then there is a constant c(r) which depends only of $r \geq 3$ such that

$$E_n^{\uparrow}(f,r)_{p[0,1]} \le c(r)n^{-2}\omega_{r-2}(f'',n^{-1})_{p[0,1]}.$$

For a function f bounded on [0,1] the local modulus of smoothness of order r at the point $x \in [0,1]$ is the function (see Definition 1.4 of [3])

$$\omega_r(f,x;\delta) \stackrel{\text{def}}{=} \sup\left\{ |\Delta_{h,[0,1]}^r f(t)| \; ; \; t,t+rh \in \left[x - \frac{r\delta}{2}, x + \frac{r\delta}{2}\right] \right\}$$

For $1 \le p \le \infty$ the *r*-th order averaged Sendov-Popov modulus of smoothness of a function f bounded and measurable on [0,1] is (see Definition 1.5 of [3])

$$\tau_r(f,\delta)_{p[0,1]} \stackrel{\text{def}}{=} \|\omega_r(f,\cdot;\delta)\|_{p[0,1]}.$$

The following properties of τ_r are used (see Theorem 1.5 and Property 5 of [3]). Let $1 \leq p \leq \infty$ and f is the primitive of $f' \in L_p[0, 1]$ then there is a constant c(r) which depends only of $r \geq 2$ such that

(1)
$$\tau_r(f,\delta)_{p[0,1]} \le c(r)\delta\omega_{r-1}(f',\delta)_{p[0,1]}.$$

Let f be measurable on [0, 1] and k is integer. Then

The main result of this paper is the following stronger estimation of best monotone spline approximation.

Theorem 3 Let $1 \le p \le \infty$. If f is the primitive of a bounded and measurable on [0,1] function f' and f is nondecreasing, then there is a constant c(r) which depends only of $r \ge 2$ such that

$$E_n^{\uparrow}(f,r)_{p[0,1]} \le c(r)n^{-1}\tau_{r-1}(f',n^{-1})_{p[0,1]}.$$

Remark 1 For $p = \infty$ Theorem 3 coincides with Theorem 1 because of $\tau_r(f, \delta)_{\infty[0,1]} \equiv \omega_r(f, \delta)_{\infty[0,1]}$.

Remark 2 Theorem 2 follows from Theorem 3 because of (1).

In order to prove the main result we use some statements from [2].

Lemma 1 Let f be continuously differentiable on [-1,1] and nondecreasing there. Then there is nondecreasing polynomial P on [-1,1] of degree $\leq r$ $(r \geq 1)$ which interpolates f at 0 and 1 and such that

$$||f - P||_{\infty[-1,1]} \le c(r) \omega_r(f', 1)_{\infty[-1,1]}$$

This is Lemma 3.2(i) from [2].

Remark 3 This statement is valid for a nondecreasing function f which is the primitive of a bounded and measurable function f' (see the proof of Lemma 3.2(i) from [2]).

Lemma 2 Let f be a nondecreasing function which is the primitive of a bounded and measurable on [-1,1] function f'. For $r \ge 1$ there exists a nondecreasing continuous function g on [-1,1] such that g interpolates f at -1, 0 and 1 and has the properties:

(i) The restrictions of g to [-1, 0] and [0, 1] are polynomials of degree $\leq r$;

(*ii*)
$$||f - g||_{\infty[-1,1]} \le c(r) \omega_r(f', 1)_{\infty[-1,1]};$$

(*iii*)
$$\sum_{k=1}^{r} |g^{(k)}(0+) - g^{(k)}(0-)| \le c(r) \omega_r(f', 1)_{\infty[-1,1]}.$$

This is Theorem 3.1(i) from [2] accorded to Remark 3.

Lemma 3 Let f be a nondecreasing function which is the primitive of a bounded and measurable on [-2, 2] function f' and let g_1 and g_1 be the piecewise polynomials guaranteed by Lemma 2 for the intervals I = [-2, 0] and I = [0, 2], respectively. Then

$$\sum_{k=1}^{r} |g_2^{(k)}(0+) - g_1^{(k)}(0-)| \le c(r) \ \omega_r(f', 1)_{\infty[-2,2]}$$

This is Theorem 3.2(i) from [2] accorded to Remark 3.

The next lemma is similar to Lemma 2 and the proof runs along the lines of that of Lemma 2.

Lemma 4 Let f be a nondecreasing function which is the primitive of a bounded and measurable on [-m, l] (m and l natural) function f'. For $r \ge 1$ there exists a nondecreasing continuous function g on [-m, l] such that g interpolates f at -m, 0 and l and has the properties:

(i) The restrictions of g to [-m, 0] and [0, l] are polynomials of degree $\leq r$;

(*ii*)
$$||f - g||_{\infty[-m,l]} \le c(r) \omega_r(f', 1)_{\infty[-\max\{m,l\},\max\{m,l\}]};$$

(*iii*)
$$\sum_{k=1}^{r} |g^{(k)}(0+) - g^{(k)}(0-)| \le c(r) \omega_r(f', 1)_{\infty[-\min\{m,l\}, -\min\{m,l\}]}$$

We use also the following fundamental Lemma of Chui, Smith and Ward (see [1]).

Lemma CSW. Let $r \ge 2$ and $d = 4r^2$ and let g be a nondecreasing continuous function on [-3d, 3d], the restriction of which to [-3d, 0] and to [0, 3d] polynomials of degree $\le r - 1$. Then there is a nondecreasing spline s of order r and knots at the integers such that

$$||s - g||_{p[-3d,3d]} = ||s - g||_{p[-d,d]} \le c(r) \sum_{k=1}^{r-1} |g^{(k)}(0+) - g^{(k)}(0-)|.$$

2 Main result.

Proof of Theorem 3. It suffices to prove Theorem for n > 12d, where $d = 4r^2$. Let $F(t) = f\left(\frac{t}{n}\right), t \in [0, n]$, and let $m = 2\left[\frac{n}{6d}\right]$ ([.]-integral part). Denote $I_1 = [0, 3d]$, $I_2 = [3d, 6d], \dots, I_{m-1} = [3(m-2)d, 3(m-1)d]$ and $I_m = [3(m-1)d, n$. By Lemma 2 for each pair of intervals $I_{2j-1} \cup I_{2j}, j = 1, 2, \dots, \frac{m}{2} - 1$, there exists a monotone nondecreasing continuous function G_j interpolating F at 6(j-1)d, (6j-3)d and 6jd, such that G_j is a polynomial of degree $\leq r-1$ on I_{2j-1} and on I_{2j} . Also,

$$||F - G_j||_{\infty(I_{2j-1} \cup I_{2j})} \le c(r) \ \omega_{r-1}(F', 1)_{\infty(I_{2j-1} \cup I_{2j})}.$$

and

$$\sum_{k=1}^{r-1} |G_j^{(k)}((6j-3)d+) - G_j^{(k)}((6j-3)d-)| \le c(r) \ \omega_{r-1}(F',1)_{\infty(I_{2j-1}\cup I_{2j})}.$$

Let we note that the constants in the inequalities are independent of the intervals. We must note also that the length of I_m may be > 3d. This is the reason for the using of Lemma 4. By Lemma 4 for the last pair of intervals $I_{m-1} \cup I_m$, there exists a monotone nondecreasing continuous function $G_{\frac{m}{2}}$ interpolating F at 3(m-2)d, 3(m-1)d and n, such that $G_{\frac{m}{2}}$ is a polynomial of degree $\leq r-1$ on I_{m-1} and on I_m . Also,

(3)
$$\|F - G_{\frac{m}{2}}\|_{\infty(I_{m-1}\cup I_m)} \le c(r) \ \omega_{r-1}(F', 1)_{\infty(I_{m-2}\cup I_{m-1}\cup I_m)}$$

and

(4)
$$\sum_{k=1}^{r-1} |G_{\frac{m}{2}}^{(k)}(3(m-1)d+) - G_{\frac{m}{2}}^{(k)}(3(m-1)d-)| \le c(r) \ \omega_{r-1}(F',1)_{\infty(I_{m-1}\cup I_m)}.$$

In the right hand side of (3) and (4) we use that $3d \le n - 3(m-1)d \le 6d$ and I_{m-2} exists because $m \ge 2$ (n > 12d).

Now by Lemma 3, we may define a continuous nondecreasing function $G = G_j$ on $I_{2j-1} \cup I_{2j}, j = 1, 2, ..., \frac{m}{2}$ such that

(5)
$$\begin{split} \|F - G\|_{\infty(I_{2j-1}\cup I_{2j})} &\leq c(r) \ \omega_{r-1}(F', 1)_{\infty(I_{2j-1}\cup I_{2j})}, \qquad j < \frac{m}{2}; \\ \|F - G\|_{\infty(I_{m-1}\cup I_m)} &\leq c(r) \ \omega_{r-1}(F', 1)_{\infty(I_{m-2}\cup I_{m-1}\cup I_m)}, \quad j = \frac{m}{2}. \end{split}$$

and for i = 1, 2, ..., m - 1

(6)
$$\sum_{k=1}^{r-1} |G^{(k)}(3id+) - G^{(k)}(3id-)| \le c(r) \ \omega_{r-1}(F', 1)_{\infty(I_i \cup I_{i+1})}$$

Applying Lemma CSW in each pair of intervals $I_i \cup I_{i+1}$ we have a spline S_i on $I_i \cup I_{i+1}$ such that $S_i = G$ outside [(3i-1)d, (3i+1)d] and by (6)

(7)
$$||S_i - G||_{\infty[(3i-1)d,(3i+1)d]} \le c(r) \ \omega_{r-1}(F',1)_{\infty(I_i \cup I_{i+1})}.$$

We define the spline

$$S(t) \stackrel{\text{def}}{=} \begin{cases} S_i(t) & if \ t \in [(3i-1)d, (3i+1)d], \ i=1,2,...,m-1; \\ G(t) & otherwise. \end{cases}$$

Now we let s(t) = S(nt), $0 \le t \le 1$. Then $s \in S(r, n)$, s is monotone nondecreasing and using (5), (7) and (2) we obtain

$$\begin{split} \|f - s\|_{p[0,1]}^{p} &= \frac{1}{n} \|F - S\|_{p[0,n]}^{p} \\ &\leq \frac{2^{p}}{n} \left(\|F - G\|_{p[0,n]}^{p} + \|G - S\|_{p[0,n]}^{p} \right) \\ &\leq \frac{2^{p}}{n} \left(\sum_{j=1}^{\frac{m}{2}-1} \|F - G\|_{p(I_{2j-1} \cup I_{2j})}^{p} + \|F - G\|_{p(I_{m-1} \cup I_{m})}^{p} + \sum_{i=1}^{m-1} \|G - S\|_{p(I_{i} \cup I_{i+1})}^{p} \right) \\ &\leq \frac{2^{p}}{n} c(r) \left(\sum_{j=1}^{\frac{m}{2}-1} \int_{I_{2j-1} \cup I_{2j}} \omega_{r-1}^{p}(F', 1)_{\infty(I_{2j-1} \cup I_{2j})} dt \right. \\ &+ \int_{I_{m-1} \cup I_{m}} \omega_{r-1}^{p}(F', 1)_{\infty(I_{m-2} \cup I_{m-1} \cup I_{m})} dt + \sum_{i=1}^{m-1} \int_{I_{i} \cup I_{i+1}} \omega_{r-1}^{p}(F', 1)_{\infty(I_{i} \cup I_{i+1})} dt \right) \\ &\leq \frac{2^{p}}{n} c(r) \left(\sum_{j=1}^{\frac{m}{2}-1} \int_{I_{2j-1} \cup I_{2j}} \omega_{r-1}^{p}(F', t; c(r)) dt + \int_{I_{m-1} \cup I_{m}} \omega_{r-1}^{p}(F', t; c(r)) dt \right. \\ &+ \sum_{i=1}^{m-1} \int_{I_{i} \cup I_{i+1}} \omega_{r-1}^{p}(F', t; c(r)) dt \right) \\ &\leq \frac{2^{p}}{n} c(r) \left(n^{-1} \tau_{r-1}(F', c(r))_{p[0,n]} \\ &= c(r) \left(n^{-1} \tau_{r-1}(f', n^{-1})_{p[0,1]} \right)^{p} . \end{split}$$

Therefore

$$||f - s||_{p[0,1]} \le c(r)n^{-1}\tau_{r-1}(f', n^{-1})_{p[0,1]}.$$

References

- [1] C.K. CHUI, P.W. SMITH, J.D. WARD. Degree of L_p approximations by monotone splines. *SIAM J. Math.Anal.* **11**, (1980) 436-447.
- [2] D. LEVIATAN, H. N. MHASKAR. The rate of monotone spline approximation in the L_p-norm. SIAM J. Math.Anal. 13, 5, (1982) 866-874.
- [3] BL. SENDOV AND V. A. POPOV. The Averaged Moduli of Smoothness. John Willey & Sons. (1988).

Parvan Parvanov Department of Mathematics Higher Transport School 1754 Slatina, Sofia, Bulgaria e-mail pparvanov @ mail.vvtu.bg