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Abstract

The uniform weighted approximation errors of the Goodman–Sharma
operators are characterized for functions from C(w)[0, 1] with weight of
the form xγ0(1 − x)γ1 for γ0, γ1 ∈ [−1, 0]. Direct and strong converse
theorems are proved in terms of the weighted K-functional. The results
extends those in [6] from the unweighted case (γ0 = γ1 = 0) to weights
with negative powers.
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1 Introduction

The Bernstein-type operators discussed in this paper are given for natural n by

Unf(x) =

n∑
k=0

un,k(f)Pn,k(x)

= f(0)Pn,0(x) + f(1)Pn,n(x) +

n−1∑
k=1

Pn,k(x)

∫ 1

0

(n− 1)Pn−2,k−1(y)f(y)dy,

where Pn,k(x) =

(
n

k

)
xk(1 − x)n−k and f is a Lebesgue integrable in (0, 1)

function with finite limits at 0 and at 1. They were introduced by T.N.T.
Goodman and A. Sharma in [4] and [5]. These operators can also be considered
as a limit case of the family of Bernstein-type operators investigated by H.
Berens and Y. Xu in [1].

∗Partially supported by grant Nr103/2007 of the National Science Fund of the Sofia Uni-
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Denote the weight function by

w(x) = w(γ0, γ1;x) = xγ0(1− x)γ1 for x ∈ (0, 1) (1.1)

and real γ0, γ1. Our main results will concern the values of the powers γ0, γ1 in
the range [−1, 0]. By ϕ(x) = x(1− x) we denote the weight which is naturally
connected with the second derivatives of both Bernstein and Goodman–Sharma
operators. The first derivative operator is given by D = d

dx , thus Dg(x) = g′(x)
and D2g(x) = g′′(x).

By C[0, 1], as usual, we denote the space of all continuous functions on
[0, 1] equipped with the uniform norm ‖ · ‖. Let L∞[0, 1] denote the Lebesgue
measurable and essentially bounded in [0, 1] functions. For a weight function w
we set C(w)[0, 1] = {f ∈ C[0, 1] : wf ∈ L∞[0, 1]} and

W 2(wϕ)[0, 1] =
{
g, g′ ∈ ACloc(0, 1) : wϕD2g ∈ L∞[0, 1]

}
,

where ACloc(0, 1) consists of the functions which are absolutely continuous in
[a, b] for every [a, b] ⊂ (0, 1).

Set C0(w)[0, 1] = {f ∈ C(w)[0, 1] : f(0) = f(1) = 0}. Similarly, by
W 2

0 (wϕ)[0, 1] we denote the subspace of W 2(wϕ)[0, 1] of functions g satisfying
the additional boundary conditions

lim
x→0+0

ϕ(x)D2g(x) = lim
x→1−0

ϕ(x)D2g(x) = 0.

Note that the boundary conditions both for C0(w) and W 2
0 (wϕ) do not depend

on the weight w. These conditions are essential when the weight w does not
go to ∞ at least at one of the end-points of [0, 1], while for γ0, γ1 < 0 we have
C0(w)[0, 1] = C(w)[0, 1] and W 2

0 (wϕ)[0, 1] = W 2(wϕ)[0, 1]. The above defined
spaces are naturally embedded

W 2
0 (wϕ)[0, 1] ⊂W 2(wϕ)[0, 1] ⊂ C(w)[0, 1] + π1 ⊂ C[0, 1], (1.2)

where π1 is the set of all algebraical polynomials of degree 1. Note that
W 2

0 (wϕ)[0, 1] 6⊂ C0[0, 1] = C0(1)[0, 1] because π1 ⊂W 2
0 (wϕ)[0, 1].

In this paper we investigate the rate of weighted approximation by Un
for functions in C0(w)[0, 1] + π1. The weighted approximation error will be
compared with the K-functional between the weighted spaces C(w)[0, 1] and
W 2(wϕ)[0, 1], which for every f ∈ C(w)[0, 1] + π1 and t > 0 is defined by

Kw(f, t) = inf
{
‖w(f − g)‖+ t‖wϕD2g‖ : g ∈W 2(wϕ)[0, 1]

}
. (1.3)

Goodman–Sharma operators combine good properties both of Bernstein op-
erators and of their Durrmeyer modification. Thus, Goodman–Sharma opera-
tors Un like Bernstein operators preserve linear functions and are suitable for
uniform approximation. On the other hand, Un like Bernstein-Durrmeyer oper-
ators commute among themselves (UnUmf = UmUnf) and with the differential
operator ϕD2 (see Lemma 2.2). The last property simplifies essentially the
proof of the strong converse theorem for Goodman–Sharma operators.
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Our main result is the following theorem, consisting of a direct inequality
(1.4) and a strong converse inequality of type A (1.5) in the terminology of [2].
It is a generalization of the result in [6], which treats the case w = 1.

Theorem 1.1. Let w = w(γ0, γ1) be given by (1.1) with γ0, γ1 ∈ [−1, 0]. There
exists an absolute constant M such that for every f ∈ C(w)[0, 1] +π1 and every
n ∈ N we have

‖w(f − Unf)‖ ≤ 2Kw

(
f,

1

2n

)
, (1.4)

Kw

(
f,

1

2n

)
≤

(
162 + 9

√
2

28
+
M

n

)
‖w(f − Unf)‖. (1.5)

Note that both sides of (1.4) (and (1.5)) do not change if f is replaced by
f − q for any q ∈ π1. Hence, it is enough to prove Theorem 1.1 for functions
f ∈ C(w)[0, 1]. Inequality (1.4) is contained in the following direct theorem,
because w(γ0, γ1)−1 is concave for γ0, γ1 ∈ [−1, 0].

Theorem 1.2. (Direct theorem) Let w−1 be concave. Then for every f ∈
C(w)[0, 1] and n ∈ N we have

‖w(Unf − f)‖ ≤ 2Kw

(
f,

1

2n

)
. (1.6)

Inequality (1.5) follows from the following inverse theorem, because κ(n) =
1 +O(n−1). Note that for n = 1 we have D2U1f = 0 and, thus, inequality (1.5)
is trivially satisfied with a constant 1.

Theorem 1.3. (Strong inverse theorem of type A) Let w = w(γ0, γ1) be given
by (1.1) with γ0, γ1 ∈ [−1, 0]. For every f ∈ C(w)[0, 1] and for every n ∈ N,
n ≥ 2, we have

Kw

(
f,

1

2n

)
≤ 40− (9

√
2− 5)κ(n)

8− 2
√

2κ(n)
‖w(f − Unf)‖,

where κ(n) =
16n4 + 16n3 − 1

16n4 − 8n2 + 1
.

Remark 1.1. Although Theorem 1.1 is proved for every f ∈ C(w)[0, 1], it
does not imply for such f ’s that ‖w(f − Unf)‖ → 0 or Kw

(
f, (2n)−1

)
→ 0

when n → ∞. Of course, the convergence to 0 folds for every f ∈ C(w)[0, 1]
in the case γ0 = γ1 = 0. But when γ0 < 0 or γ1 < 0 we have to impose
additional restrictions on f in the respective end-points for such convergence.
These restrictions are limx→0+ x

γ0f(x) = 0 for −1 < γ0 < 0, the existence of
limx→0+ x

−1f(x) for γ0 = −1 and similarly for γ1. These effects are studied in
[3], which also contains a characterization of the K-functional (1.3) in terms of
moduli of smoothness.

The paper is organized as follows. Section 2 contains auxiliary results about
Goodman–Sharma operators. Theorem 1.2 is proved in Section 3, while Theo-
rem 1.3 is proved in Section 4.
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2 Auxilary results

Many properties of the operator Un, n ∈ N are proved in [4], [5] and [6]. We
recall that Un preserves the linear functions and Unf interpolates f at 0 and at
1. We shall also use

Un is a linear, positive operator; (2.1)

Unf ≤ f for every concave continuous function f. (2.2)

The following two lemmas are respectively Lemma 4.1 and Lemma 4.2 in [6].

Lemma 2.1. For every f ∈ C[0, 1] and k ∈ N we have

Ukf(x)− Uk+1f(x) =
1

k(k + 1)
ϕ(x)D2Uk+1f(x).

Lemma 2.2. For every g ∈W 2
0 (ϕ)[0, 1] and n ∈ N we have

ϕ(x)D2Ung(x) = Un(ϕD2g)(x),

i.e. Un commutes with the operator ϕD2 on W 2
0 (ϕ)[0, 1].

We also need the bounded weighted norm property of Un and ϕD2Un.

Lemma 2.3. Let w−1 be concave. Then for every f ∈ C(w)[0, 1] and n ∈ N we
have ‖wUnf‖ ≤ ‖wf‖, i.e. Un has norm 1 in C(w)[0, 1].

Proof. From (2.1) and w ≥ 0 we get

|Unf(x)| = |Un((wf)w−1)(x)| ≤ Un(‖wf‖w−1)(x) = ‖wf‖Un(w−1)(x).

From the concavity of w−1 and (2.2) we get Un
(
w−1

)
≤ w−1, which proves the

lemma.

Lemma 2.4. Let w−1 be concave. Then for every g ∈W 2(wϕ)[0, 1] and n ∈ N
we have

‖wϕD2Ung‖ ≤ ‖wϕD2g‖.

Proof. From the proof of Lemma 4.2 in [6] for every g ∈W 2(wϕ)[0, 1] we have

ϕ(x)D2Ung(x) =

n−1∑
k=1

Pn,k(x)

∫ 1

0

(n− 1)Pn−2,k−1(y)ϕ(y)D2g(y) dy.

Applying the above representation and the inequality Un
(
w−1

)
≤ w−1 for the

concave function w−1 as in the previous lemma we obtain

|w(x)ϕ(x)D2Ung(x)|

≤ ‖wϕD2g‖ w(x)

n−1∑
k=1

Pn,k(x)

∫ 1

0

(n− 1)Pn−2,k−1(y)
1

w(y)
dy

≤ ‖wϕD2g‖ w(x)Un
(
w−1)(x

)
≤ ‖wϕD2g‖,

which proves the lemma.

4



3 Proof of the direct theorem

The next lemma is a weighted Jackson-type inequality for the Goodman–Sharma
operators.

Lemma 3.1. Let w−1 be concave. Then for every g ∈W 2(wϕ)[0, 1] and n ∈ N
we have

‖w(Ung − g)‖ ≤ 1

n
‖wϕD2g‖.

Proof. From Theorem 3.2 in [6] and (1.2) for a function g ∈ W 2(wϕ)[0, 1] we
get ‖Ung − g‖ → 0 for n→∞. Then from Lemma 2.1 we have

Ung(x)− g(x) =

∞∑
k=n

(Ukg(x)− Uk+1g(x)) =

∞∑
k=n

ϕ(x)D2Uk+1g(x)

k(k + 1)
. (3.1)

From (3.1) and Lemma 2.4 we get

‖w(Ung − g)‖ =

∥∥∥∥∥w
∞∑
k=n

ϕD2Uk+1g

k(k + 1)

∥∥∥∥∥
≤
∞∑
k=n

‖wϕD2Uk+1g‖
k(k + 1)

≤
∞∑
k=n

1

k(k + 1)
‖wϕD2g‖ =

1

n
‖wϕD2g‖.

Proof of Theorem 1.2. Let g be an arbitrary function from W 2(wϕ)[0, 1]. Then

‖w(Unf − f)‖ ≤ ‖w(Unf − Ung)‖+ ‖w(Ung − g)‖+ ‖w(g − f)‖.

From Lemma 2.3 and Lemma 3.1 we get

‖w(Unf − f)‖ ≤ 2‖w(f − g)‖+
1

n
‖wϕD2g‖ = 2

(
‖w(f − g)‖+

1

2n
‖wϕD2g‖

)
.

Taking an infimum on g ∈ W 2(wϕ) in the above inequality we prove the theo-
rem.

4 Proof of the inverse theorem

In the proof of the inverse theorem we use the following two lemmas. The first
is a strong Voronovskaya-type estimate.

Lemma 4.1. Let w−1 be concave. Then for every g ∈ W 2
0 (wϕ)[0, 1] such that

ϕD2g ∈W 2(wϕ)[0, 1] and for every n ∈ N we have∥∥∥∥w(Ung − g − 1

n
ϕD2

(
g + Ung

2

))∥∥∥∥ ≤ 16n4 + 16n3 − 1

4n2(16n4 − 8n2 + 1)
‖wϕD2(ϕD2g)‖.
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Proof. From (3.1) and Lemma 2.2 we derive the representation

Ung − g −
1

n
ϕD2

(
g + Ung

2

)
=

∞∑
k=n+1

Uk(ϕD2g)

k(k − 1)
− 1

2n
ϕD2g − 1

2n
ϕD2(Ung)

=

∞∑
k=2n+1

Uk(ϕD2g)− ϕD2g

k(k − 1)
+

2n∑
k=n+1

Uk(ϕD2g)− Un(ϕD2g)

k(k − 1)

=

∞∑
k=2n+1

Uk(ϕD2g)− ϕD2g

k(k − 1)
+

2n∑
k=n+1

k−1∑
s=n

Us+1(ϕD2g)− Us(ϕD2g)

k(k − 1)
,

with the series convergent in C(w)[0, 1]. From this representation, Lemma 3.1,
Lemma 2.1 and Lemma 2.4 we get

‖w
(
Ung − g −

1

n
ϕD2

(
g + Ung

2

))
‖

≤
∞∑

k=2n+1

‖w(Uk(ϕD2g)− ϕD2g)‖
k(k − 1)

+

2n∑
k=n+1

k−1∑
s=n

‖w(Us+1(ϕD2g)− Us(ϕD2g))‖
k(k − 1)

≤
∞∑

k=2n+1

‖wϕD2(ϕD2g)‖
k2(k − 1)

+

2n∑
k=n+1

k−1∑
s=n

‖wϕD2Us+1(ϕD2g)‖
k(k − 1)s(s+ 1)

≤ An ‖wϕD2(ϕD2g)‖ (4.1)

with

An =

∞∑
k=2n+1

1

k2(k − 1)
+

2n∑
k=n+1

1

k(k − 1)

k−1∑
s=n

1

s(s+ 1)
.

Changing the order of summation in the double sum above and using

2n−1∑
s=n

1

s(s+ 1)

2n∑
k=s+1

1

k(k − 1)
=

2n−1∑
s=n

1

s(s+ 1)

(
1

s
− 1

2n

)

=

2n−1∑
s=n

1

s2(s+ 1)
− 1

4n2

we get

An =

∞∑
k=2n+1

1

k2(k − 1)
+

2n−1∑
s=n

1

s2(s+ 1)
− 1

4n2

<
2n+ 2

2n+ 1

∞∑
k=2n+1

1

(k − 1)k(k + 1)
+

2n− 2

2n− 1

2n−1∑
s=n

1

(s− 1)s(s+ 1)
− 1

4n2
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=
n+ 1

2n+ 1

∞∑
k=2n+1

(
1

k + 1
− 2

k
+

1

k − 1

)

+
n− 1

2n− 1

2n−1∑
s=n

(
1

s+ 1
− 2

s
+

1

s− 1

)
− 1

4n2

=
16n4 + 16n3 − 1

4n2(16n4 − 8n2 + 1)
,

which in view of (4.1) proves the lemma.

The next lemma is a weighted Bernstein-type inequality for the Goodman–
Sharma operators.

Lemma 4.2. Let w be given by (1.1) with γ0, γ1 ∈ [−1, 0]. For every F ∈
C0(w)[0, 1] and for every n ∈ N we have

n−1‖wϕD2(U2
nF )‖ ≤

√
2‖wF‖.

Proof. Applying Lemma 2.2 for function g = UnF ∈ W 2
0 (ϕ)[0, 1], using the

formulas
n−1(n− 1)Pn−2,k−1(y)ϕ(y) = ϕ(kn−1)Pn,k(y), (4.2)

DPn,k(y) = Pn,k(y)(k − ny)ϕ(y)−1 (4.3)

and integration by parts we get

n−1
∣∣w(x)ϕ(x)D2Un(UnF )(x)

∣∣ = n−1
∣∣w(x)Un(ϕD2UnF )(x)

∣∣
= n−1w(x)

∣∣∣∣∣
n−1∑
k=1

Pn,k(x)

∫ 1

0

(n− 1)Pn−2,k−1(y)ϕ(y)D2UnF (y)dy

∣∣∣∣∣
= w(x)

∣∣∣∣∣
n−1∑
k=1

Pn,k(x)

∫ 1

0

ϕ

(
k

n

)
Pn,k(y)

n−1∑
i=1

un,i(F )D2Pn,i(y)dy

∣∣∣∣∣
= w(x)

∣∣∣∣∣
n−1∑
k=1

Pn,k(x)ϕ

(
k

n

) n−1∑
i=1

un,i(F )

∫ 1

0

DPn,k(y)DPn,i(y)dy

∣∣∣∣∣
= w(x)

∣∣∣∣∣
n−1∑
k=1

Pn,k(x)ϕ

(
k

n

) n−1∑
i=1

un,i(F )

∫ 1

0

Pn,k(y)
k − ny
ϕ(y)

Pn,i(y)
i− ny
ϕ(y)

dy

∣∣∣∣∣
≤ Sn(γ0, γ1;x)‖wF‖ (4.4)

with

Sn(γ0, γ1;x)

= w(x)

n−1∑
k=1

Pn,k(x)ϕ

(
k

n

) n−1∑
i=1

un,i

(
1

w

)∫ 1

0

Pn,k(y)
|k − ny|
ϕ(y)

Pn,i(y)
|i− ny|
ϕ(y)

dy.
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The next three estimates follow from Hölder inequality.

Sn(γ0, γ1;x) ≤ Sn(−1, γ1;x)−γ0Sn(0, γ1;x)1+γ0 ; (4.5)

Sn(−1, γ1;x) ≤ Sn(−1,−1;x)−γ1Sn(−1, 0;x)1+γ1 ; (4.6)

Sn(0, γ1;x) ≤ Sn(0,−1;x)−γ1Sn(0, 0;x)1+γ1 . (4.7)

Applying (4.6) and (4.7) in (4.5) we get

Sn(γ0, γ1;x) ≤ Sn(−1,−1;x)γ0γ1Sn(−1, 0;x)−γ0(1+γ1)

× Sn(0,−1;x)−γ1(1+γ0)Sn(0, 0;x)(1+γ0)(1+γ1). (4.8)

Inequalities (4.4) and (4.8) imply that it is enough to prove

Sn(γ0, γ1;x) ≤
√

2 (4.9)

in the four extreme cases (γ0, γ1) = (0, 0), (−1, 0), (0,−1), (−1,−1) in order to
establish the lemma. Applying Cauchy’s inequality we get

Sn(γ0, γ1;x) ≤ w(x)

n−1∑
k=1

Pn,k(x)ϕ

(
k

n

)√
En,k(w)

√
Fn,k (4.10)

with

En,k(w) =

n−1∑
i=1

∫ 1

0

ϕ(y)−2Pn,k(y)Pn,i(y)u2n,i(w
−1) dy

Fn,k =

n−1∑
i=1

∫ 1

0

ϕ(y)−2Pn,k(y)(k − ny)2Pn,i(y)(i− ny)2 dy.

For the estimate of Fn,k we use properties of the Bernstein operators and
(4.3) and get

Fn,k =

∫ 1

0

ϕ(y)−2Pn,k(y)(k − ny)2

(
n−1∑
i=1

Pn,i(y)(i− ny)2

)
dy

≤
∫ 1

0

ϕ(y)−2Pn,k(y)(k − ny)2nϕ(y)dy

= n

∫ 1

0

(k − ny)dPn,k(y) = n2
∫ 1

0

Pn,k(y) dy =
n2

n+ 1
. (4.11)

Now we estimate En,k(w) separately in the four extreme cases.
(I) Let γ0 = γ1 = −1. In this case w(x) = ϕ(x)−1. From (4.3) with k = i

we get

un,i(w
−1) = un,i(ϕ) =

∫ 1

0

nϕ

(
i

n

)
Pn,i(y) dy =

n

n+ 1
ϕ

(
i

n

)
.
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Using the above equality and (4.3) with k = i we get

En,k(ϕ−1) =

∫ 1

0

Pn,k(y)

ϕ2(y)

n−1∑
i=1

Pn,i(y)u2n,i(ϕ)dy

=

(
n

n+ 1

)2 ∫ 1

0

Pn,k(y)

ϕ2(y)

n−1∑
i=1

Pn,i(y)ϕ2

(
i

n

)
dy

=
n(n− 1)

(n+ 1)2

∫ 1

0

Pn,k(y)

ϕ(y)

n−1∑
i=1

Pn−2,i−1(y)ϕ

(
i

n

)
dy

=
n(n− 1)

(n+ 1)2

∫ 1

0

Pn,k(y)

ϕ(y)

n−2∑
j=0

Pn−2,j(y)ϕ

(
j + 1

n

)
dy. (4.12)

Using
n−2∑
j=0

Pn−2,j(y)ϕ

(
j + 1

n

)
=

(n− 2)(n− 3)

n2
ϕ(y) +

n− 1

n

in (4.12) we get

En,k(ϕ−1) =
(n− 1)

n(n+ 1)2

∫ 1

0

Pn,k(y)

ϕ(y)
((n− 2)(n− 3)ϕ(y) + n− 1) dy

=
(n− 1)

n(n+ 1)2

(
(n− 2)(n− 3)

n+ 1
+ (n− 1)

n

k(n− k)

)
≤ (n− 1)

n(n+ 1)2

(
(n− 2)(n− 3)

n+ 1
+ n

)
<

2

n
.

Applying (4.11) and the above estimate in (4.10) we get

Sn(−1,−1;x) ≤
√

2ϕ(x)−1
n−1∑
k=1

Pn,k(x)ϕ(
k

n
) <
√

2,

which proves (4.9) in the case γ0 = γ1 = −1.
(II) Let γ0 = −1, γ1 = 0. In this case w(x) = x−1 and un,i(w

−1) = un,i(x) =
i/n. We shall prove

En,k(w) ≤ 2(n+ 1)

(n− k)2
. (4.13)

For 1 ≤ k ≤ n− 2 (hence n ≥ 3) we have

En,k(w) =

∫ 1

0

Pn,k(y)

ϕ2(y)

n−1∑
i=1

Pn,i(y)

(
i

n

)2

dy

≤
∫ 1

0

Pn,k(y)

ϕ2(y)

(
y2 +

ϕ(y)

n

)
dy =

(n− 1)(k + 1)

k(n− k)(n− k − 1)
≤ 2(n+ 1)

(n− k)2
.
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For k = n− 1 (hence n ≥ 2) we have

En,n−1(w) =

∫ 1

0

Pn,n−1(y)

ϕ2(y)

n−1∑
i=1

Pn,i(y)

(
i

n

)2

dy

=

∫ 1

0

Pn,n−1(y)

ϕ2(y)

(
y2 +

ϕ(y)

n
− yn

)
dy = n

∫ 1

0

(
yn−2

n
+ yn−1

n−3∑
i=0

yi

)
dy

≤ n
∫ 1

0

(
yn−2

n
+ yn−1(n− 2)

)
dy =

1

n− 1
+ n− 2 ≤ 2(n+ 1).

This establishes (4.13). Applying (4.11) and (4.13) in (4.10) we get

Sn(−1, 0;x) ≤ x−1
n−1∑
k=1

Pn,k(x)ϕ

(
k

n

)√
2(n+ 1)

(n− k)2

√
n2

n+ 1

=
√

2x−1
n−1∑
k=1

Pn,k(x)
k

n
<
√

2,

which proves (4.9) in the case γ0 = −1, γ1 = 0.
(III) The case γ0 = 0, γ1 = −1 is symmetric to (II) and (4.9) is established

in the same way.
(IV) Let γ0 = γ1 = 0. In this case w(x) = 1 and un,i(w

−1) = 1. For
1 ≤ k ≤ n− 1 we have

En,k(1) =

∫ 1

0

Pn,k(y)

ϕ2(y)

n−1∑
i=1

Pn,i(y)dy =

∫ 1

0

Pn,k(y)

ϕ(y)
(1− yn − (1− y)n) dy

=

(
n

k

)∫ 1

0

yk−1(1− y)n−k−1
n−2∑
i=0

(
yi + (1− y)i

)
dy

=

(
n

k

) n−2∑
i=0

∫ 1

0

(
yk−1+i(1− y)n−k−1 + yk−1(1− y)n−k−1+i

)
dy

=
n

k(n− k)

(
2 +

n−2∑
i=1

(
i−1∏
s=0

k + s

n+ s
+

i−1∏
s=0

n− k + s

n+ s

))

≤ n

k(n− k)

n−2∑
i=0

((
k + n− 2

2n− 2

)i
+

(
2n− k − 2

2n− 2

)i)

≤ n

k(n− k)

(
2n− 2

n− k
+

2n− 2

k

)
=

2n2(n− 1)

k2(n− k)2
.
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Applying (4.11) and the above estimate in (4.10) we get

Sn(0, 0;x) ≤
n−1∑
k=1

Pn,k(x)ϕ

(
k

n

)√
2n2(n− 1)

k2(n− k)2

√
n2

n+ 1

=

√
2
n− 1

n+ 1

n−1∑
k=1

Pn,k(x) <
√

2,

which proves (4.9) in the case γ0 = γ1 = 0 and completes the proof of the
lemma.

Proof of Theorem 1.3. We follow the scheme for proving strong inverse theorems
of type A given in [2]. Applying Lemma 4.1 with g = U4

nf , Lemma 2.2 with
g = U3

nf and g = U2
nf and Lemma 4.2 with F = ϕD2(U2

nf) we get∥∥∥∥w(U5
nf − U4

nf −
1

n
ϕD2

(
U4
nf + U5

nf

2

))∥∥∥∥ ≤ κ(n)

4n2
∥∥wϕD2

(
ϕD2(U4

nf)
)∥∥

=
κ(n)

4n2
∥∥wϕD2

(
U2
n

(
ϕD2(U2

nf)
))∥∥ ≤ √2κ(n)

4n
‖wϕD2(U2

nf)‖.

Using the last inequality, Lemma 4.2 with F = f −U3
nf and with F = f −U2

nf
and Lemma 2.3 we get∥∥∥∥w(U5

nf − U4
nf −

1

n
ϕD2

(
U4
nf + U5

nf

2

))∥∥∥∥
≤
√

2κ(n)

4n

∥∥∥∥wϕD2U2
n

(
f − U2

nf + U3
nf

2

)∥∥∥∥+

√
2κ(n)

4n

∥∥∥∥wϕD2

(
U4
nf + U5

nf

2

)∥∥∥∥
≤
√

2κ(n)

8n

∥∥wϕD2
(
U2
n

(
f − U2

nf
))∥∥+

√
2κ(n)

8n

∥∥wϕD2
(
U2
n

(
f − U2

nf
))∥∥

+

√
2κ(n)

4n

∥∥∥∥wϕD2

(
U4
nf + U5

nf

2

)∥∥∥∥
≤ κ(n)

4

(
‖w(U2

nf − f)‖+ ‖w(U3
nf − f)‖

)
+

√
2κ(n)

4n

∥∥∥∥wϕD2

(
U5
nf + U4

nf

2

)∥∥∥∥
≤ 5κ(n)

4
‖w(Unf − f)‖+

√
2κ(n)

4n

∥∥∥∥wϕD2

(
U4
nf + U5

nf

2

)∥∥∥∥ .
From the above inequality and Lemma 2.3 we have

1

n

∥∥∥∥wϕD2

(
U4
nf + U5

nf

2

)∥∥∥∥
≤
∥∥∥∥w(U5

nf − U4
nf −

1

n
ϕD2

(
U4
nf + U5

nf

2

))∥∥∥∥+ ‖w(U5
nf − U4

nf)‖

≤ 4 + 5κ(n)

4
‖w(Unf − f)‖+

√
2κ(n)

4n

∥∥∥∥wϕD2

(
U4
nf + U5

nf

2

)∥∥∥∥ ,
11



which can be rewritten as

1

2n

∥∥∥∥wϕD2

(
U4
nf + U5

nf

2

)∥∥∥∥ ≤ 4 + 5κ(n)

8− 2
√

2κ(n)
‖w(Unf − f)‖. (4.14)

Finally from the definition of K-functional, Lemma 2.3 and (4.14) we obtain

Kw

(
f,

1

2n

)
= inf
g∈W 2(wϕ)

{
‖w(f − g)‖+

1

2n
‖wϕD2g‖

}
≤
∥∥∥∥w(f − (U4

nf + U5
nf

2

))∥∥∥∥+
1

2n

∥∥∥∥wϕD2

(
U5
nf + U4

nf

2

)∥∥∥∥
≤
(

9

2
+

4 + 5κ(n)

8− 2
√

2κ(n)

)
‖w(f − Unf)‖

=
40− (9

√
2− 5)κ(n)

8− 2
√

2κ(n)
‖w(f − Unf)‖.

Theorem 1.3 is proved.

Remark 4.1. It is essential that we consider the derivatives of U2
nF in the

Bernstein-type inequality in Lemma 4.2. The analogous inequality for UnF is

n−1‖wϕD2(UnF )‖ ≤ 4‖wF‖

and the constant 4 cannot be improved if either γ0 = 1 or γ1 = 1. This constant
is too big and the technique used in the proof of Theorem 1.3 does not work
with D2(UnF ).
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