Weighted Approximation by the
Goodman—Sharma Operators

K. G. Ivanov, P. E. Parvanov*

April 25, 2010

Abstract

The uniform weighted approximation errors of the Goodman—Sharma
operators are characterized for functions from C(w)[0,1] with weight of
the form z7°(1 — x)”* for 40,71 € [—1,0]. Direct and strong converse
theorems are proved in terms of the weighted K-functional. The results
extends those in [6] from the unweighted case (70 = 71 = 0) to weights
with negative powers.
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1 Introduction

The Bernstein-type operators discussed in this paper are given for natural n by

Unf(z) = Z Un k() P k()
k=0

n—1

= f(0)Poo(a) + F(1) Prn() + ) Pn,k(x)/o (n = 1) Pn2k-1(y)f(y)dy,

k=1

where P, i(z) = <Z> 2¥(1 — 2)"% and f is a Lebesgue integrable in (0,1)

function with finite limits at 0 and at 1. They were introduced by T.N.T.
Goodman and A. Sharma in [4] and [5]. These operators can also be considered
as a limit case of the family of Bernstein-type operators investigated by H.
Berens and Y. Xu in [1].
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Denote the weight function by
w(z) = w(vg,v1;2) = 27°(1 — )™ for z € (0,1) (1.1)

and real g, v1. Our main results will concern the values of the powers gy, in
the range [—1,0]. By ¢(x) = 2(1 — ) we denote the weight which is naturally
connected with the second derivatives of both Bernstein and Goodman-Sharma
operators. The first derivative operator is given by D = - thus Dg(z) = ¢'(z)
and D?g(x) = ¢"(z).

By C[0,1], as usual, we denote the space of all continuous functions on
[0,1] equipped with the uniform norm || - ||. Let Ly[0,1] denote the Lebesgue
measurable and essentially bounded in [0, 1] functions. For a weight function w
we set C(w)[0,1] = {f € C[0,1] : wf € L[0,1]} and

W2 (wp)[0,1] = {g,9" € AC1c(0,1) : wpD?*g € Loo[0,1]},

where AC},.(0,1) consists of the functions which are absolutely continuous in
[a, b] for every [a,b] C (0,1).

Set Co(w)[0,1] = {f € C(w)[0,1] : f(0) = f(1) = 0}. Similarly, by
WE (wp)[0,1] we denote the subspace of W2(w¢)[0, 1] of functions g satisfying
the additional boundary conditions

. 2 . 2
im () D%(r) = Tim pla)Dg(x) = 0.
Note that the boundary conditions both for Cy(w) and W¢(w¢) do not depend
on the weight w. These conditions are essential when the weight w does not
go to oo at least at one of the end-points of [0, 1], while for vp,v1 < 0 we have
Co(w)[0,1] = C(w)[0,1] and W (we)[0,1] = W2(wp)[0,1]. The above defined
spaces are naturally embedded

WE(we)[0,1] € W2(wyp)[0,1] € C(w)[0,1] +m; C C[0,1], (1.2)

where 7 is the set of all algebraical polynomials of degree 1. Note that
WE(we)[0,1] ¢ Co[0,1] = Cu(1)[0, 1] because w1 C W (we)[0,1].

In this paper we investigate the rate of weighted approximation by U,
for functions in Cy(w)[0,1] + 7. The weighted approximation error will be
compared with the K-functional between the weighted spaces C(w)[0,1] and
W2(we)[0, 1], which for every f € C(w)[0,1] + 71 and ¢ > 0 is defined by

Ky(f,t) = inf {Jw(f - g)|| + tlweD?g|| : g € W (wy)[0,1]} . (1.3)

Goodman—Sharma operators combine good properties both of Bernstein op-
erators and of their Durrmeyer modification. Thus, Goodman—Sharma opera-
tors U, like Bernstein operators preserve linear functions and are suitable for
uniform approximation. On the other hand, U,, like Bernstein-Durrmeyer oper-
ators commute among themselves (U, Uy, f = U, U, f) and with the differential
operator pD? (see Lemma 2.2). The last property simplifies essentially the
proof of the strong converse theorem for Goodman—Sharma operators.



Our main result is the following theorem, consisting of a direct inequality
(1.4) and a strong converse inequality of type A (1.5) in the terminology of [2].
Tt is a generalization of the result in [6], which treats the case w = 1.

Theorem 1.1. Let w = w(7yo,71) be given by (1.1) with vo,71 € [—1,0]. There
exists an absolute constant M such that for every f € C(w)[0,1] 4+ 71 and every
n € N we have

futs = Ua )l < 26 (£5-). (14
Ko (fi37) < (162‘;89@ - Aj) Jw(f ~UnD)l (15)

Note that both sides of (1.4) (and (1.5)) do not change if f is replaced by
f —q for any ¢ € m. Hence, it is enough to prove Theorem 1.1 for functions
f € C(w)[0,1]. Inequality (1.4) is contained in the following direct theorem,
because w(v,v1) ! is concave for yg,v1 € [-1,0].

Theorem 1.2. (Direct theorem) Let w~' be concave. Then for every f €
C(w)[0,1] and n € N we have

lw(Unf = Dl < 2K, (f, ;n> | (1.6)

Inequality (1.5) follows from the following inverse theorem, because k(n) =
1+O(n~1). Note that for n = 1 we have D?U; f = 0 and, thus, inequality (1.5)
is trivially satisfied with a constant 1.

Theorem 1.3. (Strong inverse theorem of type A) Let w = w(vyo,71) be given
by (1.1) with v0,71 € [—1,0]. For every f € C(w)[0,1] and for every n € N,
n > 2, we have

1 40 — (9v2 — 5)rk(n)
Ko (157) = P et~ Ul

16n* + 1613 — 1
where H(n) = m

Remark 1.1. Although Theorem 1.1 is proved for every f € C(w)[0,1], it
does not imply for such f’s that ||[w(f — U,f)|| = 0 or Ky (f,(2n)"') — 0
when n — oco. Of course, the convergence to 0 folds for every f € C(w)[0,1]
in the case 79 = 71 = 0. But when 79 < 0 or 73 < 0 we have to impose
additional restrictions on f in the respective end-points for such convergence.
These restrictions are lim, o1 27 f(z) = 0 for —1 < 9 < 0, the existence of
lim, o 7L f(x) for 79 = —1 and similarly for v;. These effects are studied in
[3], which also contains a characterization of the K-functional (1.3) in terms of
moduli of smoothness.

The paper is organized as follows. Section 2 contains auxiliary results about
Goodman—Sharma operators. Theorem 1.2 is proved in Section 3, while Theo-
rem 1.3 is proved in Section 4.



2 Auxilary results

Many properties of the operator U,, n € N are proved in [4], [5] and [6]. We
recall that U,, preserves the linear functions and U, f interpolates f at 0 and at
1. We shall also use

U, is a linear, positive operator; (2.1)
U,f < f for every concave continuous function f. (2.2)
The following two lemmas are respectively Lemma 4.1 and Lemma 4.2 in [6].
Lemma 2.1. For every f € C[0,1] and k € N we have
o
k(k+1)
Lemma 2.2. For every g € W(¢)[0,1] and n € N we have
(2)D*Ung(z) = Un(D?g)(2),
i.e. U, commutes with the operator ¢ D* on WE()[0,1].

Upf(x) = Upr f(z) = @(2)D*Upy1 f ().

We also need the bounded weighted norm property of U,, and ¢D?U,,.

Lemma 2.3. Let w™" be concave. Then for every f € C(w)[0,1] and n € N we
have ||wU, f|| < [lwf], i-e. Up has norm 1 in C(w)[0,1].

Proof. From (2.1) and w > 0 we get
|Unf (@) = |[Un((wf)w™)(@)] < Un(wfw™) (@) = [wf|Un(w™")(@).

From the concavity of w™" and (2.2) we get U, (w™') < w™!, which proves the
lemma. 0

Lemma 2.4. Let w™! be concave. Then for every g € W?(wp)[0,1] and n € N
we have

lweD?*Ung|l < weD?g].
Proof. From the proof of Lemma 4.2 in [6] for every g € W?2(w¢)|0, 1] we have

n—1

o) D2Ung(a) = 3 Pusla) / (11— 1) Py 1 (1) (y) Da(y) dy.
k=1

Applying the above representation and the inequality U, (w™') < w™? for the

concave function w™! as in the previous lemma we obtain

lw(z)p(z)D*Ung(z)|
n—1 1 1
< weD?g] w() 3 Parle) [ (n- Py (0) s dy
b1 0 w(y)
< |lweD?g|| w(z)U, (w™)(z) < lweD?g]|,
which proves the lemma. O



3 Proof of the direct theorem

The next lemma is a weighted Jackson-type inequality for the Goodman—Sharma
operators.

Lemma 3.1. Let w™! be concave. Then for every g € W2(wy)[0,1] andn € N
we have

|w(Ung — g)|| < *IlwsoDQQII

Proof. From Theorem 3.2 in [6] and (1.2) for a function g € W?2(w¢)[0, 1] we
get ||Ung — g|| = 0 for n — co. Then from Lemma 2.1 we have

3 () D*Usirg
Ung(x) — g(x) = > _(Urg(x) — Urt1g(x Z k++11 &) (3.1)
k=n
From (3.1) and Lemma 2.4 we get
— ¢D*Uyy19
lw(Ung — )] = Z i
||w80D Uk+19|| 1 2 1 2
——_|lwpD?g| = ~|lweD?].
Z TOE) ;k(kﬂ)nww gll = ~llweD?|

O
Proof of Theorem 1.2. Let g be an arbitrary function from W?2(w¢)[0, 1]. Then
lw(Unf = NI < wUnf = Ung)ll + lw(Ung = g)ll + lw(g = £l

From Lemma 2.3 and Lemma 3.1 we get
1 2 1 2
loUnf = Il < 2llw(f = g + ~llweD7gll = 2 { [lw(f = g)ll + 5 -llweD7g] | -

Taking an infimum on g € W2(wyp) in the above inequality we prove the theo-
rem. O

4 Proof of the inverse theorem

In the proof of the inverse theorem we use the following two lemmas. The first
is a strong Voronovskaya-type estimate.

Lemma 4.1. Let w™! be concave. Then for every g € W (wy)[0,1] such that
©D?g € W2(w)[0,1] and for every n € N we have

1 g+Ung 16n* +16n% — 1 9, o
g — g — —@D? D?(oD?%q)|.
Hw (U 9-9- ¢ ( 5 ))H S TP(16ni — 82 1) [weD*(eDg)|




Proof. From (3.1) and Lemma 2.2 we derive the representation

1 g+ Ung
oo~ Lon (14109

Uk(%’D29) 1 2 1 2
REZ I oD%y — — oD
Kh—1) 207797 5,90 (Ung)
k=n-+1
e’} 2n
S Ur(pD?g) = 9D 3 Ur(¢D?g) — Un(pD?g)
k(k—1) k(k—1)
k=2n-+1 k=n-+1
o 2n
_ Ur(¢D?g) — D%y Uspr1(¢D?g) — Us(9D?g)
= 2 e T2 Z Rk —1) ’
k=2n+1 k=n+1s=n

with the series convergent in C(w)[0, 1]. From this representation, Lemma 3.1
Lemma 2.1 and Lemma 2.4 we get

1 g+ Ung
o (Vg g - Lo (L1 220) )
n

. |lw(Usk(eD?g) — ¢D2g) 2 w(Uy41(0D?g) — Us(pD?
<y |<k(i(k—)1¢ H*ZZ” +1(pD?%g) = Us(¢D?g))||

k(k—1)
k=n+1s=n

o0 2 2 2n k—1 2
< Z |wpD?(pD?g)|| n Z Z |lweD?Usi1(0D?%g)||

k=2n-+1

2(k —
k=2n+1 k (k 1) bl sen k(k 1)8(8+]_)
< Ay [weD? (D) (4.1)
with
k—1 1
Z k2 —1+Z k _1ZS(S+1)'
k=2n+1
Changing the order of summation in the double sum above and using
pOEE=DS #fzf; (Y
s=n 5(S+1) k—st1 k(k—l) B =~ S(8+1) B o
2n—1 )
=Y ey e
we get
s 2n—1 )
An = 1
> k( +ZSQH1 -
k=2n+1 p—
- 2n—1
ont2 1 2n — 2 1 .
2n+1k=§+1 (k= 1)k(k +1) T ; (s—1s(s+1) 4n2



n+l 1 2 1
51 > (i
2n +1 k+1 k k-1
k=2n+1
2n—1
n—1 1 2 1 1
+2nlszzn(s+1_s+sl>_47ﬂ
_ 16n* +16n° — 1
© 4n2(16nt —8n2 + 1)’

which in view of (4.1) proves the lemma. O

The next lemma is a weighted Bernstein-type inequality for the Goodman—
Sharma operators.

Lemma 4.2. Let w be given by (1.1) with 9,71 € [-1,0]. For every F €
Co(w)[0,1] and for every n € N we have

n~HwpD*(URF)| < V2||lwF|.

Proof. Applying Lemma 2.2 for function g = U,F € WZ(p)[0, 1], using the
formulas

n~H(n— 1) Paak—1(®)ey) = o(kn™") P i(y), (4.2)
DPy, 1 (y) = Por(y)(k —ny)p(y) ™" (4.3)

and integration by parts we get
nt |w(x)<p(x)D2Un(UnF)(x)’ =nt ‘w(x)Un(<pD2UnF)(x)|

=n"tw(z)

n—1 1
> Par(e) [ (0= DPsarr e DULF 1)y
k=1 0

3
|
—

=w(z) | Pz /0 1 @ (ﬁ) P (y) gun,i(F)Dan@(y)dy

3
—_

Pratale (1) Zum [ PsDPu0)y

I
£
E

(]

N
I
e

S

11—

=w(x x k n_1u4 ' k-ny, . i-ny
=) [ Pas@)p (n)g i) [ Pas0) )

< S, (70, 71; ) |[wF| (44)

x>

with

Sn (70,715 )

— w(z) Z Pratale (1) Z wi(y) | ol iy,

o(y) o(y)



The next three estimates follow from Holder inequality.

Sn (70,713 2) < Sn(—=1,71;2) 778, (0, 15 2) T, (4.5)
Sn(=1,7132) < Sp(=1,—1;2) 7" S (—1,0;2) 7 (4.6)
S, (0,713 ) < S, (0, —1; )1 S, (0,0; ) 7,

Applying (4.6) and (4.7) in (4.5) we get
Sy (0,713 2) < Sp (=1, —1;2)70M 8, (—1,0; z) "0+
X 8,(0, —1;2) "1+ 6 (0, 0; )0 (F7) - (4.8)
Inequalities (4.4) and (4.8) imply that it is enough to prove
Sn(Y0,m152) < V2 (4.9)

in the four extreme cases (y9,71) = (0,0),(—1,0),(0,—1),(—1,—1) in order to
establish the lemma. Applying Cauchy’s inequality we get

n—1

Sn (Y0, 715 2) < w(x) Z P, i(x)p (fz) v/ Enk(w)\/Fp k (4.10)

k=1

with
=3 [ o0 PPty

Foa = Z/ )7 Pai(y)(k = ny)*Poi(y) (i —ny)® dy.

For the estimate of F}, , we use properties of the Bernstein operators and
(4.3) and get

1
Fop= / 0(y) 2P i (y)(k — ny) (Z Pri(y)(i — ny)2> dy
0

< / o(4)~2 P (9) (k — ) *np(y)dy
0

n2

n+1

—n / (k= ny)d Pop(y) = n? / Poi(y) dy = (4.11)
0 0

Now we estimate E,, (w) separately in the four extreme cases.
(I) Let o = 91 = —1. In this case w(z) = ¢(z)~!. From (4.3) with k =i
we get

i) = unste) = [ o (1) sty = o (1),



Using the above equality and (4.3) with k =i we get

Bnr(e™) = / Toped) anAy)um@)dy
() [ S e (L) a
- n”ff/P"’“ 5 pascatne (£)
T SN CE15 P

Using

n—2 .
S Puajly)e (j ha 1) _ (= 2)2" =) o) + L
=0

n n n

in (4.12) we get

Enilp™!) = n((Zﬂ))z/O P;’(’“y()y) ((n = 2)(n - 3)p(y) +n—1)d
_ (n=1) ((n—=2)(n-3) n
n(n+1)2< n+1 +( 1)k(n—k))
(n=1) [(n—2)(n—-3) 2
n(n+1)2( n+1 +n><n'

Applying (4.11) and the above estimate in (4.10) we get

n—1
Sp(—1,-L;z) < \/icp(m)_l ZPnk(ac)go(S) <2,
k=1

which proves (4.9) in the case y9 = = —1.
(IT) Let 7o = —1,; = 0. In this case w(x) = 2~ and uy, ; (W) = u, i (z) =
i/n. We shall prove

2(n+1)
En’k("w) S m

For 1 <k <n—2 (hence n > 3) we have
1 — .
P i(y) S (Z)
E, i(w) —/ = — | dy
i o Py Z

Y Puk) (o o) . (n=Dk+1) 2(n+1)
S/O ) ( L >dyk(n—k;)(n—k:—1)§(n—k)2'

(4.13)




For k =n — 1 (hence n > 2) we have

S02
1 1 n—2 n—3
Prn—1(y) ( 2, #y) n> / y ne1 ;
= L (2 L) gy =n +y y' | d
|50 7 s\ 2

1 n—2
1
Sn/ (y +y"1<n2>> dy = _——7+n-2<2(n+1)
0 n n—1

This establishes (4.13). Applying (4.11) and (4.13) in (4.10) we get
n—1 TL + 1
Sn(—1,0;2) <z ,/ 1/
( Tjse Z (n— n+1
k=1
k
— -1 >~
S Pure)k < V2,
k=1
which proves (4.9) in the case g = —1,v = 0.
(ITI) The case 9 = 0,71 = —1 is symmetric to (IT) and (4.9) is established
in the same way.

(IV) Let 79 = v1 = 0. In this case w(z) = 1 and u,;(w™') = 1. For
1 <k <n-—1we have

P, o TP e
1)_/0 P2 (y) ;P"”(y)dy_/o o) Y (-y)Mdy
n 1 n—2 ) .
() [ e v
n—2 .1

(2+Z(Hf;iz "))

i=1 \s=0

ﬁ z (5) (559
= k(nnf k) (2:_ : %k_ 2) - Z‘l(iin_k;g ‘

10



Applying (4.11) and the above estimate in (4.10) we get

n—1
k 2n2n—1
n , VS é -Pn -
5,(0,0; z) k; 7k(x)<p<n) T

\/ n+1ZPnk

which proves (4.9) in the case 79 = 71 = 0 and completes the proof of the
lemma. O

Proof of Theorem 1.3. We follow the scheme for proving strong inverse theorems
of type A given in [2]. Applying Lemma 4.1 with ¢ = U2f, Lemma 2.2 with
g=U3fand g = U2f and Lemma 4.2 with F = pD?(U2f) we get

4 5
oo (ves —vts = ort (BB | < 0 g2 (o0t
V2k(n)
an

(U2 (¢D*(U2))))] < lwpD*(U2[)].

Using the last inequality, Lemma 4.2 with F' = f — U2 f and with F = f —U2f
and Lemma 2.3 we get

o (v oty ot (SE))
n 2

< V2#(n) ‘wg&DQUi <f— U72Lf+Ugf)H n V2k(n) 'wg&DQ <UT4Lf+ U%?f) H
4an 2 In 2
< 250 2 02 (£~ 021) | + L5 a2 (2 (7 - U21) |
L e (VAL U
dn 2
< 0 (27 = i+ @2 = Dl + L2 o (PR |
4 5
< S0 g - )+ 0 fppe (BLEUT) |

From the above inequality and Lemma 2.3 we have

4 5
e (55550
n 2

4 5
< Hw <U;?f Ui - oD (W)) H T (@3 — UL
4+ 5k(n) V2k(n) Unf +ULf
S —  MwUaf = Hll+ —= ‘U’Wy (2> '

11



which can be rewritten as

o ert (B0 < B w1 s

Finally from the definition of K-functional, Lemma 2.3 and (4.14) we obtain

1 1
Ko f,— inf — — ||weD?
(5) = int, {ts =+ 5 lwenl |

IA

(- ()2 o (25359

< (34 220 Y s - sl

2 8—2V2k(n)
40 — (9v2 — 5)k(n) B
R e OS]
Theorem 1.3 is proved. O

Remark 4.1. It is essential that we consider the derivatives of U2F in the
Bernstein-type inequality in Lemma 4.2. The analogous inequality for U, F is

n~HlwpD?*(UnF)|| < 4llwF|

and the constant 4 cannot be improved if either 79 = 1 or 3 = 1. This constant
is too big and the technique used in the proof of Theorem 1.3 does not work
with D?(U, F).
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