Weighted Approximation by the Goodman-Sharma Operators

K. G. Ivanov, P. E. Parvanov*

April 25, 2010

Abstract

The uniform weighted approximation errors of the Goodman-Sharma operators are characterized for functions from $C(w)[0,1]$ with weight of the form $x^{\gamma_{0}}(1-x)^{\gamma_{1}}$ for $\gamma_{0}, \gamma_{1} \in[-1,0]$. Direct and strong converse theorems are proved in terms of the weighted K-functional. The results extends those in [6] from the unweighted case $\left(\gamma_{0}=\gamma_{1}=0\right)$ to weights with negative powers.

AMS classification: 41A36, 41A10, 41A25, 41A27, 41A17.
Keywords: Bernstein-type operator, Direct theorem, Strong converse theorem, K-functional.

1 Introduction

The Bernstein-type operators discussed in this paper are given for natural n by

$$
\begin{aligned}
& U_{n} f(x)=\sum_{k=0}^{n} u_{n, k}(f) P_{n, k}(x) \\
& \quad=f(0) P_{n, 0}(x)+f(1) P_{n, n}(x)+\sum_{k=1}^{n-1} P_{n, k}(x) \int_{0}^{1}(n-1) P_{n-2, k-1}(y) f(y) d y
\end{aligned}
$$

where $P_{n, k}(x)=\binom{n}{k} x^{k}(1-x)^{n-k}$ and f is a Lebesgue integrable in $(0,1)$ function with finite limits at 0 and at 1 . They were introduced by T.N.T. Goodman and A. Sharma in [4] and [5]. These operators can also be considered as a limit case of the family of Bernstein-type operators investigated by H . Berens and Y. Xu in [1].

[^0]Denote the weight function by

$$
\begin{equation*}
w(x)=w\left(\gamma_{0}, \gamma_{1} ; x\right)=x^{\gamma_{0}}(1-x)^{\gamma_{1}} \text { for } x \in(0,1) \tag{1.1}
\end{equation*}
$$

and real γ_{0}, γ_{1}. Our main results will concern the values of the powers γ_{0}, γ_{1} in the range $[-1,0]$. By $\varphi(x)=x(1-x)$ we denote the weight which is naturally connected with the second derivatives of both Bernstein and Goodman-Sharma operators. The first derivative operator is given by $D=\frac{d}{d x}$, thus $D g(x)=g^{\prime}(x)$ and $D^{2} g(x)=g^{\prime \prime}(x)$.

By $C[0,1]$, as usual, we denote the space of all continuous functions on $[0,1]$ equipped with the uniform norm $\|\cdot\|$. Let $L_{\infty}[0,1]$ denote the Lebesgue measurable and essentially bounded in $[0,1]$ functions. For a weight function w we set $C(w)[0,1]=\left\{f \in C[0,1]: w f \in L_{\infty}[0,1]\right\}$ and

$$
W^{2}(w \varphi)[0,1]=\left\{g, g^{\prime} \in A C_{l o c}(0,1): w \varphi D^{2} g \in L_{\infty}[0,1]\right\}
$$

where $A C_{l o c}(0,1)$ consists of the functions which are absolutely continuous in $[a, b]$ for every $[a, b] \subset(0,1)$.

Set $C_{0}(w)[0,1]=\{f \in C(w)[0,1]: \quad f(0)=f(1)=0\}$. Similarly, by $W_{0}^{2}(w \varphi)[0,1]$ we denote the subspace of $W^{2}(w \varphi)[0,1]$ of functions g satisfying the additional boundary conditions

$$
\lim _{x \rightarrow 0+0} \varphi(x) D^{2} g(x)=\lim _{x \rightarrow 1-0} \varphi(x) D^{2} g(x)=0
$$

Note that the boundary conditions both for $C_{0}(w)$ and $W_{0}^{2}(w \varphi)$ do not depend on the weight w. These conditions are essential when the weight w does not go to ∞ at least at one of the end-points of $[0,1]$, while for $\gamma_{0}, \gamma_{1}<0$ we have $C_{0}(w)[0,1]=C(w)[0,1]$ and $W_{0}^{2}(w \varphi)[0,1]=W^{2}(w \varphi)[0,1]$. The above defined spaces are naturally embedded

$$
\begin{equation*}
W_{0}^{2}(w \varphi)[0,1] \subset W^{2}(w \varphi)[0,1] \subset C(w)[0,1]+\pi_{1} \subset C[0,1], \tag{1.2}
\end{equation*}
$$

where π_{1} is the set of all algebraical polynomials of degree 1 . Note that $W_{0}^{2}(w \varphi)[0,1] \not \subset C_{0}[0,1]=C_{0}(1)[0,1]$ because $\pi_{1} \subset W_{0}^{2}(w \varphi)[0,1]$.

In this paper we investigate the rate of weighted approximation by U_{n} for functions in $C_{0}(w)[0,1]+\pi_{1}$. The weighted approximation error will be compared with the K-functional between the weighted spaces $C(w)[0,1]$ and $W^{2}(w \varphi)[0,1]$, which for every $f \in C(w)[0,1]+\pi_{1}$ and $t>0$ is defined by

$$
\begin{equation*}
K_{w}(f, t)=\inf \left\{\|w(f-g)\|+t\left\|w \varphi D^{2} g\right\|: g \in W^{2}(w \varphi)[0,1]\right\} \tag{1.3}
\end{equation*}
$$

Goodman-Sharma operators combine good properties both of Bernstein operators and of their Durrmeyer modification. Thus, Goodman-Sharma operators U_{n} like Bernstein operators preserve linear functions and are suitable for uniform approximation. On the other hand, U_{n} like Bernstein-Durrmeyer operators commute among themselves $\left(U_{n} U_{m} f=U_{m} U_{n} f\right)$ and with the differential operator φD^{2} (see Lemma 2.2). The last property simplifies essentially the proof of the strong converse theorem for Goodman-Sharma operators.

Our main result is the following theorem, consisting of a direct inequality (1.4) and a strong converse inequality of type A (1.5) in the terminology of [2]. It is a generalization of the result in [6], which treats the case $w=1$.
Theorem 1.1. Let $w=w\left(\gamma_{0}, \gamma_{1}\right)$ be given by (1.1) with $\gamma_{0}, \gamma_{1} \in[-1,0]$. There exists an absolute constant M such that for every $f \in C(w)[0,1]+\pi_{1}$ and every $n \in \mathbb{N}$ we have

$$
\begin{gather*}
\left\|w\left(f-U_{n} f\right)\right\| \leq 2 K_{w}\left(f, \frac{1}{2 n}\right) \tag{1.4}\\
K_{w}\left(f, \frac{1}{2 n}\right) \leq\left(\frac{162+9 \sqrt{2}}{28}+\frac{M}{n}\right)\left\|w\left(f-U_{n} f\right)\right\| \tag{1.5}
\end{gather*}
$$

Note that both sides of (1.4) (and (1.5)) do not change if f is replaced by $f-q$ for any $q \in \pi_{1}$. Hence, it is enough to prove Theorem 1.1 for functions $f \in C(w)[0,1]$. Inequality (1.4) is contained in the following direct theorem, because $w\left(\gamma_{0}, \gamma_{1}\right)^{-1}$ is concave for $\gamma_{0}, \gamma_{1} \in[-1,0]$.
Theorem 1.2. (Direct theorem) Let w^{-1} be concave. Then for every $f \in$ $C(w)[0,1]$ and $n \in \mathbb{N}$ we have

$$
\begin{equation*}
\left\|w\left(U_{n} f-f\right)\right\| \leq 2 K_{w}\left(f, \frac{1}{2 n}\right) \tag{1.6}
\end{equation*}
$$

Inequality (1.5) follows from the following inverse theorem, because $\kappa(n)=$ $1+O\left(n^{-1}\right)$. Note that for $n=1$ we have $D^{2} U_{1} f=0$ and, thus, inequality (1.5) is trivially satisfied with a constant 1 .
Theorem 1.3. (Strong inverse theorem of type A) Let $w=w\left(\gamma_{0}, \gamma_{1}\right)$ be given by (1.1) with $\gamma_{0}, \gamma_{1} \in[-1,0]$. For every $f \in C(w)[0,1]$ and for every $n \in \mathbb{N}$, $n \geq 2$, we have

$$
K_{w}\left(f, \frac{1}{2 n}\right) \leq \frac{40-(9 \sqrt{2}-5) \kappa(n)}{8-2 \sqrt{2} \kappa(n)}\left\|w\left(f-U_{n} f\right)\right\|
$$

where $\kappa(n)=\frac{16 n^{4}+16 n^{3}-1}{16 n^{4}-8 n^{2}+1}$.
Remark 1.1. Although Theorem 1.1 is proved for every $f \in C(w)[0,1]$, it does not imply for such f 's that $\left\|w\left(f-U_{n} f\right)\right\| \rightarrow 0$ or $K_{w}\left(f,(2 n)^{-1}\right) \rightarrow 0$ when $n \rightarrow \infty$. Of course, the convergence to 0 folds for every $f \in C(w)[0,1]$ in the case $\gamma_{0}=\gamma_{1}=0$. But when $\gamma_{0}<0$ or $\gamma_{1}<0$ we have to impose additional restrictions on f in the respective end-points for such convergence. These restrictions are $\lim _{x \rightarrow 0+} x^{\gamma_{0}} f(x)=0$ for $-1<\gamma_{0}<0$, the existence of $\lim _{x \rightarrow 0+} x^{-1} f(x)$ for $\gamma_{0}=-1$ and similarly for γ_{1}. These effects are studied in [3], which also contains a characterization of the K-functional (1.3) in terms of moduli of smoothness.

The paper is organized as follows. Section 2 contains auxiliary results about Goodman-Sharma operators. Theorem 1.2 is proved in Section 3, while Theorem 1.3 is proved in Section 4.

2 Auxilary results

Many properties of the operator $U_{n}, n \in \mathbb{N}$ are proved in [4], [5] and [6]. We recall that U_{n} preserves the linear functions and $U_{n} f$ interpolates f at 0 and at 1. We shall also use

$$
\begin{align*}
& U_{n} \text { is a linear, positive operator; } \tag{2.1}\\
& U_{n} f \leq f \text { for every concave continuous function } f . \tag{2.2}
\end{align*}
$$

The following two lemmas are respectively Lemma 4.1 and Lemma 4.2 in [6].
Lemma 2.1. For every $f \in C[0,1]$ and $k \in \mathbb{N}$ we have

$$
U_{k} f(x)-U_{k+1} f(x)=\frac{1}{k(k+1)} \varphi(x) D^{2} U_{k+1} f(x)
$$

Lemma 2.2. For every $g \in W_{0}^{2}(\varphi)[0,1]$ and $n \in \mathbb{N}$ we have

$$
\varphi(x) D^{2} U_{n} g(x)=U_{n}\left(\varphi D^{2} g\right)(x),
$$

i.e. U_{n} commutes with the operator φD^{2} on $W_{0}^{2}(\varphi)[0,1]$.

We also need the bounded weighted norm property of U_{n} and $\varphi D^{2} U_{n}$.
Lemma 2.3. Let w^{-1} be concave. Then for every $f \in C(w)[0,1]$ and $n \in \mathbb{N}$ we have $\left\|w U_{n} f\right\| \leq\|w f\|$, i.e. U_{n} has norm 1 in $C(w)[0,1]$.
Proof. From (2.1) and $w \geq 0$ we get

$$
\left|U_{n} f(x)\right|=\left|U_{n}\left((w f) w^{-1}\right)(x)\right| \leq U_{n}\left(\|w f\| w^{-1}\right)(x)=\|w f\| U_{n}\left(w^{-1}\right)(x)
$$

From the concavity of w^{-1} and (2.2) we get $U_{n}\left(w^{-1}\right) \leq w^{-1}$, which proves the lemma.

Lemma 2.4. Let w^{-1} be concave. Then for every $g \in W^{2}(w \varphi)[0,1]$ and $n \in \mathbb{N}$ we have

$$
\left\|w \varphi D^{2} U_{n} g\right\| \leq\left\|w \varphi D^{2} g\right\| .
$$

Proof. From the proof of Lemma 4.2 in [6] for every $g \in W^{2}(w \varphi)[0,1]$ we have

$$
\varphi(x) D^{2} U_{n} g(x)=\sum_{k=1}^{n-1} P_{n, k}(x) \int_{0}^{1}(n-1) P_{n-2, k-1}(y) \varphi(y) D^{2} g(y) d y
$$

Applying the above representation and the inequality $U_{n}\left(w^{-1}\right) \leq w^{-1}$ for the concave function w^{-1} as in the previous lemma we obtain

$$
\begin{aligned}
& \left|w(x) \varphi(x) D^{2} U_{n} g(x)\right| \\
& \leq\left\|w \varphi D^{2} g\right\| w(x) \sum_{k=1}^{n-1} P_{n, k}(x) \int_{0}^{1}(n-1) P_{n-2, k-1}(y) \frac{1}{w(y)} d y \\
& \leq\left\|w \varphi D^{2} g\right\| w(x) U_{n}\left(w^{-1}\right)(x) \leq\left\|w \varphi D^{2} g\right\|
\end{aligned}
$$

which proves the lemma.

3 Proof of the direct theorem

The next lemma is a weighted Jackson-type inequality for the Goodman-Sharma operators.

Lemma 3.1. Let w^{-1} be concave. Then for every $g \in W^{2}(w \varphi)[0,1]$ and $n \in \mathbb{N}$ we have

$$
\left\|w\left(U_{n} g-g\right)\right\| \leq \frac{1}{n}\left\|w \varphi D^{2} g\right\|
$$

Proof. From Theorem 3.2 in [6] and (1.2) for a function $g \in W^{2}(w \varphi)[0,1]$ we get $\left\|U_{n} g-g\right\| \rightarrow 0$ for $n \rightarrow \infty$. Then from Lemma 2.1 we have

$$
\begin{equation*}
U_{n} g(x)-g(x)=\sum_{k=n}^{\infty}\left(U_{k} g(x)-U_{k+1} g(x)\right)=\sum_{k=n}^{\infty} \frac{\varphi(x) D^{2} U_{k+1} g(x)}{k(k+1)} . \tag{3.1}
\end{equation*}
$$

From (3.1) and Lemma 2.4 we get

$$
\begin{aligned}
& \left\|w\left(U_{n} g-g\right)\right\|=\left\|w \sum_{k=n}^{\infty} \frac{\varphi D^{2} U_{k+1} g}{k(k+1)}\right\| \\
& \leq \sum_{k=n}^{\infty} \frac{\left\|w \varphi D^{2} U_{k+1} g\right\|}{k(k+1)} \leq \sum_{k=n}^{\infty} \frac{1}{k(k+1)}\left\|w \varphi D^{2} g\right\|=\frac{1}{n}\left\|w \varphi D^{2} g\right\| .
\end{aligned}
$$

Proof of Theorem 1.2. Let g be an arbitrary function from $W^{2}(w \varphi)[0,1]$. Then

$$
\left\|w\left(U_{n} f-f\right)\right\| \leq\left\|w\left(U_{n} f-U_{n} g\right)\right\|+\left\|w\left(U_{n} g-g\right)\right\|+\|w(g-f)\| .
$$

From Lemma 2.3 and Lemma 3.1 we get
$\left\|w\left(U_{n} f-f\right)\right\| \leq 2\|w(f-g)\|+\frac{1}{n}\left\|w \varphi D^{2} g\right\|=2\left(\|w(f-g)\|+\frac{1}{2 n}\left\|w \varphi D^{2} g\right\|\right)$.
Taking an infimum on $g \in W^{2}(w \varphi)$ in the above inequality we prove the theorem.

4 Proof of the inverse theorem

In the proof of the inverse theorem we use the following two lemmas. The first is a strong Voronovskaya-type estimate.

Lemma 4.1. Let w^{-1} be concave. Then for every $g \in W_{0}^{2}(w \varphi)[0,1]$ such that $\varphi D^{2} g \in W^{2}(w \varphi)[0,1]$ and for every $n \in \mathbb{N}$ we have

$$
\left\|w\left(U_{n} g-g-\frac{1}{n} \varphi D^{2}\left(\frac{g+U_{n} g}{2}\right)\right)\right\| \leq \frac{16 n^{4}+16 n^{3}-1}{4 n^{2}\left(16 n^{4}-8 n^{2}+1\right)}\left\|w \varphi D^{2}\left(\varphi D^{2} g\right)\right\| .
$$

Proof. From (3.1) and Lemma 2.2 we derive the representation

$$
\begin{aligned}
U_{n} g & -g-\frac{1}{n} \varphi D^{2}\left(\frac{g+U_{n} g}{2}\right) \\
& =\sum_{k=n+1}^{\infty} \frac{U_{k}\left(\varphi D^{2} g\right)}{k(k-1)}-\frac{1}{2 n} \varphi D^{2} g-\frac{1}{2 n} \varphi D^{2}\left(U_{n} g\right) \\
& =\sum_{k=2 n+1}^{\infty} \frac{U_{k}\left(\varphi D^{2} g\right)-\varphi D^{2} g}{k(k-1)}+\sum_{k=n+1}^{2 n} \frac{U_{k}\left(\varphi D^{2} g\right)-U_{n}\left(\varphi D^{2} g\right)}{k(k-1)} \\
& =\sum_{k=2 n+1}^{\infty} \frac{U_{k}\left(\varphi D^{2} g\right)-\varphi D^{2} g}{k(k-1)}+\sum_{k=n+1}^{2 n} \sum_{s=n}^{k-1} \frac{U_{s+1}\left(\varphi D^{2} g\right)-U_{s}\left(\varphi D^{2} g\right)}{k(k-1)}
\end{aligned}
$$

with the series convergent in $C(w)[0,1]$. From this representation, Lemma 3.1, Lemma 2.1 and Lemma 2.4 we get

$$
\begin{align*}
& \left\|w\left(U_{n} g-g-\frac{1}{n} \varphi D^{2}\left(\frac{g+U_{n} g}{2}\right)\right)\right\| \\
& \leq \sum_{k=2 n+1}^{\infty} \frac{\left\|w\left(U_{k}\left(\varphi D^{2} g\right)-\varphi D^{2} g\right)\right\|}{k(k-1)}+\sum_{k=n+1}^{2 n} \sum_{s=n}^{k-1} \frac{\left\|w\left(U_{s+1}\left(\varphi D^{2} g\right)-U_{s}\left(\varphi D^{2} g\right)\right)\right\|}{k(k-1)} \\
& \leq \sum_{k=2 n+1}^{\infty} \frac{\left\|w \varphi D^{2}\left(\varphi D^{2} g\right)\right\|}{k^{2}(k-1)}+\sum_{k=n+1}^{2 n} \sum_{s=n}^{k-1} \frac{\left\|w \varphi D^{2} U_{s+1}\left(\varphi D^{2} g\right)\right\|}{k(k-1) s(s+1)} \\
& \leq A_{n}\left\|w \varphi D^{2}\left(\varphi D^{2} g\right)\right\| \tag{4.1}
\end{align*}
$$

with

$$
A_{n}=\sum_{k=2 n+1}^{\infty} \frac{1}{k^{2}(k-1)}+\sum_{k=n+1}^{2 n} \frac{1}{k(k-1)} \sum_{s=n}^{k-1} \frac{1}{s(s+1)}
$$

Changing the order of summation in the double sum above and using

$$
\begin{aligned}
\sum_{s=n}^{2 n-1} \frac{1}{s(s+1)} \sum_{k=s+1}^{2 n} \frac{1}{k(k-1)} & =\sum_{s=n}^{2 n-1} \frac{1}{s(s+1)}\left(\frac{1}{s}-\frac{1}{2 n}\right) \\
& =\sum_{s=n}^{2 n-1} \frac{1}{s^{2}(s+1)}-\frac{1}{4 n^{2}}
\end{aligned}
$$

we get

$$
\begin{aligned}
A_{n} & =\sum_{k=2 n+1}^{\infty} \frac{1}{k^{2}(k-1)}+\sum_{s=n}^{2 n-1} \frac{1}{s^{2}(s+1)}-\frac{1}{4 n^{2}} \\
& <\frac{2 n+2}{2 n+1} \sum_{k=2 n+1}^{\infty} \frac{1}{(k-1) k(k+1)}+\frac{2 n-2}{2 n-1} \sum_{s=n}^{2 n-1} \frac{1}{(s-1) s(s+1)}-\frac{1}{4 n^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{n+1}{2 n+1} \sum_{k=2 n+1}^{\infty}\left(\frac{1}{k+1}-\frac{2}{k}+\frac{1}{k-1}\right) \\
& +\frac{n-1}{2 n-1} \sum_{s=n}^{2 n-1}\left(\frac{1}{s+1}-\frac{2}{s}+\frac{1}{s-1}\right)-\frac{1}{4 n^{2}} \\
& =\frac{16 n^{4}+16 n^{3}-1}{4 n^{2}\left(16 n^{4}-8 n^{2}+1\right)},
\end{aligned}
$$

which in view of (4.1) proves the lemma.
The next lemma is a weighted Bernstein-type inequality for the GoodmanSharma operators.

Lemma 4.2. Let w be given by (1.1) with $\gamma_{0}, \gamma_{1} \in[-1,0]$. For every $F \in$ $C_{0}(w)[0,1]$ and for every $n \in \mathbb{N}$ we have

$$
n^{-1}\left\|w \varphi D^{2}\left(U_{n}^{2} F\right)\right\| \leq \sqrt{2}\|w F\|
$$

Proof. Applying Lemma 2.2 for function $g=U_{n} F \in W_{0}^{2}(\varphi)[0,1]$, using the formulas

$$
\begin{gather*}
n^{-1}(n-1) P_{n-2, k-1}(y) \varphi(y)=\varphi\left(k n^{-1}\right) P_{n, k}(y), \tag{4.2}\\
D P_{n, k}(y)=P_{n, k}(y)(k-n y) \varphi(y)^{-1} \tag{4.3}
\end{gather*}
$$

and integration by parts we get

$$
\begin{align*}
& n^{-1}\left|w(x) \varphi(x) D^{2} U_{n}\left(U_{n} F\right)(x)\right|=n^{-1}\left|w(x) U_{n}\left(\varphi D^{2} U_{n} F\right)(x)\right| \\
& \quad=n^{-1} w(x)\left|\sum_{k=1}^{n-1} P_{n, k}(x) \int_{0}^{1}(n-1) P_{n-2, k-1}(y) \varphi(y) D^{2} U_{n} F(y) d y\right| \\
& \quad=w(x)\left|\sum_{k=1}^{n-1} P_{n, k}(x) \int_{0}^{1} \varphi\left(\frac{k}{n}\right) P_{n, k}(y) \sum_{i=1}^{n-1} u_{n, i}(F) D^{2} P_{n, i}(y) d y\right| \\
& \quad=w(x)\left|\sum_{k=1}^{n-1} P_{n, k}(x) \varphi\left(\frac{k}{n}\right) \sum_{i=1}^{n-1} u_{n, i}(F) \int_{0}^{1} D P_{n, k}(y) D P_{n, i}(y) d y\right| \\
& \quad=w(x)\left|\sum_{k=1}^{n-1} P_{n, k}(x) \varphi\left(\frac{k}{n}\right) \sum_{i=1}^{n-1} u_{n, i}(F) \int_{0}^{1} P_{n, k}(y) \frac{k-n y}{\varphi(y)} P_{n, i}(y) \frac{i-n y}{\varphi(y)} d y\right| \\
& \quad \leq S_{n}\left(\gamma_{0}, \gamma_{1} ; x\right)\|w F\| \tag{4.4}
\end{align*}
$$

with

$$
\begin{aligned}
& S_{n}\left(\gamma_{0}, \gamma_{1} ; x\right) \\
& =w(x) \sum_{k=1}^{n-1} P_{n, k}(x) \varphi\left(\frac{k}{n}\right) \sum_{i=1}^{n-1} u_{n, i}\left(\frac{1}{w}\right) \int_{0}^{1} P_{n, k}(y) \frac{|k-n y|}{\varphi(y)} P_{n, i}(y) \frac{|i-n y|}{\varphi(y)} d y .
\end{aligned}
$$

The next three estimates follow from Hölder inequality.

$$
\begin{align*}
S_{n}\left(\gamma_{0}, \gamma_{1} ; x\right) & \leq S_{n}\left(-1, \gamma_{1} ; x\right)^{-\gamma_{0}} S_{n}\left(0, \gamma_{1} ; x\right)^{1+\gamma_{0}} \tag{4.5}\\
S_{n}\left(-1, \gamma_{1} ; x\right) & \leq S_{n}(-1,-1 ; x)^{-\gamma_{1}} S_{n}(-1,0 ; x)^{1+\gamma_{1}} \tag{4.6}\\
S_{n}\left(0, \gamma_{1} ; x\right) & \leq S_{n}(0,-1 ; x)^{-\gamma_{1}} S_{n}(0,0 ; x)^{1+\gamma_{1}} \tag{4.7}
\end{align*}
$$

Applying (4.6) and (4.7) in (4.5) we get

$$
\begin{align*}
S_{n}\left(\gamma_{0}, \gamma_{1} ; x\right) \leq S_{n}(-1,-1 & ; x)^{\gamma_{0} \gamma_{1}} S_{n}(-1,0 ; x)^{-\gamma_{0}\left(1+\gamma_{1}\right)} \\
& \times S_{n}(0,-1 ; x)^{-\gamma_{1}\left(1+\gamma_{0}\right)} S_{n}(0,0 ; x)^{\left(1+\gamma_{0}\right)\left(1+\gamma_{1}\right)} \tag{4.8}
\end{align*}
$$

Inequalities (4.4) and (4.8) imply that it is enough to prove

$$
\begin{equation*}
S_{n}\left(\gamma_{0}, \gamma_{1} ; x\right) \leq \sqrt{2} \tag{4.9}
\end{equation*}
$$

in the four extreme cases $\left(\gamma_{0}, \gamma_{1}\right)=(0,0),(-1,0),(0,-1),(-1,-1)$ in order to establish the lemma. Applying Cauchy's inequality we get

$$
\begin{equation*}
S_{n}\left(\gamma_{0}, \gamma_{1} ; x\right) \leq w(x) \sum_{k=1}^{n-1} P_{n, k}(x) \varphi\left(\frac{k}{n}\right) \sqrt{E_{n, k}(w)} \sqrt{F_{n, k}} \tag{4.10}
\end{equation*}
$$

with

$$
\begin{aligned}
E_{n, k}(w) & =\sum_{i=1}^{n-1} \int_{0}^{1} \varphi(y)^{-2} P_{n, k}(y) P_{n, i}(y) u_{n, i}^{2}\left(w^{-1}\right) d y \\
F_{n, k} & =\sum_{i=1}^{n-1} \int_{0}^{1} \varphi(y)^{-2} P_{n, k}(y)(k-n y)^{2} P_{n, i}(y)(i-n y)^{2} d y
\end{aligned}
$$

For the estimate of $F_{n, k}$ we use properties of the Bernstein operators and (4.3) and get

$$
\begin{align*}
F_{n, k} & =\int_{0}^{1} \varphi(y)^{-2} P_{n, k}(y)(k-n y)^{2}\left(\sum_{i=1}^{n-1} P_{n, i}(y)(i-n y)^{2}\right) d y \\
& \leq \int_{0}^{1} \varphi(y)^{-2} P_{n, k}(y)(k-n y)^{2} n \varphi(y) d y \\
& =n \int_{0}^{1}(k-n y) d P_{n, k}(y)=n^{2} \int_{0}^{1} P_{n, k}(y) d y=\frac{n^{2}}{n+1} . \tag{4.11}
\end{align*}
$$

Now we estimate $E_{n, k}(w)$ separately in the four extreme cases.
(I) Let $\gamma_{0}=\gamma_{1}=-1$. In this case $w(x)=\varphi(x)^{-1}$. From (4.3) with $k=i$ we get

$$
u_{n, i}\left(w^{-1}\right)=u_{n, i}(\varphi)=\int_{0}^{1} n \varphi\left(\frac{i}{n}\right) P_{n, i}(y) d y=\frac{n}{n+1} \varphi\left(\frac{i}{n}\right) .
$$

Using the above equality and (4.3) with $k=i$ we get

$$
\begin{align*}
E_{n, k}\left(\varphi^{-1}\right) & =\int_{0}^{1} \frac{P_{n, k}(y)}{\varphi^{2}(y)} \sum_{i=1}^{n-1} P_{n, i}(y) u_{n, i}^{2}(\varphi) d y \\
& =\left(\frac{n}{n+1}\right)^{2} \int_{0}^{1} \frac{P_{n, k}(y)}{\varphi^{2}(y)} \sum_{i=1}^{n-1} P_{n, i}(y) \varphi^{2}\left(\frac{i}{n}\right) d y \\
& =\frac{n(n-1)}{(n+1)^{2}} \int_{0}^{1} \frac{P_{n, k}(y)}{\varphi(y)} \sum_{i=1}^{n-1} P_{n-2, i-1}(y) \varphi\left(\frac{i}{n}\right) d y \\
& =\frac{n(n-1)}{(n+1)^{2}} \int_{0}^{1} \frac{P_{n, k}(y)}{\varphi(y)} \sum_{j=0}^{n-2} P_{n-2, j}(y) \varphi\left(\frac{j+1}{n}\right) d y \tag{4.12}
\end{align*}
$$

Using

$$
\sum_{j=0}^{n-2} P_{n-2, j}(y) \varphi\left(\frac{j+1}{n}\right)=\frac{(n-2)(n-3)}{n^{2}} \varphi(y)+\frac{n-1}{n}
$$

in (4.12) we get

$$
\begin{aligned}
E_{n, k}\left(\varphi^{-1}\right) & =\frac{(n-1)}{n(n+1)^{2}} \int_{0}^{1} \frac{P_{n, k}(y)}{\varphi(y)}((n-2)(n-3) \varphi(y)+n-1) d y \\
& =\frac{(n-1)}{n(n+1)^{2}}\left(\frac{(n-2)(n-3)}{n+1}+(n-1) \frac{n}{k(n-k)}\right) \\
& \leq \frac{(n-1)}{n(n+1)^{2}}\left(\frac{(n-2)(n-3)}{n+1}+n\right)<\frac{2}{n} .
\end{aligned}
$$

Applying (4.11) and the above estimate in (4.10) we get

$$
S_{n}(-1,-1 ; x) \leq \sqrt{2} \varphi(x)^{-1} \sum_{k=1}^{n-1} P_{n, k}(x) \varphi\left(\frac{k}{n}\right)<\sqrt{2},
$$

which proves (4.9) in the case $\gamma_{0}=\gamma_{1}=-1$.
(II) Let $\gamma_{0}=-1, \gamma_{1}=0$. In this case $w(x)=x^{-1}$ and $u_{n, i}\left(w^{-1}\right)=u_{n, i}(x)=$ i / n. We shall prove

$$
\begin{equation*}
E_{n, k}(w) \leq \frac{2(n+1)}{(n-k)^{2}} \tag{4.13}
\end{equation*}
$$

For $1 \leq k \leq n-2$ (hence $n \geq 3$) we have

$$
\begin{aligned}
E_{n, k}(w) & =\int_{0}^{1} \frac{P_{n, k}(y)}{\varphi^{2}(y)} \sum_{i=1}^{n-1} P_{n, i}(y)\left(\frac{i}{n}\right)^{2} d y \\
& \leq \int_{0}^{1} \frac{P_{n, k}(y)}{\varphi^{2}(y)}\left(y^{2}+\frac{\varphi(y)}{n}\right) d y=\frac{(n-1)(k+1)}{k(n-k)(n-k-1)} \leq \frac{2(n+1)}{(n-k)^{2}}
\end{aligned}
$$

For $k=n-1$ (hence $n \geq 2$) we have

$$
\begin{aligned}
& E_{n, n-1}(w)=\int_{0}^{1} \frac{P_{n, n-1}(y)}{\varphi^{2}(y)} \sum_{i=1}^{n-1} P_{n, i}(y)\left(\frac{i}{n}\right)^{2} d y \\
& =\int_{0}^{1} \frac{P_{n, n-1}(y)}{\varphi^{2}(y)}\left(y^{2}+\frac{\varphi(y)}{n}-y^{n}\right) d y=n \int_{0}^{1}\left(\frac{y^{n-2}}{n}+y^{n-1} \sum_{i=0}^{n-3} y^{i}\right) d y \\
& \quad \leq n \int_{0}^{1}\left(\frac{y^{n-2}}{n}+y^{n-1}(n-2)\right) d y=\frac{1}{n-1}+n-2 \leq 2(n+1) .
\end{aligned}
$$

This establishes (4.13). Applying (4.11) and (4.13) in (4.10) we get

$$
\begin{array}{r}
S_{n}(-1,0 ; x) \leq x^{-1} \sum_{k=1}^{n-1} P_{n, k}(x) \varphi\left(\frac{k}{n}\right) \sqrt{\frac{2(n+1)}{(n-k)^{2}}} \sqrt{\frac{n^{2}}{n+1}} \\
=\sqrt{2} x^{-1} \sum_{k=1}^{n-1} P_{n, k}(x) \frac{k}{n}<\sqrt{2},
\end{array}
$$

which proves (4.9) in the case $\gamma_{0}=-1, \gamma_{1}=0$.
(III) The case $\gamma_{0}=0, \gamma_{1}=-1$ is symmetric to (II) and (4.9) is established in the same way.
(IV) Let $\gamma_{0}=\gamma_{1}=0$. In this case $w(x)=1$ and $u_{n, i}\left(w^{-1}\right)=1$. For $1 \leq k \leq n-1$ we have

$$
\begin{aligned}
E_{n, k}(1) & =\int_{0}^{1} \frac{P_{n, k}(y)}{\varphi^{2}(y)} \sum_{i=1}^{n-1} P_{n, i}(y) d y=\int_{0}^{1} \frac{P_{n, k}(y)}{\varphi(y)}\left(1-y^{n}-(1-y)^{n}\right) d y \\
& =\binom{n}{k} \int_{0}^{1} y^{k-1}(1-y)^{n-k-1} \sum_{i=0}^{n-2}\left(y^{i}+(1-y)^{i}\right) d y \\
& =\binom{n}{k} \sum_{i=0}^{n-2} \int_{0}^{1}\left(y^{k-1+i}(1-y)^{n-k-1}+y^{k-1}(1-y)^{n-k-1+i}\right) d y \\
& =\frac{n}{k(n-k)}\left(2+\sum_{i=1}^{n-2}\left(\prod_{s=0}^{i-1} \frac{k+s}{n+s}+\prod_{s=0}^{i-1} \frac{n-k+s}{n+s}\right)\right) \\
& \leq \frac{n}{k(n-k)} \sum_{i=0}^{n-2}\left(\left(\frac{k+n-2}{2 n-2}\right)^{i}+\left(\frac{2 n-k-2}{2 n-2}\right)^{i}\right) \\
& \leq \frac{n}{k(n-k)}\left(\frac{2 n-2}{n-k}+\frac{2 n-2}{k}\right)=\frac{2 n^{2}(n-1)}{k^{2}(n-k)^{2}}
\end{aligned}
$$

Applying (4.11) and the above estimate in (4.10) we get

$$
\begin{aligned}
S_{n}(0,0 ; x) \leq \sum_{k=1}^{n-1} P_{n, k}(x) \varphi\left(\frac{k}{n}\right) \sqrt{\frac{2 n^{2}(n-1)}{k^{2}(n-k)^{2}}} & \sqrt{\frac{n^{2}}{n+1}} \\
& =\sqrt{2 \frac{n-1}{n+1}} \sum_{k=1}^{n-1} P_{n, k}(x)<\sqrt{2}
\end{aligned}
$$

which proves (4.9) in the case $\gamma_{0}=\gamma_{1}=0$ and completes the proof of the lemma.

Proof of Theorem 1.3. We follow the scheme for proving strong inverse theorems of type A given in [2]. Applying Lemma 4.1 with $g=U_{n}^{4} f$, Lemma 2.2 with $g=U_{n}^{3} f$ and $g=U_{n}^{2} f$ and Lemma 4.2 with $F=\varphi D^{2}\left(U_{n}^{2} f\right)$ we get

$$
\begin{array}{r}
\left\|w\left(U_{n}^{5} f-U_{n}^{4} f-\frac{1}{n} \varphi D^{2}\left(\frac{U_{n}^{4} f+U_{n}^{5} f}{2}\right)\right)\right\| \leq \frac{\kappa(n)}{4 n^{2}}\left\|w \varphi D^{2}\left(\varphi D^{2}\left(U_{n}^{4} f\right)\right)\right\| \\
=\frac{\kappa(n)}{4 n^{2}}\left\|w \varphi D^{2}\left(U_{n}^{2}\left(\varphi D^{2}\left(U_{n}^{2} f\right)\right)\right)\right\| \leq \frac{\sqrt{2} \kappa(n)}{4 n}\left\|w \varphi D^{2}\left(U_{n}^{2} f\right)\right\| .
\end{array}
$$

Using the last inequality, Lemma 4.2 with $F=f-U_{n}^{3} f$ and with $F=f-U_{n}^{2} f$ and Lemma 2.3 we get

$$
\begin{aligned}
& \left\|w\left(U_{n}^{5} f-U_{n}^{4} f-\frac{1}{n} \varphi D^{2}\left(\frac{U_{n}^{4} f+U_{n}^{5} f}{2}\right)\right)\right\| \\
& \leq \frac{\sqrt{2} \kappa(n)}{4 n}\left\|w \varphi D^{2} U_{n}^{2}\left(f-\frac{U_{n}^{2} f+U_{n}^{3} f}{2}\right)\right\|+\frac{\sqrt{2} \kappa(n)}{4 n}\left\|w \varphi D^{2}\left(\frac{U_{n}^{4} f+U_{n}^{5} f}{2}\right)\right\| \\
& \leq \frac{\sqrt{2} \kappa(n)}{8 n}\left\|w \varphi D^{2}\left(U_{n}^{2}\left(f-U_{n}^{2} f\right)\right)\right\|+\frac{\sqrt{2} \kappa(n)}{8 n}\left\|w \varphi D^{2}\left(U_{n}^{2}\left(f-U_{n}^{2} f\right)\right)\right\| \\
& +\frac{\sqrt{2} \kappa(n)}{4 n}\left\|w \varphi D^{2}\left(\frac{U_{n}^{4} f+U_{n}^{5} f}{2}\right)\right\| \\
& \leq \frac{\kappa(n)}{4}\left(\left\|w\left(U_{n}^{2} f-f\right)\right\|+\left\|w\left(U_{n}^{3} f-f\right)\right\|\right)+\frac{\sqrt{2} \kappa(n)}{4 n}\left\|w \varphi D^{2}\left(\frac{U_{n}^{5} f+U_{n}^{4} f}{2}\right)\right\| \\
& \leq \frac{5 \kappa(n)}{4}\left\|w\left(U_{n} f-f\right)\right\|+\frac{\sqrt{2} \kappa(n)}{4 n}\left\|w \varphi D^{2}\left(\frac{U_{n}^{4} f+U_{n}^{5} f}{2}\right)\right\| .
\end{aligned}
$$

From the above inequality and Lemma 2.3 we have

$$
\begin{aligned}
& \frac{1}{n}\left\|w \varphi D^{2}\left(\frac{U_{n}^{4} f+U_{n}^{5} f}{2}\right)\right\| \\
& \leq\left\|w\left(U_{n}^{5} f-U_{n}^{4} f-\frac{1}{n} \varphi D^{2}\left(\frac{U_{n}^{4} f+U_{n}^{5} f}{2}\right)\right)\right\|+\left\|w\left(U_{n}^{5} f-U_{n}^{4} f\right)\right\| \\
& \leq \frac{4+5 \kappa(n)}{4}\left\|w\left(U_{n} f-f\right)\right\|+\frac{\sqrt{2} \kappa(n)}{4 n}\left\|w \varphi D^{2}\left(\frac{U_{n}^{4} f+U_{n}^{5} f}{2}\right)\right\|
\end{aligned}
$$

which can be rewritten as

$$
\begin{equation*}
\frac{1}{2 n}\left\|w \varphi D^{2}\left(\frac{U_{n}^{4} f+U_{n}^{5} f}{2}\right)\right\| \leq \frac{4+5 \kappa(n)}{8-2 \sqrt{2} \kappa(n)}\left\|w\left(U_{n} f-f\right)\right\| . \tag{4.14}
\end{equation*}
$$

Finally from the definition of K-functional, Lemma 2.3 and (4.14) we obtain

$$
\begin{aligned}
K_{w}\left(f, \frac{1}{2 n}\right) & =\inf _{g \in W^{2}(w \varphi)}\left\{\|w(f-g)\|+\frac{1}{2 n}\left\|w \varphi D^{2} g\right\|\right\} \\
& \leq\left\|w\left(f-\left(\frac{U_{n}^{4} f+U_{n}^{5} f}{2}\right)\right)\right\|+\frac{1}{2 n}\left\|w \varphi D^{2}\left(\frac{U_{n}^{5} f+U_{n}^{4} f}{2}\right)\right\| \\
& \leq\left(\frac{9}{2}+\frac{4+5 \kappa(n)}{8-2 \sqrt{2} \kappa(n)}\right)\left\|w\left(f-U_{n} f\right)\right\| \\
& =\frac{40-(9 \sqrt{2}-5) \kappa(n)}{8-2 \sqrt{2} \kappa(n)}\left\|w\left(f-U_{n} f\right)\right\| .
\end{aligned}
$$

Theorem 1.3 is proved.
Remark 4.1. It is essential that we consider the derivatives of $U_{n}^{2} F$ in the Bernstein-type inequality in Lemma 4.2. The analogous inequality for $U_{n} F$ is

$$
n^{-1}\left\|w \varphi D^{2}\left(U_{n} F\right)\right\| \leq 4\|w F\|
$$

and the constant 4 cannot be improved if either $\gamma_{0}=1$ or $\gamma_{1}=1$. This constant is too big and the technique used in the proof of Theorem 1.3 does not work with $D^{2}\left(U_{n} F\right)$.

References

[1] H. Berens, Y. Xu, On Bernstein-Durrmeyer Polinonials with Jacobiweights. in "Approximation Theory and Functional Analysis", ed. C.K. Chui, Academic Press, Boston, (1991) 25-46.
[2] Z. Ditzian and K. G. Ivanov, Strong Convers Inequalities. J. d‘Analyse Mathematique, 61, (1991), 61-111.
[3] B. R. Draganov and K. G. Ivanov. A new characterization of weighted Peetre K-functionals (III). manuscript.
[4] T. N. T. Goodman and A. Sharma, A Bernstein-type Operator on the Simplex. Mathematica Balcanica (new series) 5,2, (1991), 129-145.
[5] T. N. T. Goodman and A. Sharma, A Modified Bernstein-Shoenberg Operator. Proc. of Conference on Constructive Theory of Functions, Varna'87, Publ. House of Bulg. Acad. of Sci., Sofia, (1987), 166-173.
[6] P. E. Parvanov and B. D. Popov, The Limit Case of Bernstein's Operators with Jacobi-weights. Mathematica Balcanica (new series), Vol.8, Fask.2-3, (1994), 165-177.

[^0]: *Partially supported by grant Nr103/2007 of the National Science Fund of the Sofia University

