Weighted Approximation by Baskakov-Type Operators

K. G. Ivanov, P. E. Parvanov*

Abstract

The uniform weighted approximation errors of Baskakov-type operators are characterized for weights of the form $\left(\frac{x}{1+x}\right)^{\gamma_{0}}(1+x)^{\gamma_{\infty}}$ for $\gamma_{0}, \gamma_{\infty} \in[-1,0]$. Direct and strong converse theorems are proved in terms of the weighted K-functional. AMS classification: 41A36, 41A17, 41A25, 41A27. Keywords: Baskakov-type operator, Direct theorem, Strong converse theorem, K-functional.

1 Introduction

Baskakov [2] introduced the linear positive operators

$$
B_{n} f(x)=\sum_{k=0}^{\infty} P_{n, k}(x) f\left(\frac{k}{n}\right)
$$

for approximation of bounded and continuous on $[0, \infty)$ functions f, where $P_{n, k}(x)=\binom{n+k-1}{k} x^{k}(1+x)^{-n-k}, k \in \mathbb{N}_{0}=\mathbb{N}+\{0\}$, denote the Baskakov basic functions. Following the Durrmeyer modification [5, 3] of Bernstein polynomials, Sahai and Prasad [14] modified the operators B_{n} for integrable on $[0, \infty)$ function f as follows

$$
\tilde{B}_{n} f(x)=\sum_{k=0}^{\infty} P_{n, k}(x)(n-1) \int_{0}^{\infty} P_{n, k}(y) f(y) d y
$$

Another modification was introduced by Agrawal and Thamer [1]

$$
\bar{B}_{n} f(x)=P_{n, 0}(x) f(0)+\sum_{k=1}^{\infty} P_{n, k}(x)(n-1) \int_{0}^{\infty} P_{n, k-1}(y) f(y) d y
$$

[^0]Although similar to the Goodman and Sharma [8] modification of Bernstein polynomials, operators \bar{B}_{n} lack some of its nice features. Both \tilde{B}_{n} and \bar{B}_{n} do not preserve all linear functions and do not commute with the weighted second derivative operator.

The Baskakov-type operators discussed in this paper are given for natural n by

$$
\begin{align*}
V_{n} f(x) & =\sum_{k=0}^{\infty} P_{n, k}(x) v_{n, k}(f) \tag{1.1}\\
v_{n, 0}(f)=f(0) ; \quad v_{n, k}(f) & =(n+1) \int_{0}^{\infty} P_{n+2, k-1}(y) f(y) d y, \quad k \in \mathbb{N},
\end{align*}
$$

where f is Lebesgue measurable on $(0, \infty)$ with a finite limit $f(0)$ at 0 . As far as we know the operators V_{n} were introduced in 2005 by Finta [6]. He established a strong converse theorem of type B (in the terminology of [4]) for V_{n}. The study of operators (1.1) is continued in [7, 9, 10]. In the present article we show that operators V_{n} are related to Baskakov operators in the same way as Goodman-Sharma operators are related to Bernstein polynomials.

We start with some notations. The first derivative operator is denoted by $D=\frac{d}{d x}$. Thus, $D g(x)=g^{\prime}(x)$ and $D^{2} g(x)=g^{\prime \prime}(x)$. By $\psi(x)=x(1+x)$ we denote the weight which is naturally connected with the second derivatives of the Baskakov-type operators (1.1). Our main goal in this paper is the characterization of the uniform weighted approximation error $\left\|w\left(f-V_{n} f\right)\right\|$ of operators (1.1) for weight functions given by

$$
\begin{equation*}
w(x)=w\left(\gamma_{0}, \gamma_{\infty} ; x\right)=\left(\frac{x}{1+x}\right)^{\gamma_{0}}(1+x)^{\gamma_{\infty}} \tag{1.2}
\end{equation*}
$$

for $x \in[0, \infty)$ and real $\gamma_{0}, \gamma_{\infty}$. The result of Theorem 1.1 below is valid for values of the powers $\gamma_{0}, \gamma_{\infty}$ in the range $[-1,0]$, while some other statements are formulated for arbitrary $\gamma_{\infty} \leq 0$.

Let us emphasize that, given the sequence of operators V_{n}, we investigate which is the variety of weights $w\left(\gamma_{0}, \gamma_{\infty}\right)$ allowing a characterization of the approximation error $\left\|w\left(f-V_{n} f\right)\right\|$. On the other hand, for a given weight w we are not interested in modifying Baskakov operators to some \tilde{V}_{n} in order to ensure convergence of $\left\|w\left(f-\tilde{V}_{n} f\right)\right\|$ to 0 .

By $C[0, \infty)$ we denote the space of all continuous on $[0, \infty)$ functions. The functions from $C[0, \infty)$ are not expected to be bounded or uniformly continuous. By $L_{\infty}[0, \infty)$ we denote the space of all Lebesgue measurable and essentially bounded in $[0, \infty)$ functions equipped with the uniform norm $\|\cdot\|$. For a weight function w we set $C(w)=\left\{f \in C[0, \infty): w f \in L_{\infty}[0, \infty)\right\}$ and

$$
W^{2}(w \psi)=\left\{g, g^{\prime} \in A C_{l o c}(0, \infty): w \psi D^{2} g \in L_{\infty}[0, \infty)\right\}
$$

where $A C_{l o c}(0, \infty)$ consists of the functions which are absolutely continuous in $[a, b]$ for every $[a, b] \subset(0, \infty)$. As Lemma 2.3 shows every function from $W^{2}\left(w\left(0, \gamma_{\infty}\right) \psi\right)$ can be defined at 0 in a way to be continuous.

Set $C_{0}(w)=\{f \in C(w): f(0)=0\}$. Similarly, by $W_{0}^{2}(w \psi)$ we denote the subspace of $W^{2}(w \psi)$ of functions g satisfying the additional boundary condition

$$
\begin{equation*}
\lim _{x \rightarrow 0+0} \psi(x) D^{2} g(x)=0 \tag{1.3}
\end{equation*}
$$

Note that the boundary conditions for both $C_{0}(w)$ and $W_{0}^{2}(w \psi)$ do not depend on the weight w. These conditions are essential when the weight w does not go to ∞ at 0 , while for $\gamma_{0}<0$ we have $C_{0}(w)=C(w)$ and $W_{0}^{2}(w \psi)=W^{2}(w \psi)$.

The weighted approximation error of V_{n} will be compared with the Kfunctional between the weighted spaces $C(w)$ and $W^{2}(w \psi)$, which for every

$$
f \in C(w)+W^{2}(w \psi)=\left\{f_{1}+f_{2}: f_{1} \in C(w), f_{2} \in W^{2}(w \psi)\right\}
$$

and $t>0$ is defined by

$$
\begin{equation*}
K_{w}(f, t)=\inf \left\{\|w(f-g)\|+t\left\|w \psi D^{2} g\right\|: g \in W^{2}(w \psi), f-g \in C(w)\right\} \tag{1.4}
\end{equation*}
$$

The above formula is a standard definition of K-functional in interpolation theory. In approximation theory the condition $f-g \in C(w)$ in (1.4) is usually omitted because in the predominant number of cases the second interpolation space is embedded in the first one. However, the study of Baskakov-type operators (1.1) involves interpolation between $C(w)$ and $W^{2}(w \psi)$, as $W^{2}(w \psi) \backslash C(w)$ is of infinite dimension for some of the weights w that satisfies the assumptions of Theorem 1.1, i.e. $w(x)=w\left(\gamma_{0}, \gamma_{\infty}\right)$ with $\gamma_{0}, \gamma_{\infty} \in[-1,0]$.

If $-1<\gamma_{\infty}<0$ and $\gamma_{0} \in[-1,0]$ then $C(w)+W^{2}(w \psi)=C(w)+\pi_{1}$, where π_{1} is the set of all algebraical polynomials of degree 1 . Note that π_{1} is the null space of the operator D^{2}. But for $\gamma_{\infty}=0$ or for $\gamma_{\infty}=-1$ the space $C(w)+W^{2}(w \psi)$ is essentially bigger than $C(w)+\pi_{1}$. Thus, if $f(x)=x / e$ for $x \in[0, e]$ and $f(x)=$ $\log x$ for $x \in[e, \infty)$, then $f \in\left(C(w)+W^{2}(w \psi)\right) \backslash\left(C(w)+\pi_{1}\right)$ for $\gamma_{\infty}=0$ and $\gamma_{0} \in[-1,0]$. Also, if $f(x)=x^{2} / e$ for $x \in[0, e]$ and $f(x)=x \log x$ for $x \in[e, \infty)$, then $f \in\left(C(w)+W^{2}(w \psi)\right) \backslash\left(C(w)+\pi_{1}\right)$ for $\gamma_{\infty}=-1$ and $\gamma_{0} \in[-1,0]$. The non-emptiness of $\left(C(w)+W^{2}(w \psi)\right) \backslash\left(C(w)+\pi_{1}\right)$ is determined by the increase of $\psi(x)$ as x^{2} at infinity. In this respect operators (1.1) behave differently than Goodman-Sharma operators (see [12]), where always $C(w)+W^{2}(w \psi)=$ $C(w)+\pi_{1}$ (with proper weights for the finite interval).

Before stating our main results we sketch some properties of operators V_{n}. They preserve the linear functions, which is an advantage when compared with \tilde{B}_{n} or \bar{B}_{n}. In the present paper we establish several new properties of V_{n}, which are analogous with those of Goodman-Sharma operators. For example, Theorem 2.6 shows that V_{n} and V_{m} commutes for all indexes n and m, in Theorem 2.5 we prove that V_{n} commutes with ψD^{2} and Lemma 2.2 shows that $D^{2} V_{n} f$ depends only on the difference $V_{n} f-V_{n+1} f$. The last two properties essentially simplify the proof of Theorem 1.3.

Our main result is the following theorem, consisting of a direct inequality (1.6) and a strong converse inequality (1.7) of type A in the terminology of [4].

Theorem 1.1. Let $w=w\left(\gamma_{0}, \gamma_{1}\right)$ be given by (1.2) with $\gamma_{0}, \gamma_{1} \in[-1,0]$. Then for every $f \in C(w)+W^{2}(w \psi)$ and every $n \in \mathbb{N}$, $n \geq 4$, we have

$$
\begin{equation*}
\left\|w\left(f-V_{n} f\right)\right\| \leq 2 K_{w}\left(f, \frac{1}{2 n}\right) \leq 13.7\left\|w\left(f-V_{n} f\right)\right\| \tag{1.5}
\end{equation*}
$$

Taking into account that $w\left(\gamma_{0}, \gamma_{1}\right)^{-1}$ is concave if and only if $\gamma_{0}, \gamma_{1} \in[-1,0]$ we see that the first inequality in (1.5) is contained in the following direct theorem.

Theorem 1.2. Let w^{-1} be concave. Then for every $f \in C(w)+W^{2}(w \psi)$ and for every $n \in \mathbb{N}$ we have

$$
\begin{equation*}
\left\|w\left(V_{n} f-f\right)\right\| \leq 2 K_{w}\left(f, \frac{1}{2 n}\right) \tag{1.6}
\end{equation*}
$$

The second inequality in (1.5) is a consequence of the following strong inverse theorem of type A.

Theorem 1.3. Let $w=w\left(\gamma_{0}, \gamma_{1}\right)$ be given by (1.2) with $\gamma_{0}, \gamma_{\infty} \in[-1,0]$. Then for every $f \in C(w)+W^{2}(w \psi)$ and for every $n \in \mathbb{N}$, $n \geq 4$, we have

$$
\begin{equation*}
K_{w}\left(f, \frac{1}{2 n}\right) \leq \frac{575}{84}\left\|w\left(f-V_{n} f\right)\right\| \tag{1.7}
\end{equation*}
$$

Theorem 1.2 extends or improves several results from [7, 9, 10]. Theorem 1.3 improves the result in [6] in the following directions: (i) (1.7) is a stronger inequality with only one term in the right-hand side; (ii) the inverse theorem holds for wide range of weights $w\left(\gamma_{0}, \gamma_{1}\right)$ instead of only for $w=1$; (iii) the statement holds for $f \in C(w)+W^{2}(w \psi)$ instead of for $f \in C(w)$; (iv) (1.7) comes with the explicit small constant 575/84 in the right-hand side.

As seen from Theorem 1.1 operators (1.1) are saturated with saturation order n^{-1} and $W^{2}(w \psi)$ is contained in the saturation class (both classes actually coincide). But Theorem 1.1 does not imply for all $f \in C(w)+W^{2}(w \psi)$ that $\left\|w\left(f-V_{n} f\right)\right\| \rightarrow 0$ or $K_{w}\left(f,(2 n)^{-1}\right) \rightarrow 0$ when $n \rightarrow \infty$. In fact, both quantities in (1.5) do not tend to zero with $n \rightarrow \infty$ for some functions in $C(w)$. In order to ensure convergence to zero of these quantities one may need to impose additional restrictions on the behavior of f at 0 and at ∞. At 0 these restrictions are the same as for the Goodman-Sharma operators, namely, $\lim _{x \rightarrow 0+} x^{\gamma_{0}} f(x)=0$ for $-1<\gamma_{0}<0$ or the existence of $\lim _{x \rightarrow 0+} x^{-1} f(x)$ for $\gamma_{0}=-1$. In the same time, at ∞ function f should not vary very fast in order to allow approximation in $C(w)$ with functions from $W^{2}(w \psi)$.

Although Theorems 1.1, 1.2 and 1.3 are stated for integer n they also hold true if n is assumed to be a continuous positive parameter. In this case

$$
P_{n, k}(x)=\frac{\Gamma(n+k)}{k!\Gamma(n)} x^{k}(1+x)^{-n-k}
$$

where Γ stands for the Gamma function. V_{n} is defined again by (1.1). We shall use the above definition of $P_{n, k}$ only in the proof of Lemma 2.1, while for the remaining part of the paper the index of V_{n} will be assumed integer.

The paper is organized as follows. Some auxiliary results about operators V_{n} are proved in Section 2. Theorem 1.2 is proved in Section 3, while Theorem 1.3 is proved in Section 4.

2 Auxiliary results

We first observe that the operators V_{n} given by (1.1) are well defined for big n 's on functions f with a polynomial growth at infinity. More precisely, if $w\left(0, \gamma_{\infty}\right) f \in L_{\infty}[0, \infty)$ for some (negative) γ_{∞}, then $V_{n} f$ is defined for every natural $n>-\gamma_{\infty}-1$. The boundedness of V_{n} in this case is given in

Lemma 2.1. Let $\gamma_{\infty} \leq 0$ and $n \in \mathbb{N}, n>-\gamma_{\infty}-1$. If $f \in C(w)$ with $w=w\left(0, \gamma_{\infty}\right)$, then $\left\|w V_{n} f\right\| \leq c\|w f\|$ with c depending only on γ_{∞}.

Proof. From (1.1) for $k \in \mathbb{N}$ we get $\left(\gamma=\gamma_{\infty}\right)$

$$
\begin{equation*}
v_{n, k}(w(0,-\gamma))=\frac{\Gamma(n+\gamma+1) \Gamma(n+k+1)}{\Gamma(n+1) \Gamma(n+\gamma+1+k)} \tag{2.1}
\end{equation*}
$$

Representation (2.1) is trivially true for $k=0$ too. For every $\alpha \in \mathbb{R}$ we have $\Gamma(y+\alpha) / \Gamma(y)=O\left(y^{\alpha}\right)$ for $y \rightarrow \infty$, which implies the existence of a constant c depending only on γ such that

$$
\frac{\Gamma(n-\gamma) \Gamma(n+k)}{\Gamma(n) \Gamma(n+k-\gamma)} \frac{\Gamma(n+\gamma+1) \Gamma(n+k+1)}{\Gamma(n+1) \Gamma(n+\gamma+1+k)} \leq c
$$

for every $k \in \mathbb{N}_{0}, n \in \mathbb{N}, n>-\gamma-1$. Now from (1.1), (2.1) and the above inequality we get

$$
\begin{aligned}
& \left|w(x) V_{n} f(x)\right| \leq w(x) \sum_{k=0}^{\infty} P_{n, k}(x) v_{n, k}(w(0,-\gamma))\|w(0, \gamma) f\| \\
& =\sum_{k=0}^{\infty} P_{n-\gamma, k}(x) \frac{\Gamma(n-\gamma) \Gamma(n+k)}{\Gamma(n) \Gamma(n+k-\gamma)} \frac{\Gamma(n+\gamma+1) \Gamma(n+k+1)}{\Gamma(n+1) \Gamma(n+\gamma+1+k)}\|w f\| \leq c\|w f\|
\end{aligned}
$$

which proves the lemma.
Throughout the article we shall employ the convention $P_{m, j}(x) \equiv 0$ for $j=-1,-2, \ldots$. Next, we give some identities involving the Baskakov basic
functions, which follows by their definition. For $j \in \mathbb{N}_{0}, n \in \mathbb{N}$ we have

$$
\begin{align*}
& m x P_{m+1, j-1}(x)=j P_{m, j}(x) \tag{2.2}\\
& m(1+x) P_{m+1, j}(x)=(m+j) P_{m, j}(x) \tag{2.3}\\
& m(m+1) \psi(x) P_{m+2, j}(x)=(j+1)(m+j+1) P_{m, j+1}(x), \tag{2.4}\\
& D P_{m, j}(x)=\frac{j-m x}{\psi(x)} P_{m, j}(x), \tag{2.5}\\
& D^{2} P_{m, j}(x)=\left[\left(\frac{j-m x}{\psi(x)}\right)^{2}-\frac{m \psi(x)+(j-m x)(1+2 x)}{\psi^{2}(x)}\right] P_{m, j}(x), \tag{2.6}\\
& D P_{m, j}(x)=m\left[P_{m+1, j-1}(x)-P_{m+1, j}(x)\right], \tag{2.7}\\
& D^{2} P_{m, j}(x)=m(m+1)\left[P_{m+2, j-2}(x)-2 P_{m+2, j-1}(x)+P_{m+2, j}(x)\right] \tag{2.8}
\end{align*}
$$

Next, we collect from [2] and [11] some basic results for the original Baskakov operators. With the notation $e_{j}(x)=x^{j}, j=0,1,2$ we have

$$
\begin{align*}
& B_{n} \text { is a linear, positive operator; } \tag{2.9}\\
& B_{n} e_{0}(x)=e_{0}(x), B_{n} e_{1}(x)=e_{1}(x) \tag{2.10}\\
& B_{n} e_{2}(x)=e_{2}(x)+\frac{1}{n} \psi(x) \tag{2.11}\\
& \left\|B_{n} f\right\| \leq\|f\| \text { for } f \in C(1) \tag{2.12}
\end{align*}
$$

Using (1.1), (2.10), (2.11), (2.12) and the basic normalization equality

$$
\begin{equation*}
(n-1) \int_{0}^{\infty} P_{n, k}(t) d t=1 \text { for } k, n \in \mathbb{N}, n \geq 2 \tag{2.13}
\end{equation*}
$$

we get the following basic properties of the operators V_{n} :

$$
\begin{align*}
& V_{n} \text { is a linear, positive operator; } \tag{2.14}\\
& V_{n} e_{0}(x)=e_{0}(x), V_{n} e_{1}(x)=e_{1}(x) \tag{2.15}\\
& V_{n} e_{2}(x)=e_{2}(x)+\frac{2}{n-1} \psi(x), \quad n \geq 2 \tag{2.16}\\
& \left\|V_{n} f\right\| \leq\|f\| \text { for } f \in C(1) \tag{2.17}
\end{align*}
$$

Using (2.14) and (2.15) we obtain

$$
\begin{equation*}
V_{n} f \leq f \text { for every concave function } f \tag{2.18}
\end{equation*}
$$

One important property of the sequence V_{n} is
Lemma 2.2. If $f \in C\left(w\left(0, \gamma_{\infty}\right)\right)$ and $n \in \mathbb{N}, n>-\gamma_{\infty}-1$, then

$$
V_{n} f(x)-V_{n+1} f(x)=\frac{1}{n(n+1)} \psi(x) D^{2}\left(V_{n} f\right)(x)
$$

Proof. We write $V_{n} f(x)=A_{n} f(x)+S_{n} f(x)$, where

$$
A_{n} f(x)=P_{n, 0}(x) f(0), \quad S_{n} f(x)=\sum_{k=1}^{\infty} P_{n, k}(x) v_{n, k}(f)
$$

From the identities (2.2), (2.3) we get

$$
\begin{equation*}
(n+1) v_{n+1, k}(f)=(n+k+1) v_{n, k}(f)-k v_{n, k+1}(f) \tag{2.19}
\end{equation*}
$$

Now from (2.19) and (2.2) we obtain

$$
\begin{aligned}
S_{n+1} f(x) & =\sum_{k=1}^{\infty} P_{n+1, k}(x)\left(\frac{n+k+1}{n+1} v_{n, k}(f)-\frac{k}{n+1} v_{n, k+1}(f)\right) \\
& =\sum_{k=1}^{\infty} P_{n+1, k}(x) \frac{n+k+1}{n+1} v_{n, k}(f)-\sum_{k=2}^{\infty} P_{n+1, k-1}(x) \frac{k-1}{n+1} v_{n, k}(f) \\
& =\sum_{k=1}^{\infty} P_{n, k}(x) v_{n, k}(f)\left(\frac{(n+k)(n+k+1)}{n(n+1)} \frac{1}{1+x}-\frac{k(k-1)}{n(n+1)} \frac{1}{x}\right) .
\end{aligned}
$$

Using the above representation and (2.5), (2.6) we obtain

$$
\begin{align*}
& S_{n} f(x)-S_{n+1} f(x) \\
& =\sum_{k=1}^{\infty} P_{n, k}(x) v_{n, k}(f) \frac{n(n+1) \psi(x)+k(k-1)(1+x)-(n+k)(n+k+1) x}{n(n+1) \psi(x)} \\
& =\frac{\psi(x)}{n(n+1)} \sum_{k=1}^{\infty} P_{n, k}(x) v_{n, k}(f)\left[\left(\frac{k-n x}{\psi(x)}\right)^{2}-\frac{n \psi(x)+(k-n x)(1+2 x)}{\psi^{2}(x)}\right] \\
& \quad=\frac{\psi(x)}{n(n+1)} \sum_{k=1}^{\infty} D^{2} P_{n, k}(x) v_{n, k}(f)=\frac{\psi(x)}{n(n+1)} D^{2}\left(S_{n} f\right)(x) . \tag{2.20}
\end{align*}
$$

For the other part of the difference $V_{n} f(x)-V_{n+1} f(x)$ we have

$$
\begin{align*}
A_{n} f(x)- & A_{n+1} f(x) \\
& =\left((1+x)^{-n}-(1+x)^{-n-1}\right) f(0)=\frac{\psi(x)}{n(n+1)} D^{2}\left(A_{n} f\right)(x) \tag{2.21}
\end{align*}
$$

Finally, (2.20) and (2.21) prove the lemma.
The following lemma contains some boundary properties of the functions in $W^{2}\left(w\left(0, \gamma_{\infty}\right) \psi\right)$.

Lemma 2.3. If $g \in W^{2}\left(w\left(0, \gamma_{\infty}\right) \psi\right)$ and $n \in \mathbb{N}, n>-\gamma_{\infty}-1$, then

$$
\begin{equation*}
\lim _{x \rightarrow 0} x D g(x)=0, \quad \lim _{x \rightarrow \infty}(1+x)^{-n} D g(x)=0, \quad \lim _{x \rightarrow \infty}(1+x)^{-n-1} g(x)=0 \tag{2.22}
\end{equation*}
$$

Moreover, g has a finite limit at 0 .

Proof. The first limit follows from $g^{\prime}(x)=g^{\prime}(1)+\int_{1}^{x} g^{\prime \prime}(t) d t$ when the integral is evaluated by $|\log x|\left\|w\left(0, \gamma_{\infty}\right) \psi g^{\prime \prime}\right\|$ for $0<x \leq 1$. For the second limit we use the same formula with the bound $\int_{1}^{x} t^{-1}(1+t)^{-\gamma_{\infty}-1} d t\left\|w\left(0, \gamma_{\infty}\right) \psi g^{\prime \prime}\right\|$ for $x \geq 1$. Similarly, we obtain the last limit in (2.22) using

$$
\begin{equation*}
g(x)=g(1)+g^{\prime}(1)(x-1)+\int_{1}^{x}(x-t) g^{\prime \prime}(t) d t \tag{2.23}
\end{equation*}
$$

Representation (2.23) also gives $g(0+0)=g(1)-g^{\prime}(1)+\int_{0}^{1} t g^{\prime \prime}(t) d t$, which completes the proof.

Now, we apply Lemma 2.3 in the proof of
Lemma 2.4. If $g \in W^{2}\left(w\left(0, \gamma_{\infty}\right) \psi\right)$ and $n \in \mathbb{N}, n>-\gamma_{\infty}-1$, then

$$
\psi(x) D^{2}\left(V_{n} g\right)(x)=\sum_{k=1}^{\infty} v_{n, k}\left(\psi D^{2} g\right) P_{n, k}(x)
$$

Proof. Using (2.7) we get for the first derivative of $V_{n} g$ the representation

$$
\begin{aligned}
D\left(V_{n} g\right)(x)=n \sum_{k=1}^{\infty} v_{n, k}(g) P_{n+1, k-1}(x) & -n \sum_{k=0}^{\infty} v_{n, k}(g) P_{n+1, k}(x) \\
& =n \sum_{k=0}^{\infty}\left[v_{n, k+1}(g)-v_{n, k}(g)\right] P_{n+1, k}(x)
\end{aligned}
$$

From the above representation we obtain for the second derivative

$$
\begin{equation*}
D^{2}\left(V_{n} g\right)(x)=n(n+1) \sum_{k=0}^{\infty}\left[v_{n, k+2}(g)-2 v_{n, k+1}(g)+v_{n, k}(g)\right] P_{n+2, k}(x) \tag{2.24}
\end{equation*}
$$

Now from (2.4) and (2.24) we get

$$
\begin{align*}
& \psi(x) D^{2}\left(V_{n} g\right)(x) \\
& =\sum_{k=0}^{\infty}\left[v_{n, k+2}(g)-2 v_{n, k+1}(g)+v_{n, k}(g)\right](k+1)(n+k+1) P_{n, k+1}(x) \\
& \quad=\sum_{k=1}^{\infty}\left[v_{n, k+1}(g)-2 v_{n, k}(g)+v_{n, k-1}(g)\right] k(n+k) P_{n, k}(x) \tag{2.25}
\end{align*}
$$

For the evaluation of $v_{n, k}\left(\psi D^{2} g\right)$ we first apply (2.4) followed by twice differentiation by part together with Lemma 2.3 and finally we use (2.8) to get for
every $k \in \mathbb{N}$

$$
\begin{align*}
v_{n, k} & \left(\psi D^{2} g\right) \\
& =\int_{0}^{\infty}(n+1) P_{n+2, k-1}(t) \psi(t) D^{2} g(t) d t=\frac{k(n+k)}{n} \int_{0}^{\infty} P_{n, k}(t) D^{2} g(t) d t \\
& =-\frac{k(n+k)}{n} \int_{0}^{\infty} D P_{n, k}(t) D g(t) d t=\frac{k(n+k)}{n} \int_{0}^{\infty} D^{2} P_{n, k}(t) g(t) d t \\
& =k(n+k)(n+1) \int_{0}^{\infty}\left[P_{n+2, k-2}(t)-2 P_{n+2, k-1}(t)+P_{n+2, k}(t)\right] g(t) d t \\
& =k(n+k)\left[v_{n, k-1}(g)-2 v_{n, k}(g)+v_{n, k+1}(g)\right] . \tag{2.26}
\end{align*}
$$

The above proof of (2.26) is valid for $k \geq 2$. The final formula is also correct for $k=1$ but one has to take into account the additional term with $v_{n, 0}(g)=g(0)$ produced by the second integration by parts.

Finally, (2.25) and (2.26) prove the lemma.
From Lemma 2.4 and boundary condition (1.3) we immediately get
Theorem 2.5. If $g \in W_{0}^{2}\left(w\left(0, \gamma_{\infty}\right) \psi\right)$ and $n \in \mathbb{N}, n>-\gamma_{\infty}-1$, then

$$
\psi(x) D^{2}\left(V_{n} g\right)(x)=V_{n}\left(\psi D^{2} g\right)(x), \quad x \in[0, \infty)
$$

i.e. V_{n} commutes with the operator ψD^{2} on $W_{0}^{2}\left(w\left(0, \gamma_{\infty}\right) \psi\right)$.

From Lemma 2.2 and Theorem 2.5 we get
Theorem 2.6. If $f \in C\left(w\left(0, \gamma_{\infty}\right)\right)$ and $m, n \in \mathbb{N}, m, n>-\gamma_{\infty}-1$, then $V_{n} V_{m} f=V_{m} V_{n} f$, i.e. V_{m} and V_{n} commute on $C\left(w\left(0, \gamma_{\infty}\right)\right)$.

Proof. From Lemma 2.2 and Lemma 2.1 we observe that $V_{j} f \in W_{0}^{2}\left(w\left(0, \gamma_{\infty}\right) \psi\right)$, $j>-\gamma_{\infty}-1$, whenever $f \in C\left(w\left(0, \gamma_{\infty}\right)\right)$, i.e. we can apply Theorem 2.5 with $g=V_{j} f$. Set $\lambda_{j}=(j(j+1))^{-1}$. Without loss of generality we assume that $m=n+k, k \in \mathbb{N}$.

We prove the theorem by induction on k. For $k=1$ using Lemma 2.2, (2.14) and Theorem 2.5 we get

$$
\begin{aligned}
& V_{n}^{2} f-V_{n} V_{n+1} f=V_{n}\left(V_{n} f-V_{n+1} f\right)=V_{n}\left(\lambda_{n} \psi D^{2}\left(V_{n} f\right)\right) \\
& =\lambda_{n} V_{n}\left(\psi D^{2}\left(V_{n} f\right)\right)=\lambda_{n} \psi D^{2}\left(V_{n}^{2} f\right)=\left(V_{n}-V_{n+1}\right) V_{n} f=V_{n}^{2} f-V_{n+1} V_{n} f,
\end{aligned}
$$

which gives $V_{n} V_{n+1} f=V_{n+1} V_{n} f$.
Assume $V_{n} V_{n+j} f=V_{n+j} V_{n} f$ for $j=1,2, \ldots, k$. Then using the inductive
assumption, Lemma 2.2, (2.14) and Theorem 2.5 we get

$$
\begin{aligned}
V_{n}^{2} f-V_{n} V_{n+k+1} f & =V_{n} \sum_{j=0}^{k}\left(V_{n+j} f-V_{n+j+1} f\right)=V_{n} \sum_{j=0}^{k} \lambda_{n+j} \psi D^{2}\left(V_{n+j} f\right) \\
& =\sum_{j=0}^{k} \lambda_{n+j} \psi D^{2}\left(V_{n} V_{n+j} f\right)=\sum_{j=0}^{k} \lambda_{n+j} \psi D^{2}\left(V_{n+j} V_{n} f\right) \\
& =\sum_{j=0}^{k}\left(V_{n+j}-V_{n+j+1}\right) V_{n} f=V_{n}^{2} f-V_{n+k+1} V_{n} f
\end{aligned}
$$

and, hence, $V_{n} V_{n+k+1} f=V_{n+k+1} V_{n} f$. This completes the proof.
We finalize the section by proving the operators V_{n} and $\psi D^{2} V_{n}$ have norm 1 in appropriate weighted norm spaces. The first lemma improves the constant c in Lemma 2.1 with a very simple proof but for different class of admissible weights.
Lemma 2.7. Let w^{-1} be concave. Then for every $f \in C(w)$ and $n \in \mathbb{N}$ we have $\left\|w V_{n} f\right\| \leq\|w f\|$, i.e. V_{n} has norm 1 as an operator from $C(w)$ to $C(w)$.

Proof. From (2.14) and $w \geq 0$ we get

$$
\left|V_{n} f(x)\right|=\left|V_{n}\left((w f) w^{-1}\right)(x)\right| \leq V_{n}\left(\|w f\| w^{-1}\right)(x)=\|w f\| V_{n}\left(w^{-1}\right)(x)
$$

From the concavity of w^{-1} and (2.18) we get $V_{n}\left(w^{-1}\right) \leq w^{-1}$, which proves the lemma.

Lemma 2.8. Let w^{-1} be concave. Then for every $g \in W^{2}(w \psi)$ and $n \in \mathbb{N}$ we have

$$
\left\|w \psi D^{2}\left(V_{n} g\right)\right\| \leq\left\|w \psi D^{2} g\right\| .
$$

Proof. From the concavity of w^{-1} we get $w \geq c w(0,-1)$ for some positive constant c and hence $g \in W^{2}(w(0,-1) \psi)$. Applying the representation from Lemma 2.4 and the inequality $V_{n}\left(w^{-1}\right) \leq w^{-1}$ for the concave function w^{-1} as in Lemma 2.7 we obtain

$$
\begin{aligned}
& \left|w(x) \psi(x) D^{2}\left(V_{n} g\right)(x)\right| \\
& \qquad=w(x) \sum_{k=1}^{\infty} P_{n, k}(x) \int_{0}^{\infty}(n+1) P_{n+2, k-1}(y) \psi(y) D^{2} g(y) d y \\
& \leq\left\|w \psi D^{2} g\right\| w(x) \sum_{k=1}^{\infty} P_{n, k}(x) \int_{0}^{\infty}(n+1) P_{n+2, k-1}(y) w^{-1}(y) d y \\
& \quad \leq\left\|w \psi D^{2} g\right\| w(x) V_{n}\left(w^{-1}\right)(x) \leq\left\|w \psi D^{2} g\right\|
\end{aligned}
$$

which proves the lemma.
Note that Lemma 2.8 immediately follows from Theorem 2.5 and Lemma 2.7 if we assume $g \in W_{0}^{2}(w \psi)$.

3 Proof of the direct theorem

In the proof of the direct theorem we use the following two lemmas.
Lemma 3.1. For every $g \in C(w(0,-2))$ and $x \in[0, \infty)$ we have

$$
\lim _{n \rightarrow \infty} V_{n} g(x)=g(x)
$$

Proof. For $x=0$ we have $V_{n} g(0)=g(0)$ for every $n \in \mathbb{N}$.
Now, fix $x>0$ and $\varepsilon>0$. We choose $\delta=\delta(x, \varepsilon), \delta<1$, so that $|g(x)-g(t)| \leq$ $\varepsilon / 2$ for $|x-t| \leq \delta$. Taking into account that $w(0,-2)(t)^{-1} \leq(x+2)^{2}(x-t)^{2} \delta^{-2}$ for every $t \geq 0,|x-t| \geq \delta$ we get

$$
|g(x)-g(t)| \leq Q(t):=M(x-t)^{2}+\varepsilon / 2 \quad \forall t \in[0, \infty)
$$

with $M=2(x+2)^{2} \delta^{-2}\|w g\|$. Using the above inequality, (2.14), (2.15) and (2.16) we get

$$
\left|g(x)-V_{n} g(x)\right|=\left|V_{n}(g(x)-g, x)\right| \leq V_{n}(Q, x) \leq M \frac{2}{n-1} \psi(x)+\varepsilon / 2 \leq \varepsilon
$$

for every $n \geq 4 M \psi(x) \varepsilon^{-1}+1$. This proves the lemma.
Lemma 3.1 represents a standard point-wise convergence statement for positive linear operators. As shown in [10, Theorem 3.1], the lemma is true for every g with no faster than power growth at infinity, i.e. $g \in C\left(w\left(0, \gamma_{\infty}\right)\right)$ for some negative γ_{∞}, but the proof of this property requires the verification of the point-wise convergence of V_{n} on all polynomials (not only on the quadratic ones as provided by (2.15) and (2.16)).

The next lemma is a weighted Jackson-type inequality for the operators V_{n}.
Lemma 3.2. Let w^{-1} be concave. If $g \in W^{2}(w \psi)$ then $g \in C(w(0,-1-\varepsilon))$ for every $\varepsilon>0$ and

$$
\left\|w\left(V_{n} g-g\right)\right\| \leq \frac{1}{n}\left\|w \psi D^{2} g\right\|, \quad n \in \mathbb{N} .
$$

Proof. From the concavity of w^{-1} we get $g \in W^{2}(w(0,-1) \psi)$. Now, in view of (2.23) we see that $g(x)$ grows at infinity no faster than $x \log x$. Hence $g \in$ $C(w(0,-1-\varepsilon))$ for every positive ε and Lemma 3.1 gives $\lim _{n \rightarrow \infty} V_{n} g(x)=g(x)$ for every $x \in[0, \infty)$. Then from Lemma 2.2 with $\gamma_{\infty}=-1-\varepsilon$ we have

$$
\begin{equation*}
V_{n} g(x)-g(x)=\sum_{k=n}^{\infty}\left(V_{k} g(x)-V_{k+1} g(x)\right)=\sum_{k=n}^{\infty} \frac{\psi(x) D^{2} V_{k} g(x)}{k(k+1)} \tag{3.1}
\end{equation*}
$$

From (3.1) and Lemma 2.8 we get

$$
\begin{aligned}
\left\|w\left(V_{n} g-g\right)\right\| & =\left\|w \sum_{k=n}^{\infty} \frac{\psi D^{2} V_{k} g}{k(k+1)}\right\| \\
& \leq \sum_{k=n}^{\infty} \frac{\left\|w \psi D^{2} V_{k} g\right\|}{k(k+1)} \leq \sum_{k=n}^{\infty} \frac{1}{k(k+1)}\left\|w \psi D^{2} g\right\|=\frac{1}{n}\left\|w \psi D^{2} g\right\|
\end{aligned}
$$

Proof of Theorem 1.2. Let g be an arbitrary function from $W^{2}(w \psi)$ such that $g-f \in C(w)$. Then

$$
\left\|w\left(V_{n} f-f\right)\right\| \leq\left\|w\left(V_{n} f-V_{n} g\right)\right\|+\left\|w\left(V_{n} g-g\right)\right\|+\|w(g-f)\| .
$$

From Lemma 2.7 and Lemma 3.2 we get

$$
\left\|w\left(V_{n} f-f\right)\right\| \leq 2\|w(f-g)\|+\frac{1}{n}\left\|w \psi D^{2} g\right\|=2\left(\|w(f-g)\|+\frac{1}{2 n}\left\|w \psi D^{2} g\right\|\right)
$$

Taking an infimum on $g \in W^{2}(w \psi)$ in the above inequality we prove the theorem.

4 Proof of the inverse theorem

We start with a lemma showing that for every $f \in C(w)+W^{2}(w \psi)$ the images $V_{n} f, n \in \mathbb{N}$, can be tested for (almost-)realization of the K-functional (1.4).

Lemma 4.1. Let w^{-1} be concave. If $f \in C(w)+W^{2}(w \psi)$ then for every $n \in \mathbb{N}$ we have $f-V_{n} f \in C(w)$ and $V_{n} f \in W_{0}^{2}(w \psi)$.

Proof. Let $f=f_{1}+f_{2}$ with $f_{1} \in C(w)$ and $f_{2} \in W^{2}(w \psi)$. In view of Lemma 3.2 with $\epsilon=1 / 2$ we have $f_{2} \in C(w(0,3 / 2))$ and hence $V_{n} f=V_{n} f_{1}+V_{n} f_{2}$ for every $n \in \mathbb{N}$.

Lemma 2.7 implies $V_{n} f_{1} \in C(w)$ and Lemma 3.2 gives $f_{2}-V_{n} f_{2} \in C(w)$. Hence $f-V_{n} f \in C(w)$.

From Lemma 2.2 and Lemma 2.7 we obtain $V_{n} f_{1} \in W_{0}^{2}(w \psi)$, Lemma 2.4 shows that $V_{n} f_{2}$ satisfies (1.3) on the place of g and Lemma 2.8 implies $V_{n} f_{2} \in$ $W^{2}(w \psi)$. Therefore $V_{n} f \in W_{0}^{2}(w \psi)$ and the lemma is proved.

The following two lemmas are crucial in the proof of the inverse theorem. The first one is a strong Voronovskaya-type estimate.
Lemma 4.2. Let w^{-1} be concave. Then for every $g \in W_{0}^{2}(w \psi)$ such that $\psi D^{2} g \in W^{2}(w \psi)$ and for every $n \in \mathbb{N}$ we have

$$
\left\|w\left(V_{n} g-g-\frac{1}{n} \psi D^{2}\left(\frac{g+V_{n} g}{2}\right)\right)\right\| \leq \frac{1}{4 n^{2}}\left\|w \psi D^{2}\left(\psi D^{2} g\right)\right\|
$$

Proof. From (3.1) and Theorem 2.5 we derive the representation

$$
\begin{aligned}
V_{n} g-g & -\frac{1}{n} \psi D^{2}\left(\frac{g+V_{n} g}{2}\right) \\
& =\sum_{k=n}^{\infty} \frac{V_{k}\left(\psi D^{2} g\right)}{k(k+1)}-\frac{1}{2 n} \psi D^{2} g-\frac{1}{2 n} \psi D^{2}\left(V_{n} g\right) \\
& =\sum_{k=2 n}^{\infty} \frac{V_{k}\left(\psi D^{2} g\right)-\psi D^{2} g}{k(k+1)}+\sum_{k=n}^{2 n-1} \frac{V_{k}\left(\psi D^{2} g\right)-V_{n}\left(\psi D^{2} g\right)}{k(k+1)} \\
& =\sum_{k=2 n}^{\infty} \frac{V_{k}\left(\psi D^{2} g\right)-\psi D^{2} g}{k(k+1)}+\sum_{k=n+1}^{2 n-1} \sum_{s=n}^{k-1} \frac{V_{s+1}\left(\psi D^{2} g\right)-V_{s}\left(\psi D^{2} g\right)}{k(k+1)}
\end{aligned}
$$

with the series convergent in $C(w)$. From this representation, Lemma 3.2, Lemma 2.2 and Lemma 2.8 we get

$$
\begin{align*}
& \left\|w\left(V_{n} g-g-\frac{1}{n} \psi D^{2}\left(\frac{g+V_{n} g}{2}\right)\right)\right\| \\
& \leq \sum_{k=2 n}^{\infty} \frac{\left\|w\left(V_{k}\left(\psi D^{2} g\right)-\psi D^{2} g\right)\right\|}{k(k+1)}+\sum_{k=n+1}^{2 n-1} \sum_{s=n}^{k-1} \frac{\left\|w\left(V_{s+1}\left(\psi D^{2} g\right)-V_{s}\left(\psi D^{2} g\right)\right)\right\|}{k(k+1)} \\
& \leq \sum_{k=2 n}^{\infty} \frac{\left\|w \psi D^{2}\left(\psi D^{2} g\right)\right\|}{k^{2}(k+1)}+\sum_{k=n+1}^{2 n-1} \sum_{s=n}^{k-1} \frac{\left\|w \psi D^{2} V_{s}\left(\psi D^{2} g\right)\right\|}{k(k+1) s(s+1)} \\
& \leq A_{n}\left\|w \psi D^{2}\left(\psi D^{2} g\right)\right\| \tag{4.1}
\end{align*}
$$

with

$$
A_{n}=\sum_{k=2 n}^{\infty} \frac{1}{k^{2}(k+1)}+\sum_{k=n+1}^{2 n-1} \frac{1}{k(k+1)} \sum_{s=n}^{k-1} \frac{1}{s(s+1)} .
$$

Changing the order of summation in the double sum above and using

$$
\begin{aligned}
\sum_{s=n}^{2 n-2} \frac{1}{s(s+1)} \sum_{k=s+1}^{2 n-1} \frac{1}{k(k+1)} & =\sum_{s=n}^{2 n-2} \frac{1}{s(s+1)}\left(\frac{1}{s+1}-\frac{1}{2 n}\right) \\
& =\sum_{s=n}^{2 n-2} \frac{1}{s(s+1)^{2}}-\frac{n-1}{2 n^{2}(2 n-1)}
\end{aligned}
$$

we get

$$
\begin{aligned}
A_{n} & =\sum_{k=2 n}^{\infty} \frac{1}{k^{2}(k+1)}+\sum_{s=n}^{2 n-2} \frac{1}{s(s+1)^{2}}-\frac{n-1}{2 n^{2}(2 n-1)} \\
& <\sum_{k=2 n}^{\infty} \frac{1}{(k-1) k(k+1)}+\frac{n+2}{n+1} \sum_{k=n+1}^{2 n-1} \frac{1}{(k-1) k(k+1)}-\frac{n-1}{2 n^{2}(2 n-1)}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2} \sum_{k=2 n}^{\infty}\left(\frac{1}{k+1}-\frac{2}{k}+\frac{1}{k-1}\right) \\
& +\frac{n+2}{2 n+2} \sum_{k=n+1}^{2 n-1}\left(\frac{1}{k+1}-\frac{2}{k}+\frac{1}{k-1}\right)-\frac{n-1}{2 n^{2}(2 n-1)} \\
& =\frac{2 n^{3}+3 n^{2}-3 n+2}{4 n^{2}(n+1)^{2}(2 n-1)}<\frac{1}{4 n^{2}},
\end{aligned}
$$

which in view of (4.1) proves the lemma.
The next lemma is a weighted Bernstein-type inequality for the Baskakovtype operators. We estimate the action of ψD^{2} on the second degree V_{n}^{2} of the operator in order to get a smaller constant in the right-hand side. This constant is not exact.

Lemma 4.3. Let $w=w\left(\gamma_{0}, \gamma_{\infty}\right)$ be given by (1.2) with $\gamma_{0}, \gamma_{\infty} \in[-1,0]$. Then for every $F \in C_{0}(w)$ and for every $n \in \mathbb{N}$, $n \geq 4$, we have

$$
\frac{1}{n}\left\|w \psi D^{2}\left(V_{n}^{2} F\right)\right\| \leq \frac{5}{3}\|w F\| .
$$

Proof. For the second derivative of $g=V_{n} F$ we get from Lemma 2.2 and Lemma 2.7 that $D^{2}\left(V_{n} F\right) \in C(w \psi)$. Lemma 2.2 also implies that g satisfies (1.3) and, hence, $g \in W_{0}^{2}(w \psi) \subset W_{0}^{2}(w(0,-1) \psi)$. Applying Theorem 2.5 with this g, using (2.4) with $m=n, j=k-1$, (2.5) with $m=n, j=k$ and integration by parts we get for every $x \geq 0$

$$
\begin{align*}
n^{-1} & \left|w(x) \psi(x) D^{2} V_{n}\left(V_{n} F\right)(x)\right|=n^{-1}\left|w(x) V_{n}\left(\psi D^{2} V_{n} F\right)(x)\right| \\
& =n^{-1} w(x)\left|\sum_{k=1}^{\infty} P_{n, k}(x) \int_{0}^{\infty}(n+1) P_{n+2, k-1}(y) \psi(y) D^{2} V_{n} F(y) d y\right| \\
& =w(x)\left|\sum_{k=1}^{\infty} P_{n, k}(x) \int_{0}^{\infty} \psi\left(\frac{k}{n}\right) P_{n, k}(y) \sum_{i=1}^{\infty} v_{n, i}(F) D^{2} P_{n, i}(y) d y\right| \\
& =w(x)\left|\sum_{k=1}^{\infty} P_{n, k}(x) \psi\left(\frac{k}{n}\right) \sum_{i=1}^{\infty} v_{n, i}(F) \int_{0}^{\infty} D P_{n, k}(y) D P_{n, i}(y) d y\right| \\
& =w(x)\left|\sum_{k=1}^{\infty} P_{n, k}(x) \psi\left(\frac{k}{n}\right) \sum_{i=1}^{\infty} v_{n, i}(F) \int_{0}^{\infty} P_{n, k}(y) \frac{k-n y}{\psi(y)} P_{n, i}(y) \frac{i-n y}{\psi(y)} d y\right| \\
& \leq S_{n}\left(\gamma_{0}, \gamma_{\infty} ; x\right)\|w F\| \tag{4.2}
\end{align*}
$$

with

$$
\begin{aligned}
& S_{n}\left(\gamma_{0}, \gamma_{\infty} ; x\right) \\
& =w(x) \sum_{k=1}^{\infty} P_{n, k}(x) \psi\left(\frac{k}{n}\right) \sum_{i=1}^{\infty} v_{n, i}\left(\frac{1}{w}\right) \int_{0}^{\infty} P_{n, k}(y) \frac{|k-n y|}{\psi(y)} P_{n, i}(y) \frac{|i-n y|}{\psi(y)} d y .
\end{aligned}
$$

The next three estimates follow from Hölder's inequality.

$$
\begin{align*}
S_{n}\left(\gamma_{0}, \gamma_{\infty} ; x\right) & \leq S_{n}\left(-1, \gamma_{\infty} ; x\right)^{-\gamma_{0}} S_{n}\left(0, \gamma_{\infty} ; x\right)^{1+\gamma_{0}} \tag{4.3}\\
S_{n}\left(-1, \gamma_{\infty} ; x\right) & \leq S_{n}(-1,-1 ; x)^{-\gamma_{\infty}} S_{n}(-1,0 ; x)^{1+\gamma_{\infty}} \tag{4.4}\\
S_{n}\left(0, \gamma_{\infty} ; x\right) & \leq S_{n}(0,-1 ; x)^{-\gamma_{\infty}} S_{n}(0,0 ; x)^{1+\gamma_{\infty}} \tag{4.5}
\end{align*}
$$

Applying (4.4) and (4.5) in (4.3) we get

$$
\begin{align*}
S_{n}\left(\gamma_{0}, \gamma_{\infty} ; x\right) \leq S_{n}(-1, & -1 ; x)^{\gamma_{0} \gamma_{\infty}} S_{n}(-1,0 ; x)^{-\gamma_{0}\left(1+\gamma_{\infty}\right)} \\
& \times S_{n}(0,-1 ; x)^{-\gamma_{\infty}\left(1+\gamma_{0}\right)} S_{n}(0,0 ; x)^{\left(1+\gamma_{0}\right)\left(1+\gamma_{\infty}\right)} \tag{4.6}
\end{align*}
$$

Inequalities (4.2) and (4.6) imply that it is enough to prove for every $x \geq 0$

$$
\begin{equation*}
S_{n}\left(\gamma_{0}, \gamma_{\infty} ; x\right) \leq \frac{5}{3} \tag{4.7}
\end{equation*}
$$

in the four extreme cases $\left(\gamma_{0}, \gamma_{\infty}\right)=(0,0),(-1,0),(0,-1),(-1,-1)$ in order to establish the lemma. Applying Cauchy's inequality we get

$$
\begin{equation*}
S_{n}\left(\gamma_{0}, \gamma_{\infty} ; x\right) \leq w(x) \sum_{k=1}^{\infty} P_{n, k}(x) \psi\left(\frac{k}{n}\right) \sqrt{E_{n, k}(w)} \sqrt{F_{n, k}} \tag{4.8}
\end{equation*}
$$

where the quantities $E_{n, k}(w), F_{n, k}$ are given for $k \in \mathbb{N}$ by

$$
\begin{aligned}
E_{n, k}(w) & =\sum_{i=1}^{\infty} \int_{0}^{\infty} \psi(y)^{-2} P_{n, k}(y) P_{n, i}(y) v_{n, i}^{2}\left(w^{-1}\right) d y, \\
F_{n, k} & =\sum_{i=1}^{\infty} \int_{0}^{\infty} \psi(y)^{-2} P_{n, k}(y)(k-n y)^{2} P_{n, i}(y)(i-n y)^{2} d y .
\end{aligned}
$$

For the estimate of $F_{n, k}$ we use (2.10), (2.11), (2.5) and (2.13) and get

$$
\begin{align*}
F_{n, k} & =\int_{0}^{\infty} \psi(y)^{-2} P_{n, k}(y)(k-n y)^{2}\left(\sum_{i=1}^{\infty} P_{n, i}(y)(i-n y)^{2}\right) d y \\
& \leq \int_{0}^{\infty} \psi(y)^{-2} P_{n, k}(y)(k-n y)^{2} n \psi(y) d y \\
& =n \int_{0}^{\infty}(k-n y) d P_{n, k}(y)=n^{2} \int_{0}^{\infty} P_{n, k}(y) d y=\frac{n^{2}}{n-1} . \tag{4.9}
\end{align*}
$$

For the rest of the proof we establish (4.7) via (4.8), (4.9) and estimates of $E_{n, k}(w)$ separately in each of the four extreme cases of weight w.
(I) Let $\gamma_{0}=\gamma_{\infty}=-1$. Here $w(x)=x^{-1}$ and $v_{n, i}\left(w^{-1}\right)=i / n$. From (2.11),
(2.3), (2.4) and (2.13) we get

$$
\begin{aligned}
& E_{n, k}(w)=\int_{0}^{\infty} \frac{P_{n, k}(y)}{\psi^{2}(y)} \sum_{i=1}^{\infty} P_{n, i}(y)\left(\frac{i}{n}\right)^{2} d y \\
& =\int_{0}^{\infty} \frac{P_{n, k}(y)}{\psi^{2}(y)}\left(y^{2}+\frac{\psi(y)}{n}\right) d y=\int_{0}^{\infty} \frac{P_{n, k}(y)}{(1+y)^{2}} d y+\int_{0}^{\infty} \frac{P_{n, k}(y)}{n \psi(y)} d y \\
& \\
& =\frac{n}{(n+k)(n+k+1)}+\frac{1}{k(n+k)} .
\end{aligned}
$$

From the above result and (4.9) we obtain for $k \geq 1$

$$
\begin{aligned}
& \frac{(n+k)^{2}}{n^{2}} E_{n, k}(w) F_{n, k} \\
& \leq T_{n, k}:=\frac{(n+k)^{2}}{n^{2}}\left(\frac{n}{(n+k)(n+k+1)}+\frac{1}{k(n+k)}\right) \frac{n^{2}}{n-1} \\
&=\frac{n+1}{n-1} \frac{k+1}{k} \frac{n+k}{n+k+1} \leq \frac{2(n+1)^{2}}{(n-1)(n+2)} .
\end{aligned}
$$

Applying the above result in (4.8) and using (2.10) we get for $n \geq 4$

$$
S_{n}(-1,-1 ; x) \leq x^{-1} \sum_{k=1}^{\infty} P_{n, k}(x) \frac{k}{n} \sqrt{T_{n, k}} \leq \sqrt{\frac{2(n+1)^{2}}{(n-1)(n+2)}} \leq \sqrt{\frac{25}{9}}=\frac{5}{3},
$$

which proves (4.7) in the case $\gamma_{0}=\gamma_{\infty}=-1$.
(II) Let $\gamma_{0}=0, \gamma_{\infty}=-1$. Here $w(x)=(1+x)^{-1}$ and $v_{n, i}\left(w^{-1}\right)=(n+i) / n$.

From (2.10) and (2.11) we get

$$
\sum_{i=1}^{\infty} P_{n, i}(y)\left(\frac{n+i}{n}\right)^{2}=(1+y)^{2}+\frac{\psi(y)}{n}-\frac{1}{(1+y)^{n}}=\psi(y) \sum_{s=0}^{n+1} \frac{1}{(1+y)^{s}}+\frac{\psi(y)}{n}
$$

Hence

$$
\begin{aligned}
E_{n, k}(w) & =\int_{0}^{\infty} \frac{P_{n, k}(y)}{\psi^{2}(y)} \sum_{i=1}^{\infty} P_{n, i}(y)\left(\frac{n+i}{n}\right)^{2} d y \\
& =\int_{0}^{\infty} \frac{P_{n, k}(y)}{\psi^{2}(y)}\left(\psi(y) \sum_{s=0}^{n+1} \frac{1}{(1+y)^{s}}+\frac{\psi(y)}{n}\right) d y \\
& =\sum_{s=1}^{n+2} \int_{0}^{\infty} \frac{P_{n, k}(y)}{y(1+y)^{s}} d y+\int_{0}^{\infty} \frac{P_{n, k}(y)}{n \psi(y)} d y \\
& =\frac{1}{k} \sum_{s=1}^{n+2} \frac{n(n+1) \ldots(n+s-1)}{(n+k)(n+k+1) \ldots(n+s-1+k)}+\frac{1}{k(n+k)} \\
& \leq \frac{n}{k(n+k)} \sum_{s=1}^{n+2}\left(\frac{2 n+1}{2 n+1+k}\right)^{s-1}+\frac{1}{k(n+k)}
\end{aligned}
$$

$$
\leq \frac{n}{k(n+k)} \frac{2 n+1+k}{k}+\frac{1}{k(n+k)}=\frac{1}{k^{2}}\left(n+1+\frac{n^{2}}{n+k}\right) .
$$

From the above estimate and (4.9) we obtain for $k \geq 1$

$$
\begin{aligned}
& \frac{k^{2}}{n^{2}} E_{n, k}(w) F_{n, k} \\
& \quad \leq T_{n, k}:=\frac{k^{2}}{n^{2}} \frac{1}{k^{2}}\left(n+1+\frac{n^{2}}{n+k}\right) \frac{n^{2}}{n-1}=\frac{1}{n-1}\left(n+1+\frac{n^{2}}{n+k}\right) .
\end{aligned}
$$

Taking into account that for every $n \geq 4$ the quantity $T_{n, k}$ is a decreasing function of k and that $T_{n, 1}$ is a decreasing function of n we get $T_{n, k} \leq T_{4,1}=$ $41 / 15$. Applying the last inequality in (4.8) and using (2.10) we get for $n \geq 4$

$$
S_{n}(0,-1 ; x) \leq(1+x)^{-1} \sum_{k=1}^{\infty} P_{n, k}(x) \frac{k+n}{n} \sqrt{T_{n, k}}<\sqrt{\frac{41}{15}}
$$

which proves (4.7) in the case $\gamma_{0}=0, \gamma_{\infty}=-1$.
(III) Let $\gamma_{0}=-1, \gamma_{\infty}=0$. Here $w(x)=x^{-1}(x+1)$ and $v_{n, i}\left(w^{-1}\right)=$ $i /(n+i+1)$. From (2.3), (2.10) and (2.11) we get

$$
\begin{aligned}
& \sum_{i=1}^{\infty} P_{n, i}(y)\left(\frac{i}{n+i+1}\right)^{2} \\
& \quad=\frac{1}{(1+y)^{2}} \sum_{i=1}^{\infty} \frac{(n+i-1)(n+i-2)}{(n-1)(n-2)} \frac{i^{2}}{(n+i+1)^{2}} P_{n-2, i}(y) \\
& \quad \leq \frac{1}{(1+y)^{2}} \frac{n-2}{n-1} \sum_{i=1}^{\infty} P_{n-2, i}(y) \frac{i^{2}}{(n-2)^{2}}=\frac{1}{(1+y)^{2}} \frac{n-2}{n-1}\left(y^{2}+\frac{\psi(y)}{n-2}\right)
\end{aligned}
$$

From this estimate, (2.3), (2.4) and (2.13) we get

$$
\begin{align*}
E_{n, k}(w) & =\int_{0}^{\infty} \frac{P_{n, k}(y)}{\psi^{2}(y)} \sum_{i=1}^{\infty} P_{n, i}(y)\left(\frac{i}{n+i+1}\right)^{2} d y \\
& \leq \int_{0}^{\infty} \frac{P_{n, k}(y)}{\psi^{2}(y)} \frac{1}{(1+y)^{2}} \frac{n-2}{n-1}\left(y^{2}+\frac{\psi(y)}{n-2}\right) d y \\
& =\frac{n-2}{n-1} \int_{0}^{\infty} \frac{P_{n, k}(y)}{(1+y)^{4}} d y+\int_{0}^{\infty} \frac{P_{n, k}(y)}{(n-1)(1+y)^{2} \psi(y)} d y \\
& =\frac{(n-2) n(n+1)(n+2)}{(n-1)(n+k)(n+k+1)(n+k+2)(n+k+3)} \\
& +\frac{n(n+1)(n+2)}{(n-1) k(n+k)(n+k+1)(n+k+2)} \\
& =\frac{n(n+1)(n+2)(n k-k+n+3)}{(n-1) k(n+k)(n+k+1)(n+k+2)(n+k+3)} \tag{4.10}
\end{align*}
$$

From (2.2) and (2.3) we also get

$$
\begin{equation*}
\frac{(1+x) P_{n, k}(x)}{x} \psi\left(\frac{k}{n}\right)=P_{n, k-1}(x) \frac{(n+k)(n+k-1)}{n^{2}} . \tag{4.11}
\end{equation*}
$$

Having in mind (4.11) we obtain from (4.10) and (4.9) for $k \geq 1$ and $n \geq 4$

$$
\begin{aligned}
& \left(\frac{(n+k)(n+k-1)}{n^{2}}\right)^{2} E_{n, k}(w) F_{n, k} \\
& \leq T_{n, k}:=\frac{(n+k)^{2}(n+k-1)^{2} \cdot n(n+1)(n+2)(n k-k+n+3) \cdot n^{2}}{n^{4} \cdot(n-1) k(n+k)(n+k+1)(n+k+2)(n+k+3) \cdot(n-1)} \\
& \quad=\frac{(n+1)(n+2)(n k-k+n+3)(n+k)(n+k-1)^{2}}{n(n-1)(n k-k)(n+k+1)(n+k+2)(n+k+3)} \leq \frac{5}{2}
\end{aligned}
$$

Applying (4.11) and the above result in (4.8) and using (2.10) we get for $n \geq 4$

$$
S_{n}(-1,0 ; x) \leq \sum_{k=1}^{\infty} P_{n, k-1}(x) \sqrt{T_{n, k}} \leq \sqrt{\frac{5}{2}}
$$

which proves (4.7) in the case $\gamma_{0}=-1, \gamma_{\infty}=0$.
(IV) Let $\gamma_{0}=\gamma_{\infty}=0$. Here $w(x)=1$ and $v_{n, i}\left(w^{-1}\right)=1$. From (2.10), the definition of Baskakov basic functions and (2.13) we get

$$
\begin{align*}
E_{n, k}(w) & =\int_{0}^{\infty} \frac{P_{n, k}(y)}{\psi^{2}(y)} \sum_{i=1}^{\infty} P_{n, i}(y) d y=\int_{0}^{\infty} \frac{P_{n, k}(y)}{\psi^{2}(y)}\left(1-(1+y)^{-n}\right) d y \\
& =\int_{0}^{\infty} \frac{P_{n, k}(y)}{\psi^{2}(y)} y \sum_{r=1}^{n} \frac{1}{(1+y)^{r}} d y \\
& =\sum_{r=1}^{n}\binom{n+k-1}{k}\binom{n+k+r+1}{k-1}^{-1} \int_{0}^{\infty} P_{n+r+3, k-1}(y) d y \\
& =\sum_{r=1}^{n}\binom{n+k-1}{k}\binom{n+k+r+1}{k-1}^{-1} \frac{1}{n+r+2} \\
& =\frac{n(n+1)(n+2)}{k(n+k)(n+k+1)(n+k+2)} Q_{n, k} \tag{4.12}
\end{align*}
$$

where

$$
Q_{n, k}=1+\sum_{r=2}^{n}\left(\prod_{s=2}^{r} \frac{n+s+1}{n+k+s+1}\right) .
$$

A trivial estimate of the above quantity is $Q_{n, k} \leq n$. Another estimate is

$$
\begin{equation*}
Q_{n, k} \leq 1+\frac{n+3}{n+k+3} \sum_{r=2}^{n}\left(\frac{2 n+1}{2 n+1+k}\right)^{r-2} \leq 1+\frac{n+3}{n+k+3} \frac{2 n+1+k}{k} \tag{4.13}
\end{equation*}
$$

From (4.13), (4.9) and (4.12) we get for $k \geq 1$ and $n \geq 4$

$$
\begin{aligned}
& \psi\left(\frac{k}{n}\right)^{2} E_{n, k}(w) F_{n, k} \\
& \quad \leq T_{n, k}:=\frac{k^{2}(n+k)^{2} \cdot n(n+1)(n+2) Q_{n, k} \cdot n^{2}}{n^{4} \cdot k(n+k)(n+k+1)(n+k+2) \cdot(n-1)} \\
& \quad \leq \tilde{T}_{n, k}:=\frac{(n+1)(n+2)(n+k)[(2 n+k+1)(n+3)+k(n+k+3)]}{n(n-1)(n+k+1)(n+k+2)(n+k+3)}
\end{aligned}
$$

For every $n \geq 4$ the quantity $\tilde{T}_{n, k}$ is a decreasing function of k. Hence, $T_{n, k} \leq \tilde{T}_{n, k} \leq \tilde{T}_{n, 1} \leq \tilde{T}_{5,1}=21 / 8$ for $n \geq 5$ and $T_{4, k} \leq \tilde{T}_{4, k} \leq \tilde{T}_{4,3}=133 / 48$. For $n=4$ and $k=1,2$ we can improve the upper bound $\tilde{T}_{n, k}$ if we apply the trivial estimate $Q_{n, k} \leq n$ instead of (4.13). This leads to

$$
T_{n, k} \leq \frac{(n+1)(n+2)(n+k) k}{(n-1)(n+k+1)(n+k+2)}
$$

and, hence, $T_{4,1} \leq 25 / 21$ and $T_{4,2} \leq 15 / 7$. Thus, we obtain $T_{n, k} \leq 133 / 48$ for every $k \geq 1$ and $n \geq 4$.

Applying this estimate in (4.8) and using (2.10) we get for $n \geq 4$

$$
S_{n}(0,0 ; x) \leq \sum_{k=1}^{\infty} P_{n, k}(x) \sqrt{T_{n, k}}<\sqrt{\frac{133}{48}}
$$

which proves (4.7) in the case $\gamma_{0}=\gamma_{\infty}=0$ and completes the proof of the lemma.

Proof of Theorem 1.3. We follow the scheme for proving strong inverse theorems of type A given in [4]. From Lemma 4.1 we get that $f-V_{n}^{k} f \in C(w)$ and $V_{n}^{k} f \in$ $W_{0}^{2}(w \psi)$ for every $k \in \mathbb{N}$. Applying Lemma 4.2 with $g=V_{n}^{4} f$, Theorem 2.5 with $g=V_{n}^{3} f$ and $g=V_{n}^{2} f$ and Lemma 4.3 with $F=\psi D^{2}\left(V_{n}^{2} f\right) \in C_{0}(w)$ we get

$$
\begin{aligned}
\| w\left(V_{n}^{5} f-V_{n}^{4} f\right. & \left.-\frac{1}{n} \psi D^{2}\left(\frac{V_{n}^{4} f+V_{n}^{5} f}{2}\right)\right)\left\|\leq \frac{1}{4 n^{2}}\right\| w \psi D^{2}\left(\psi D^{2}\left(V_{n}^{4} f\right)\right) \| \\
& =\frac{1}{4 n^{2}}\left\|w \psi D^{2}\left(V_{n}^{2}\left(\psi D^{2}\left(V_{n}^{2} f\right)\right)\right)\right\| \leq \frac{5}{12 n}\left\|w \psi D^{2}\left(V_{n}^{2} f\right)\right\| .
\end{aligned}
$$

Using the last inequality, Lemma 4.3 with $F=f-V_{n}^{3} f \in C_{0}(w)$ and with
$F=f-V_{n}^{2} f \in C_{0}(w)$ and Lemma 2.7 we get

$$
\begin{aligned}
& \left\|w\left(V_{n}^{5} f-V_{n}^{4} f-\frac{1}{n} \psi D^{2}\left(\frac{V_{n}^{4} f+V_{n}^{5} f}{2}\right)\right)\right\| \\
& \leq \frac{5}{12 n}\left\|w \psi D^{2} V_{n}^{2}\left(f-\frac{V_{n}^{2} f+V_{n}^{3} f}{2}\right)\right\|+\frac{5}{12 n}\left\|w \psi D^{2}\left(\frac{V_{n}^{4} f+V_{n}^{5} f}{2}\right)\right\| \\
& \leq \frac{5}{24 n}\left\|w \psi D^{2}\left(V_{n}^{2}\left(f-V_{n}^{2} f\right)\right)\right\|+\frac{5}{24 n}\left\|w \psi D^{2}\left(V_{n}^{2}\left(f-V_{n}^{3} f\right)\right)\right\| \\
& +\frac{5}{12 n}\left\|w \psi D^{2}\left(\frac{V_{n}^{4} f+V_{n}^{5} f}{2}\right)\right\| \\
& \leq \frac{25}{72}\left(\left\|w\left(V_{n}^{2} f-f\right)\right\|+\left\|w\left(V_{n}^{3} f-f\right)\right\|\right)+\frac{5}{12 n}\left\|w \psi D^{2}\left(\frac{V_{n}^{5} f+V_{n}^{4} f}{2}\right)\right\| \\
& \leq \frac{125}{72}\left\|w\left(V_{n} f-f\right)\right\|+\frac{5}{12 n}\left\|w \psi D^{2}\left(\frac{V_{n}^{4} f+V_{n}^{5} f}{2}\right)\right\| .
\end{aligned}
$$

From the above inequality and Lemma 2.7 we have

$$
\begin{aligned}
& \frac{1}{n}\left\|w \psi D^{2}\left(\frac{V_{n}^{4} f+V_{n}^{5} f}{2}\right)\right\| \\
& \leq\left\|w\left(V_{n}^{5} f-V_{n}^{4} f-\frac{1}{n} \psi D^{2}\left(\frac{V_{n}^{4} f+V_{n}^{5} f}{2}\right)\right)\right\|+\left\|w\left(V_{n}^{5} f-V_{n}^{4} f\right)\right\| \\
& \leq \frac{197}{72}\left\|w\left(V_{n} f-f\right)\right\|+\frac{5}{12 n}\left\|w \psi D^{2}\left(\frac{V_{n}^{4} f+V_{n}^{5} f}{2}\right)\right\|
\end{aligned}
$$

which can be rewritten as

$$
\begin{equation*}
\frac{1}{2 n}\left\|w \psi D^{2}\left(\frac{V_{n}^{4} f+V_{n}^{5} f}{2}\right)\right\| \leq \frac{197}{84}\left\|w\left(V_{n} f-f\right)\right\| \tag{4.14}
\end{equation*}
$$

Finally from the definition of K-functional, Lemma 2.7 and (4.14) we obtain

$$
\begin{aligned}
K_{w}\left(f, \frac{1}{2 n}\right) & =\inf \left\{\|w(f-g)\|+\frac{1}{2 n}\left\|w \psi D^{2} g\right\|: g \in W^{2}(w \psi)\right\} \\
& \leq\left\|w\left(f-\frac{V_{n}^{4} f+V_{n}^{5} f}{2}\right)\right\|+\frac{1}{2 n}\left\|w \psi D^{2}\left(\frac{V_{n}^{5} f+V_{n}^{4} f}{2}\right)\right\| \\
& \leq\left(\frac{9}{2}+\frac{197}{84}\right)\left\|w\left(f-V_{n} f\right)\right\|=\frac{575}{84}\left\|w\left(f-V_{n} f\right)\right\| .
\end{aligned}
$$

Theorem 1.3 is proved.

References

[1] P.N. Agrawal and K. J. Thamer, Approximation of unbounded functions by a new sequence of linear positive operators. J. Math. Anal. Appl. 225 (1998), 600-672.
[2] V.A. Baskakov, An examle of a sequence of the linear positive operators in the space of continuous functions. Dokl. Akad. Nauk SSSR, 113 (1957), 249-251.
[3] M. M. Derriennic, Sur l'approximation de functions integrable sur [0,1] par des polynomes de Bernstein modifies. J.Approx.Theory, 31 (1981) 325343.
[4] Z. Ditzian and K. G. Ivanov, Strong Convers Inequalities. J. d‘Analyse Mathematique 61 (1991), 61-111.
[5] J. L. Durrmeyer, Une formule d'inversion de la transformée de Laplace: Applications à la théorie des moments. Thèse de 3e cycle. Faculté des Sciences de l'Université de Paris, 1967.
[6] Z. Finta, On converse approximation theorems. J. Math. Anal. Appl. 312 (2005), 159-180.
[7] Z. Finta, Direct Approximation Theorems for Discrete Type Operators. Journal of Inequalities in Pure and Applied Mathematics. 7, 5 (2006) art. 125, 1-21.
[8] T. N. T. Goodman and A. Sharma, A Modified Bernstein-Shoenberg Operator. Proc. of Conference on Constructive Theory of Functions, Varna'87, Publ. House of Bulg. Acad. of Sci., Sofia, (1987), 166-173.
[9] V. Gupta and P. N. Agrawal, Rate of convergence for certain Baskakov Durrmeyer type operators. Analele Universităţii Oradea, Fasc. Matematica, Tom XIV (2007), 33-39.
[10] V. Gupta, M. A. Noor, M. S. Beniwal and M. K. Gupta, On simultaneous approximation for certain Baskakov Durrmeyer type operators. Journal of Inequalities in Pure and Applied Mathematics 7, 4 (2006) art. 125, 1-33.
[11] A. Lupas, Some properties of the linear positive operators(I). Mathematica (Cluj) 9 (1967), 77-83.
[12] K. G Ivanov and P. E. Parvanov, Weighted Approximation by the Goodman-Sharma Operators. East Journal on Approximations, 15, 4 (2009), 473-486.
[13] P. E. Parvanov and B. D. Popov, The Limit Case of Bernstein's Operators with Jacobi-weights. Mathematica Balcanica (new series), 8, Fask.2-3 (1994), 165-177.
[14] A. Sahai and G. Prasad, On simultaneous approximation by modified Lupas operators. J. Approx. Theory, 45 (1985) 122-128.

Kamen G. Ivanov
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
8 Acad. G. Bonchev St.
1113 Sofia, BULGARIA
E-mail: kamen@math.bas.bg
Parvan E. Parvanov
Department of Mathematics and Informatics
University of Sofia
5 James Bourchier Blvd.
1164 Sofia, BULGARIA
E-mail: pparvan@fmi.uni-sofia.bg

[^0]: *Partially supported by grant No.179/2010 of the National Science Fund of the Sofia University

