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Abstract

The uniform weighted approximation errors of Baskakov-type oper-

ators are characterized for weights of the form

(
x

1 + x

)γ0

(1 + x)γ∞ for

γ0, γ∞ ∈ [−1, 0]. Direct and strong converse theorems are proved in terms
of the weighted K-functional.
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1 Introduction

Baskakov [2] introduced the linear positive operators

Bnf(x) =

∞∑
k=0

Pn,k(x)f

(
k

n

)
for approximation of bounded and continuous on [0, ∞) functions f , where

Pn,k(x) =

(
n+ k − 1

k

)
xk(1 + x)−n−k, k ∈ N0 = N + {0}, denote the Baskakov

basic functions. Following the Durrmeyer modification [5, 3] of Bernstein poly-
nomials, Sahai and Prasad [14] modified the operators Bn for integrable on
[0,∞) function f as follows

B̃nf(x) =

∞∑
k=0

Pn,k(x)(n− 1)

∫ ∞
0

Pn,k(y)f(y)dy.

Another modification was introduced by Agrawal and Thamer [1]

B̄nf(x) = Pn,0(x)f(0) +

∞∑
k=1

Pn,k(x)(n− 1)

∫ ∞
0

Pn,k−1(y)f(y)dy.

∗Partially supported by grant No.179/2010 of the National Science Fund of the Sofia Uni-
versity
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Although similar to the Goodman and Sharma [8] modification of Bernstein
polynomials, operators B̄n lack some of its nice features. Both B̃n and B̄n do
not preserve all linear functions and do not commute with the weighted second
derivative operator.

The Baskakov-type operators discussed in this paper are given for natural n
by

Vnf(x) =

∞∑
k=0

Pn,k(x)vn,k(f)

vn,0(f) = f(0); vn,k(f) = (n+ 1)

∫ ∞
0

Pn+2,k−1(y)f(y) dy, k ∈ N,

(1.1)

where f is Lebesgue measurable on (0,∞) with a finite limit f(0) at 0. As far as
we know the operators Vn were introduced in 2005 by Finta [6]. He established
a strong converse theorem of type B (in the terminology of [4]) for Vn. The
study of operators (1.1) is continued in [7, 9, 10]. In the present article we
show that operators Vn are related to Baskakov operators in the same way as
Goodman–Sharma operators are related to Bernstein polynomials.

We start with some notations. The first derivative operator is denoted by
D = d

dx . Thus, Dg(x) = g′(x) and D2g(x) = g′′(x). By ψ(x) = x(1 + x) we
denote the weight which is naturally connected with the second derivatives of
the Baskakov-type operators (1.1). Our main goal in this paper is the character-
ization of the uniform weighted approximation error ‖w(f −Vnf)‖ of operators
(1.1) for weight functions given by

w(x) = w(γ0, γ∞;x) =

(
x

1 + x

)γ0
(1 + x)γ∞ (1.2)

for x ∈ [0,∞) and real γ0, γ∞. The result of Theorem 1.1 below is valid for
values of the powers γ0, γ∞ in the range [−1, 0], while some other statements
are formulated for arbitrary γ∞ ≤ 0.

Let us emphasize that, given the sequence of operators Vn, we investigate
which is the variety of weights w(γ0, γ∞) allowing a characterization of the
approximation error ‖w(f − Vnf)‖. On the other hand, for a given weight w
we are not interested in modifying Baskakov operators to some Ṽn in order to
ensure convergence of ‖w(f − Ṽnf)‖ to 0.

By C[0,∞) we denote the space of all continuous on [0,∞) functions. The
functions from C[0,∞) are not expected to be bounded or uniformly continuous.
By L∞[0,∞) we denote the space of all Lebesgue measurable and essentially
bounded in [0,∞) functions equipped with the uniform norm ‖ · ‖. For a weight
function w we set C(w) = {f ∈ C[0,∞) : wf ∈ L∞[0,∞)} and

W 2(wψ) =
{
g, g′ ∈ ACloc(0,∞) : wψD2g ∈ L∞[0,∞)

}
,

where ACloc(0,∞) consists of the functions which are absolutely continuous
in [a, b] for every [a, b] ⊂ (0,∞). As Lemma 2.3 shows every function from
W 2(w(0, γ∞)ψ) can be defined at 0 in a way to be continuous.
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Set C0(w) = {f ∈ C(w) : f(0) = 0}. Similarly, by W 2
0 (wψ) we denote the

subspace of W 2(wψ) of functions g satisfying the additional boundary condition

lim
x→0+0

ψ(x)D2g(x) = 0. (1.3)

Note that the boundary conditions for both C0(w) and W 2
0 (wψ) do not depend

on the weight w. These conditions are essential when the weight w does not go
to ∞ at 0, while for γ0 < 0 we have C0(w) = C(w) and W 2

0 (wψ) = W 2(wψ).
The weighted approximation error of Vn will be compared with the K-

functional between the weighted spaces C(w) and W 2(wψ), which for every

f ∈ C(w) +W 2(wψ) = {f1 + f2 : f1 ∈ C(w), f2 ∈W 2(wψ)}

and t > 0 is defined by

Kw(f, t) = inf
{
‖w(f − g)‖+ t‖wψD2g‖ : g ∈W 2(wψ), f − g ∈ C(w)

}
. (1.4)

The above formula is a standard definition of K-functional in interpolation
theory. In approximation theory the condition f − g ∈ C(w) in (1.4) is usually
omitted because in the predominant number of cases the second interpolation
space is embedded in the first one. However, the study of Baskakov-type opera-
tors (1.1) involves interpolation between C(w) and W 2(wψ), as W 2(wψ)\C(w)
is of infinite dimension for some of the weights w that satisfies the assumptions
of Theorem 1.1, i.e. w(x) = w(γ0, γ∞) with γ0, γ∞ ∈ [−1, 0].

If −1 < γ∞ < 0 and γ0 ∈ [−1, 0] then C(w)+W 2(wψ) = C(w)+π1, where π1
is the set of all algebraical polynomials of degree 1. Note that π1 is the null space
of the operator D2. But for γ∞ = 0 or for γ∞ = −1 the space C(w)+W 2(wψ) is
essentially bigger than C(w) +π1. Thus, if f(x) = x/e for x ∈ [0, e] and f(x) =
log x for x ∈ [e,∞), then f ∈ (C(w) + W 2(wψ))\(C(w) + π1) for γ∞ = 0 and
γ0 ∈ [−1, 0]. Also, if f(x) = x2/e for x ∈ [0, e] and f(x) = x log x for x ∈ [e,∞),
then f ∈ (C(w) + W 2(wψ))\(C(w) + π1) for γ∞ = −1 and γ0 ∈ [−1, 0]. The
non-emptiness of (C(w) +W 2(wψ))\(C(w) + π1) is determined by the increase
of ψ(x) as x2 at infinity. In this respect operators (1.1) behave differently
than Goodman–Sharma operators (see [12]), where always C(w) + W 2(wψ) =
C(w) + π1 (with proper weights for the finite interval).

Before stating our main results we sketch some properties of operators Vn.
They preserve the linear functions, which is an advantage when compared with
B̃n or B̄n. In the present paper we establish several new properties of Vn,
which are analogous with those of Goodman–Sharma operators. For example,
Theorem 2.6 shows that Vn and Vm commutes for all indexes n and m, in
Theorem 2.5 we prove that Vn commutes with ψD2 and Lemma 2.2 shows that
D2Vnf depends only on the difference Vnf − Vn+1f . The last two properties
essentially simplify the proof of Theorem 1.3.

Our main result is the following theorem, consisting of a direct inequality
(1.6) and a strong converse inequality (1.7) of type A in the terminology of [4].
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Theorem 1.1. Let w = w(γ0, γ1) be given by (1.2) with γ0, γ1 ∈ [−1, 0]. Then
for every f ∈ C(w) +W 2(wψ) and every n ∈ N, n ≥ 4, we have

‖w(f − Vnf)‖ ≤ 2Kw

(
f,

1

2n

)
≤ 13.7‖w(f − Vnf)‖. (1.5)

Taking into account that w(γ0, γ1)−1 is concave if and only if γ0, γ1 ∈ [−1, 0]
we see that the first inequality in (1.5) is contained in the following direct
theorem.

Theorem 1.2. Let w−1 be concave. Then for every f ∈ C(w) + W 2(wψ) and
for every n ∈ N we have

‖w(Vnf − f)‖ ≤ 2Kw

(
f,

1

2n

)
. (1.6)

The second inequality in (1.5) is a consequence of the following strong inverse
theorem of type A.

Theorem 1.3. Let w = w(γ0, γ1) be given by (1.2) with γ0, γ∞ ∈ [−1, 0]. Then
for every f ∈ C(w) +W 2(wψ) and for every n ∈ N, n ≥ 4, we have

Kw

(
f,

1

2n

)
≤ 575

84
‖w(f − Vnf)‖. (1.7)

Theorem 1.2 extends or improves several results from [7, 9, 10]. Theorem 1.3
improves the result in [6] in the following directions: (i) (1.7) is a stronger
inequality with only one term in the right-hand side; (ii) the inverse theorem
holds for wide range of weights w(γ0, γ1) instead of only for w = 1; (iii) the
statement holds for f ∈ C(w) + W 2(wψ) instead of for f ∈ C(w); (iv) (1.7)
comes with the explicit small constant 575/84 in the right-hand side.

As seen from Theorem 1.1 operators (1.1) are saturated with saturation
order n−1 and W 2(wψ) is contained in the saturation class (both classes actually
coincide). But Theorem 1.1 does not imply for all f ∈ C(w) + W 2(wψ) that
‖w(f−Vnf)‖ → 0 or Kw

(
f, (2n)−1

)
→ 0 when n→∞. In fact, both quantities

in (1.5) do not tend to zero with n→∞ for some functions in C(w). In order to
ensure convergence to zero of these quantities one may need to impose additional
restrictions on the behavior of f at 0 and at ∞. At 0 these restrictions are the
same as for the Goodman–Sharma operators, namely, limx→0+ x

γ0f(x) = 0 for
−1 < γ0 < 0 or the existence of limx→0+ x

−1f(x) for γ0 = −1. In the same
time, at∞ function f should not vary very fast in order to allow approximation
in C(w) with functions from W 2(wψ).

Although Theorems 1.1, 1.2 and 1.3 are stated for integer n they also hold
true if n is assumed to be a continuous positive parameter. In this case

Pn,k(x) =
Γ(n+ k)

k!Γ(n)
xk(1 + x)−n−k,
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where Γ stands for the Gamma function. Vn is defined again by (1.1). We shall
use the above definition of Pn,k only in the proof of Lemma 2.1, while for the
remaining part of the paper the index of Vn will be assumed integer.

The paper is organized as follows. Some auxiliary results about operators Vn
are proved in Section 2. Theorem 1.2 is proved in Section 3, while Theorem 1.3
is proved in Section 4.

2 Auxiliary results

We first observe that the operators Vn given by (1.1) are well defined for big
n’s on functions f with a polynomial growth at infinity. More precisely, if
w(0, γ∞)f ∈ L∞[0,∞) for some (negative) γ∞, then Vnf is defined for every
natural n > −γ∞ − 1. The boundedness of Vn in this case is given in

Lemma 2.1. Let γ∞ ≤ 0 and n ∈ N, n > −γ∞ − 1. If f ∈ C(w) with
w = w(0, γ∞), then ‖wVnf‖ ≤ c‖wf‖ with c depending only on γ∞.

Proof. From (1.1) for k ∈ N we get (γ = γ∞)

vn,k(w(0,−γ)) =
Γ(n+ γ + 1)Γ(n+ k + 1)

Γ(n+ 1)Γ(n+ γ + 1 + k)
. (2.1)

Representation (2.1) is trivially true for k = 0 too. For every α ∈ R we have
Γ(y + α)/Γ(y) = O(yα) for y →∞, which implies the existence of a constant c
depending only on γ such that

Γ(n− γ)Γ(n+ k)

Γ(n)Γ(n+ k − γ)

Γ(n+ γ + 1)Γ(n+ k + 1)

Γ(n+ 1)Γ(n+ γ + 1 + k)
≤ c

for every k ∈ N0, n ∈ N, n > −γ − 1. Now from (1.1), (2.1) and the above
inequality we get

|w(x)Vnf(x)| ≤ w(x)

∞∑
k=0

Pn,k(x)vn,k(w(0,−γ))‖w(0, γ)f‖

=

∞∑
k=0

Pn−γ,k(x)
Γ(n− γ)Γ(n+ k)

Γ(n)Γ(n+ k − γ)

Γ(n+ γ + 1)Γ(n+ k + 1)

Γ(n+ 1)Γ(n+ γ + 1 + k)
‖wf‖ ≤ c‖wf‖,

which proves the lemma.

Throughout the article we shall employ the convention Pm,j(x) ≡ 0 for
j = −1,−2, . . . . Next, we give some identities involving the Baskakov basic
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functions, which follows by their definition. For j ∈ N0, n ∈ N we have

mxPm+1,j−1(x) = jPm,j(x), (2.2)

m(1 + x)Pm+1,j(x) = (m+ j)Pm,j(x), (2.3)

m(m+ 1)ψ(x)Pm+2,j(x) = (j + 1)(m+ j + 1)Pm,j+1(x), (2.4)

DPm,j(x) =
j −mx
ψ(x)

Pm,j(x), (2.5)

D2Pm,j(x) =

[(
j −mx
ψ(x)

)2

− mψ(x) + (j −mx)(1 + 2x)

ψ2(x)

]
Pm,j(x), (2.6)

DPm,j(x) = m[Pm+1,j−1(x)− Pm+1,j(x)], (2.7)

D2Pm,j(x) = m(m+ 1)[Pm+2,j−2(x)− 2Pm+2,j−1(x) + Pm+2,j(x)]. (2.8)

Next, we collect from [2] and [11] some basic results for the original Baskakov
operators. With the notation ej(x) = xj , j = 0, 1, 2 we have

Bn is a linear, positive operator; (2.9)

Bne0(x) = e0(x), Bne1(x) = e1(x); (2.10)

Bne2(x) = e2(x) +
1

n
ψ(x); (2.11)

‖Bnf‖ ≤ ‖f‖ for f ∈ C(1); (2.12)

Using (1.1), (2.10), (2.11), (2.12) and the basic normalization equality

(n− 1)

∫ ∞
0

Pn,k(t) dt = 1 for k, n ∈ N, n ≥ 2, (2.13)

we get the following basic properties of the operators Vn:

Vn is a linear, positive operator; (2.14)

Vne0(x) = e0(x), Vne1(x) = e1(x); (2.15)

Vne2(x) = e2(x) +
2

n− 1
ψ(x), n ≥ 2; (2.16)

‖Vnf‖ ≤ ‖f‖ for f ∈ C(1). (2.17)

Using (2.14) and (2.15) we obtain

Vnf ≤ f for every concave function f. (2.18)

One important property of the sequence Vn is

Lemma 2.2. If f ∈ C(w(0, γ∞)) and n ∈ N, n > −γ∞ − 1, then

Vnf(x)− Vn+1f(x) =
1

n(n+ 1)
ψ(x)D2(Vnf)(x).
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Proof. We write Vnf(x) = Anf(x) + Snf(x), where

Anf(x) = Pn,0(x)f(0), Snf(x) =

∞∑
k=1

Pn,k(x)vn,k(f).

From the identities (2.2), (2.3) we get

(n+ 1)vn+1,k(f) = (n+ k + 1)vn,k(f)− kvn,k+1(f). (2.19)

Now from (2.19) and (2.2) we obtain

Sn+1f(x) =

∞∑
k=1

Pn+1,k(x)

(
n+ k + 1

n+ 1
vn,k(f)− k

n+ 1
vn,k+1(f)

)

=

∞∑
k=1

Pn+1,k(x)
n+ k + 1

n+ 1
vn,k(f)−

∞∑
k=2

Pn+1,k−1(x)
k − 1

n+ 1
vn,k(f)

=

∞∑
k=1

Pn,k(x)vn,k(f)

(
(n+ k)(n+ k + 1)

n(n+ 1)

1

1 + x
− k(k − 1)

n(n+ 1)

1

x

)
.

Using the above representation and (2.5), (2.6) we obtain

Snf(x)− Sn+1f(x)

=

∞∑
k=1

Pn,k(x)vn,k(f)
n(n+ 1)ψ(x) + k(k − 1)(1 + x)− (n+ k)(n+ k + 1)x

n(n+ 1)ψ(x)

=
ψ(x)

n(n+ 1)

∞∑
k=1

Pn,k(x)vn,k(f)

[(
k − nx
ψ(x)

)2

− nψ(x) + (k − nx)(1 + 2x)

ψ2(x)

]

=
ψ(x)

n(n+ 1)

∞∑
k=1

D2Pn,k(x)vn,k(f) =
ψ(x)

n(n+ 1)
D2(Snf)(x). (2.20)

For the other part of the difference Vnf(x)− Vn+1f(x) we have

Anf(x)−An+1f(x)

=
(
(1 + x)−n − (1 + x)−n−1

)
f(0) =

ψ(x)

n(n+ 1)
D2(Anf)(x). (2.21)

Finally, (2.20) and (2.21) prove the lemma.

The following lemma contains some boundary properties of the functions in
W 2(w(0, γ∞)ψ).

Lemma 2.3. If g ∈W 2(w(0, γ∞)ψ) and n ∈ N, n > −γ∞ − 1, then

lim
x→0

xDg(x) = 0, lim
x→∞

(1 +x)−nDg(x) = 0, lim
x→∞

(1 +x)−n−1g(x) = 0. (2.22)

Moreover, g has a finite limit at 0.
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Proof. The first limit follows from g′(x) = g′(1) +
∫ x
1
g′′(t) dt when the integral

is evaluated by | log x|‖w(0, γ∞)ψg′′‖ for 0 < x ≤ 1. For the second limit we
use the same formula with the bound

∫ x
1
t−1(1 + t)−γ∞−1 dt‖w(0, γ∞)ψg′′‖ for

x ≥ 1. Similarly, we obtain the last limit in (2.22) using

g(x) = g(1) + g′(1)(x− 1) +

∫ x

1

(x− t)g′′(t) dt. (2.23)

Representation (2.23) also gives g(0 + 0) = g(1) − g′(1) +
∫ 1

0
tg′′(t) dt, which

completes the proof.

Now, we apply Lemma 2.3 in the proof of

Lemma 2.4. If g ∈W 2(w(0, γ∞)ψ) and n ∈ N, n > −γ∞ − 1, then

ψ(x)D2(Vng)(x) =

∞∑
k=1

vn,k(ψD2g)Pn,k(x).

Proof. Using (2.7) we get for the first derivative of Vng the representation

D(Vng)(x) = n

∞∑
k=1

vn,k(g)Pn+1,k−1(x)− n
∞∑
k=0

vn,k(g)Pn+1,k(x)

= n

∞∑
k=0

[vn,k+1(g)− vn,k(g)]Pn+1,k(x)

From the above representation we obtain for the second derivative

D2(Vng)(x) = n(n+ 1)

∞∑
k=0

[vn,k+2(g)− 2vn,k+1(g) + vn,k(g)]Pn+2,k(x). (2.24)

Now from (2.4) and (2.24) we get

ψ(x)D2(Vng)(x)

=

∞∑
k=0

[vn,k+2(g)− 2vn,k+1(g) + vn,k(g)](k + 1)(n+ k + 1)Pn,k+1(x)

=

∞∑
k=1

[vn,k+1(g)− 2vn,k(g) + vn,k−1(g)]k(n+ k)Pn,k(x). (2.25)

For the evaluation of vn,k(ψD2g) we first apply (2.4) followed by twice dif-
ferentiation by part together with Lemma 2.3 and finally we use (2.8) to get for
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every k ∈ N

vn,k(ψD2g)

=

∫ ∞
0

(n+ 1)Pn+2,k−1(t)ψ(t)D2g(t)dt =
k(n+ k)

n

∫ ∞
0

Pn,k(t)D2g(t)dt

= −k(n+ k)

n

∫ ∞
0

DPn,k(t)Dg(t)dt =
k(n+ k)

n

∫ ∞
0

D2Pn,k(t)g(t)dt

= k(n+ k)(n+ 1)

∫ ∞
0

[Pn+2,k−2(t)− 2Pn+2,k−1(t) + Pn+2,k(t)] g(t)dt

= k(n+ k) [vn,k−1(g)− 2vn,k(g) + vn,k+1(g)] . (2.26)

The above proof of (2.26) is valid for k ≥ 2. The final formula is also correct for
k = 1 but one has to take into account the additional term with vn,0(g) = g(0)
produced by the second integration by parts.

Finally, (2.25) and (2.26) prove the lemma.

From Lemma 2.4 and boundary condition (1.3) we immediately get

Theorem 2.5. If g ∈W 2
0 (w(0, γ∞)ψ) and n ∈ N, n > −γ∞ − 1, then

ψ(x)D2(Vng)(x) = Vn(ψD2g)(x), x ∈ [0,∞),

i.e. Vn commutes with the operator ψD2 on W 2
0 (w(0, γ∞)ψ).

From Lemma 2.2 and Theorem 2.5 we get

Theorem 2.6. If f ∈ C(w(0, γ∞)) and m,n ∈ N, m,n > −γ∞ − 1, then
VnVmf = VmVnf , i.e. Vm and Vn commute on C(w(0, γ∞)).

Proof. From Lemma 2.2 and Lemma 2.1 we observe that Vjf ∈W 2
0 (w(0, γ∞)ψ),

j > −γ∞ − 1, whenever f ∈ C(w(0, γ∞)), i.e. we can apply Theorem 2.5 with
g = Vjf . Set λj = (j(j + 1))−1. Without loss of generality we assume that
m = n+ k, k ∈ N.

We prove the theorem by induction on k. For k = 1 using Lemma 2.2, (2.14)
and Theorem 2.5 we get

V 2
n f − VnVn+1f = Vn(Vnf − Vn+1f) = Vn(λnψD

2(Vnf))

= λnVn(ψD2(Vnf)) = λnψD
2(V 2

n f) = (Vn − Vn+1)Vnf = V 2
n f − Vn+1Vnf,

which gives VnVn+1f = Vn+1Vnf .
Assume VnVn+jf = Vn+jVnf for j = 1, 2, . . . , k. Then using the inductive
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assumption, Lemma 2.2, (2.14) and Theorem 2.5 we get

V 2
n f − VnVn+k+1f = Vn

k∑
j=0

(Vn+jf − Vn+j+1f) = Vn

k∑
j=0

λn+jψD
2(Vn+jf)

=

k∑
j=0

λn+jψD
2(VnVn+jf) =

k∑
j=0

λn+jψD
2(Vn+jVnf)

=

k∑
j=0

(Vn+j − Vn+j+1)Vnf = V 2
n f − Vn+k+1Vnf

and, hence, VnVn+k+1f = Vn+k+1Vnf .This completes the proof.

We finalize the section by proving the operators Vn and ψD2Vn have norm
1 in appropriate weighted norm spaces. The first lemma improves the constant
c in Lemma 2.1 with a very simple proof but for different class of admissible
weights.

Lemma 2.7. Let w−1 be concave. Then for every f ∈ C(w) and n ∈ N we
have ‖wVnf‖ ≤ ‖wf‖, i.e. Vn has norm 1 as an operator from C(w) to C(w).

Proof. From (2.14) and w ≥ 0 we get

|Vnf(x)| = |Vn((wf)w−1)(x)| ≤ Vn(‖wf‖w−1)(x) = ‖wf‖Vn(w−1)(x).

From the concavity of w−1 and (2.18) we get Vn
(
w−1

)
≤ w−1, which proves

the lemma.

Lemma 2.8. Let w−1 be concave. Then for every g ∈ W 2(wψ) and n ∈ N we
have

‖wψD2(Vng)‖ ≤ ‖wψD2g‖.

Proof. From the concavity of w−1 we get w ≥ cw(0,−1) for some positive
constant c and hence g ∈ W 2(w(0,−1)ψ). Applying the representation from
Lemma 2.4 and the inequality Vn

(
w−1

)
≤ w−1 for the concave function w−1 as

in Lemma 2.7 we obtain

|w(x)ψ(x)D2(Vng)(x)|

= w(x)

∞∑
k=1

Pn,k(x)

∫ ∞
0

(n+ 1)Pn+2,k−1(y)ψ(y)D2g(y) dy

≤ ‖wψD2g‖ w(x)

∞∑
k=1

Pn,k(x)

∫ ∞
0

(n+ 1)Pn+2,k−1(y)w−1(y) dy

≤ ‖wψD2g‖ w(x)Vn
(
w−1)(x

)
≤ ‖wψD2g‖,

which proves the lemma.

Note that Lemma 2.8 immediately follows from Theorem 2.5 and Lemma
2.7 if we assume g ∈W 2

0 (wψ).
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3 Proof of the direct theorem

In the proof of the direct theorem we use the following two lemmas.

Lemma 3.1. For every g ∈ C(w(0,−2)) and x ∈ [0,∞) we have

lim
n→∞

Vng(x) = g(x).

Proof. For x = 0 we have Vng(0) = g(0) for every n ∈ N.
Now, fix x > 0 and ε > 0. We choose δ = δ(x, ε), δ < 1, so that |g(x)−g(t)| ≤

ε/2 for |x−t| ≤ δ. Taking into account that w(0,−2)(t)−1 ≤ (x+2)2(x−t)2δ−2
for every t ≥ 0, |x− t| ≥ δ we get

|g(x)− g(t)| ≤ Q(t) := M(x− t)2 + ε/2 ∀ t ∈ [0,∞)

with M = 2(x + 2)2δ−2‖wg‖. Using the above inequality, (2.14), (2.15) and
(2.16) we get

|g(x)− Vng(x)| = |Vn(g(x)− g, x)| ≤ Vn(Q, x) ≤M 2

n− 1
ψ(x) + ε/2 ≤ ε

for every n ≥ 4Mψ(x)ε−1 + 1. This proves the lemma.

Lemma 3.1 represents a standard point-wise convergence statement for pos-
itive linear operators. As shown in [10, Theorem 3.1], the lemma is true for
every g with no faster than power growth at infinity, i.e. g ∈ C(w(0, γ∞)) for
some negative γ∞, but the proof of this property requires the verification of the
point-wise convergence of Vn on all polynomials (not only on the quadratic ones
as provided by (2.15) and (2.16)).

The next lemma is a weighted Jackson-type inequality for the operators Vn.

Lemma 3.2. Let w−1 be concave. If g ∈W 2(wψ) then g ∈ C(w(0,−1− ε)) for
every ε > 0 and

‖w(Vng − g)‖ ≤ 1

n
‖wψD2g‖, n ∈ N.

Proof. From the concavity of w−1 we get g ∈ W 2(w(0,−1)ψ). Now, in view
of (2.23) we see that g(x) grows at infinity no faster than x log x. Hence g ∈
C(w(0,−1−ε)) for every positive ε and Lemma 3.1 gives limn→∞ Vng(x) = g(x)
for every x ∈ [0,∞). Then from Lemma 2.2 with γ∞ = −1− ε we have

Vng(x)− g(x) =

∞∑
k=n

(Vkg(x)− Vk+1g(x)) =

∞∑
k=n

ψ(x)D2Vkg(x)

k(k + 1)
. (3.1)

From (3.1) and Lemma 2.8 we get

‖w(Vng − g)‖ =

∥∥∥∥∥w
∞∑
k=n

ψD2Vkg

k(k + 1)

∥∥∥∥∥
≤
∞∑
k=n

‖wψD2Vkg‖
k(k + 1)

≤
∞∑
k=n

1

k(k + 1)
‖wψD2g‖ =

1

n
‖wψD2g‖.

11



Proof of Theorem 1.2. Let g be an arbitrary function from W 2(wψ) such that
g − f ∈ C(w). Then

‖w(Vnf − f)‖ ≤ ‖w(Vnf − Vng)‖+ ‖w(Vng − g)‖+ ‖w(g − f)‖.

From Lemma 2.7 and Lemma 3.2 we get

‖w(Vnf − f)‖ ≤ 2‖w(f − g)‖+
1

n
‖wψD2g‖ = 2

(
‖w(f − g)‖+

1

2n
‖wψD2g‖

)
.

Taking an infimum on g ∈ W 2(wψ) in the above inequality we prove the theo-
rem.

4 Proof of the inverse theorem

We start with a lemma showing that for every f ∈ C(w) +W 2(wψ) the images
Vnf , n ∈ N, can be tested for (almost-)realization of the K-functional (1.4).

Lemma 4.1. Let w−1 be concave. If f ∈ C(w)+W 2(wψ) then for every n ∈ N
we have f − Vnf ∈ C(w) and Vnf ∈W 2

0 (wψ).

Proof. Let f = f1 + f2 with f1 ∈ C(w) and f2 ∈ W 2(wψ). In view of Lemma
3.2 with ε = 1/2 we have f2 ∈ C(w(0, 3/2)) and hence Vnf = Vnf1 + Vnf2 for
every n ∈ N.

Lemma 2.7 implies Vnf1 ∈ C(w) and Lemma 3.2 gives f2 − Vnf2 ∈ C(w).
Hence f − Vnf ∈ C(w).

From Lemma 2.2 and Lemma 2.7 we obtain Vnf1 ∈ W 2
0 (wψ), Lemma 2.4

shows that Vnf2 satisfies (1.3) on the place of g and Lemma 2.8 implies Vnf2 ∈
W 2(wψ). Therefore Vnf ∈W 2

0 (wψ) and the lemma is proved.

The following two lemmas are crucial in the proof of the inverse theorem.
The first one is a strong Voronovskaya-type estimate.

Lemma 4.2. Let w−1 be concave. Then for every g ∈ W 2
0 (wψ) such that

ψD2g ∈W 2(wψ) and for every n ∈ N we have∥∥∥∥w(Vng − g − 1

n
ψD2

(
g + Vng

2

))∥∥∥∥ ≤ 1

4n2
‖wψD2(ψD2g)‖.

12



Proof. From (3.1) and Theorem 2.5 we derive the representation

Vng − g −
1

n
ψD2

(
g + Vng

2

)
=

∞∑
k=n

Vk(ψD2g)

k(k + 1)
− 1

2n
ψD2g − 1

2n
ψD2(Vng)

=

∞∑
k=2n

Vk(ψD2g)− ψD2g

k(k + 1)
+

2n−1∑
k=n

Vk(ψD2g)− Vn(ψD2g)

k(k + 1)

=

∞∑
k=2n

Vk(ψD2g)− ψD2g

k(k + 1)
+

2n−1∑
k=n+1

k−1∑
s=n

Vs+1(ψD2g)− Vs(ψD2g)

k(k + 1)

with the series convergent in C(w). From this representation, Lemma 3.2,
Lemma 2.2 and Lemma 2.8 we get∥∥∥∥w(Vng − g − 1

n
ψD2

(
g + Vng

2

))∥∥∥∥
≤

∞∑
k=2n

‖w(Vk(ψD2g)− ψD2g)‖
k(k + 1)

+

2n−1∑
k=n+1

k−1∑
s=n

‖w(Vs+1(ψD2g)− Vs(ψD2g))‖
k(k + 1)

≤
∞∑

k=2n

‖wψD2(ψD2g)‖
k2(k + 1)

+

2n−1∑
k=n+1

k−1∑
s=n

‖wψD2Vs(ψD
2g)‖

k(k + 1)s(s+ 1)

≤ An ‖wψD2(ψD2g)‖ (4.1)

with

An =

∞∑
k=2n

1

k2(k + 1)
+

2n−1∑
k=n+1

1

k(k + 1)

k−1∑
s=n

1

s(s+ 1)
.

Changing the order of summation in the double sum above and using

2n−2∑
s=n

1

s(s+ 1)

2n−1∑
k=s+1

1

k(k + 1)
=

2n−2∑
s=n

1

s(s+ 1)

(
1

s+ 1
− 1

2n

)

=

2n−2∑
s=n

1

s(s+ 1)2
− n− 1

2n2(2n− 1)

we get

An =

∞∑
k=2n

1

k2(k + 1)
+

2n−2∑
s=n

1

s(s+ 1)2
− n− 1

2n2(2n− 1)

<

∞∑
k=2n

1

(k − 1)k(k + 1)
+
n+ 2

n+ 1

2n−1∑
k=n+1

1

(k − 1)k(k + 1)
− n− 1

2n2(2n− 1)

13



=
1

2

∞∑
k=2n

(
1

k + 1
− 2

k
+

1

k − 1

)

+
n+ 2

2n+ 2

2n−1∑
k=n+1

(
1

k + 1
− 2

k
+

1

k − 1

)
− n− 1

2n2(2n− 1)

=
2n3 + 3n2 − 3n+ 2

4n2(n+ 1)2(2n− 1)
<

1

4n2
,

which in view of (4.1) proves the lemma.

The next lemma is a weighted Bernstein-type inequality for the Baskakov-
type operators. We estimate the action of ψD2 on the second degree V 2

n of the
operator in order to get a smaller constant in the right-hand side. This constant
is not exact.

Lemma 4.3. Let w = w(γ0, γ∞) be given by (1.2) with γ0, γ∞ ∈ [−1, 0]. Then
for every F ∈ C0(w) and for every n ∈ N, n ≥ 4, we have

1

n
‖wψD2(V 2

nF )‖ ≤ 5

3
‖wF‖.

Proof. For the second derivative of g = VnF we get from Lemma 2.2 and Lemma
2.7 that D2(VnF ) ∈ C(wψ). Lemma 2.2 also implies that g satisfies (1.3) and,
hence, g ∈ W 2

0 (wψ) ⊂ W 2
0 (w(0,−1)ψ). Applying Theorem 2.5 with this g,

using (2.4) with m = n, j = k − 1, (2.5) with m = n, j = k and integration by
parts we get for every x ≥ 0

n−1
∣∣w(x)ψ(x)D2Vn(VnF )(x)

∣∣ = n−1
∣∣w(x)Vn(ψD2VnF )(x)

∣∣
= n−1w(x)

∣∣∣∣∣
∞∑
k=1

Pn,k(x)

∫ ∞
0

(n+ 1)Pn+2,k−1(y)ψ(y)D2VnF (y)dy

∣∣∣∣∣
= w(x)

∣∣∣∣∣
∞∑
k=1

Pn,k(x)

∫ ∞
0

ψ

(
k

n

)
Pn,k(y)

∞∑
i=1

vn,i(F )D2Pn,i(y)dy

∣∣∣∣∣
= w(x)

∣∣∣∣∣
∞∑
k=1

Pn,k(x)ψ

(
k

n

) ∞∑
i=1

vn,i(F )

∫ ∞
0

DPn,k(y)DPn,i(y)dy

∣∣∣∣∣
= w(x)

∣∣∣∣∣
∞∑
k=1

Pn,k(x)ψ

(
k

n

) ∞∑
i=1

vn,i(F )

∫ ∞
0

Pn,k(y)
k − ny
ψ(y)

Pn,i(y)
i− ny
ψ(y)

dy

∣∣∣∣∣
≤ Sn(γ0, γ∞;x)‖wF‖ (4.2)

with

Sn(γ0, γ∞;x)

= w(x)

∞∑
k=1

Pn,k(x)ψ

(
k

n

) ∞∑
i=1

vn,i

(
1

w

)∫ ∞
0

Pn,k(y)
|k − ny|
ψ(y)

Pn,i(y)
|i− ny|
ψ(y)

dy.
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The next three estimates follow from Hölder’s inequality.

Sn(γ0, γ∞;x) ≤ Sn(−1, γ∞;x)−γ0Sn(0, γ∞;x)1+γ0 ; (4.3)

Sn(−1, γ∞;x) ≤ Sn(−1,−1;x)−γ∞Sn(−1, 0;x)1+γ∞ ; (4.4)

Sn(0, γ∞;x) ≤ Sn(0,−1;x)−γ∞Sn(0, 0;x)1+γ∞ . (4.5)

Applying (4.4) and (4.5) in (4.3) we get

Sn(γ0, γ∞;x) ≤ Sn(−1,−1;x)γ0γ∞Sn(−1, 0;x)−γ0(1+γ∞)

× Sn(0,−1;x)−γ∞(1+γ0)Sn(0, 0;x)(1+γ0)(1+γ∞). (4.6)

Inequalities (4.2) and (4.6) imply that it is enough to prove for every x ≥ 0

Sn(γ0, γ∞;x) ≤ 5

3
(4.7)

in the four extreme cases (γ0, γ∞) = (0, 0), (−1, 0), (0,−1), (−1,−1) in order to
establish the lemma. Applying Cauchy’s inequality we get

Sn(γ0, γ∞;x) ≤ w(x)

∞∑
k=1

Pn,k(x)ψ

(
k

n

)√
En,k(w)

√
Fn,k (4.8)

where the quantities En,k(w), Fn,k are given for k ∈ N by

En,k(w) =

∞∑
i=1

∫ ∞
0

ψ(y)−2Pn,k(y)Pn,i(y)v2n,i(w
−1) dy,

Fn,k =

∞∑
i=1

∫ ∞
0

ψ(y)−2Pn,k(y)(k − ny)2Pn,i(y)(i− ny)2 dy.

For the estimate of Fn,k we use (2.10), (2.11), (2.5) and (2.13) and get

Fn,k =

∫ ∞
0

ψ(y)−2Pn,k(y)(k − ny)2

( ∞∑
i=1

Pn,i(y)(i− ny)2

)
dy

≤
∫ ∞
0

ψ(y)−2Pn,k(y)(k − ny)2nψ(y)dy

= n

∫ ∞
0

(k − ny)dPn,k(y) = n2
∫ ∞
0

Pn,k(y) dy =
n2

n− 1
. (4.9)

For the rest of the proof we establish (4.7) via (4.8), (4.9) and estimates of
En,k(w) separately in each of the four extreme cases of weight w.

(I) Let γ0 = γ∞ = −1. Here w(x) = x−1 and vn,i(w
−1) = i/n. From (2.11),
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(2.3), (2.4) and (2.13) we get

En,k(w) =

∫ ∞
0

Pn,k(y)

ψ2(y)

∞∑
i=1

Pn,i(y)

(
i

n

)2

dy

=

∫ ∞
0

Pn,k(y)

ψ2(y)

(
y2 +

ψ(y)

n

)
dy =

∫ ∞
0

Pn,k(y)

(1 + y)2
dy +

∫ ∞
0

Pn,k(y)

nψ(y)
dy

=
n

(n+ k)(n+ k + 1)
+

1

k(n+ k)
.

From the above result and (4.9) we obtain for k ≥ 1

(n+ k)2

n2
En,k(w)Fn,k

≤ Tn,k :=
(n+ k)2

n2

(
n

(n+ k)(n+ k + 1)
+

1

k(n+ k)

)
n2

n− 1

=
n+ 1

n− 1

k + 1

k

n+ k

n+ k + 1
≤ 2(n+ 1)2

(n− 1)(n+ 2)
.

Applying the above result in (4.8) and using (2.10) we get for n ≥ 4

Sn(−1,−1;x) ≤ x−1
∞∑
k=1

Pn,k(x)
k

n

√
Tn,k ≤

√
2(n+ 1)2

(n− 1)(n+ 2)
≤
√

25

9
=

5

3
,

which proves (4.7) in the case γ0 = γ∞ = −1.
(II) Let γ0 = 0, γ∞ = −1. Here w(x) = (1+x)−1 and vn,i(w

−1) = (n+ i)/n.
From (2.10) and (2.11) we get

∞∑
i=1

Pn,i(y)

(
n+ i

n

)2

= (1 + y)2 +
ψ(y)

n
− 1

(1 + y)n
= ψ(y)

n+1∑
s=0

1

(1 + y)s
+
ψ(y)

n
.

Hence

En,k(w) =

∫ ∞
0

Pn,k(y)

ψ2(y)

∞∑
i=1

Pn,i(y)

(
n+ i

n

)2

dy

=

∫ ∞
0

Pn,k(y)

ψ2(y)

(
ψ(y)

n+1∑
s=0

1

(1 + y)s
+
ψ(y)

n

)
dy

=

n+2∑
s=1

∫ ∞
0

Pn,k(y)

y(1 + y)s
dy +

∫ ∞
0

Pn,k(y)

nψ(y)
dy

=
1

k

n+2∑
s=1

n(n+ 1) . . . (n+ s− 1)

(n+ k)(n+ k + 1) . . . (n+ s− 1 + k)
+

1

k(n+ k)

≤ n

k(n+ k)

n+2∑
s=1

(
2n+ 1

2n+ 1 + k

)s−1
+

1

k(n+ k)
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≤ n

k(n+ k)

2n+ 1 + k

k
+

1

k(n+ k)
=

1

k2

(
n+ 1 +

n2

n+ k

)
.

From the above estimate and (4.9) we obtain for k ≥ 1

k2

n2
En,k(w)Fn,k

≤ Tn,k :=
k2

n2
1

k2

(
n+ 1 +

n2

n+ k

)
n2

n− 1
=

1

n− 1

(
n+ 1 +

n2

n+ k

)
.

Taking into account that for every n ≥ 4 the quantity Tn,k is a decreasing
function of k and that Tn,1 is a decreasing function of n we get Tn,k ≤ T4,1 =
41/15. Applying the last inequality in (4.8) and using (2.10) we get for n ≥ 4

Sn(0,−1;x) ≤ (1 + x)−1
∞∑
k=1

Pn,k(x)
k + n

n

√
Tn,k <

√
41

15
,

which proves (4.7) in the case γ0 = 0, γ∞ = −1.
(III) Let γ0 = −1, γ∞ = 0. Here w(x) = x−1(x + 1) and vn,i(w

−1) =
i/(n+ i+ 1). From (2.3), (2.10) and (2.11) we get

∞∑
i=1

Pn,i(y)

(
i

n+ i+ 1

)2

=
1

(1 + y)2

∞∑
i=1

(n+ i− 1)(n+ i− 2)

(n− 1)(n− 2)

i2

(n+ i+ 1)2
Pn−2,i(y)

≤ 1

(1 + y)2
n− 2

n− 1

∞∑
i=1

Pn−2,i(y)
i2

(n− 2)2
=

1

(1 + y)2
n− 2

n− 1

(
y2 +

ψ(y)

n− 2

)
.

From this estimate, (2.3), (2.4) and (2.13) we get

En,k(w) =

∫ ∞
0

Pn,k(y)

ψ2(y)

∞∑
i=1

Pn,i(y)

(
i

n+ i+ 1

)2

dy

≤
∫ ∞
0

Pn,k(y)

ψ2(y)

1

(1 + y)2
n− 2

n− 1

(
y2 +

ψ(y)

n− 2

)
dy

=
n− 2

n− 1

∫ ∞
0

Pn,k(y)

(1 + y)4
dy +

∫ ∞
0

Pn,k(y)

(n− 1)(1 + y)2ψ(y)
dy

=
(n− 2)n(n+ 1)(n+ 2)

(n− 1)(n+ k)(n+ k + 1)(n+ k + 2)(n+ k + 3)

+
n(n+ 1)(n+ 2)

(n− 1)k(n+ k)(n+ k + 1)(n+ k + 2)

=
n(n+ 1)(n+ 2)(nk − k + n+ 3)

(n− 1)k(n+ k)(n+ k + 1)(n+ k + 2)(n+ k + 3)
. (4.10)
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From (2.2) and (2.3) we also get

(1 + x)Pn,k(x)

x
ψ

(
k

n

)
= Pn,k−1(x)

(n+ k)(n+ k − 1)

n2
. (4.11)

Having in mind (4.11) we obtain from (4.10) and (4.9) for k ≥ 1 and n ≥ 4

(
(n+ k)(n+ k − 1)

n2

)2

En,k(w)Fn,k

≤ Tn,k :=
(n+ k)2(n+ k − 1)2 · n(n+ 1)(n+ 2)(nk − k + n+ 3) · n2

n4 · (n− 1)k(n+ k)(n+ k + 1)(n+ k + 2)(n+ k + 3) · (n− 1)

=
(n+ 1)(n+ 2)(nk − k + n+ 3)(n+ k)(n+ k − 1)2

n(n− 1)(nk − k)(n+ k + 1)(n+ k + 2)(n+ k + 3)
≤ 5

2
.

Applying (4.11) and the above result in (4.8) and using (2.10) we get for n ≥ 4

Sn(−1, 0;x) ≤
∞∑
k=1

Pn,k−1(x)
√
Tn,k ≤

√
5

2
,

which proves (4.7) in the case γ0 = −1, γ∞ = 0.
(IV) Let γ0 = γ∞ = 0. Here w(x) = 1 and vn,i(w

−1) = 1. From (2.10), the
definition of Baskakov basic functions and (2.13) we get

En,k(w) =

∫ ∞
0

Pn,k(y)

ψ2(y)

∞∑
i=1

Pn,i(y)dy =

∫ ∞
0

Pn,k(y)

ψ2(y)

(
1− (1 + y)−n

)
dy

=

∫ ∞
0

Pn,k(y)

ψ2(y)
y

n∑
r=1

1

(1 + y)r
dy

=

n∑
r=1

(
n+ k − 1

k

)(
n+ k + r + 1

k − 1

)−1 ∫ ∞
0

Pn+r+3,k−1(y) dy

=

n∑
r=1

(
n+ k − 1

k

)(
n+ k + r + 1

k − 1

)−1
1

n+ r + 2

=
n(n+ 1)(n+ 2)

k(n+ k)(n+ k + 1)(n+ k + 2)
Qn,k, (4.12)

where

Qn,k = 1 +

n∑
r=2

(
r∏
s=2

n+ s+ 1

n+ k + s+ 1

)
.

A trivial estimate of the above quantity is Qn,k ≤ n. Another estimate is

Qn,k ≤ 1+
n+ 3

n+ k + 3

n∑
r=2

(
2n+ 1

2n+ 1 + k

)r−2
≤ 1+

n+ 3

n+ k + 3

2n+ 1 + k

k
. (4.13)
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From (4.13), (4.9) and (4.12) we get for k ≥ 1 and n ≥ 4

ψ

(
k

n

)2

En,k(w)Fn,k

≤ Tn,k :=
k2(n+ k)2 · n(n+ 1)(n+ 2)Qn,k · n2

n4 · k(n+ k)(n+ k + 1)(n+ k + 2) · (n− 1)

≤ T̃n,k :=
(n+ 1)(n+ 2)(n+ k)[(2n+ k + 1)(n+ 3) + k(n+ k + 3)]

n(n− 1)(n+ k + 1)(n+ k + 2)(n+ k + 3)
.

For every n ≥ 4 the quantity T̃n,k is a decreasing function of k. Hence,

Tn,k ≤ T̃n,k ≤ T̃n,1 ≤ T̃5,1 = 21/8 for n ≥ 5 and T4,k ≤ T̃4,k ≤ T̃4,3 = 133/48.

For n = 4 and k = 1, 2 we can improve the upper bound T̃n,k if we apply the
trivial estimate Qn,k ≤ n instead of (4.13). This leads to

Tn,k ≤
(n+ 1)(n+ 2)(n+ k)k

(n− 1)(n+ k + 1)(n+ k + 2)

and, hence, T4,1 ≤ 25/21 and T4,2 ≤ 15/7. Thus, we obtain Tn,k ≤ 133/48 for
every k ≥ 1 and n ≥ 4.

Applying this estimate in (4.8) and using (2.10) we get for n ≥ 4

Sn(0, 0;x) ≤
∞∑
k=1

Pn,k(x)
√
Tn,k <

√
133

48
,

which proves (4.7) in the case γ0 = γ∞ = 0 and completes the proof of the
lemma.

Proof of Theorem 1.3. We follow the scheme for proving strong inverse theorems
of type A given in [4]. From Lemma 4.1 we get that f−V kn f ∈ C(w) and V kn f ∈
W 2

0 (wψ) for every k ∈ N. Applying Lemma 4.2 with g = V 4
n f , Theorem 2.5

with g = V 3
n f and g = V 2

n f and Lemma 4.3 with F = ψD2(V 2
n f) ∈ C0(w) we

get∥∥∥∥w(V 5
n f − V 4

n f −
1

n
ψD2

(
V 4
n f + V 5

n f

2

))∥∥∥∥ ≤ 1

4n2
∥∥wψD2

(
ψD2(V 4

n f)
)∥∥

=
1

4n2
∥∥wψD2

(
V 2
n

(
ψD2(V 2

n f)
))∥∥ ≤ 5

12n
‖wψD2(V 2

n f)‖.

Using the last inequality, Lemma 4.3 with F = f − V 3
n f ∈ C0(w) and with
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F = f − V 2
n f ∈ C0(w) and Lemma 2.7 we get∥∥∥∥w(V 5
n f − V 4

n f −
1

n
ψD2

(
V 4
n f + V 5

n f

2

))∥∥∥∥
≤ 5

12n

∥∥∥∥wψD2V 2
n

(
f − V 2

n f + V 3
n f

2

)∥∥∥∥+
5

12n

∥∥∥∥wψD2

(
V 4
n f + V 5

n f

2

)∥∥∥∥
≤ 5

24n

∥∥wψD2
(
V 2
n

(
f − V 2

n f
))∥∥+

5

24n

∥∥wψD2
(
V 2
n

(
f − V 3

n f
))∥∥

+
5

12n

∥∥∥∥wψD2

(
V 4
n f + V 5

n f

2

)∥∥∥∥
≤ 25

72

(
‖w(V 2

n f − f)‖+ ‖w(V 3
n f − f)‖

)
+

5

12n

∥∥∥∥wψD2

(
V 5
n f + V 4

n f

2

)∥∥∥∥
≤ 125

72
‖w(Vnf − f)‖+

5

12n

∥∥∥∥wψD2

(
V 4
n f + V 5

n f

2

)∥∥∥∥ .
From the above inequality and Lemma 2.7 we have

1

n

∥∥∥∥wψD2

(
V 4
n f + V 5

n f

2

)∥∥∥∥
≤
∥∥∥∥w(V 5

n f − V 4
n f −

1

n
ψD2

(
V 4
n f + V 5

n f

2

))∥∥∥∥+ ‖w(V 5
n f − V 4

n f)‖

≤ 197

72
‖w(Vnf − f)‖+

5

12n

∥∥∥∥wψD2

(
V 4
n f + V 5

n f

2

)∥∥∥∥ ,
which can be rewritten as

1

2n

∥∥∥∥wψD2

(
V 4
n f + V 5

n f

2

)∥∥∥∥ ≤ 197

84
‖w(Vnf − f)‖. (4.14)

Finally from the definition of K-functional, Lemma 2.7 and (4.14) we obtain

Kw

(
f,

1

2n

)
= inf

{
‖w(f − g)‖+

1

2n
‖wψD2g‖ : g ∈W 2(wψ)

}
≤
∥∥∥∥w(f − V 4

n f + V 5
n f

2

)∥∥∥∥+
1

2n

∥∥∥∥wψD2

(
V 5
n f + V 4

n f

2

)∥∥∥∥
≤
(

9

2
+

197

84

)
‖w(f − Vnf)‖ =

575

84
‖w(f − Vnf)‖.

Theorem 1.3 is proved.
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