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Abstract
In this paper the exact constants in estimations of the error of the quadrature
formulae of Simpson are obtained. The estimations involve 4—th order in the non-
periodic case and high order in the periodic case Li-averaged Sendov-Popov moduli of
smoothness of a bounded and measurable function f.

1 Introduction.

Let M[0, 1] be the set of all bounded and measurable on [0, 1] functions and Il be the set of
all algebraic polynomials of degree at most k. The k—th order local modulus of smoothness

of f € M|0,1] at the point = € [0, 1] with a step § € {O, ﬂ is a function (see Definition 1.4 of

2])

e ko ko
(1.1) wi(f,w;8) = sup {\Aﬁ,[o,uf(t)l bt kv € o= 21 } ,
where

aof [ SE (=D (5) flw+it) if xx+kt €[0,1];
Af,[o,l]f(x) = 0( ) (,)f( ) f [ ' ]
0 otherwise.

The k-th order Li-averaged Sendov-Popov modulus of smoothness of a function f bounded
and measurable on [0,1] is (see Definition 1.5 of [2])

(1.2) 76(£,0) 201 = Nlwn(f, 1 0) o
We consider the well-known quadrature formulae of Simpson
1 1 1
(13) | f@de = @30 = ¢ (10 +41 (5) + 1)

and the n-composite quadrature formulae of Simpson

1) [~ @i = g (#0425 )+ 4327 (P50 4 ),
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where x; = ih and h = 1

We estimate the error

3|

(15) R @) - [ s,

Our aim is to find for some fixed k£ and a > 0 constants ¢, and ¢, such that
R2
(1.6) c(k,a) =  max {(f)}
femMio,1],neN Tk(f ah)Ll[o 1]
and

(1.7) ik,a)=  sup {Tk(m(f)}

Fec>[0,1],neN frah) o

In Section 2 we find the exact constants ¢ (4, 4> and ¢ (4 ) for non-periodic functions.
In Section 3 and 4 we consider periodic functions (1-periodic for simplicity). We find for

this functions c(k,«) and ¢é(k,«), where kK € N and a > % and C(Q,i and ¢ 2,% . The

methods in Section 3 and 4 are applicable for other n—composite quadrature formulae () of
Newton-Cotes type, constructed with respect to s knots.

2 Estimations of the error of the quadrature formulae
for non-periodic functions.

In this section we consider non-periodic functions and a step o = i. The Quadrature Formulae
of Simpson is exact in II3. Then (see [1]) we can consider k = 4. We first prove the following
lemma.

Lemma 2.1 Let f € M[0,1] and n € N. Then
4 1
Ri(f) < 97—4 (fa ) :
L1[0,1]

Proof. Using (1.5) and (1.4) for [a,b] = [0, 1] we have

(2.1)  Ru(f

-1

5[ (10 - & (10 4 (5575) ¢ )

- % ZA4fxidt+% ZAifodH% ZA‘{f T o
t t + t 2

‘/ AL f( xzdt‘ ’/ AY F(2i11) dt‘ ‘/ ’Jr;i“—zt)dt‘.




From (1.1) we have the next four inequalities are true for ¢t € [O, ﬂ :

(2.2) AL f(zi)] < wa <f7 x; + 2L; Z) ;
h
(2.3) Aitf($i+1)’ < wy <f> Tip1 — 21 4> ;
(2.4) af (I ) < (f, Tt T g h) ;
2 2 4
(2.5) AL f (x +2”T"“ - 2t>‘ <y (f, SIS Z + 2t Z) .

Applying the estimations of (2.2)-(2.5) in (2.1) we obtain

) 48 [t h 40 (i h

Rn(f)S*Z/ wy | f, s + 2t — dt—l—*Z/ wa | f,Tip1 — 2t — | dt
P 4 6:= /o 4

2. % xi+$i+1 h h $¢+£L'i+1 h h

— — — — 4 2t;— — 4+ =—=2

+92/0 w4<f, 5 g P2y e | ST g 2 ) dt

0

no1 oprits h 1 (=it 1 foin h
:2%3/% w4<fx4>dx+3 x#i (fx )dm—i—g +w4<f,x;4>dx
4 L [rin h
92/% w4<,x;4>dx
4
9

Lemma 2.1 is proved. u
Let n = 1. We prove that the constant 2 5 in Lemma 2.1 is exact. More then this constant

is the solution of another problem. This is (see (1.6)) the constant ¢ (4, Z) for non-periodic
functions.

Lemma 2.2 There is a function f € M0, 1] such that

a0y _ 4 1
R = g7 (£ 4)L1[0’” |

Proof. Let B be the set of the binary rational numbers. For every natural number m we
define

25 — 1
Bmdéf{xEIB%;x: 82m ,s:O,...,Qm_l}.
Let ¢ = %. We consider the function
1 if x=0orl,;
1 . _ 1.
5 if w=3;

1 _ .
5" if € By, m>3;

0 if =1, 2orxz¢B.
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Obviously f € M]0,1]. We prove that
1
(2.6) sup {Aff(:v) it < 4} <1

Let x € [O, %) . There are 4 cases of finite differencies:

I)A%f(()); H)A‘%f((]); ITAL . f(z); IV)A}f(z) for which 0, 1 and § are not knots.

4 4

In IV) we have sup {Aff(x) < i} < 8max{f(x) cx#£0, 1, ;} = 488 < 1.
In I), II) and III) if 2 ¢ B we have A} f(x) = 1. Else (2.6) is equal to:
D1 = 8¢ f(Bp) + 6¢f (By) + f(Bu) < 1
1)1 = 8cf(Bu) + 6f(Bu) + Lf(Ba) < 1
ID2f(By) — 8cf(By) +1 < 1.
The last three inequalities are true because of the choise of ¢. The situation for x € G, 1} is

the same. In this way we prove (2.6).

1 1 ifx#1i 1
Hence w ( ,x;) = ‘ 27 and 7. ( ;) =1.
4 f { 3 /Lfl': 1. 4 f Ll[O,l]

4 2 4
Applying (1.5) for this function we have R3(f) = %. Then Lemma 2.2 is proved. [ |
Lemma 2.3 There is a functional sequence { fn}o_, . fm € C*°[0,1] such that
R2(f,, 4
i ) 9
4 (fm’ Z)Ll[o,l]

Proof. Let f be the function of Lemma 2.2 and for m =1, ..., 00

(mz)?

wp | e df ma| < 1
gm () =

0 if |mzx| > 1.

2m
o s s
We set fu(x) 2 S f (2m> Gy (x - 2m> .
s=0
For this functional sequence we have

fn € C(0,1], funlw) = f(2) Ve € () By and lim_fu(2) = f(z) Yo € [0,1].

=1

Also for the error of the quadrature formulae and for the local modulus of f,, we have

4 1
respectively R3(fn) > 9~ a1 and
1 15 gm—45m=3 15\™ 1
Wy (fm,x;4) =1+ (6.1(),+1) “oims = 1+ const. <16) , T F 3

Since ) '~
T, mi = =1+ const. <> .
! (f 4)1:1[0,1} 16
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Finally we obtain
RE(fm)

lim =

m—o00 1
T4 (fma g)

Lemma 2.3 is proved. [ |
Summarizing the statements from Lemma 2.1, Lemma 2.2 and Lemma 2.3 we obtain

O W~

L1[0,1]

Theorem 2.1 For non-periodic functions c (4, %) =c (4, i) =3

3 Estimations of the error of the quadrature formulae
for 1-periodic functions and a step > %

In this section we consider 1-periodic functions and a step a > % There are not periodic

algebraic polynomials out of IIy. Then (see [1]) we can make estimations with 74, for each
k > 1. We first prove the following lemma.

Lemma 3.1 Let f € M|[0,1] be I-periodic, k,n € N and o > =. Then

R < n(rY) .
([]) < n)mo,u

N

[N e

Proof. We prove the statement for a = % because the modulus (1.2) is an increasing
function of a.
1)Let k = 2m. Using (1.5) and (1.4) we have

il 1 oty 2 hy, 2 [un
R (f) = > — - = / dx + — —)—= dz|.
. . . . 2 & ( 2m .
Applying in the last equality the trivial equality (2 ) § (—1) < ) = —1 we obtain
WT =1 m—]



=0 n 3 27:? j=1 m-—7 1—%
h 4 m 2m Ti4+1
= - —1)
ol e+ )+ Sy S 2w
n—1 9 m (—1) (nzib]) nel gk
=2 h 4 Ui (_ )J( 27_n) noloemy
+3 —flm+35)+ i) ; /
g an(-flfl 2) 3(2::) jzzzl ] ] I, .CI?) T
n—1 9 m (_1)j( QT ) n=1 =1 g (s1)h
= —f(l’ ) + .m J / x\dzx
lz:[:) 3n l (27;11) ]2:1 j ;} =, xi—i-s%
S 4 () et
+) — + )+ /
=0 3 o 2 3(2;:) j=1 J i=0 s——j ;rz—l—(s—l—l)% e
n—1 n-1 o m (1) nim 4jh
= Z —flz) + Z — Z ( ]) / 'hz (2)du
=03 i=0 3(m> j=1 J Ti=Jg
wlo o h w4 a C)(En) ek
+ 1 + S + - m-j /
g?) f(x 2) ; <2nT>le j bl z)dx
n—1 2) % ) n—1 4 % ) L
<T§ 2 /§|A2mf( o t)|dt+nz:14/g|A2m(.+h_ £)|dt
iz 3(27:?) A i=0 3(2721) o ot J\ET g T mbak.

From (1.1) we have the next four inequalities are true for ¢t € [O, %} .

h h
(3.2) AP f (5 — mt)‘ < wom (f, x; +mt — my; 2> :
2m h h
(3.3) AZ™ f (s — mit)| < wa frai—mt+mz;o )
h h h h
T flm+ S — < L NN
(3.4) Ag f(xz—kz mt)‘_w2m<f,xl+2+mt m2,2>,
(3.5) A?mf<xi+g—mt>‘Su)gm<f,xi+}2l—mt+mz;}2l>,



Applying the estimations of (3.2)-(3.5) in (3.1) we obtain

(3.6) Ry(f) < nz—: (im) /02’ <w2m (f, x; +mt — mg; Z)

o9 3 h h h

n—1 1 xﬁ-m% g 5 T + +m7 h J
= Wom T + / Wom | [,2; = | dx
3m (2m) /ﬂﬁimh ? +§fmf 2 f 2

2)Let k = 2m + 1. Using the same arguments as in 1) we have

(3.7) Ru(f)
= 7:_:3< 5 ( / AZLf (g, mt)dt—l—/og Afm“f(:ci—(erl)t)dt)
:7:3 (2%1) ( / AZ™f (2, — mt)| di + /O F Az (g, (m+1)t)\dt>
+:§§3<2%1) </0 A?m+f(xi+}2l—mt)’dt+/og Aferf(xi—l—Z—(anl)t)’dt).

Also as in 1) from (1.1) we have the next four inequalities are true for ¢ € {O, %} :

h h
(3.8) AZHLE (g, — mt)‘ < Womi1 (f x; +mt — 5 2) :
2m41 h h
(3.9) AP (= (m 4 D) < wamr ( foai —mit +mai 3 )
h h h h
(3.10) A?m—s—lf (Iz + 5~ mt)‘ < Wom+1 (f T + = 7 +mt — 2 2) :

7



(3.11) ‘Afm“f (x + Z — (m+ 1)t)

h h h
< Wom+1 f7Ii+§—mt+m§;§ .

Applying the estimatoins of (3.8)-(3.11) in (3.7) we obtain

=1 3 h h
(3.12) Ri(f) < Tl / Wam+1 <f7 x; +mt; ) + Womy1 (f, r; —mit; ) dt
1=0 3( ) 0 2 2

m
h

2 3 h h h h
+Z (2m+1) /02 Wam+t1 (f,$i+2+mt; 2) + Wam+1 <f7$i+2 — mt; 2) dt

=0 3 m
S ( [ ( h) it md ( h
=D T wom+1 | foa; 5 | do+ 2 Wam41 f>$§>>d$
1=0 3m(2n;1+1> sz’*m% * 2 xi+%*m% + 2
—1 .
5 1 Tit1 h
= 2m+1 / Wom+1 <f7 €5 2) dx
=0 ( m ) L
1 h
- @TQmH <f7 2) :
m L4[0,1]
The inequalities (3.6) and (3.12) complete the proof of Lemma 3.1. [

Lemma 3.2 Let k,n € N and a > % There is a 1-periodic function f € MI0,1] such that

Ry (f) =
(

1 «
n(n)
k > n Ly [071]

(5]

Proof. There are many trivial bounded and measurable 1-periodic functions which prove

this lemma but we construct a such function which we use in the next lemma. We use
2k—1 o k

(8) | w

e k
notations B and B,, from Lemma 2.1. We set g def —7 N <1,z = [4] 4+ 1 and
([’é])
ki def Uﬁﬁl_l)ZkHBi, [ > 1. Let n =1 (for n > 1 the idea is the same if we assume that
[z, ki) = TO, 1]). We define the function
» (@)'™" if =€ Quy;
flz)=
0 if x¢B.

Obviously f € M|0,1]. For the finite difference Aff(z) with v < 5= and « € [0,1] we have 3
cases:

I)The knots of the finite difference are binary rational;

IT)The knots of the finite difference are not binary rational;

[IT)The knots of the finite difference accept one are not binary rational.

In I) the absolute value of the finite difference is < <[l;§ ]> . In IT) we have that the value of this
2



2

difference is 0. In III) the absolute value of the finite difference is < <[l;§]> ("="iff f(x) =1).

Sience wi(f,z; %) = <[l’§]) and 7, (f, a>L o = ({IZ}) . From other hand applying (1.5) for
1[0, 2

n

this function we have R%(f) = 1.
Then Lemma 3.2 is proved. [ |

)
m=1"

Lemma 3.3 Let k,n € N and «
fm € C*[0,1] such that

Vv

. There is a sequence of 1-periodic functions {fmn}

R (fm)

lim =

1
m—oo o (fm7 %)Ll[o,l] ([&) |

Proof. Let f be the function of Lemma 3.2 and for m =1, ..., 00 g,,(x) be the functions
s

omzy,
of Lemma 2.2. We set f,,(z) e Sof < i >922mzk+1 <a: - 2mzk).
s=0

2mzk

For this functional sequence we have f,, € C*[0,1], f,.(z) = f(z) for every z € U“} B,
and
lim_f.(z) = f(x) for every x € [0, 1].

Also for the error of the quadrature formulae and for the k-th averaged modulus of f,,

k
we have respectively lim R?(f,) =1and lim 7 ( fms a> =1l
Lemma 3.3 is proved. u
Summarizing the statements from Lemma 3.1, Lemma 3.2 and Lemma 3.3 we obtain

Theorem 3.1 Let k € N and a > % For 1-periodic functions
1

Remark. Obviously the methods in Section 3 and 4 are applicable for other n—composite
quadrature formulae @); of Newton-Cotes type, constructed with respect to s knots. Let
k,n,s€Nand o > % For 1-periodic functions we can prove the following estimation

(é}) 7 Z)W :

where the constant is exact in M|[0, 1] and C*[0, 1].

clk,a) =¢e(k,a) =

R, (f) <

4  Estimations of the error of the quadrature formulae
for 1-periodic functions and a step < %

In this section we consider 1-periodic functions and a step a < % There are some specific

problems. Here we use not only finite differencies centered in the knots of the quadrature
formulae. We demonstrate this for £ = 2 and o = i. We first prove the upper estimation.

9



Lemma 4.1 Let f € MJ0,1] be 1-periodic and n € N. Then

2 1
#in=tn(id),,,
n(f) = 37-2 f An La[0.]

Proof. Using again (1.5) and (1.4) we have

/N dt+z /N (3: g t)dt
nll/ ALf (:zc t)dt
oo

" 11 i
/ A2 f(a; — )| dt + Z /
Again as in the previous sections from (1.1) we have that the next tree inequalities are

n 1 1
/ A% f ( h t) | dt.
true.
IH—%

(4.2) / A2 f(x; — t)‘ dt < 1/ wo <f,x; h) dx;

h 1 [ot3% h

) 2 R < = L .
(4.3) /0 Atf<xz+2 t)'dt_ 2 Jon wo (f,a:,4> dx;

(1.4) /0A2f<wi—2+t>‘dt§/:i4 <f7 )

Applying the estimatoins of (4.2)-(4.4) in (4.1) we obtain

nll

(4.1) R.(f)

s

|

[Ny

12 qmin h 2 1
r(n<> = ,d_(,) |
n(f)—gg ., wz( z 4> £z 37'2 f an) 1,00
Lemma 4.1 is proved. [ |

Lemma 4.2 Let n € N. There is a 1-periodic function f € MI0,1] such that

200y _ 2 ( 1)
Rn(f>_ 3T2 f7 4n L1[0,1].

Let n =1 (for n > 1 the idea is the same if we assume that [z;, z;11] = [0, 1]). We define

the function
1 if x=0orl,;




Obviously f € M[0,1], R(f) =5 and 7 (f, ), ol =
Lemma 4.2 is proved. 7 [ ]

Lemma 4.3 There is a sequence of 1-periodic functions {fm}. -, fm € C*[0,1] such that

: R (fm)
| 72 (fm7 ﬁ)

2
=3
L1[0,1]

Proof. Let f be the function of Lemma 4.2 and for m = 1, ..., 00 g,,(z) be the functions
of Lemma 2.2. We set

2+gm(:c—%) if xe[i,%},
fm(2) L 29 (:c—i>+gm(a:’) if ve [O, i)
2gm(x—%>+gm(1—x if xe(%,l}

For this functional sequence we have f,, € C*[0,1], f,.(z) = f(z) if z = 0,
im_ fo(z) = f(z) for every x € [0, 1].
Also for the error of the quadrature formulae and for the 2-th averaged modulus of f,,

113
—,—,—or 1 and
4’24

4
we have respectively lim Ri( fm) = - and lim 7 <.fm7 ) = 2.
m—oo 3 m—oo 4n L1[0,1]
Lemma 4.3 is proved. [ ]
Summarizing again statements from Lemma 4.1, Lemma 4.2 and Lemma 4.3 we obtain

Theorem 4.1 For 1-periodic functions c (2, i) =c (2, i) =2
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