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Abstract

Direct theorem in terms of the weighted K-functional for the uniform
weighted approximation errors of a class of Bernstein-type operators are
obtained for functions from C(w)[0, 1] with weight of the form xγ0(1−x)γ1

for γ0, γ1 ∈ [−1, 0].
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1 Introduction

The class of Bernstein-type operators discussed in this paper are given for nat-
ural n by

B̃n(f, x) =

n∑
k=0

bn,k(f)Pn,k(x),

where Pn,k(x) =

(
n

k

)
xk(1 − x)n−k and the functionals bn,k(f) satisfy the fol-

lowing conditions

bn,0(f) = f(0) and bn,n(f) = f(1);(1.1)

bn,k(f) are linear and positive;(1.2)

B̃n(ei, x) = ei(x) for i=0 and i=1;(1.3)

B̃n(e2, x) = e2(x) + α(n)x(1− x).(1.4)
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Here ei (for i = 0, 1, 2) are the functions ei(x) = xi.
The functional bn,k(f) for 1 ≤ k ≤ n− 1 in the operators B̃n takes place

of f
(
k
n

)
in the classical Bernstein operators [4].

Denote the weight function by

(1.5) w(x) = w(γ0, γ1;x) = xγ0(1− x)γ1 for x ∈ (0, 1) and real γ0, γ1.

Our main results will concern the values of the powers γ0, γ1 in the range
[−1, 0]. By ϕ(x) = x(1 − x) we denote the other weight which is naturally
connected with the second derivatives of operators and the error for the function
e2(x). By D = d

dx we denote the first derivative operator.
Let C(0, 1) be the space of all continuous functions bounded on (0,1)

and let C(w)(0, 1) = {f : wf ∈ C(0, 1)}. The norm in C(w)(0, 1) is given by
‖f‖C(w)(0,1) = supx∈(0,1) |w(x)f(x)|. The cases of (weighted) continuity at the
end-points of the domain are denoted by [0, 1] on the place of (0, 1), namely

C(w)[0, 1] =

{
f ∈ C(w)(0, 1) : ∃ lim

x→0+0
w(x)f(x) and lim

x→1−0
w(x)f(x)

}
,

C0(w)[0, 1] =

{
f ∈ C(w)[0, 1] : lim

x→0+0
w(x)f(x) = lim

x→1−0
w(x)f(x) = 0

}
.

The space of smooth functions considered in the paper is given by

W 2(wϕ)(0, 1) =
{
g, g′ ∈ ACloc(0, 1) : wϕD2g ∈ L∞(0, 1)

}
,

where ACloc(0, 1) consists of the functions which are absolutely continuous in
[a, b] for every [a, b] ⊂ (0, 1) and L∞(0, 1) denotes the Lebesgue measurable and
essentially bounded in (0, 1) functions.

In this paper we estimate the rate of weighted approximation by B̃n for
functions in C0(w)[0, 1] + π1, where π1 is the set of all algebraical polynomials
of degree 1. This space serves as a natural generalization on C[0, 1] for the
unweighted case because C[0, 1] = C0[0, 1] + π1.

The weighted approximation error will be compared with the K-functional
which for every f ∈ C(w)(0, 1) and t > 0 is defined by

(1.6) Kw(f, t) = inf
{
‖w(f − g)‖+ t‖wϕD2g‖ : g ∈W 2(wϕ)(0, 1)

}
.

Our main result is a direct inequality. It is a generalization of the result
in [3], which treats the case w = 1 and Goodman-Sharma operator ([1] and [2]).

Theorem 1.1. Let w be given by (1.5) with γ0, γ1 ∈ [−1, 0]. Then for every
f ∈ C0(w)[0, 1] + π1 and every n ∈ N we have

‖w(B̃nf − f)‖ ≤ 2Kw

(
f,
α(n)

2
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Some remarks:
(1.) Both sides of Theorem 1.1 do not change if f is replaced by f − q for any
q ∈ π1. Hence, it is enough to prove Theorem 1.1 for functions f ∈ C0(w)[0, 1].
(2.) Functions from C(w)[0, 1]\(C0(w)[0, 1] + π1) are not considered in Theo-
rem 1.1 because neither ‖w(f − Unf)‖ → 0 nor Kw

(
f, n−1

)
→ 0 when n→∞

for such functions.
(3.) We consider γ0, γ1 ≥ −1 because functions B̃n(f) ∈ C0(w)[0, 1] with
γ0, γ1 = −1.
(4.) We asume lim

n→∞
α(n) = 0 because of the same reasons as in (2.).

2 Main result

We first prove four lemmas concerning any operator L which is satisfying
the following two conditions:

L is linear and positive operator;(2.1)

L(1, x) = 1 , L(t, x) = x;(2.2)

As a corollary from (2.1) and (2.1) we obtain the following property

f ≤ Lf for convex function f.(2.3)

Lemma 2.1. For every function f ∈ C0(w)[0, 1] we have ‖wL(f)‖ ≤ ‖wf‖,
i.e. the norm of the operator is 1.

Proof. Let we mention that function (w)−1 is concave and then from (2.3)) we
have (w)−1 ≥ L

(
(w)−1

)
. The last one, (2.1) and (2.2) give

‖wL(f)‖ = ‖wL
(
wf(w)−1

)
‖

≤ ‖wf‖ ‖wL
(
(w)−1

)
‖

≤ ‖wf‖ ‖w(w)−1‖ = ‖wf‖.
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We define

Ky(x)
def
=

{
y(x− 1) 0 ≤ y ≤ x ≤ 1;
x(y − 1) 0 ≤ x ≤ y ≤ 1,

Lemma 2.2. For every f ∈W 2(wϕ)

L(f, x)− f(x) =

∫ 1

0
(L(Ky, x)−Ky(x)) f

′′
(y)dy.

The above statement is Lemma 3.1 from [3] .

We define fw(x) = xf0(x) + (1− x)f1(x) where

f0(x) = −
∫ 1

x

dy

y1+γ0(1− y)γ1
and f1(x) = −

∫ x

0

dy

yγ0(1− y)1+γ1
.

Lemma 2.3. Let f ∈W 2(wϕ), then we have

‖w(Lf − f)‖ ≤ ‖wϕf ′′‖ ‖w(Lfw − fw‖.

Proof. The function Ky(x) is convex and nonpositive. Then from conditions 2.1
and 2.3 it follows that L(Ky, x)−Ky(x) ≥ 0.

From Lemma 2.2 we have

L(f, x)− f(x) =

∫ 1

0

L(Ky, x)−Ky(x)

ϕ(y)
f

′′
(y)ϕ(y)dy.

Taking a norm in the above equality we obtain

‖w(Lf − f)‖ =

∣∣∣∣∣∣∣∣w ∫ 1

0

L(Ky)−Ky

w(y)ϕ(y)
w(y)f

′′
(y)ϕ(y)dy

∣∣∣∣∣∣∣∣
≤ ‖wϕf ′′‖ max

x∈[0,1]

∣∣∣∣w(x)

(
L

(∫ 1

0

Ky(x)

w(y)ϕ(y)
dy, x

)
−
∫ 1

0

Ky(x)

w(y)ϕ(y)
dy

)∣∣∣∣ .(2.4)
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In the right hand side of the above inequality we have the function∫ 1

0

Ky(x)

w(y)ϕ(y)
dy =

∫ x

0

y(x− 1)

y1+γ0(1− y)1+γ1
dy +

∫ 1

x

x(y − 1)

y1+γ0(1− y)1+γ1
dy(2.5)

= −(1− x)

∫ x

0

dy

yγ0(1− y)1+γ1
dy − x

∫ 1

x

dy

y1+γ0(1− y)γ1
dy

= xf0(x) + (1− x)f1(x)

= fw(x).

Replacing the result of 2.5 in 2.4 we obtain

‖w(Lf − f)‖ ≤ ‖wϕf ′′‖ max
x∈[0,1]

|w(x) (L(fw, x)− fw(x))|

= ‖wϕf ′′‖ ‖w(Lfw − fw)‖.

Lemma 2.4.
‖w(Lfw − fw)‖ ≤ ‖ϕ−1(·)L

(
(t− ·)2, ·

)
‖.

Proof. From the definition of fw, 2.1 and 2.2 we have

0 ≤ L(fw, x)− fw(x)(2.6)

= L (tf1(t) + (1− t)f0(t), x)− L(1− t, x)f0(x)− L(t, x)f1(x)

= L ((1− t) (f0(t)− f0(x)) , x) + L (t (f1(t)− f1(x)) , x) .

Expanding for i = 0, 1 functions fi(x+ t− x) by Taylor’s formula:

f0(t) = f0(x)− t− x
xγ0(1− x)1+γ1

+

∫ t

x
(t− u)f

′′
0 (u)du ;

f1(t) = f1(x) +
t− x

x1+γ0(1− x)γ1
+

∫ t

x
(t− u)f

′′
1 (u)du

and using (from definitions of functions) that f
′′
0 (u) < 0 and f

′′
1 (u) < 0 we

obtain

(1− t) (f0(t)− f0(x)) ≤ − (1− t)(t− x)

xγ0(1− x)1+γ1
;(2.7)

t (f1(t)− f1(x)) ≤ t(t− x)

x1+γ0(1− x)γ1
.(2.8)
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Applying the results of 2.7 and 2.8 in 2.6 we have

0 ≤ w(x) (L(fw, x)− fw(x))

≤ w(x)L

(
− (1− t)(t− x)

xγ0(1− x)1+γ1
+

t(t− x)

x1+γ0(1− x)γ1
, x

)
= ϕ−1(x)L

(
(t− x)2, x

)
.

Taking a norm in the above inequality we prove Lemma 2.4.

Recapitulating results from above four lemmas we obtain

Theorem 2.1. (Jackson-type inequality). Let L satisfies conditions 2.1 and
2.2. Then for every function f ∈W 2(wϕ) we have

‖w(Lf − f)‖ ≤ ‖wϕf ′′‖ ‖ϕ−1(·)L
(
(t− ·)2, ·

)
‖.

Let we mention that 1.2 and 1.3 are the properties 2.1 and 2.2 for oper-
ators B̃n. From 1.3 and 1.4 it follows that

1

ϕ(x)
B̃n((t− x)2, x) =

B̃n(t2, x)− x2

ϕ(x)
= α(n).

Above result and Theorem 2.1 give

Theorem 2.2. For every function f ∈W 2(wϕ) we have

‖w(B̃nf − f)‖ ≤ α(n)‖wϕf ′′‖.

The Theorem 2.2 we use in the proof of Theorem 1.1.
Proof of Theorem 1.1. Let g is an arbitrary function in W 2(wϕ). Then

‖w(B̃nf − f)‖ ≤ ‖w(B̃nf − B̃ng)‖+ ‖w(B̃ng − g)‖+ ‖w(g − f)‖.

From Lemma 2.1 and Theorem 2.2 we get

‖w(B̃nf −f)‖ ≤ 2‖w(f −g)‖+α(n)‖wϕg′′‖ ≤ 2

(
‖w(f − g)‖+

α(n)

2
‖wϕg′′‖

)
.

Taking an infimum on all g ∈ W 2(wϕ) in the above inequality we prove
Theorem 1.1.
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