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Abstract

Direct theorem in terms of the weighted K-functional for the uniform
weighted approximation errors of a class of Bernstein-type operators are
obtained for functions from C(w)[0, 1] with weight of the form a7 (1 — )™
for vo,7 € [-1,0].
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Introduction

The class of Bernstein-type operators discussed in this paper are given for nat-
ural n by

Bn(f» x) = Z bn,k(f)Pn,k(x)a
k=0

where P, ;(x) = Z 2"(1 — )" and the functionals b, x(f) satisfy the fol-
lowing conditions

(1.1) bno(f) = f(0) and bpn(f) = f(1);

(1.2) bk (f) are linear and positive;

(1.3) Bh(ei, ) = e;(z) for i=0 and i=1;

(1.4) Bp(ez,z) = ea(z) + a(n)z(l — x).
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Here e; (for i = 0, 1, 2) are the functions e;(z) = 2.

The functional b, ;(f) for 1 <k <n —1 in the operators B,, takes place
of f (%) in the classical Bernstein operators [4].

Denote the weight function by

(1.5) w(z) = w(yo,m;2) =27 (1 — )" for z € (0,1) and real g, 1.

Our main results will concern the values of the powers 7, y1 in the range
[—1,0]. By ¢(z) = z(1 — x) we denote the other weight which is naturally
connected with the second derivatives of operators and the error for the function
ez(x). By D = % we denote the first derivative operator.

Let C(0,1) be the space of all continuous functions bounded on (0,1)
and let C(w)(0,1) = {f : wf € C(0,1)}. The norm in C(w)(0,1) is given by
I fllc(w)©0,1) = SUPze(o,1) lw(@) f(z)]. The cases of (weighted) continuity at the
end-points of the domain are denoted by [0, 1] on the place of (0,1), namely

C(w)[0,1] = {f € C(w)(0,1): 3 lim w(x)f(r) and lim fw(m)f(a:)},

x—0+0 z—1-0

z—0+40 rz—1-0

Co(w)[0,1] = {f € C(w)[0,1]: lim w(z)f(z)= lim w(z)f(z)= 0} .
The space of smooth functions considered in the paper is given by
W2(wp)(0,1) = {9.9' € AC10(0,1) : weD?g € Ly (0, 1},

where ACj,.(0,1) consists of the functions which are absolutely continuous in
[a, b] for every [a,b] C (0,1) and L (0, 1) denotes the Lebesgue measurable and
essentially bounded in (0, 1) functions.

In this paper we estimate the rate of weighted approximation by B,, for
functions in Cy(w)[0, 1] 4+ 71, where 7 is the set of all algebraical polynomials
of degree 1. This space serves as a natural generalization on C|[0, 1] for the
unweighted case because C0, 1] = Cy[0, 1] + 7.

The weighted approximation error will be compared with the K-functional
which for every f € C(w)(0,1) and ¢t > 0 is defined by

(1.6) Ky(f,t) = inf {w(f — g)|| + tlwpeD?g| : g € W?(we)(0,1)} .

Our main result is a direct inequality. It is a generalization of the result
in [3], which treats the case w = 1 and Goodman-Sharma operator ([1] and [2]).

Theorem 1.1. Let w be given by (1.5) with v9,71 € [—1,0]. Then for every
f € Co(w)[0,1] + 71 and every n € N we have

lw(Baf = Il < 2Ku <f, a(;))



Some remarks:
(1.) Both sides of Theorem 1.1 do not change if f is replaced by f — ¢ for any
q € m. Hence, it is enough to prove Theorem 1.1 for functions f € Cp(w)][0, 1].
(2.) Functions from C(w)[0,1]\(Co(w)[0,1] 4+ 71) are not considered in Theo-
rem 1.1 because neither |w(f — Uy, f)|| = 0 nor Ky, (f,n~') — 0 when n — oo
for such functions.
(3.) We consider 9,71 > —1 because functions B, (f) € Co(w)[0,1] with

0,71 = —1.
(4.) We asume lim «(n) = 0 because of the same reasons as in (2.).
n—oo

2 Main result

We first prove four lemmas concerning any operator L which is satisfying
the following two conditions:

(2.1) L is linear and positive operator;
L(l,z)=1, L(t,x) = ux;

As a corollary from (2.1) and (2.1) we obtain the following property

(2.3) f < Lf for convex function f.

Lemma 2.1. For every function f € Co(w)[0,1] we have |[wL(f)|| < ||wf],
i.e. the norm of the operator is 1.

Proof. Let we mention that function (w)~! is concave and then from (2.3)) we

have (w)™' > L ((w)™') . The last one, (2.1) and (2.2) give

lwL ()l = llwL (wf(w)~") |
< Jwf | flwL ((w)=") |
< [lwfll Jw(w)=H = [lwf].



We define

Lemma 2.2. For every f € W(wy)
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The above statement is Lemma 3.1 from [3] .

We define f,(x) = zfo(x) + (1 —x)f1(x) where
dy dy

1 T
w0 == [ g 5@ = [ e
Lemma 2.3. Let f € W2(wy), then we have
lw(Lf = NI < llwef [ lw(Lfuw = full-
Proof. The function K, (z) is convex and nonpositive. Then from conditions 2.1

and 2.3 it follows that L(Ky,z) — K,(z) > 0.
From Lemma 2.2 we have

1 ) — T
L(f.z) — f(z) = /0 L(Ky’w)(y) B ¢ ) o)y,

Taking a norm in the above equality we obtain

s =1 = o [

o0 (+( i) - | e

24) < "
(24) < lwef ”J&%,’i

g



In the right hand side of the above inequality we have the function

YKy " yle—1) Yoaly-1)
(25) /0 w(y)e(y) A _/0 yl ol — y)ttm dy+/x y o (1 —y)tm dy

x Cly 1 Cly
== x)/o yo(l—y)ttn = x/x yto(l —y)m 4

=zfo(x) + (1 — z) fr(z)
= fuw(x).

Replacing the result of 2.5 in 2.4 we obtain

lwo(Lf = P < lwpf" | mas (@) (Efun2) — fula)

= Jwef || lw(Lfuw = fu)ll-

Lemma 2.4.
lw(Lfuw = fu)l < N L (=% ) |-
Proof. From the definition of f,,, 2.1 and 2.2 we have

(2.6) 0 <L(fw,z)— fu(z)
=L (tf1() + (1 =) fo(t),z) — L(1 —t,z) fo(z) — L(t, x) f1(2)
= L((1 =) (fo(t) = fo(x)),x) + L(t(f1(t) = fi(x)),2).
Expanding for i = 0, 1 functions f;(z + ¢t — ) by Taylor’s formula:

fo(t) = fo(x) — 201 =) +/ (t — ) fo (u)du;

t—x

f1(t):f1(95)+xl+%(1_x)71+/ (t —u)fy (u)du

and using (from definitions of functions) that f; (u) < 0 and f; (u) < 0 we
obtain

2.7 (1= (al0) - fole)) < - SO
(29 L) - @) < )

(1 —z)m’



Applying the results of 2.7 and 2.8 in 2.6 we have

0 < w(z) (L(fw, ) = fu(z))
< w(z)L <_ QD00 2] x)

3;70(1 _ x)l-&-% xl—l—vo(l — m)71 ’
= ¢ @)L ((t —2)* ).

Taking a norm in the above inequality we prove Lemma 2.4. O

Recapitulating results from above four lemmas we obtain

Theorem 2.1. (Jackson-type inequality). Let L satisfies conditions 2.1 and
2.2. Then for every function f € W2(wy) we have

lw(Lf = I < llwpf ) o™ OL (= )% ) |1

Let we mention that 1.2 and 1.3 are the properties 2.1 and 2.2 for oper-
ators B,,. From 1.3 and 1.4 it follows that
B (2. ) — 22
o) = LD Z T,
o()

Above result and Theorem 2.1 give

Theorem 2.2. For every function f € W?(wy) we have
lw(Bnf = )| < a(n)wef”||.

The Theorem 2.2 we use in the proof of Theorem 1.1.
Proof of Theorem 1.1. Let g is an arbitrary function in W?(w¢). Then

lw(Buf = NIl < llw(Bnf = Bug)ll + [w(Bag — 9)ll + l[w(g — ).

From Lemma 2.1 and Theorem 2.2 we get

Jw(Baf ~ 1)1 < 27 - o)+l <2 (s = o)1 + S5 gl ).

Taking an infimum on all g € W?2(wy) in the above inequality we prove
Theorem 1.1.
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