Weighted Approximation By A Class Of Bernstein-type Operators

Parvan E. Parvanov

March 3, 2010

Abstract

Direct theorem in terms of the weighted K-functional for the uniform weighted approximation errors of a class of Bernstein-type operators are obtained for functions from $C(w)[0,1]$ with weight of the form $x^{\gamma_{0}}(1-x)^{\gamma_{1}}$ for $\gamma_{0}, \gamma_{1} \in[-1,0]$.

AMS classification: 41A36, 41A10, 41A25, 41A17. Keywords: Bernstein-type operator, Direct theorem, K-functional.

1 Introduction

The class of Bernstein-type operators discussed in this paper are given for natural n by

$$
\tilde{B}_{n}(f, x)=\sum_{k=0}^{n} b_{n, k}(f) P_{n, k}(x),
$$

where $P_{n, k}(x)=\binom{n}{k} x^{k}(1-x)^{n-k}$ and the functionals $b_{n, k}(f)$ satisfy the following conditions

$$
\begin{align*}
& b_{n, 0}(f)=f(0) \text { and } b_{n, n}(f)=f(1) ; \tag{1.1}\\
& b_{n, k}(f) \text { are linear and positive; } \tag{1.2}\\
& \tilde{B}_{n}\left(e_{i}, x\right)=e_{i}(x) \text { for } \mathrm{i}=0 \text { and } \mathrm{i}=1 ; \tag{1.3}\\
& \tilde{B}_{n}\left(e_{2}, x\right)=e_{2}(x)+\alpha(n) x(1-x) . \tag{1.4}
\end{align*}
$$

Here $e_{i}($ for $i=0,1,2)$ are the functions $e_{i}(x)=x^{i}$.
The functional $b_{n, k}(f)$ for $1 \leq k \leq n-1$ in the operators \tilde{B}_{n} takes place of $f\left(\frac{k}{n}\right)$ in the classical Bernstein operators [4].

Denote the weight function by

$$
\begin{equation*}
w(x)=w\left(\gamma_{0}, \gamma_{1} ; x\right)=x^{\gamma_{0}}(1-x)^{\gamma_{1}} \text { for } x \in(0,1) \text { and real } \gamma_{0}, \gamma_{1} . \tag{1.5}
\end{equation*}
$$

Our main results will concern the values of the powers γ_{0}, γ_{1} in the range $[-1,0]$. By $\varphi(x)=x(1-x)$ we denote the other weight which is naturally connected with the second derivatives of operators and the error for the function $e_{2}(x)$. By $D=\frac{d}{d x}$ we denote the first derivative operator.

Let $C(0,1)$ be the space of all continuous functions bounded on $(0,1)$ and let $C(w)(0,1)=\{f: w f \in C(0,1)\}$. The norm in $C(w)(0,1)$ is given by $\|f\|_{C(w)(0,1)}=\sup _{x \in(0,1)}|w(x) f(x)|$. The cases of (weighted) continuity at the end-points of the domain are denoted by $[0,1]$ on the place of $(0,1)$, namely

$$
\begin{aligned}
& C(w)[0,1]=\left\{f \in C(w)(0,1): \exists \lim _{x \rightarrow 0+0} w(x) f(x) \text { and } \lim _{x \rightarrow 1-0} w(x) f(x)\right\}, \\
& C_{0}(w)[0,1]=\left\{f \in C(w)[0,1]: \lim _{x \rightarrow 0+0} w(x) f(x)=\lim _{x \rightarrow 1-0} w(x) f(x)=0\right\} .
\end{aligned}
$$

The space of smooth functions considered in the paper is given by

$$
W^{2}(w \varphi)(0,1)=\left\{g, g^{\prime} \in A C_{l o c}(0,1): w \varphi D^{2} g \in L_{\infty}(0,1)\right\},
$$

where $A C_{l o c}(0,1)$ consists of the functions which are absolutely continuous in $[a, b]$ for every $[a, b] \subset(0,1)$ and $L_{\infty}(0,1)$ denotes the Lebesgue measurable and essentially bounded in $(0,1)$ functions.

In this paper we estimate the rate of weighted approximation by \tilde{B}_{n} for functions in $C_{0}(w)[0,1]+\pi_{1}$, where π_{1} is the set of all algebraical polynomials of degree 1. This space serves as a natural generalization on $C[0,1]$ for the unweighted case because $C[0,1]=C_{0}[0,1]+\pi_{1}$.

The weighted approximation error will be compared with the K-functional which for every $f \in C(w)(0,1)$ and $t>0$ is defined by

$$
\begin{equation*}
K_{w}(f, t)=\inf \left\{\|w(f-g)\|+t\left\|w \varphi D^{2} g\right\|: g \in W^{2}(w \varphi)(0,1)\right\} . \tag{1.6}
\end{equation*}
$$

Our main result is a direct inequality. It is a generalization of the result in [3], which treats the case $w=1$ and Goodman-Sharma operator ([1] and [2]).
Theorem 1.1. Let w be given by (1.5) with $\gamma_{0}, \gamma_{1} \in[-1,0]$. Then for every $f \in C_{0}(w)[0,1]+\pi_{1}$ and every $n \in \mathbb{N}$ we have

$$
\left\|w\left(\tilde{B}_{n} f-f\right)\right\| \leq 2 K_{w}\left(f, \frac{\alpha(n)}{2}\right)
$$

Some remarks:

(1.) Both sides of Theorem 1.1 do not change if f is replaced by $f-q$ for any $q \in \pi_{1}$. Hence, it is enough to prove Theorem 1.1 for functions $f \in C_{0}(w)[0,1]$.
(2.) Functions from $C(w)[0,1] \backslash\left(C_{0}(w)[0,1]+\pi_{1}\right)$ are not considered in Theorem 1.1 because neither $\left\|w\left(f-U_{n} f\right)\right\| \rightarrow 0$ nor $K_{w}\left(f, n^{-1}\right) \rightarrow 0$ when $n \rightarrow \infty$ for such functions.
(3.) We consider $\gamma_{0}, \gamma_{1} \geq-1$ because functions $\tilde{B}_{n}(f) \in C_{0}(w)[0,1]$ with $\gamma_{0}, \gamma_{1}=-1$.
(4.) We asume $\lim _{n \rightarrow \infty} \alpha(n)=0$ because of the same reasons as in (2.).

2 Main result

We first prove four lemmas concerning any operator L which is satisfying the following two conditions:

$$
\begin{align*}
& L \text { is linear and positive operator; } \tag{2.1}\\
& L(1, x)=1, \quad L(t, x)=x \tag{2.2}
\end{align*}
$$

As a corollary from (2.1) and (2.1) we obtain the following property

$$
\begin{equation*}
f \leq L f \text { for convex function } f \tag{2.3}
\end{equation*}
$$

Lemma 2.1. For every function $f \in C_{0}(w)[0,1]$ we have $\|w L(f)\| \leq\|w f\|$, i.e. the norm of the operator is 1 .

Proof. Let we mention that function $(w)^{-1}$ is concave and then from (2.3)) we have $(w)^{-1} \geq L\left((w)^{-1}\right)$. The last one, (2.1) and (2.2) give

$$
\begin{aligned}
\|w L(f)\| & =\left\|w L\left(w f(w)^{-1}\right)\right\| \\
& \leq\|w f\|\left\|w L\left((w)^{-1}\right)\right\| \\
& \leq\|w f\|\left\|w(w)^{-1}\right\|=\|w f\|
\end{aligned}
$$

We define

$$
K_{y}(x) \stackrel{\text { def }}{=} \begin{cases}y(x-1) & 0 \leq y \leq x \leq 1 \\ x(y-1) & 0 \leq x \leq y \leq 1\end{cases}
$$

Lemma 2.2. For every $f \in W^{2}(w \varphi)$

$$
L(f, x)-f(x)=\int_{0}^{1}\left(L\left(K_{y}, x\right)-K_{y}(x)\right) f^{\prime \prime}(y) d y
$$

The above statement is Lemma 3.1 from [3] .

We define $\quad f_{w}(x)=x f_{0}(x)+(1-x) f_{1}(x) \quad$ where $f_{0}(x)=-\int_{x}^{1} \frac{d y}{y^{1+\gamma_{0}}(1-y)^{\gamma_{1}}} \quad$ and $\quad f_{1}(x)=-\int_{0}^{x} \frac{d y}{y^{\gamma_{0}}(1-y)^{1+\gamma_{1}}}$.

Lemma 2.3. Let $f \in W^{2}(w \varphi)$, then we have

$$
\|w(L f-f)\| \leq\left\|w \varphi f^{\prime \prime}\right\| \| w\left(L f_{w}-f_{w} \|\right.
$$

Proof. The function $K_{y}(x)$ is convex and nonpositive. Then from conditions 2.1 and 2.3 it follows that $L\left(K_{y}, x\right)-K_{y}(x) \geq 0$.

From Lemma 2.2 we have

$$
L(f, x)-f(x)=\int_{0}^{1} \frac{L\left(K_{y}, x\right)-K_{y}(x)}{\varphi(y)} f^{\prime \prime}(y) \varphi(y) d y
$$

Taking a norm in the above equality we obtain

$$
\begin{align*}
& \|w(L f-f)\|=\left\|w \int_{0}^{1} \frac{L\left(K_{y}\right)-K_{y}}{w(y) \varphi(y)} w(y) f^{\prime \prime}(y) \varphi(y) d y\right\| \\
& \leq\left\|w \varphi f^{\prime \prime}\right\| \max _{x \in[0,1]}\left|w(x)\left(L\left(\int_{0}^{1} \frac{K_{y}(x)}{w(y) \varphi(y)} d y, x\right)-\int_{0}^{1} \frac{K_{y}(x)}{w(y) \varphi(y)} d y\right)\right| \tag{2.4}
\end{align*}
$$

In the right hand side of the above inequality we have the function

$$
\begin{align*}
& \int_{0}^{1} \frac{K_{y}(x)}{w(y) \varphi(y)} d y=\int_{0}^{x} \frac{y(x-1)}{y^{1+\gamma_{0}}(1-y)^{1+\gamma_{1}}} d y+\int_{x}^{1} \frac{x(y-1)}{y^{1+\gamma_{0}}(1-y)^{1+\gamma_{1}}} d y \tag{2.5}\\
& =-(1-x) \int_{0}^{x} \frac{d y}{y^{\gamma_{0}}(1-y)^{1+\gamma_{1}}} d y-x \int_{x}^{1} \frac{d y}{y^{1+\gamma_{0}}(1-y)^{\gamma_{1}}} d y \\
& =x f_{0}(x)+(1-x) f_{1}(x) \\
& =f_{w}(x)
\end{align*}
$$

Replacing the result of 2.5 in 2.4 we obtain

$$
\begin{aligned}
\|w(L f-f)\| & \leq\left\|w \varphi f^{\prime \prime}\right\| \max _{x \in[0,1]}\left|w(x)\left(L\left(f_{w}, x\right)-f_{w}(x)\right)\right| \\
& =\left\|w \varphi f^{\prime \prime}\right\|\left\|w\left(L f_{w}-f_{w}\right)\right\| .
\end{aligned}
$$

Lemma 2.4.

$$
\left\|w\left(L f_{w}-f_{w}\right)\right\| \leq\left\|\varphi^{-1}(\cdot) L\left((t-\cdot)^{2}, \cdot\right)\right\|
$$

Proof. From the definition of $f_{w}, 2.1$ and 2.2 we have

$$
\begin{align*}
0 & \leq L\left(f_{w}, x\right)-f_{w}(x) \tag{2.6}\\
& =L\left(t f_{1}(t)+(1-t) f_{0}(t), x\right)-L(1-t, x) f_{0}(x)-L(t, x) f_{1}(x) \\
& =L\left((1-t)\left(f_{0}(t)-f_{0}(x)\right), x\right)+L\left(t\left(f_{1}(t)-f_{1}(x)\right), x\right)
\end{align*}
$$

Expanding for $i=0,1$ functions $f_{i}(x+t-x)$ by Taylor's formula:

$$
\begin{aligned}
& f_{0}(t)=f_{0}(x)-\frac{t-x}{x^{\gamma_{0}}(1-x)^{1+\gamma_{1}}}+\int_{x}^{t}(t-u) f_{0}^{\prime \prime}(u) d u \\
& f_{1}(t)=f_{1}(x)+\frac{t-x}{x^{1+\gamma_{0}}(1-x)^{\gamma_{1}}}+\int_{x}^{t}(t-u) f_{1}^{\prime \prime}(u) d u
\end{aligned}
$$

and using (from definitions of functions) that $f_{0}^{\prime \prime}(u)<0$ and $f_{1}^{\prime \prime}(u)<0$ we obtain

$$
\begin{align*}
& (1-t)\left(f_{0}(t)-f_{0}(x)\right) \leq-\frac{(1-t)(t-x)}{x^{\gamma_{0}}(1-x)^{1+\gamma_{1}}} \tag{2.7}\\
& t\left(f_{1}(t)-f_{1}(x)\right) \leq \frac{t(t-x)}{x^{1+\gamma_{0}}(1-x)^{\gamma_{1}}} \tag{2.8}
\end{align*}
$$

Applying the results of 2.7 and 2.8 in 2.6 we have

$$
\begin{aligned}
0 & \leq w(x)\left(L\left(f_{w}, x\right)-f_{w}(x)\right) \\
& \leq w(x) L\left(-\frac{(1-t)(t-x)}{x^{\gamma_{0}}(1-x)^{1+\gamma_{1}}}+\frac{t(t-x)}{x^{1+\gamma_{0}}(1-x)^{\gamma_{1}}}, x\right) \\
& =\varphi^{-1}(x) L\left((t-x)^{2}, x\right)
\end{aligned}
$$

Taking a norm in the above inequality we prove Lemma 2.4.

Recapitulating results from above four lemmas we obtain
Theorem 2.1. (Jackson-type inequality). Let L satisfies conditions 2.1 and 2.2. Then for every function $f \in W^{2}(w \varphi)$ we have

$$
\|w(L f-f)\| \leq\left\|w \varphi f^{\prime \prime}\right\|\left\|\varphi^{-1}(\cdot) L\left((t-\cdot)^{2}, \cdot\right)\right\|
$$

Let we mention that 1.2 and 1.3 are the properties 2.1 and 2.2 for operators \tilde{B}_{n}. From 1.3 and 1.4 it follows that

$$
\frac{1}{\varphi(x)} \tilde{B}_{n}\left((t-x)^{2}, x\right)=\frac{\tilde{B}_{n}\left(t^{2}, x\right)-x^{2}}{\varphi(x)}=\alpha(n)
$$

Above result and Theorem 2.1 give

Theorem 2.2. For every function $f \in W^{2}(w \varphi)$ we have

$$
\left\|w\left(\tilde{B}_{n} f-f\right)\right\| \leq \alpha(n)\left\|w \varphi f^{\prime \prime}\right\|
$$

The Theorem 2.2 we use in the proof of Theorem 1.1.
Proof of Theorem 1.1. Let g is an arbitrary function in $W^{2}(w \varphi)$. Then
$\left\|w\left(\tilde{B}_{n} f-f\right)\right\| \leq\left\|w\left(\tilde{B}_{n} f-\tilde{B}_{n} g\right)\right\|+\left\|w\left(\tilde{B}_{n} g-g\right)\right\|+\|w(g-f)\|$.
From Lemma 2.1 and Theorem 2.2 we get

$$
\left\|w\left(\tilde{B}_{n} f-f\right)\right\| \leq 2\|w(f-g)\|+\alpha(n)\left\|w \varphi g^{\prime \prime}\right\| \leq 2\left(\|w(f-g)\|+\frac{\alpha(n)}{2}\left\|w \varphi g^{\prime \prime}\right\|\right)
$$

Taking an infimum on all $g \in W^{2}(w \varphi)$ in the above inequality we prove Theorem 1.1.

References

[1] T. N. T. Goodman and A. Sharma, A Bernstein-type Operator on the Simplex. Mathematica Balcanica (new series) 5,2, (1991), 129-145.
[2] T. N. T. Goodman and A. Sharma, A Modified Bernstein-Shoenberg Operator. Proc. of Conference on Constructive Theory of Functions, Varna'87, Publ. House of Bulg. Acad. of Sci., Sofia, (1987), 166-173.
[3] P. E. Parvanov and B. D. Popov, The Limit Case of Bernstein's Operators with Jacobi-weights. Mathematica Balcanica (new series), Vol.8, Fask.2-3, (1994), 165-177.
[4] G. G. Lorentz, Bernstein Polinonials. Mathematical Expositions, 8, University of Toronto Press, (1953).

Parvan E. Parvanov
Dept. of Mathematics and Informatics
University of Sofia
5 James Bourchier Blvd.
1164 Sofia
Bulgaria
pparvan@fmi.uni-sofia.bg

