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MEYER-KÖNIG AND ZELLER OPERATORS

IVAN GADJEV, PARVAN E. PARVANOV
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1 Introduction and statement of the results

The classical Meyer-Konig and Zeller (MKZ) operator is defined for functions
f ∈ C[0, 1) by the formula

Mn(f, x) =

∞∑
k=0

f

(
k

n+ k

)
mn,k(x) (1)

where

mn,k(x) =

(
n+ k

k

)
xk(1− x)n+1.

Right after their appearance, the MKZ operators became a subject of serious
investigations. The reason for this is the fact, that they allow approximating of
functions unbounded at the point 1 (which is different, comparing with Bernstein
polynomials). But the values of the function are taken at the points k

n+k , which
creates additional difficulties working with these operators.

In this paper we investigate the weighted approximation of functions by the
classical variant of MKZ operator in uniform norm ‖.‖[0,1), i.e. we want to
characterize the weighted error of approximation supx∈[0,1) |w(x)f(x)|, where

w(x) = xγ0(1− x)γ1 . (2)



are the Jacobi weights.
In the unweighted case (w(x) = 1) the direct theorem is proved in [4], and

the strong converse inequality of type A (in terminology of [3]) is proved in [5].
Regarding the weighted case, the first results are obtained by Becker and Nessel
in [2], where they proved the direct theorems for some symmetrical weights
w(x) = ϕα(x) where ϕ(x) = x(1− x)2 is the weight function which is naturally
connected with the second derivative of MKZ operators.

In [10] Totik established, that for 0 < α ≤ 1 and ϕ(x) = x(1 − x)2 the
condition

ϕα|∆2
h(f, x)| ≤ Kh2α

is equivalent to
Mnf − f = O

(
n−α

)
.

In [9] the authors proved that for 0 ≤ λ ≤ 1 and 0 < α < 2 the condition

|Mnf(x)− f(x)| = O

((
ϕ(1−λ)/2(x)√

n

)α)
is equivalent to

ω2
ϕλ/2(f, t) = O(tα).

Here ω2
ϕλ/2

(f, t) are the modulus of Ditzian-Totik of second order

ω2
ϕλ/2(f, t) = sup

0<h≤t
sup

x±hϕλ/2(x)∈[0,1)
|∆2

hϕλ/2(x)f(x)|.

In [7] Holhoş proved the next direct inequality for weights γ0 = 0, γ1 > 0:

‖w(Mnf − f)‖[0,1) ≤ 2ω

(
f(1− e−t)e−γ1t, 1√

n

)
+
γ1C(γ1)√

n
‖wf‖[0,1).

In this paper we prove better results then all the results mention above. But
before stating our main result, let us introduce some notations and definitions.
The first derivative operator is denoted by D = d

dx . Thus, Dg(x) = g′(x) and
D2g(x) = g′′(x).

By C[0, 1) we denote the space of all continuous on [0, 1) functions. The
functions from C[0, 1) are not expected to be continuous or bounded at 1. By
L∞[0, 1) we denote the space of all Lebesgue measurable and essentially bounded
in [0, 1) functions equipped with the uniform norm ‖·‖[0,1). For a weight function
w we set

C(w)[0, 1) = {g ∈ C[0, 1); wg ∈ L∞[0, 1)} ,
W 2(wϕ)[0, 1) =

{
g,Dg ∈ ACloc(0, 1) & wϕD2g ∈ L∞[0, 1)

}
,

W 3(wϕ3/2)[0, 1) =
{
g,Dg,D2g ∈ ACloc(0, 1) & wϕ3/2D3g ∈ L∞[0, 1)

}
,

where ACloc(0, 1) consists of the functions which are absolutely continuous in
[a, b] for every [a, b] ⊂ (0, 1).
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The weighted approximation error ‖w(f −Mnf)‖[0,1) will be compared with
the K-functional between the weighted spaces C(w)[0, 1) and W 2(wϕ)[0, 1),
which for every

f ∈ C(w)[0, 1) +W 2(wϕ)[0, 1) = {f1 + f2 : f1 ∈ C(w)[0, 1), f2 ∈W 2(wϕ)[0, 1)}

and t > 0 is defined by

Kw(f, t)[0,1) = inf
g∈W 2(wϕ), f−g∈C(w)

{
‖w(f − g)‖[0,1) + t‖wϕD2g‖[0,1)

}
. (3)

Our main result is the following theorem, establishing a full equivalence be-
tween the K-functional Kw

(
f, 1

n

)
[0,1)

and the weighted error ‖w(Mnf−f)‖[0,1).

Theorem 1.1. For w defined by (2), where γ0 ∈ [−1, 0], γ1 ∈ R, there exist
positive constants C1, C2 and L such that for every natural n ≥ L and for all

f ∈ C(w)[0, 1) +W 2(wϕ)[0, 1)

there holds

C1‖w(Mnf − f)‖[0,1) ≤ Kw

(
f,

1

n

)
[0,1)

≤ C2‖w(Mnf − f)‖[0,1). (4)

The proof is based on the method, used for the first time in [8]. Shortly,
the idea is this: by making an appropriate transformation we go to Baskakov
operators for which we have the needed estimations and go back by the inverse
transformation.

2 A connection between Baskakov and MKZ op-
erators

Following [8] we introduce a transformation T mapping functions defined on
[0,∞) into functions defined on [0, 1). And we make the agreement that from
now on we shall denote variables, functions and operators, defined in [0, 1) the
usual way, and their analogs, defined in [0,∞), with tilde.

Now we give some notations and definitions.
The uniform norm on the interval [0,∞) we will denote ‖ · ‖[0,∞) and we define
the next function spaces.

C(w̃)[0,∞) = {g̃ ∈ C[0,∞); w̃g̃ ∈ L∞[0,∞)} ,

W 2(w̃ϕ̃)[0,∞) =
{
g̃, D̃g̃ ∈ ACloc(0,∞) & w̃ϕ̃D̃2g̃ ∈ L∞[0,∞)

}
,

W 3(w̃ϕ̃3/2)[0,∞) =
{
g̃, D̃g̃, D̃2g̃ ∈ ACloc(0,∞) & w̃ϕ̃3/2D̃3g̃ ∈ L∞[0,∞)

}
.
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The weighted error by Baskakov operators will be characterized by the next
K-functional, defined for every function f̃ ∈ C(w̃)[0,∞) + W 2(w̃ϕ̃)[0,∞) and
for every t > 0 by the formula

Kw̃(f̃ , t)[0,∞) = inf

{
‖w̃(f̃ − g̃)‖[0,∞) + t

∥∥∥w̃ϕ̃D̃2g̃
∥∥∥
[0,∞)

}
, (5)

where the infimum is taken over functions g̃ ∈W 2(w̃ϕ̃)[0,∞) such that f̃ − g̃ ∈
C(w̃)[0,∞).

We start with the change of variable σ : [0, 1) → [0,∞) (used for the first
time by V.Totik in [10]) given by

x̃ = σ(x) =
x

1− x
. (6)

Then the inverse change of variable σ−1 : [0,∞)→ [0, 1) is

x = σ−1(x̃) =
x̃

1 + x̃
.

The transformation operator T , transforming a function f̃ defined on [0,∞) to
a function f defined on [0, 1) is defined by

f(x) = T (f̃)(x) = λ(x)(f̃ ◦ σ)(x), λ(x) = 1− x. (7)

Then the inverse operator T−1, transforming a function f defined on [0, 1) to a
function f̃ defined on [0,∞) is

f̃(x̃) = T−1(f)(x̃) =
1

(λ ◦ σ−1)(x̃)
(f ◦ σ−1)(x̃).

We want to estimate the weighted error by MKZ, so we define a new transfor-
mation operator S by

w(x) = S(w̃)(x) =
1

λ(x)
(w̃ ◦ σ)(x). (8)

and its inverse S−1 is

w̃(x̃) = S−1(w)(x̃) = (λ ◦ σ−1)(x̃)(w ◦ σ−1)(x̃). (9)

Obviously we have:

wf = S(w̃)T (f̃) = (w̃ ◦ σ)(f̃ ◦ σ),

w̃f̃ = S−1(w)T−1(f) = (w ◦ σ−1)(f ◦ σ−1).
(10)

For the next lemmas, w is a weight in [0, 1) and w̃ = S−1(w) is the according
weight in [0,∞).
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Lemma 2.1. The operators T and its inverse T−1 are linear positive operators
and the next equalities are true:

T (ϕ̃D̃2f̃) = ϕD2(T f̃),

T−1(ϕD2f) = ϕ̃D̃2(T−1f). (11)

Proof. We will prove only the first equality (the proof of the second one is
similar).
For the right side of the first equality we have

D(T f̃) = D
(
λ(f̃ ◦ σ)

)
= −f̃ ◦ σ + λDf̃ ◦ σ

= −f̃ ◦ σ + λD̃f̃ ◦ σ.λ−2 = −f̃ ◦ σ + λ−1D̃f̃ ◦ σ

and

D2(T f̃) = D
(
−f̃ ◦ σ + λ−1D̃f̃ ◦ σ

)
= −D̃f̃ ◦ σ.λ−2 +D(λ−1)D̃f̃ ◦ σ + λ−1D

(
D̃f̃ ◦ σ

)
= −λ−2D̃f̃ ◦ σ + λ−2D̃f̃ ◦ σ + λ−1D̃2f̃ ◦ σ.λ−2 = λ−3D̃2f̃ ◦ σ.

Consequently

ϕD2(T f̃) = λ
ϕ

λ4
D̃2f̃ ◦ σ = λϕ̃D̃2f̃ ◦ σ = T (ϕ̃D̃2f̃).

Lemma 2.2. The operator T : C(w̃)[0,∞)→ C(w)[0, 1) is an one-to-one cor-
respondence with

‖wT (f̃)‖[0,1) = ‖w̃f̃‖[0,∞), ‖w̃T−1(f)‖[0,∞) = ‖wf‖[0,1).

Proof. The above equalities are easily obtainable from the definition (7) of the
operator T and from the equalities (10).

Lemma 2.3. The operator T : W 2(w̃ϕ̃)[0,∞)→W 2(wϕ)[0, 1) is an one-to-one
correspondence with

‖wϕD2(T (f̃))‖[0,1) = ‖w̃ϕ̃D̃2f̃‖[0,∞), ‖w̃ϕ̃D̃2(T−1(f))‖[0,∞) = ‖wϕD2f‖[0,1).

Proof. From the definition (7) of tne operator T and from the equalities (10)
and (11) we have

w̃ϕ̃D̃2f̃ = w̃T−1
(
ϕD2(T f̃)

)
= w̃

1

λ ◦ σ−1
(
ϕD2(T f̃)

)
◦ σ−1

=
(
λ ◦ σ−1

) (
w ◦ σ−1

) 1

λ ◦ σ−1
(
ϕD2(T f̃)

)
◦ σ−1

=
(
w ◦ σ−1

) (
ϕD2(T f̃)

)
◦ σ−1 =

(
wϕD2(T (f̃))

)
◦ σ−1.
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Consequently

w̃ϕ̃D̃2f̃(x̃) =
(
wϕD2(T (f̃))

)
◦ σ−1(x̃) = wϕD2(T (f̃))(x)

or

‖wϕD2(T (f̃))‖[0,1) = ‖w̃ϕ̃D̃2f̃‖[0,∞).

The proof of the second equality is similar.

Lemma 2.4. For every f ∈ C(w)[0, 1) + W 2(wϕ)[0, 1), f̃ = T−1f and t > 0
we have

Kw(f, t)[0,1) = Kw̃(f̃ , t)[0,∞).

Proof. From the definition of the K-functional (5) we have

Kw̃(f̃ , t)[0,∞) = inf
g̃∈W 2(w̃ϕ̃), f̃−g̃∈C(w̃)

{
‖w̃(f̃ − g̃)‖[0,∞) + t‖w̃ϕ̃D̃2g̃‖[0,∞)

}
.

Now, from (10)

w̃(f̃ − g̃) = (w ◦ σ−1)
(
(f − g) ◦ σ−1

)
and consequently

‖w̃(f̃ − g̃)‖[0,∞) = ‖w(f − g)‖[0,1).

From Lemma 2.4 we have

‖w̃ϕ̃D̃2g̃‖[0,∞) = ‖wϕD2(T (g̃))‖[0,1) = ‖wϕD2g‖[0,1).

The classical Baskakov operator Vnf(x) (see [1]) is defined for bounded func-
tions f(x) in [0,∞) by the formula

Vnf(x) = (Vnf, x) = Vn(f, x) =

∞∑
k=0

f

(
k

n

)
vn,k(x) (12)

where

vn,k(x) =

(
n+ k − 1

k

)
xk(1 + x)−n−k.

The next two lemmas give the connection between the MKZ operators Mn

and the Baskakov operators Vn.

Lemma 2.5. For every f such that one of the series below is convergent and
for every n ∈ N we have

Mn(f)(x) = T (Vn(T−1(f)))(x), x ∈ [0, 1). (13)
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Proof. From the definition of T we get

T
(
Vn
(
T−1(f)

))
(x) = λ(x)(Vn(T−1(f)) ◦ σ−1)(x)

=
1

1 + x̃
(Vn(T−1(f)(x̃) =

1

1 + x̃
Vn(f̃ , x̃)

=
1

1 + x̃

∞∑
k=0

(
n+ k − 1

k

)
x̃k

(1 + x̃)n+k
f̃

(
k

n

)

=

∞∑
k=0

(
n+ k − 1

k

)
x̃k

(1 + x̃)n+k+1

1

(λ ◦ σ−1)
(
k
n

) (f ◦ σ−1)

(
k

n

)
.

Since

σ−1
(
k

n

)
=

k/n

1 + k/n
=

k

n+ k

we have

(λ ◦ σ−1)

(
k

n

)
= λ

(
k

n+ k

)
=

n

n+ k

and

(f ◦ σ−1)

(
k

n

)
= f

(
k

n+ k

)
.

Also

x̃k

(1 + x̃)n+k+1
=

(
x̃

1 + x̃

)k
1

(1 + x̃)n+1
= xk(1− x)n+1.

Consequently

T (Vn(T−1(f)))(x) =

∞∑
k=0

(
n+ k − 1

k

)
n+ k

k
xk(1− x)n+1f

(
k

n+ k

)

=

∞∑
k=0

(
n+ k

k

)
xk(1− x)n+1f

(
k

n+ k

)
= Mn(f, x).

Lemma 2.6. For every f ∈ C(w)[0, 1) and for every n ∈ N we have∥∥w(Mnf − f)
∥∥
[0,1)

=
∥∥∥w̃(Vnf̃ − f̃)

∥∥∥
[0,∞)

.

Proof. From Lemma 2.5 we have

Mn(f)(x) = T (Vn(T−1(f)))(x) = λ(x)(Vn(T−1(f)) ◦ σ−1)(x)

=
1

1 + x̃
(Vn(T−1(f)(x̃) =

1

1 + x̃
Vn(f̃ , x̃).
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Since,

f(x) = T (f̃)(x) = λ(x)(f̃ ◦ σ)(x) =
1

1 + x̃
f̃(x̃)

it follows that

Mn(f)(x)− f(x) =
1

1 + x̃

(
Vn(f̃ , x̃)− f̃(x̃)

)
.

Also, from (8) we have

w(x) = S(w̃)(x) =
1

λ(x)
(w̃ ◦ σ)(x) = (1 + x̃)w̃(x̃).

Consequently

w(x)
(
Mnf − f

)
(x) = (1 + x̃)w̃(x̃)

1

1 + x̃

(
Vn(f̃ , x̃)− f̃(x̃)

)
= w̃(x̃)

(
Vnf̃ − f̃

)
(x̃)

i.e. ∥∥w(Mnf − f)
∥∥
[0,1)

=
∥∥∥w̃(Vnf̃ − f̃)

∥∥∥
[0,∞)

.

3 Proof of Theorem 1.1 and some other results
for MKZ

From Lemma 2.5 we have

Mn(f)(x) = T (Vn(T−1(f)))(x) = λ(x)(Vn(T−1(f)) ◦ σ−1)(x)

=
1

1 + x̃
(Vn(T−1(f)(x̃) =

1

1 + x̃
Vn(f̃ , x̃).

Since

f(x) = T (f̃)(x) = λ(x)(f̃ ◦ σ)(x) =
1

1 + x̃
f̃(x̃)

it follows that

Mn(f)(x)− f(x) =
1

1 + x̃

(
Vn(f̃ , x̃)− f̃(x̃)

)
.

Also, from (8) we have

w(x) = S(w̃)(x) =
1

λ(x)
(w̃ ◦ σ)(x) = (1 + x̃)w̃(x̃).
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Consequently

w(x)
(
Mnf − f

)
(x) = (1 + x̃)w̃(x̃)

1

1 + x̃

(
Vn(f̃ , x̃)− f̃(x̃)

)
= w̃(x̃)

(
Vnf̃ − f̃

)
(x̃)

i.e. ∥∥w(Mnf − f)
∥∥
[0,1)

=
∥∥∥w̃(Vnf̃ − f̃)

∥∥∥
[0,∞)

.

From [6][Theorem 1] we have that for weights w̃(x̃) = x̃β0(1 + x̃)β∞ , where
β0 ∈ [−1, 0], β∞ ∈ R, the next equivalency is true, i.e.:

There exists an absolute constant L such that, for every natural number
n > L ∥∥∥w̃(Vnf̃ − f̃)

∥∥∥
[0,∞)

∼ Kw̃

(
f̃ ,

1

n

)
[0,∞)

.

From Lemma 2.4 we have

Kw(f, t)[0,1) = Kw̃(f̃ , t)[0,∞)

and consequently ∥∥w(Mnf − f)
∥∥
[0,1)
∼ Kw

(
f,

1

n

)
[0,1)

.

For the weights w̃(x̃) = x̃β0(1 + x̃)β∞ we have

w(x) =
1

λ(x)
(w̃ ◦ σ)(x) = (1 + x̃)w̃(x̃) = x̃γ0(1 + x̃)γ∞+1

= xγ0(1− x)−(γ∞+γ0+1) = xγ0(1− x)γ1 .

Since β0 ∈ [−1, 0], β∞ ∈ R we have γ0 ∈ [−1, 0], γ1 ∈ R.
The proof of Theorem 1.1 is complete.
From Lemma 2.6, Lemma 2.3 and Lemma 5 in [6] we obtain the next Jackson-

type inequality.

Theorem 3.1. For w, defined by (2) there exists a constant C such that for
every natural n ≥ |1 + γ0 + γ1| we have∥∥w(Mnf − f)

∥∥
[0,1)
≤ C

n

∥∥wϕD2f
∥∥
[0,1)

for every function f ∈W 2(wϕ)[0, 1).

From the definition of T , Lemma 2.3, Lemma 2.5 and Lemma 7 in [6] we
obtain the next Bernstein-type inequality.

Theorem 3.2. For w, defined by (2) there exists a constant C such that for
every natural n ≥ |1 + γ0 + γ1| we have∥∥wϕD2Mnf

∥∥
[0,1)
≤ Cn‖wf‖[0,1)

for every function f ∈ C(w)[0, 1).
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