Weighted Approximation of functions in $L_{\infty}[0, \infty)^{1}$

Ivan Gadjev and Parvan E. Parvanov

Abstract

Direct theorems in terms of the weighted K-functional for the uniform weighted approximation by a class of operators which reproduce the functions $E_{i}(x)=\frac{x^{i}}{1+x}, i=0,1$ are obtained for functions from $C(w)+W_{\mu}^{2}(w \phi)$ with weights of the form $\left(\frac{x}{1+x}\right)^{\beta_{0}}\left(\frac{1}{1+x}\right)^{\beta_{\infty}}$ for $\beta_{0}, \beta_{\infty} \in[-1,0]$. As a consequence, direct theorems for some (for instance, classical and Goodman-Sharma modifications of Baskakov and Meyer-König and Zeller) operators are obtained. Keywords: Baskakov operator, K-functional, Direct theorem, Baskakov-type operator 2010 MSC: 41A36, 41A25, 41A27, 41A17

1. Introduction

In order to approximate functions in $[0, \infty$), Baskakov (in analogy with the Bernstein operator) introduced a new operator (see [1]). It is defined for bounded functions $f(x)$ in $[0, \infty)$ by the formula

$$
\begin{equation*}
B_{n} f(x)=\sum_{k=0}^{\infty} P_{n, k}(x) f\left(\frac{k}{n}\right) \tag{1.1}
\end{equation*}
$$

where

$$
P_{n, k}(x)=\binom{n+k-1}{k} x^{k}(1+x)^{-n-k}
$$

One way to generalize this is to replace $f\left(\frac{k}{n}\right)$ in the above definition by some functionals $b_{n, k}(f)$, defined for every $f \in L_{\infty}[0, \infty)$ and satisfying given conditions. A different path is to consider a sequence of linear positive operators and impose appropriate conditions.

In this paper we investigate the approximation of functions $f \in L_{\infty}[0, \infty)$ by a sequence of operators L_{n} which satisfy the next conditions:

$$
\begin{align*}
& L_{n} \text { are linear and positive operators, } \tag{1.2}\\
& L_{n}\left(E_{i}, x\right)=E_{i}(x) \text { for } \mathrm{i}=0 \text { and } \mathrm{i}=1 \tag{1.3}\\
& L_{n}\left(E_{2}, x\right)=E_{2}(x)+A_{n}(x) \tag{1.4}\\
& L_{n}\left(E_{0}^{2}, x\right)=E_{0}^{2}(x)+B_{n}(x) \tag{1.5}
\end{align*}
$$

[^0]Here by $L_{\infty}[0, \infty)$ we denote the space of all Lebesgue measurable and essentially bounded in $[0, \infty)$ functions equipped with the uniform norm $\|\cdot\|, E_{i}$ (for $i=0,1,2$) are the functions $E_{i}(x)=\frac{x^{i}}{1+x}$ and the functions $A_{n}(x)$ and $B_{n}(x)$ are such that for every $x \in[0, \infty)$ we have $\left|A_{n}(x)\right| \leq a_{n} x,\left|B_{n}(x)\right| \leq b_{n} E_{0}^{2}(x)$ and $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}=0$.

And we note here that if the above conditions are satisfied, then automatically we have also

$$
\begin{align*}
& L_{n}(1, x)=1 \tag{1.6}\\
& L_{n}\left(E_{1}^{2}, x\right)=E_{1}^{2}(x)+B_{n}(x) \tag{1.7}
\end{align*}
$$

We define an appropriate K-functional and by using it we prove a direct theorem for them. But before formulating the main result we will start with some definitions and notations.

The first derivative operator is denoted by $D=\frac{d}{d x}$. Thus, $D g(x)=g^{\prime}(x)$ and $D^{2} g(x)=$ $g^{\prime \prime}(x)$. By $\phi(x)=x$ we denote the weight which is naturally connected with the second derivatives of these operators. Our main goal in this paper is the characterization of L_{∞}-norm of the weighted approximation error $\left\|w\left(f-L_{n} f\right)\right\|$ for weight functions given by

$$
\begin{equation*}
w(x)=w_{\beta}(x)=w\left(\beta_{0}, \beta_{\infty} ; x\right)=\left(\frac{x}{1+x}\right)^{\beta_{0}}\left(\frac{1}{1+x}\right)^{\beta_{\infty}} . \tag{1.8}
\end{equation*}
$$

where $x \in[0, \infty)$ and $\beta_{0}, \beta_{\infty} \in[-1,0]$.
By $C[0, \infty)$ we denote the space of all continuous on $[0, \infty)$ functions. The functions from $C[0, \infty)$ are not expected to be bounded or uniformly continuous.

For a weight function w we set

$$
C(w)[0, \infty)=C(w)=\left\{f \in C[0, \infty): w f \in L_{\infty}[0, \infty)\right\}
$$

and

$$
W_{\mu}^{2}(w \phi)[0, \infty)=W_{\mu}^{2}(w \phi)=\left\{g: \mu g, D(\mu g) \in A C_{l o c}(0, \infty), w \phi D^{2}(\mu g) \in L_{\infty}[0, \infty)\right\}
$$

where $A C_{l o c}(0, \infty)$ consists of the functions which are absolutely continuous in $[a, b]$ for every $[a, b] \subset(0, \infty)$ and $\mu(x)=1+x$.

The weighted approximation error of L_{n} will be compared with the K-functional between the weighted spaces $C(w)$ and $W_{\mu}^{2}(w \phi)$, which for every

$$
f \in C(w)+W_{\mu}^{2}(w \phi)=\left\{f_{1}+f_{2}: f_{1} \in C(w), f_{2} \in W_{\mu}^{2}(w \phi)\right\}
$$

and $t>0$ is defined by

$$
\begin{equation*}
K_{w}(f, t)=\inf \left\{\|w(f-g)\|+t\left\|w \phi D^{2}(\mu g)\right\|: g \in W_{\mu}^{2}(w \phi), f-g \in C(w)\right\} \tag{1.9}
\end{equation*}
$$

The above formula is a standard definition of K-functional in interpolation theory. In approximation theory the condition $f-g \in C(w)$ in 1.9$)$ is usually omitted because in the predominant number of cases the second interpolation space is embedded in the first one. However, in this case we have interpolation between $C(w)$ and $W_{\mu}^{2}(w \phi)$, as $W_{\mu}^{2}(w \phi) \backslash C(w)$ is of infinite dimension for some of the weights w that satisfy the above assumptions.

Our main result is a direct inequality. It is a modification of the result in [10], which treats the case of a class of Bernstein-type operators.

Theorem 1.1. Let the operators L_{n} satisfy the conditions (1.2) - 1.5) and w is given by (1.8) with $\beta_{0}, \beta_{\infty} \in[-1,0]$ and $c_{n}=\sqrt{2} \max \left\{a_{n}, \sqrt{a_{n} b_{n}}\right\}$. Then for every $f \in C(w)+$ $W_{\mu}^{2}(w \phi)$ and for every $n \in \mathbb{N}$ we have

$$
\left\|w\left(L_{n} f-f\right)\right\| \leq 2 K_{w}\left(f, c_{n}\right)
$$

Some remarks follow.

Remark 1.

Let $\Pi_{1}=\left\{f: f=a E_{0}+b E_{1}, a, b \in \mathbb{R}\right\}$. Then for $\beta_{0} \in[-1,0], \beta_{\infty} \in(-1,0)$ the space $C(w)+W_{\mu}^{2}(w \phi)$ coincides with the space $C(w)+\Pi_{1}$. Indeed, let $f \in C(w)+W_{\mu}^{2}(w \phi)$, i.e. f can be written as $f=f_{1}+f_{2}$ where $f_{1} \in C(w)$ and $f_{2} \in W_{\mu}^{2}(w \phi)$. Then we have $\left(\mu f_{2}\right)(x)=a^{*} x+b^{*}+g^{*}(x)$ where

$$
g^{*}(x)=-\int_{0}^{x} \int_{v}^{\infty}\left(\mu f_{2}\right)^{\prime \prime}(u) d u d v
$$

and

$$
b^{*}=\left(\mu f_{2}\right)(0), \quad a^{*}=\left(\mu f_{2}\right)^{\prime}(\infty):=\left(\mu f_{2}\right)^{\prime}(1)+\int_{1}^{\infty}\left(\mu f_{2}\right)^{\prime \prime}(v) d v
$$

Obviously, $g^{*} \in C(w \phi)$ and $g=\mu^{-1} g^{*} \in C(w)$ and the above follows from

$$
f_{2}(x)=\frac{a^{*} x+b^{*}}{\mu}+\frac{g^{*}(x)}{\mu}=a E_{0}(x)+b E_{1}(x)+g(x)
$$

But for $\beta_{\infty}=0$ or for $\beta_{\infty}=-1$ the space $C(w)+W_{\mu}^{2}(w \phi)$ is essentially bigger than $C(w)+\Pi_{1}$. For instance, for the function $f(x)=\log (1+x)$, we have $f \in(C(w)+$ $\left.W_{\mu}^{2}(w \phi)\right) \backslash\left(C(w)+\Pi_{1}\right)$ for $\beta_{\infty}=0$ and $\beta_{0} \in[-1,0]$. The same is true for the function $f(x)=(1+x) \log (1+x)$ for $\beta_{\infty}=-1$ and $\beta_{0} \in[-1,0]$.

Remark 2.

Theorem (1.1) does not imply for all $f \in C(w)+W_{\mu}^{2}(w \phi)$ that $\left\|w\left(L_{n} f-f\right)\right\| \rightarrow 0$ or $K_{w}\left(f, c_{n}\right) \rightarrow 0$ when $n \rightarrow \infty$. Actually, none of these quantities tends to zero with $n \rightarrow \infty$ for some functions $f \in C(w)$. In order to ensure convergence to zero of these quantities one may need to impose additional restrictions on the behavior of f at 0 and at ∞. At 0 these restrictions are (see [4]) $\lim _{x \rightarrow 0+} x^{\beta_{0}} f(x)=0$ for $-1<\beta_{0}<0$ or the existence of $\lim _{x \rightarrow 0+} x^{-1} f(x)$ for $\beta_{0}=-1$. In the same time, at ∞ the restrictions are more complicated but, shortly, the function f should not vary very fast in order to allow approximation in $C(w)$ with functions from $W_{\mu}^{2}(w \phi)$.

2. Main result

It is well known fact that if an operator \tilde{L} satisfies the following two conditions:

$$
\begin{equation*}
\tilde{L} \text { is linear and positive operator; } \tag{2.1}
\end{equation*}
$$

$$
\begin{equation*}
\tilde{L}(1, x)=1 \quad, \quad \tilde{L}(t, x)=x \tag{2.2}
\end{equation*}
$$

then for every concave continuous function f the next inequality is true

$$
\begin{equation*}
f \geq \tilde{L} f \tag{2.3}
\end{equation*}
$$

As a consequence of this we have that if an operator L satisfies the following two conditions:

$$
\begin{align*}
& L \text { is linear and positive operator; } \tag{2.4}\\
& L\left(E_{0}, x\right)=E_{0}(x), L\left(E_{1}, x\right)=E_{1}(x) \tag{2.5}
\end{align*}
$$

then the operator $\mu L\left(\frac{f}{\mu}\right)$ satisfies the conditions (2.1) and (2.2) and consequently for every concave continuous function f the next inequality is true

$$
\begin{equation*}
\frac{f}{\mu} \geq L\left(\frac{f}{\mu}\right) \tag{2.6}
\end{equation*}
$$

Now we prove two lemmas which we will need later.
Lemma 2.1. For every function $f \in C(w)[0, \infty)$ we have $\|w L(f)\| \leq\|w f\|$, i.e. the norm of the operator is 1 .

Proof. Let us mention that the function $\mu(w)^{-1}$ is concave for $\beta_{0}, \beta_{\infty} \in[-1,0]$ and then from (2.6) we have

$$
L\left((w)^{-1}\right)=L\left(\frac{\mu(w)^{-1}}{\mu}\right) \leq(w)^{-1}
$$

This one, (2.4) and (2.5) give

$$
\begin{aligned}
\|w L(f)\| & =\left\|w L\left(w f(w)^{-1}\right)\right\| \\
& \leq\|w f\|\left\|w L\left((w)^{-1}\right)\right\| \\
& \leq\|w f\|\left\|w(w)^{-1}\right\|=\|w f\| .
\end{aligned}
$$

Lemma 2.2. For $\beta_{0}, \beta_{\infty} \in[-1,0]$ and $x, t \in(0, \infty)$

$$
\left|\int_{x}^{t} \frac{t-u}{\phi(u) w(u)} d u\right| \leq 2 \sqrt{2} \max \left\{\frac{(x-t)^{2}}{\phi(x) w(x)}, \frac{(x-t)^{2}}{\sqrt{1+t} \sqrt{x} w(x)}\right\}
$$

Proof. Case 1. $t \geq x$.
It is obvious that $\frac{1}{\phi(u) w(u)} \leq \frac{1}{\phi(x) w(x)}$ for $u \in[x, t]$ because the function $\phi(u) w(u)=u^{1+\beta_{0}}(1+u)^{-\beta_{0}-\beta_{\infty}}$ is monotonically increasing.

Then we have

$$
\begin{equation*}
\left|\int_{x}^{t} \frac{t-u}{\phi(u) w(u)} d u\right| \leq \frac{(t-x)^{2}}{2 \phi(x) w(x)} \tag{2.7}
\end{equation*}
$$

Case 2.1. $t<x$ and $\beta_{\infty} \in\left[-\frac{1}{2}, 0\right]$.

In this case the powers $1+\beta_{0}$ and $-\beta_{0}-\beta_{\infty}$ are positive and consequently

$$
\begin{align*}
& \left|\int_{x}^{t} \frac{t-u}{\phi(u) w(u)} d u\right|=\int_{t}^{x} \frac{u-t}{\phi(u) w(u)} d u \\
& =\int_{t}^{x} \frac{u-t}{u^{1+\beta_{0}}(1+u)^{-\beta_{0}-\beta_{\infty}} d u} \\
& =\int_{t}^{x}(u-t)^{1-\left(1+\beta_{0}\right)-\left(-\beta_{0}-\beta_{\infty}\right)}\left(\frac{u-t}{u}\right)^{1+\beta_{0}}\left(\frac{u-t}{u+1}\right)^{-\beta_{0}-\beta_{\infty}} d u \\
& =\int_{t}^{x}(u-t)^{\beta_{\infty}}\left(1-\frac{t}{u}\right)^{1+\beta_{0}}\left(1-\frac{t+1}{u+1}\right)^{-\beta_{0}-\beta_{\infty}} d u \\
& \leq \int_{t}^{x}(u-t)^{\beta_{\infty}}\left(1-\frac{t}{x}\right)^{1+\beta_{0}}\left(1-\frac{t+1}{x+1}\right)^{-\beta_{0}-\beta_{\infty}} d u \\
& =\left(1-\frac{t}{x}\right)^{1+\beta_{0}}\left(1-\frac{t+1}{x+1}\right)^{-\beta_{0}-\beta_{\infty}} \int_{t}^{x}(u-t)^{\beta_{\infty}} d u \\
& =\frac{(x-t)^{1-\beta_{\infty}}}{x^{1+\beta_{0}}(1+x)^{-\beta_{0}-\beta_{\infty}} \int_{t}^{x}(u-t)^{\beta_{\infty}} d u} \\
& =\frac{(x-t)^{1-\beta_{\infty}}}{\phi(x) w(x)}\left(1+\beta_{\infty}\right)^{-1}(x-t)^{1+\beta_{\infty}} \\
& =\left(1+\beta_{\infty}\right)^{-1} \frac{(x-t)^{2}}{\phi(x) w(x)} \\
& \leq 2 \frac{(x-t)^{2}}{\phi(x) w(x)} \tag{2.8}
\end{align*}
$$

Case 2.2. $t<x$ and $\beta_{\infty} \in\left[-1,-\frac{1}{2}\right]$.
In this case $\frac{1}{(1+u)^{1 / 2}} \leq \frac{1}{(1+t)^{1 / 2}}$ for $u \in[t, x]$ and the powers $1+\beta_{0}$ and $-\beta_{0}-$ $\beta_{\infty}-1 / 2$ are positive. In the same way as in Case 2.1. we have

$$
\begin{aligned}
& \left|\int_{x}^{t} \frac{t-u}{\phi(u) w(u)} d u\right|=\int_{t}^{x} \frac{u-t}{\phi(u) w(u)} d u \\
& =\int_{t}^{x} \frac{u-t}{u^{1+\beta_{0}}(1+u)^{-\beta_{0}-\beta_{\infty}} d u} \\
& \leq(1+t)^{-1 / 2} \int_{t}^{x} \frac{u-t}{u^{1+\beta_{0}}(1+u)^{-\beta_{0}-\beta_{\infty}-1 / 2}} d u \\
& =(1+t)^{-1 / 2} \int_{t}^{x}(u-t)^{\beta_{\infty}+1 / 2}\left(1-\frac{t}{u}\right)^{1+\beta_{0}}\left(1-\frac{t+1}{u+1}\right)^{-\beta_{0}-\beta_{\infty}-1 / 2} d u \\
& \leq(1+t)^{-1 / 2} \int_{t}^{x}(u-t)^{\beta_{\infty}+1 / 2}\left(1-\frac{t}{x}\right)^{1+\beta_{0}}\left(1-\frac{t+1}{x+1}\right)^{-\beta_{0}-\beta_{\infty}-1 / 2} d u \\
& =(1+t)^{-1 / 2}\left(1-\frac{t}{x}\right)^{1+\beta_{0}}\left(1-\frac{t+1}{x+1}\right)^{-\beta_{0}-\beta_{\infty}-1 / 2} \int_{t}^{x}(u-t)^{\beta_{\infty}+1 / 2} d u \\
& =\frac{(x-t)^{1 / 2-\beta_{\infty}}}{\sqrt{1+t}} x^{1+\beta_{0}}(1+x)^{-\beta_{0}-\beta_{\infty}-1 / 2} \int_{t}^{x}(u-t)^{\beta_{\infty}+1 / 2} d u \\
& =\sqrt{\frac{1+x}{1+t}} \frac{(x-t)^{1 / 2-\beta_{\infty}}}{\phi(x) w(x)}\left(\frac{3}{2}+\beta_{\infty}\right)^{-1}(x-t)^{3 / 2+\beta_{\infty}}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\frac{3}{2}+\beta_{\infty}\right)^{-1} \sqrt{\frac{1+x}{1+t}} \frac{(x-t)^{2}}{\phi(x) w(x)} \\
& \leq 2 \sqrt{\frac{1+x}{1+t}} \frac{(x-t)^{2}}{\phi(x) w(x)}
\end{aligned}
$$

Here we consider two subcases for x. For $x \in(0,1]$ we have $\sqrt{\frac{1+x}{1+t}} \leq \sqrt{2}$ and from the above we obtain

$$
\begin{equation*}
\left|\int_{x}^{t} \frac{t-u}{\phi(u) w(u)} d u\right| \leq 2 \sqrt{2} \frac{(x-t)^{2}}{\phi(x) w(x)} \tag{2.9}
\end{equation*}
$$

For $x \in[1, \infty)$ we have $\frac{\sqrt{1+x}}{x} \leq \sqrt{\frac{2}{x}}$ and consequently

$$
\begin{equation*}
\left|\int_{x}^{t} \frac{t-u}{\phi(u) w(u)} d u\right| \leq 2 \sqrt{2} \frac{(x-t)^{2}}{\sqrt{1+t} \sqrt{x} w(x)} \tag{2.10}
\end{equation*}
$$

From (2.9) and 2.10 we have

$$
\begin{equation*}
\left|\int_{x}^{t} \frac{t-u}{\phi(u) w(u)} d u\right| \leq \max \left\{2 \sqrt{2} \frac{(x-t)^{2}}{\phi(x) w(x)}, 2 \sqrt{2} \frac{(x-t)^{2}}{\sqrt{1+t} \sqrt{x} w(x)}\right\} \tag{2.11}
\end{equation*}
$$

Finaly from (2.7), (2.8) and (2.11) we get

$$
\left|\int_{x}^{t} \frac{t-u}{\phi(u) w(u)} d u\right| \leq 2 \sqrt{2} \max \left\{\frac{(x-t)^{2}}{\phi(x) w(x)}, \frac{(x-t)^{2}}{\sqrt{1+t} \sqrt{x} w(x)}\right\}
$$

The result from the above lemma we use in the next theorem.
Theorem 2.1. (Jackson-type inequality). Let us define for an operator L the quantities

$$
\mathcal{A}=\left\|\phi^{-1}\left(L\left(E_{2}\right)-E_{2}\right)\right\| \quad \text { and } \quad \mathcal{B}=\left\|\mu^{2}\left(L\left(E_{1}^{2}\right)-E_{1}^{2}\right)\right\| .
$$

Then for every operator L which satisfies conditions 2.4 and 2.5 and such that \mathcal{A} is finite and for every function $f \in W_{\mu}^{2}(w \phi)$ we have

$$
\|w(L f-f)\| \leq 2 \sqrt{2}\left\|w \phi D^{2}(\mu f)\right\| \max \{\mathcal{A}, \sqrt{\mathcal{A} \cdot \mathcal{B}}\}
$$

Proof. Let $g(z)=\mu(z) f(z)$. Then by using Taylor's formula

$$
g(t)=g(x)+(t-x) D g(x)+\int_{x}^{t}(t-v) D^{2} g(v) d v
$$

we have for $f(x)$

$$
f(t)=f(x)+\frac{t-x}{1+t}(1+x) D f(x)+\frac{1}{1+t} \int_{x}^{t}(t-v) D^{2}(\mu(v) f(v)) d v
$$

Applying operator L to both sides of the above equality and using (2.4), (2.5) and Lemma 2.2 we obtain

$$
\begin{align*}
& |L(f, x)-f(x)|=\left|L\left(\frac{1}{1+t} \int_{x}^{t}(t-v) D^{2}(\mu(v) f(v)) d v, x\right)\right| \tag{2.12}\\
& \leq L\left(\frac{1}{1+t}\left|\int_{x}^{t} \frac{t-v}{\phi(v) w(v)} d v\right|, x\right)\left\|w \phi D^{2}(\mu f)\right\| \\
& \leq\left\|w \phi D^{2}(\mu f)\right\| L\left(\max \left\{2 \sqrt{2} \frac{(x-t)^{2}}{(1+t) \phi(x) w(x)}, 2 \sqrt{2} \frac{(x-t)^{2}}{(1+t)^{3 / 2} \sqrt{x} w(x)}\right\}, x\right) \\
& \leq 2 \sqrt{2} \frac{\left\|w \phi D^{2}(\mu f)\right\|}{w(x)} \max \left\{L\left(\frac{(x-t)^{2}}{(1+t) \phi(x)}, x\right), L\left(\frac{(x-t)^{2}}{\sqrt{x}(1+t)^{3 / 2}}, x\right)\right\} .
\end{align*}
$$

Applying (2.5) for the first term and Cauchy's inequality and (2.5) for the second term in right hand side of 2.12 we have

$$
L\left(\frac{(x-t)^{2}}{(1+t) \phi(x)}, x\right)=\phi^{-1}(x)\left(L\left(E_{2}, x\right)-E_{2}(x)\right)
$$

and

$$
\begin{aligned}
& L\left(\frac{(x-t)^{2}}{\sqrt{x}(1+t)^{3 / 2}}, x\right) \leq\left(L\left(\frac{(x-t)^{2}}{(1+t) \phi(x)}, x\right)\right)^{1 / 2} \cdot\left(L\left(\frac{(x-t)^{2}}{(1+t)^{2}}, x\right)\right)^{1 / 2} \\
& =\left(\phi^{-1}(x)\left(L\left(E_{2}, x\right)-E_{2}(x)\right)\right)^{1 / 2} \cdot\left(\mu^{2}(x)\left(L\left(E_{1}^{2}, x\right)-E_{1}^{2}(x)\right)\right)^{1 / 2}
\end{aligned}
$$

Replacing the above two estimations in (2.12) we have

$$
\begin{equation*}
w(x)|L(f, x)-g(x)| \leq 2 \sqrt{2}\left\|w \phi D^{2}(\mu f)\right\| \cdot \max \{\mathcal{A}(x), \sqrt{\mathcal{A}(x) \cdot \mathcal{B}(x)}\} \tag{2.13}
\end{equation*}
$$

Taking a supremum on x in 2.13 we complete the proof of Theorem 2.1.

As an elementary consequence of this lemma we have that if a function $f \in W_{\mu}^{2}(w \phi)$ then $L f-f \in C(w)$.

From 1.4 and 1.5 it follows that

$$
\begin{aligned}
\left|\phi^{-1}(x)\left(L_{n}\left(E_{2}, x\right)-E_{2}(x)\right)\right| & \leq a_{n}, \\
\left|\mu^{2}(x)\left(L_{n}\left(E_{1}^{2}, x\right)-E_{1}^{2}(x)\right)\right| & \leq b_{n} .
\end{aligned}
$$

Above result and Theorem 2.4 give

Theorem 2.2. For every function $f \in W_{\mu}^{2}(w \phi)$ we have

$$
\left\|w\left(L_{n} f-f\right)\right\| \leq 2 c_{n}\left\|w \phi D^{2}(\mu f)\right\|
$$

We use Theorem 2.2 in the proof of Theorem 1.1.
Proof. (Theorem 1.1)
Let g is an arbitrary function in $W_{\mu}^{2}(w \phi)$, such that $g-f \in C(w)$. Then

$$
\left\|w\left(L_{n} f-f\right)\right\| \leq\left\|w\left(L_{n} f-L_{n} g\right)\right\|+\left\|w\left(L_{n} g-g\right)\right\|+\|w(g-f)\|
$$

From Lemma 2.1 and Theorem 2.5 we get

$$
\begin{aligned}
\left\|w\left(L_{n} f-f\right)\right\| & \leq 2\|w(f-g)\|+2 c_{n}\left\|w \phi D^{2}(\mu f)\right\| \\
& =2\left(\|w(f-g)\|+c_{n}\left\|w \phi D^{2}(\mu f)\right\|\right)
\end{aligned}
$$

Taking infimum on all $g \in W_{\mu}^{2}(w \phi)$ such that $(f-g) \in C(w)$ in the above inequality we complete the proof of Theorem 1.1 .

Now we can easily prove a similar result for linear positive operators which reproduce linear functions.

Let us denote the basic test functions by e_{i}, i.e. $e_{i}(x)=x^{i}$ for $i=0,1,2$ and the weight by $\psi(x)=x(1+x)$. Let the sequence of linear positive operators L_{n} satisfy the next conditions

$$
\begin{align*}
& L_{n}\left(e_{i}, x\right)=e_{i}(x), \quad i=0,1, \tag{2.14}\\
& L_{n}\left(e_{2}, x\right)=e_{2}(x)+Q_{n}(x) \tag{2.15}\\
& L_{n}\left(E_{0}, x\right)=E_{0}(x)+R_{n}(x) \tag{2.16}
\end{align*}
$$

where $\left|Q_{n}(x)\right| \leq q_{n} \psi(x),\left|R_{n}(x)\right| \leq r_{n} E_{0}(x)$ and $\lim _{n \rightarrow \infty} q_{n}=\lim _{n \rightarrow \infty} r_{n}=0$.
The weights in consideration are

$$
\begin{equation*}
w_{\gamma}(x)=w_{\gamma}\left(\gamma_{0}, \gamma_{\infty} ; x\right)=\left(\frac{x}{1+x}\right)^{\gamma_{0}}(1+x)^{\gamma_{\infty}}, \quad \gamma_{0}, \gamma_{\infty} \in \mathbb{R} \tag{2.17}
\end{equation*}
$$

We also set

$$
W^{2}\left(w_{\gamma} \psi\right)=\left\{g, g^{\prime} \in A C_{l o c}(0, \infty): w_{\gamma} \psi D^{2} g \in L_{\infty}[0, \infty)\right\}
$$

and for $t>0$ and every function $f \in C\left(w_{\gamma}\right)+W^{2}\left(w_{\gamma} \psi\right)$ a K-functional $K_{w_{\gamma}}(f, t)$ by

$$
K_{w_{\gamma}}(f, t)=\inf _{g \in W^{2}\left(w_{\gamma} \psi\right), f-g \in C\left(w_{\gamma}\right)}\left\{\left\|w_{\gamma}(f-g)\right\|_{[0, \infty)}+t\left\|w_{\gamma} \psi D^{2} g\right\|_{[0, \infty)}\right\}
$$

It is not difficult to see that the operators $\frac{1}{\mu(x)} L_{n}(\mu f, x)$ satisfy the conditions 1.3 1.5 with $q_{n}=a_{n}$ and $r_{n}=b_{n}$. Applying Theorem (1.1) for the operators $\frac{1}{\mu(x)} L_{n}(\mu f, x)$, the function $\frac{f}{\mu}$ and the weight μw_{γ} we obtain
Theorem 2.3. Let w_{γ} be given by (2.17) with $\gamma_{0}, \gamma_{\infty} \in[-1,0]$ and
$d_{n}=\sqrt{2} \max \left\{q_{n}, \sqrt{q_{n} r_{n}}\right\}$. Then for every $f \in C\left(w_{\gamma}\right)+W^{2}\left(w_{\gamma} \psi\right)$ and every $n \in \mathbb{N}$ we have

$$
\left\|w_{\gamma}\left(L_{n} f-f\right)\right\| \leq 2 K_{w_{\gamma}}\left(f, d_{n}\right)
$$

3. Applications

3.1. Immediate applications

-A slight modification of classical Baskakov operator

For bounded and continuous on $[0, \infty)$ functions f and natural $n \geq 2$ we consider linear positive operator

$$
B_{n}^{[s l]}(f, x)=\sum_{k=0}^{\infty} P_{n, k}(x) f\left(\frac{k}{n-1}\right) .
$$

It is easy to see that the conditions $1.3,1.4$ and 1.5 are satisfied with $a_{n}=\frac{1}{n-1}$, $b_{n} \leq \frac{1}{n-2}$ and the result of Theorem 1.1 is

Proposition 3.1. For every $f \in C(w)[0, \infty)+W_{\mu}^{2}(w \phi)[0, \infty)$ and every $n \in \mathbb{N}, n \geq 3$, we have

$$
\left\|w\left(f-B_{n}^{[s l]} f\right)\right\| \leq 2 K_{w}\left(f, \sqrt{\frac{2}{(n-1)(n-2)}}\right) \leq 2 K_{w}\left(f, \frac{\sqrt{2}}{n-2}\right)
$$

- Agrawal and Thamer operators

The Durrmeyer-Baskakov-type operator is given for every natural n by

$$
\begin{align*}
B_{n}^{[A T]}(f, x) & =\sum_{k=0}^{\infty} P_{n, k}(x) b_{n, k}(f), \tag{3.1}\\
b_{n, 0}(f)=f(0) ; \quad b_{n, k}(f) & =(n-1) \int_{0}^{\infty} P_{n, k-1}(y) f(y) d y, \quad k \in \mathbb{N},
\end{align*}
$$

where f is Lebesgue measurable on $(0, \infty)$ with a finite limit $f(0)$ at 0 . The modification was introduced by Agrawal and Thamer [2]. Here conditions 1.3, 1.4 and 1.5 are satisfied with $a_{n}=\frac{2}{n-2}, b_{n} \leq \frac{2}{n-2}$ and the result of Theorem 1.1 is

Proposition 3.2. For every $f \in C(w)[0, \infty)+W_{\mu}^{2}(w \phi)[0, \infty)$ and every $n \in \mathbb{N}, n \geq 3$, we have

$$
\left\|w\left(f-B_{n}^{[A T]} f\right)\right\| \leq 2 K_{w}\left(f, \frac{2 \sqrt{2}}{n-2}\right)
$$

3.2. Applications for Baskakov-type Operators that preserve linear functions

-Classical Baskakov operator

It is easy to see that the operator B_{n} defined by (1.1) satisfy the conditions (2.14), (2.15) and (2.16) with $q_{n}=1 / n$ and $r_{n}=1 /(n-1)$. So, applying Theorem (2.3) we have

Proposition 3.3. Let w_{γ} be given by (2.17) with $\gamma_{0}, \gamma_{\infty} \in[-1,0]$. Then for every $f \in$ $C\left(w_{\gamma}\right)[0, \infty)+W^{2}\left(w_{\gamma} \psi\right)[0, \infty)$ and every $n \in \mathbb{N}$, $n \geq 2$, we have

$$
\left\|w_{\gamma}\left(f-B_{n} f\right)\right\| \leq 2 K_{w_{\gamma}}\left(f, \frac{\sqrt{2}}{n-1}\right)
$$

Remarks.

1.Actualy

$$
\frac{1}{\mu(x)} B_{n}(\mu f, x)=B_{n+1}^{[s l]}(f, x), \quad x \in[0, \infty)
$$

2.More general direct result and a strong converse result of type A are obtained in 6] using different arguments:

Proposition 3.4. Let w_{γ} be given by (2.17) with $\gamma_{0} \in[-1,0], \gamma_{\infty} \in \mathbb{R}$. Then there exists positive constants C_{1}, C_{2} and L such that for every
$f \in C\left(w_{\gamma}\right)[0, \infty)+W^{2}\left(w_{\gamma} \psi\right)[0, \infty)$ and every $n \in \mathbb{N}, n \geq L$, we have

$$
C_{1}\left\|w_{\gamma}\left(f-B_{n} f\right)\right\| \leq K_{w_{\gamma}}\left(f, \frac{1}{n}\right) \leq C_{2}\left\|w_{\gamma}\left(f-B_{n} f\right)\right\|
$$

-A Goodman-Sharma modification of classical Baskakov operator

Finta [5] introduced in 2005 the operator

$$
\begin{aligned}
V_{n}(f, x) & =\sum_{k=0}^{\infty} P_{n, k}(x) v_{n, k}(f) \\
v_{n, 0}(f)=f(0) ; \quad v_{n, k}(f) & =(n+1) \int_{0}^{\infty} P_{n+2, k-1}(y) f(y) d y, \quad k \in \mathbb{N},
\end{aligned}
$$

where f is Lebesgue measurable on $(0, \infty)$ with a finite limit $f(0)$ at 0 .
The operator V_{n} satisfy the conditions (2.14), (2.15) and (2.16) with $q_{n}=2 /(n-1)$ and $r_{n}=2 /(n-1)$. So, applying applying Theorem (2.3) we have

Proposition 3.5. Let w_{γ} be given by (2.17) with $\gamma_{0}, \gamma_{\infty} \in[-1,0]$. Then for every $f \in$ $C\left(w_{\gamma}\right)[0, \infty)+W^{2}\left(w_{\gamma} \psi\right)[0, \infty)$ and every $n \in \mathbb{N}$, $n \geq 2$, we have

$$
\left\|w_{\gamma}\left(f-V_{n} f\right)\right\| \leq 2 K_{w_{\gamma}}\left(f, \frac{2 \sqrt{2}}{n-1}\right)
$$

Remarks.

1.Actualy

$$
\frac{1}{\mu(x)} V_{n}(\mu f, x)=B_{n+1}^{[A T]}(f, x), \quad x \in[0, \infty)
$$

2.A better direct result and a strong converse result of type A are obtained in [7] using different arguments:

Proposition 3.6. Let w_{γ} be given by (2.17) with $\gamma_{0}, \gamma_{\infty} \in[-1,0]$. Then for every $f \in$ $C\left(w_{\gamma}\right)+W^{2}\left(w_{\gamma} \psi\right)$ and every $n \in \mathbb{N}, n \geq 4$, we have

$$
\left\|w_{\gamma}\left(f-V_{n} f\right)\right\| \leq 2 K_{w_{\gamma}}\left(f, \frac{1}{2 n}\right) \leq 13.7\left\|w_{\gamma}\left(f-V_{n} f\right)\right\|
$$

-A Baskakov-Szasz-Durrmeyer operator
In 11 Gupta and Srivastava proposed the Durrmeyer-type Baskakov-Szasz operator as

$$
V_{n}^{*}(f, x)=n \sum_{k=0}^{\infty} P_{n, k}(x) \int_{0}^{\infty} s_{n, k}(t) f(t) d t
$$

where

$$
s_{n, k}(t)=e^{-n t} \frac{(n t)^{k}}{k!}
$$

are the basic Szasz-Mirakjan polynomials. But this operator does not preserve linear functions. So, we slightly modify V_{n}^{*} in a Goodman-Sharma way and consider the operator

$$
\tilde{V}_{n}(f, x)=f(0)(1+x)^{-n}+n \sum_{k=1}^{\infty} P_{n, k}(x) \int_{0}^{\infty} s_{n, k-1}(t) f(t) d t
$$

It is easy to see that \tilde{V}_{n} satisfy conditions 2.14 and 2.15 with $Q_{n}(x)=\frac{x(x+2)}{n}$. From here we have $q_{n} \leq \frac{2}{n}$.

Now we will prove that $r_{n} \leq \frac{2}{n-1}$. Indeed, since the function E_{0} is convex and the operator \tilde{V}_{n} is linear and positive and reproduces linear functions it follows that

$$
\begin{equation*}
E_{0}(x) \leq \tilde{V}_{n}\left(E_{0}, x\right) \tag{3.2}
\end{equation*}
$$

At the same time we have for $k=1$

$$
\begin{equation*}
n \int_{0}^{\infty} e^{-n t} \frac{d t}{1+t} \leq n \int_{0}^{\infty} e^{-n t} d t=1=\frac{n+1}{n+1} \tag{3.3}
\end{equation*}
$$

and for $k \geq 2$,

$$
\begin{equation*}
I_{k}=n \int_{0}^{\infty} s_{n, k-1}(t) \frac{d t}{1+t}=\frac{n}{k-1}-\frac{n}{k-1} I_{k-1} \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{k}=I_{k-1}-\int_{0}^{\infty} s_{n, k-1}(t) \frac{d t}{(1+t)^{2}} \tag{3.5}
\end{equation*}
$$

Multiplying (3.5) by $\frac{n}{k-1}$ and summing with (3.4) we obtain

$$
\begin{equation*}
I_{k}=\frac{n}{n+k-1}-\frac{1}{n+k-1} \int_{0}^{\infty} s_{n, k-1}(t) \frac{d t}{(1+t)^{2}} \leq \frac{n+1}{n+k} . \tag{3.6}
\end{equation*}
$$

From (3.3) and (3.6) it follows that for every $k \in \mathbb{N}$

$$
\begin{equation*}
n \int_{0}^{\infty} s_{n, k-1}(t) \frac{d t}{1+t} \leq\left(1+\frac{1}{n}\right) \frac{n}{n+k} \tag{3.7}
\end{equation*}
$$

Consequently,

$$
\begin{aligned}
\tilde{V}_{n}\left(\frac{1}{1+t}, x\right) & \leq\left(1+\frac{1}{n}\right) \sum_{k=0}^{\infty} P_{n, k}(x) \frac{1}{1+k / n}=\left(1+\frac{1}{n}\right) B_{n}\left(\frac{1}{1+t}, x\right) \\
& \leq\left(1+\frac{1}{n}\right) \frac{n}{n-1} \frac{1}{1+x}=\frac{n+1}{n-1} \frac{1}{1+x}=E_{0}+\frac{2}{n-1} E_{0} .
\end{aligned}
$$

So, applying Theorem (2.3) for the operator \tilde{V}_{n} we obtain
Proposition 3.7. Let w_{γ} be given by 2.17) with $\gamma_{0}, \gamma_{\infty} \in[-1,0]$. Then for every $f \in$ $C\left(w_{\gamma}\right)[0, \infty)+W^{2}\left(w_{\gamma} \psi\right)[0, \infty)$ and every $n \in \mathbb{N}, n \geq 2$, we have

$$
\left\|w_{\gamma}\left(f-\tilde{V}_{n} f\right)\right\| \leq 2 K_{w_{\gamma}}\left(f, \frac{2 \sqrt{2}}{n-1}\right)
$$

3.3. Applications for Meyer-König and Zeller-type operators that preserve linear functions

-Classical Meyer-König and Zeller operators

The Meyer-König and Zeller operator (introduced in 1960 [9]) in the slight modification of Cheney and Sharma [3] is defined for $f \in C[0,1)$ by

$$
M_{n} f(x)=\sum_{k=0}^{\infty} m_{n, k}(x) f\left(\frac{k}{k+n}\right), \quad x \in[0,1)
$$

where $m_{n, k}(x)=\binom{n+k}{k} x^{k}(1-x)^{n+1}$.

We shall utilize the change of variable $\sigma:[0, \infty) \rightarrow[0,1)$ given by

$$
x=\sigma(\tilde{x})=\frac{\tilde{x}}{1+\tilde{x}} .
$$

A function \tilde{f} defined on $[0, \infty)$ is transformed to a function f defined on $[0,1)$ by

$$
f(x)=f(\sigma(\tilde{x}))=\tilde{f}(\tilde{x})
$$

The weights in consideration are

$$
\begin{equation*}
w_{\alpha}(x)=w_{\alpha}\left(\alpha_{0}, \alpha_{1} ; x\right)=x^{\alpha_{0}}(1-x)^{\alpha_{1}}, \tag{3.8}
\end{equation*}
$$

and $\varphi(x)=x(1-x)^{2}$ for $x \in[0,1)$ and real α_{0}, α_{1}.
We also set $W^{2}\left(w_{\alpha} \varphi\right)[0,1)=\left\{g, g^{\prime} \in A C_{l o c}(0,1): w_{\alpha} \varphi D^{2} g \in L_{\infty}[0,1)\right\}$.
By analogy with (1.9) we define the K-functional between the weighted spaces $C\left(w_{\alpha}\right)$ and $W^{2}\left(w_{\alpha} \varphi\right)$, which for every $f \in C\left(w_{\alpha}\right)[0,1)+W^{2}\left(w_{\alpha} \varphi\right)[0,1)$ and $t>0$ is defined by

$$
K_{w_{\alpha}}(f, t)_{[0,1)}=\inf _{g \in W^{2}\left(w_{\alpha} \varphi\right), f-g \in C\left(w_{\alpha}\right)}\left\{\left\|w_{\alpha}(f-g)\right\|_{[0,1)}+t\left\|w_{\alpha} \varphi D^{2} g\right\|_{[0,1)}\right\}
$$

Using the equalities

$$
\begin{gathered}
B_{n+1}^{[s l]}(\tilde{f}, \tilde{x})=M_{n}(f, x), \\
\phi(\tilde{x}) D^{2}(\mu(\tilde{x}) \tilde{f}(\tilde{x}))=\varphi(x) D^{2} f(x),
\end{gathered}
$$

the relations between the weights with tildes and without tildes and the result in Proposition 3.1 we have

Proposition 3.8. Let w_{α} be given by (3.8) with $\alpha_{0}, \alpha_{1} \in[-1,0]$. Then for every $f \in$ $C\left(w_{\alpha}\right)[0,1)+W^{2}\left(w_{\alpha} \varphi\right)[0,1)$ and every $n \in \mathbb{N}$, we have

$$
\left\|w_{\alpha}\left(f-M_{n} f\right)\right\| \leq 2 K_{w_{\alpha}}\left(f, \frac{\sqrt{2}}{n-1}\right)
$$

-A Goodman-Sharma modification of MKZ operator

The Goodman-Sharma-type modification of MKZ operator (GS-MKZ) is given for natural n by

$$
\begin{aligned}
M_{n}^{[G S]} f(x) & =\sum_{k=0}^{\infty} m_{n, k}(x) u_{n, k}(f), \\
u_{n, 0}(f)=f(0), \quad u_{n, k}(f) & =n \int_{0}^{1} m_{n, k-1}(y) f(y) \frac{d y}{(1-y)^{2}}, \quad \text { for } \quad k \geq 1
\end{aligned}
$$

where f is a Lebesgue integrable in $(0,1)$ function with a finite limit $f(0)$ at 0 .
Using the equalities

$$
\begin{gathered}
B_{n+1}^{[A T]}(\tilde{f}, \tilde{x})=M_{n}^{[G S]}(f, x), \\
\phi(\tilde{x}) D^{2}(\mu(\tilde{x}) \tilde{f}(\tilde{x}))=\varphi(x) D^{2} f(x),
\end{gathered}
$$

the relations between the weights with tildes and without tildes and the result in Proposition 3.2 we have

Proposition 3.9. Let w_{α} be given by (3.8) with $\alpha_{0}, \alpha_{1} \in[-1,0]$. Then for every $f \in$ $C\left(w_{\alpha}\right)[0,1)+W^{2}\left(w_{\alpha} \varphi\right)[0,1)$ and every $n \in \mathbb{N}, n \geq 2$, we have

$$
\left\|w_{\alpha}\left(f-M_{n}^{[G S]} f\right)\right\| \leq 2 K_{w_{\alpha}}\left(f, \frac{2 \sqrt{2}}{n-1}\right)
$$

A better direct result and a strong converse result of type A are obtained in [8 using different arguments:

Proposition 3.10. Let w_{α} be given by (3.8) with $\alpha_{0}, \alpha_{1} \in[-1,0]$. Then for every $f \in$ $C\left(w_{\alpha}\right)[0,1)+W^{2}\left(w_{\alpha} \varphi\right)[0,1)$ and every $n \in \mathbb{N}, n \geq 4$, we have

$$
\left\|w_{\alpha}\left(f-M_{n}^{[G S]} f\right)\right\| \leq 2 K_{w_{\alpha}}\left(\tilde{f}, \frac{1}{2 n}\right) \leq 13.7\left\|w\left(f-M_{n}^{[G S]} f\right)\right\|_{[0,1)}
$$

[1] Baskakov V. A. An instance of a sequence of the linear positive operators in the space of continuous functions. Docl. Akad. Nauk SSSR, 113:249-251, 1957.
[2] P.N. Agrawal and K. J. Thamer. Approximation of unbounded functions by a new sequence of linear positive operators. J. Math. Anal. Appl, 225:600-672, 1998.
[3] E. W. Cheney and A. Sharma. Bernstein power series. Canad. J. Math, 16:241-253, 1964.
[4] B. R. Draganov and K. G. Ivanov. A new characterization of weighted Peetre Kfunctionals (III). Constructive Theory of Functions, Sozopol 2016, to appear.
[5] Z. Finta. On converse approximation theorems. J. Math. Anal. Appl., 312:159-180, 2005.
[6] I. Gadjev. Weighted Approximation by Baskakov Operators. Journal of Math. Inequal. Appl., 18, Number 4:1443-1461, 2015.
[7] K. G. Ivanov and P. E. Parvanov. Weighted Approximation by Baskakov-Type Operators. Acta Math.Hungar, 133:150-160, 2011.
[8] K. G. Ivanov and P. E. Parvanov. Weighted approximation by Meyer-König and Zeller-Type operators. Proceedings Volume of CTF-2010, Sozopol, Bulgaria (dedicated to the memory of Borislav Bojanov)., pages 150-160, 2011.
[9] W. Meyer-König and K. Zeller. Bernsteinsche Potenzreihen. Studia Math., 19:89-94, 1960.
[10] Parvan E. Parvanov. Weighted Approximation By A Class Of Bernstein-type Operators. Mathematica Balcanica (new series), 25:31-38, 2011.
[11] V.Gupta and G.S.Srivastava. Simultaneous approximation by Baskakov-Szasz type operators. Bull. Math. Soc. Sci. de Roumanie (N.S.), 37(85)3-4:73-85, 1993.

Ivan Gadjev,
Dept. of Mathematics and Informatics
University of Sofia
5 James Bourchier Blvd.
1164 Sofia
Bulgaria
gadjevivan@hotmail.com

Parvan E. Parvanov,
Dept. of Mathematics and Informatics
University of Sofia
5 James Bourchier Blvd.
1164 Sofia
Bulgaria
pparvan@fmi.uni-sofia.bg
Corresponding Author: Ivan Gadjev

[^0]: ${ }^{1}$ Both authors were partially supported by grant 80.10-120/2017 of the Research Fund of the University of Sofia. The first author was also partially supported by grant DN $02 / 14$ of the Fund for Scientific Research of the Bulgarian Ministry of Education and Science.

