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Abstract

Direct theorems in terms of the weighted K-functional for the uniform weighted approxi-

mation by a class of operators which reproduce the functions Ei(x) =
xi

1 + x
, i = 0, 1 are

obtained for functions from C(w)+W 2
µ(wφ) with weights of the form

(
x

1+x

)β0 ( 1
1+x

)β∞
for

β0, β∞ ∈ [−1, 0]. As a consequence, direct theorems for some (for instance, classical and
Goodman-Sharma modifications of Baskakov and Meyer-König and Zeller ) operators are
obtained.
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1. Introduction

In order to approximate functions in [0,∞), Baskakov (in analogy with the Bernstein
operator) introduced a new operator (see [1]). It is defined for bounded functions f(x) in
[0,∞) by the formula

Bnf(x) =
∞∑
k=0

Pn,k(x)f

(
k

n

)
(1.1)

where

Pn,k(x) =

(
n+ k − 1

k

)
xk(1 + x)−n−k.

One way to generalize this is to replace f
(
k
n

)
in the above definition by some functionals

bn,k(f), defined for every f ∈ L∞[0,∞) and satisfying given conditions. A different path
is to consider a sequence of linear positive operators and impose appropriate conditions.

In this paper we investigate the approximation of functions f ∈ L∞[0,∞) by a se-
quence of operators Ln which satisfy the next conditions:

Ln are linear and positive operators, (1.2)

Ln(Ei, x) = Ei(x) for i=0 and i=1, (1.3)

Ln(E2, x) = E2(x) + An(x), (1.4)

Ln(E2
0 , x) = E2

0(x) +Bn(x). (1.5)
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Here by L∞[0,∞) we denote the space of all Lebesgue measurable and essentially bounded
in [0,∞) functions equipped with the uniform norm ‖ · ‖, Ei (for i = 0, 1, 2) are the

functions Ei(x) =
xi

1 + x
and the functions An(x) and Bn(x) are such that for every

x ∈ [0,∞) we have |An(x)| ≤ anx, |Bn(x)| ≤ bnE
2
0(x) and lim

n→∞
an = lim

n→∞
bn = 0.

And we note here that if the above conditions are satisfied, then automatically we
have also

Ln(1, x) = 1 (1.6)

Ln(E2
1 , x) = E2

1(x) +Bn(x). (1.7)

We define an appropriate K-functional and by using it we prove a direct theorem for
them. But before formulating the main result we will start with some definitions and
notations.

The first derivative operator is denoted by D = d
dx

. Thus, Dg(x) = g′(x) and D2g(x) =
g′′(x). By φ(x) = x we denote the weight which is naturally connected with the second
derivatives of these operators. Our main goal in this paper is the characterization of
L∞-norm of the weighted approximation error ‖w(f − Lnf)‖ for weight functions given
by

w(x) = wβ(x) = w(β0, β∞;x) =

(
x

1 + x

)β0 ( 1

1 + x

)β∞
. (1.8)

where x ∈ [0,∞) and β0, β∞ ∈ [−1, 0].
By C[0,∞) we denote the space of all continuous on [0,∞) functions. The functions

from C[0,∞) are not expected to be bounded or uniformly continuous.
For a weight function w we set

C(w)[0,∞) = C(w) = {f ∈ C[0,∞) : wf ∈ L∞[0,∞)}

and

W 2
µ(wφ)[0,∞) = W 2

µ(wφ) =
{
g : µg,D(µg) ∈ ACloc(0,∞), wφD2(µg) ∈ L∞[0,∞)

}
,

where ACloc(0,∞) consists of the functions which are absolutely continuous in [a, b] for
every [a, b] ⊂ (0,∞) and µ(x) = 1 + x.

The weighted approximation error of Ln will be compared with the K-functional be-
tween the weighted spaces C(w) and W 2

µ(wφ), which for every

f ∈ C(w) +W 2
µ(wφ) = {f1 + f2 : f1 ∈ C(w), f2 ∈ W 2

µ(wφ)}

and t > 0 is defined by

Kw(f, t) = inf
{
‖w(f − g)‖+ t‖wφD2(µg)‖ : g ∈ W 2

µ(wφ), f − g ∈ C(w)
}
. (1.9)

The above formula is a standard definition of K-functional in interpolation theory.
In approximation theory the condition f − g ∈ C(w) in (1.9) is usually omitted because
in the predominant number of cases the second interpolation space is embedded in the
first one. However, in this case we have interpolation between C(w) and W 2

µ(wφ), as
W 2
µ(wφ)\C(w) is of infinite dimension for some of the weights w that satisfy the above

assumptions.
Our main result is a direct inequality. It is a modification of the result in [10], which

treats the case of a class of Bernstein-type operators.
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Theorem 1.1. Let the operators Ln satisfy the conditions (1.2) - (1.5) and w is given by

(1.8) with β0, β∞ ∈ [−1, 0] and cn =
√

2max{an,
√
anbn}. Then for every f ∈ C(w) +

W 2
µ(wφ) and for every n ∈ N we have

‖w(Lnf − f)‖ ≤ 2Kw (f, cn) .

Some remarks follow.
Remark 1.

Let Π1 = {f : f = aE0 + bE1, a, b ∈ R}. Then for β0 ∈ [−1, 0], β∞ ∈ (−1, 0) the space
C(w) + W 2

µ(wφ) coincides with the space C(w) + Π1. Indeed, let f ∈ C(w) + W 2
µ(wφ),

i.e. f can be written as f = f1 + f2 where f1 ∈ C(w) and f2 ∈ W 2
µ(wφ). Then we have

(µf2)(x) = a∗x+ b∗ + g∗(x) where

g∗(x) = −
∫ x

0

∫ ∞
v

(µf2)
′′(u)dudv

and

b∗ = (µf2)(0), a∗ = (µf2)
′(∞) := (µf2)

′(1) +

∫ ∞
1

(µf2)
′′(v)dv.

Obviously, g∗ ∈ C(wφ) and g = µ−1g∗ ∈ C(w) and the above follows from

f2(x) =
a∗x+ b∗

µ
+
g∗(x)

µ
= aE0(x) + bE1(x) + g(x).

But for β∞ = 0 or for β∞ = −1 the space C(w) + W 2
µ(wφ) is essentially bigger than

C(w) + Π1. For instance, for the function f(x) = log(1 + x) , we have f ∈ (C(w) +
W 2
µ(wφ))\(C(w) + Π1) for β∞ = 0 and β0 ∈ [−1, 0]. The same is true for the function

f(x) = (1 + x) log(1 + x) for β∞ = −1 and β0 ∈ [−1, 0].
Remark 2.

Theorem (1.1) does not imply for all f ∈ C(w) + W 2
µ(wφ) that ‖w(Lnf − f)‖ → 0 or

Kw (f, cn) → 0 when n → ∞. Actually, none of these quantities tends to zero with
n → ∞ for some functions f ∈ C(w). In order to ensure convergence to zero of these
quantities one may need to impose additional restrictions on the behavior of f at 0 and
at ∞. At 0 these restrictions are (see [4]) limx→0+ x

β0f(x) = 0 for −1 < β0 < 0 or the
existence of limx→0+ x

−1f(x) for β0 = −1. In the same time, at ∞ the restrictions are
more complicated but, shortly, the function f should not vary very fast in order to allow
approximation in C(w) with functions from W 2

µ(wφ).

2. Main result

It is well known fact that if an operator L̃ satisfies the following two conditions:

L̃ is linear and positive operator; (2.1)

L̃(1, x) = 1 , L̃(t, x) = x; (2.2)

then for every concave continuous function f the next inequality is true

f ≥ L̃f. (2.3)
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As a consequence of this we have that if an operator L satisfies the following two condi-
tions:

L is linear and positive operator; (2.4)

L(E0, x) = E0(x) , L(E1, x) = E1(x); (2.5)

then the operator µL
(
f
µ

)
satisfies the conditions (2.1) and (2.2) and consequently for

every concave continuous function f the next inequality is true

f

µ
≥ L

(
f

µ

)
. (2.6)

Now we prove two lemmas which we will need later.

Lemma 2.1. For every function f ∈ C(w)[0,∞) we have ‖wL(f)‖ ≤ ‖wf‖, i.e. the norm
of the operator is 1.

Proof. Let us mention that the function µ(w)−1 is concave for β0, β∞ ∈ [−1, 0] and then
from (2.6) we have

L
(
(w)−1

)
= L

(
µ(w)−1

µ

)
≤ (w)−1.

This one, (2.4) and (2.5) give

‖wL(f)‖ = ‖wL
(
wf(w)−1

)
‖

≤ ‖wf‖ ‖wL
(
(w)−1

)
‖

≤ ‖wf‖ ‖w(w)−1‖ = ‖wf‖.

Lemma 2.2. For β0, β∞ ∈ [−1, 0] and x, t ∈ (0,∞)∣∣∣∣∫ t

x

t− u
φ(u)w(u)

du

∣∣∣∣ ≤ 2
√

2 max

{
(x− t)2

φ(x)w(x)
,

(x− t)2√
1 + t

√
xw(x)

}
.

Proof. Case 1. t ≥ x.

It is obvious that
1

φ(u)w(u)
≤ 1

φ(x)w(x)
for u ∈ [x, t] because the function

φ(u)w(u) = u1+β0(1 + u)−β0−β∞ is monotonically increasing.
Then we have

∣∣∣∣∫ t

x

t− u
φ(u)w(u)

du

∣∣∣∣ ≤ (t− x)2

2φ(x)w(x)
. (2.7)

Case 2.1. t < x and β∞ ∈
[
−1

2
, 0
]
.
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In this case the powers 1 + β0 and −β0 − β∞ are positive and consequently∣∣∣∣∫ t

x

t− u
φ(u)w(u)

du

∣∣∣∣ =

∫ x

t

u− t
φ(u)w(u)

du

=

∫ x

t

u− t
u1+β0(1 + u)−β0−β∞

du

=

∫ x

t

(u− t)1−(1+β0)−(−β0−β∞)

(
u− t
u

)1+β0 (u− t
u+ 1

)−β0−β∞
du

=

∫ x

t

(u− t)β∞
(

1− t

u

)1+β0 (
1− t+ 1

u+ 1

)−β0−β∞
du

≤
∫ x

t

(u− t)β∞
(

1− t

x

)1+β0 (
1− t+ 1

x+ 1

)−β0−β∞
du

=

(
1− t

x

)1+β0 (
1− t+ 1

x+ 1

)−β0−β∞ ∫ x

t

(u− t)β∞du

=
(x− t)1−β∞

x1+β0(1 + x)−β0−β∞

∫ x

t

(u− t)β∞du

=
(x− t)1−β∞
φ(x)w(x)

(1 + β∞)−1(x− t)1+β∞

= (1 + β∞)−1
(x− t)2

φ(x)w(x)

≤ 2
(x− t)2

φ(x)w(x)
. (2.8)

Case 2.2. t < x and β∞ ∈
[
−1,−1

2

]
.

In this case
1

(1 + u)1/2
≤ 1

(1 + t)1/2
for u ∈ [t, x] and the powers 1 + β0 and −β0 −

β∞ − 1/2 are positive. In the same way as in Case 2.1. we have∣∣∣∣∫ t

x

t− u
φ(u)w(u)

du

∣∣∣∣ =

∫ x

t

u− t
φ(u)w(u)

du

=

∫ x

t

u− t
u1+β0(1 + u)−β0−β∞

du

≤ (1 + t)−1/2
∫ x

t

u− t
u1+β0(1 + u)−β0−β∞−1/2

du

= (1 + t)−1/2
∫ x

t

(u− t)β∞+1/2

(
1− t

u

)1+β0 (
1− t+ 1

u+ 1

)−β0−β∞−1/2
du

≤ (1 + t)−1/2
∫ x

t

(u− t)β∞+1/2

(
1− t

x

)1+β0 (
1− t+ 1

x+ 1

)−β0−β∞−1/2
du

= (1 + t)−1/2
(

1− t

x

)1+β0 (
1− t+ 1

x+ 1

)−β0−β∞−1/2 ∫ x

t

(u− t)β∞+1/2du

=
(x− t)1/2−β∞√

1 + t x1+β0(1 + x)−β0−β∞−1/2

∫ x

t

(u− t)β∞+1/2du

=

√
1 + x

1 + t

(x− t)1/2−β∞
φ(x)w(x)

(
3

2
+ β∞

)−1
(x− t)3/2+β∞
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=

(
3

2
+ β∞

)−1√
1 + x

1 + t

(x− t)2

φ(x)w(x)

≤ 2

√
1 + x

1 + t

(x− t)2

φ(x)w(x)
.

Here we consider two subcases for x. For x ∈ (0, 1] we have

√
1 + x

1 + t
≤
√

2 and from

the above we obtain ∣∣∣∣∫ t

x

t− u
φ(u)w(u)

du

∣∣∣∣ ≤ 2
√

2
(x− t)2

φ(x)w(x)
. (2.9)

For x ∈ [1,∞) we have

√
1 + x

x
≤
√

2

x
and consequently∣∣∣∣∫ t

x

t− u
φ(u)w(u)

du

∣∣∣∣ ≤ 2
√

2
(x− t)2√

1 + t
√
xw(x)

. (2.10)

From (2.9) and (2.10) we have∣∣∣∣∫ t

x

t− u
φ(u)w(u)

du

∣∣∣∣ ≤ max

{
2
√

2
(x− t)2

φ(x)w(x)
, 2
√

2
(x− t)2√

1 + t
√
xw(x)

}
. (2.11)

Finaly from (2.7), (2.8) and (2.11) we get∣∣∣∣∫ t

x

t− u
φ(u)w(u)

du

∣∣∣∣ ≤ 2
√

2 max

{
(x− t)2

φ(x)w(x)
,

(x− t)2√
1 + t

√
xw(x)

}
.

The result from the above lemma we use in the next theorem.

Theorem 2.1. (Jackson-type inequality). Let us define for an operator L the quantities

A = ‖φ−1 (L(E2)− E2) ‖ and B = ‖µ2
(
L(E2

1)− E2
1

)
‖.

Then for every operator L which satisfies conditions 2.4 and 2.5 and such that A is finite
and for every function f ∈ W 2

µ(wφ) we have

‖w(Lf − f)‖ ≤ 2
√

2
∥∥wφD2(µf)

∥∥ max
{
A,
√
A.B

}
.

Proof. Let g(z) = µ(z)f(z). Then by using Taylor’s formula

g(t) = g(x) + (t− x)Dg(x) +

∫ t

x

(t− v)D2g(v)dv.

we have for f(x)

f(t) = f(x) +
t− x
1 + t

(1 + x)Df(x) +
1

1 + t

∫ t

x

(t− v)D2 (µ(v)f(v)) dv.
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Applying operator L to both sides of the above equality and using (2.4), (2.5) and
Lemma 2.2 we obtain

|L(f, x)− f(x)| =
∣∣∣∣L( 1

1 + t

∫ t

x

(t− v)D2 (µ(v)f(v)) dv, x

)∣∣∣∣ (2.12)

≤ L

(
1

1 + t

∣∣∣∣∫ t

x

t− v
φ(v)w(v)

dv

∣∣∣∣ , x) ‖wφD2(µf)‖

≤
∥∥wφD2(µf)

∥∥L(max

{
2
√

2
(x− t)2

(1 + t)φ(x)w(x)
, 2
√

2
(x− t)2

(1 + t)3/2
√
xw(x)

}
, x

)
≤ 2
√

2
‖wφD2(µf)‖

w(x)
max

{
L

(
(x− t)2

(1 + t)φ(x)
, x

)
, L

(
(x− t)2√
x(1 + t)3/2

, x

)}
.

Applying (2.5) for the first term and Cauchy’s inequality and (2.5) for the second term
in right hand side of (2.12) we have

L

(
(x− t)2

(1 + t)φ(x)
, x

)
= φ−1(x) (L(E2, x)− E2(x))

and

L

(
(x− t)2√
x(1 + t)3/2

, x

)
≤
(
L

(
(x− t)2

(1 + t)φ(x)
, x

))1/2

.

(
L

(
(x− t)2

(1 + t)2
, x

))1/2

=
(
φ−1(x) (L(E2, x)− E2(x))

)1/2
.
(
µ2(x)

(
L(E2

1 , x)− E2
1(x)

))1/2
.

Replacing the above two estimations in (2.12) we have

w(x) |L(f, x)− g(x)| ≤ 2
√

2
∥∥wφD2(µf)

∥∥ .max
{
A(x),

√
A(x).B(x)

}
. (2.13)

Taking a supremum on x in (2.13) we complete the proof of Theorem 2.1.

As an elementary consequence of this lemma we have that if a function f ∈ W 2
µ(wφ)

then Lf − f ∈ C(w).

From 1.4 and 1.5 it follows that∣∣φ−1(x) (Ln(E2, x)− E2(x))
∣∣ ≤ an,∣∣µ2(x)

(
Ln(E2

1 , x)− E2
1(x)

)∣∣ ≤ bn.

Above result and Theorem 2.4 give

Theorem 2.2. For every function f ∈ W 2
µ(wφ) we have

‖w(Lnf − f)‖ ≤ 2cn
∥∥wφD2(µf)

∥∥ .
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We use Theorem 2.2 in the proof of Theorem 1.1.

Proof. (Theorem 1.1)
Let g is an arbitrary function in W 2

µ(wφ), such that g − f ∈ C(w). Then

‖w(Lnf − f)‖ ≤ ‖w(Lnf − Lng)‖+ ‖w(Lng − g)‖+ ‖w(g − f)‖.

From Lemma 2.1 and Theorem 2.5 we get

‖w(Lnf − f)‖ ≤ 2‖w(f − g)‖+ 2cn
∥∥wφD2(µf)

∥∥
= 2

(
‖w(f − g)‖+ cn

∥∥wφD2(µf)
∥∥) .

Taking infimum on all g ∈ W 2
µ(wφ) such that (f − g) ∈ C(w) in the above inequality

we complete the proof of Theorem 1.1.

Now we can easily prove a similar result for linear positive operators which reproduce
linear functions.

Let us denote the basic test functions by ei, i.e. ei(x) = xi for i = 0, 1, 2 and the
weight by ψ(x) = x(1 + x). Let the sequence of linear positive operators Ln satisfy the
next conditions

Ln(ei, x) = ei(x), i = 0, 1, (2.14)

Ln(e2, x) = e2(x) +Qn(x), (2.15)

Ln(E0, x) = E0(x) +Rn(x), (2.16)

where |Qn(x)| ≤ qnψ(x), |Rn(x)| ≤ rnE0(x) and lim
n→∞

qn = lim
n→∞

rn = 0.

The weights in consideration are

wγ(x) = wγ(γ0, γ∞;x) =

(
x

1 + x

)γ0
(1 + x)γ∞ , γ0, γ∞ ∈ R. (2.17)

We also set

W 2(wγψ) =
{
g, g′ ∈ ACloc(0,∞) : wγψD

2g ∈ L∞[0,∞)
}
.

and for t > 0 and every function f ∈ C(wγ) +W 2(wγψ) a K-functional Kwγ (f, t) by

Kwγ (f, t) = inf
g∈W 2(wγψ), f−g∈C(wγ)

{
‖wγ(f − g)‖[0,∞) + t‖wγψD2g‖[0,∞)

}
.

It is not difficult to see that the operators 1
µ(x)

Ln(µf, x) satisfy the conditions (1.3 -

1.5) with qn = an and rn = bn. Applying Theorem (1.1) for the operators 1
µ(x)

Ln(µf, x),

the function f
µ

and the weight µwγ we obtain

Theorem 2.3. Let wγ be given by (2.17) with γ0, γ∞ ∈ [−1, 0] and

dn =
√

2max{qn,
√
qnrn}. Then for every f ∈ C(wγ) + W 2(wγψ) and every n ∈ N we

have

‖wγ(Lnf − f)‖ ≤ 2Kwγ (f, dn) .
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3. Applications

3.1. Immediate applications

–A slight modification of classical Baskakov operator
For bounded and continuous on [0, ∞) functions f and natural n ≥ 2 we consider

linear positive operator

B[sl]
n (f, x) =

∞∑
k=0

Pn,k(x)f

(
k

n− 1

)
.

It is easy to see that the conditions 1.3, 1.4 and 1.5 are satisfied with an = 1
n−1 ,

bn ≤ 1
n−2 and the result of Theorem 1.1 is

Proposition 3.1. For every f ∈ C(w)[0,∞) + W 2
µ(wφ)[0,∞) and every n ∈ N, n ≥ 3,

we have

‖w(f −B[sl]
n f)‖ ≤ 2Kw

(
f,

√
2

(n− 1)(n− 2)

)
≤ 2Kw

(
f,

√
2

n− 2

)
.

– Agrawal and Thamer operators
The Durrmeyer-Baskakov-type operator is given for every natural n by

B[AT ]
n (f, x) =

∞∑
k=0

Pn,k(x)bn,k(f),

bn,0(f) = f(0); bn,k(f) = (n− 1)

∫ ∞
0

Pn,k−1(y)f(y) dy, k ∈ N,
(3.1)

where f is Lebesgue measurable on (0,∞) with a finite limit f(0) at 0. The modification
was introduced by Agrawal and Thamer [2]. Here conditions 1.3, 1.4 and 1.5 are satisfied
with an = 2

n−2 , bn ≤ 2
n−2 and the result of Theorem 1.1 is

Proposition 3.2. For every f ∈ C(w)[0,∞) + W 2
µ(wφ)[0,∞) and every n ∈ N, n ≥ 3,

we have

‖w(f −B[AT ]
n f)‖ ≤ 2Kw

(
f,

2
√

2

n− 2

)
.

3.2. Applications for Baskakov-type Operators that preserve linear functions

–Classical Baskakov operator
It is easy to see that the operator Bn defined by (1.1) satisfy the conditions (2.14),

(2.15) and (2.16) with qn = 1/n and rn = 1/(n− 1). So, applying Theorem (2.3) we have

Proposition 3.3. Let wγ be given by (2.17) with γ0, γ∞ ∈ [−1, 0]. Then for every f ∈
C(wγ)[0,∞) +W 2(wγψ)[0,∞) and every n ∈ N, n ≥ 2, we have

‖wγ(f −Bnf)‖ ≤ 2Kwγ

(
f,

√
2

n− 1

)
.
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Remarks.
1.Actualy

1

µ(x)
Bn(µf, x) = B

[sl]
n+1(f, x), x ∈ [0,∞).

2.More general direct result and a strong converse result of type A are obtained in [6]
using different arguments:

Proposition 3.4. Let wγ be given by (2.17) with γ0 ∈ [−1, 0], γ∞ ∈ R. Then there exists
positive constants C1, C2 and L such that for every
f ∈ C(wγ)[0,∞) +W 2(wγψ)[0,∞) and every n ∈ N, n ≥ L, we have

C1‖wγ(f −Bnf)‖ ≤ Kwγ

(
f,

1

n

)
≤ C2‖wγ(f −Bnf)‖.

–A Goodman-Sharma modification of classical Baskakov operator
Finta [5] introduced in 2005 the operator

Vn(f, x) =
∞∑
k=0

Pn,k(x)vn,k(f),

vn,0(f) = f(0); vn,k(f) = (n+ 1)

∫ ∞
0

Pn+2,k−1(y)f(y) dy, k ∈ N,

where f is Lebesgue measurable on (0,∞) with a finite limit f(0) at 0.
The operator Vn satisfy the conditions (2.14), (2.15) and (2.16) with qn = 2/(n − 1)

and rn = 2/(n− 1). So, applying applying Theorem (2.3) we have

Proposition 3.5. Let wγ be given by (2.17) with γ0, γ∞ ∈ [−1, 0]. Then for every f ∈
C(wγ)[0,∞) +W 2(wγψ)[0,∞) and every n ∈ N, n ≥ 2, we have

‖wγ(f − Vnf)‖ ≤ 2Kwγ

(
f,

2
√

2

n− 1

)
.

Remarks.
1.Actualy

1

µ(x)
Vn(µf, x) = B

[AT ]
n+1 (f, x), x ∈ [0,∞).

2.A better direct result and a strong converse result of type A are obtained in [7] using
different arguments:

Proposition 3.6. Let wγ be given by (2.17) with γ0, γ∞ ∈ [−1, 0]. Then for every f ∈
C(wγ) +W 2(wγψ) and every n ∈ N, n ≥ 4, we have

‖wγ(f − Vnf)‖ ≤ 2Kwγ

(
f,

1

2n

)
≤ 13.7‖wγ(f − Vnf)‖.

–A Baskakov-Szasz-Durrmeyer operator
In [11] Gupta and Srivastava proposed the Durrmeyer-type Baskakov-Szasz operator

as

V ∗n (f, x) = n

∞∑
k=0

Pn,k(x)

∫ ∞
0

sn,k(t)f(t)dt,

10



where

sn,k(t) = e−nt
(nt)k

k!
are the basic Szasz-Mirakjan polynomials. But this operator does not preserve linear
functions. So, we slightly modify V ∗n in a Goodman-Sharma way and consider the operator

Ṽn(f, x) = f(0)(1 + x)−n + n

∞∑
k=1

Pn,k(x)

∫ ∞
0

sn,k−1(t)f(t)dt.

It is easy to see that Ṽn satisfy conditions 2.14 and 2.15 with Qn(x) = x(x+2)
n

. From here
we have qn ≤ 2

n
.

Now we will prove that rn ≤ 2
n−1 . Indeed, since the function E0 is convex and the

operator Ṽn is linear and positive and reproduces linear functions it follows that

E0(x) ≤ Ṽn (E0, x) . (3.2)

At the same time we have for k = 1

n

∫ ∞
0

e−nt
dt

1 + t
≤ n

∫ ∞
0

e−ntdt = 1 =
n+ 1

n+ 1
(3.3)

and for k ≥ 2,

Ik = n

∫ ∞
0

sn,k−1(t)
dt

1 + t
=

n

k − 1
− n

k − 1
Ik−1 (3.4)

and

Ik = Ik−1 −
∫ ∞
0

sn,k−1(t)
dt

(1 + t)2
. (3.5)

Multiplying (3.5) by n
k−1 and summing with (3.4) we obtain

Ik =
n

n+ k − 1
− 1

n+ k − 1

∫ ∞
0

sn,k−1(t)
dt

(1 + t)2
≤ n+ 1

n+ k
. (3.6)

From (3.3) and (3.6) it follows that for every k ∈ N

n

∫ ∞
0

sn,k−1(t)
dt

1 + t
≤
(

1 +
1

n

)
n

n+ k
. (3.7)

Consequently,

Ṽn

(
1

1 + t
, x

)
≤
(

1 +
1

n

) ∞∑
k=0

Pn,k(x)
1

1 + k/n
=

(
1 +

1

n

)
Bn

(
1

1 + t
, x

)
≤
(

1 +
1

n

)
n

n− 1

1

1 + x
=
n+ 1

n− 1

1

1 + x
= E0 +

2

n− 1
E0.

So, applying Theorem (2.3) for the operator Ṽn we obtain

Proposition 3.7. Let wγ be given by (2.17) with γ0, γ∞ ∈ [−1, 0]. Then for every f ∈
C(wγ)[0,∞) +W 2(wγψ)[0,∞) and every n ∈ N, n ≥ 2, we have

‖wγ(f − Ṽnf)‖ ≤ 2Kwγ

(
f,

2
√

2

n− 1

)
.
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3.3. Applications for Meyer-König and Zeller-type operators that preserve lin-
ear functions

–Classical Meyer-König and Zeller operators
The Meyer-König and Zeller operator (introduced in 1960 [9]) in the slight modification

of Cheney and Sharma [3] is defined for f ∈ C[0, 1) by

Mnf(x) =
∞∑
k=0

mn,k(x)f

(
k

k + n

)
, x ∈ [0, 1),

where mn,k(x) =

(
n+ k

k

)
xk(1− x)n+1.

We shall utilize the change of variable σ : [0,∞)→ [0, 1) given by

x = σ(x̃) =
x̃

1 + x̃
.

A function f̃ defined on [0,∞) is transformed to a function f defined on [0, 1) by

f(x) = f(σ(x̃)) = f̃(x̃).

The weights in consideration are

wα(x) = wα(α0, α1;x) = xα0(1− x)α1 , (3.8)

and ϕ(x) = x(1− x)2 for x ∈ [0, 1) and real α0, α1.
We also set W 2(wαϕ)[0, 1) = {g, g′ ∈ ACloc(0, 1) : wαϕD

2g ∈ L∞[0, 1)}.
By analogy with (1.9) we define the K-functional between the weighted spaces C(wα)

and W 2(wαϕ), which for every f ∈ C(wα)[0, 1) +W 2(wαϕ)[0, 1) and t > 0 is defined by

Kwα(f, t)[0,1) = inf
g∈W 2(wαϕ), f−g∈C(wα)

{
‖wα(f − g)‖[0,1) + t‖wαϕD2g‖[0,1)

}
.

Using the equalities

B
[sl]
n+1(f̃ , x̃) = Mn(f, x),

φ(x̃)D2
(
µ(x̃)f̃(x̃)

)
= ϕ(x)D2f(x),

the relations between the weights with tildes and without tildes and the result in Propo-
sition 3.1 we have

Proposition 3.8. Let wα be given by (3.8) with α0, α1 ∈ [−1, 0]. Then for every f ∈
C(wα)[0, 1) +W 2(wαϕ)[0, 1) and every n ∈ N, we have

‖wα(f −Mnf)‖ ≤ 2Kwα

(
f,

√
2

n− 1

)
.
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–A Goodman-Sharma modification of MKZ operator
The Goodman-Sharma-type modification of MKZ operator (GS-MKZ) is given for

natural n by

M [GS]
n f(x) =

∞∑
k=0

mn,k(x)un,k(f),

un,0(f) = f(0), un,k(f) = n

∫ 1

0

mn,k−1(y)f(y)
dy

(1− y)2
, for k ≥ 1

where f is a Lebesgue integrable in (0, 1) function with a finite limit f(0) at 0.
Using the equalities

B
[AT ]
n+1 (f̃ , x̃) = M [GS]

n (f, x),

φ(x̃)D2
(
µ(x̃)f̃(x̃)

)
= ϕ(x)D2f(x),

the relations between the weights with tildes and without tildes and the result in Propo-
sition 3.2 we have

Proposition 3.9. Let wα be given by (3.8) with α0, α1 ∈ [−1, 0]. Then for every f ∈
C(wα)[0, 1) +W 2(wαϕ)[0, 1) and every n ∈ N, n ≥ 2, we have

‖wα(f −M [GS]
n f)‖ ≤ 2Kwα

(
f,

2
√

2

n− 1

)
.

A better direct result and a strong converse result of type A are obtained in [8] using
different arguments:

Proposition 3.10. Let wα be given by (3.8) with α0, α1 ∈ [−1, 0]. Then for every f ∈
C(wα)[0, 1) +W 2(wαϕ)[0, 1) and every n ∈ N, n ≥ 4, we have

‖wα(f −M [GS]
n f)‖ ≤ 2Kwα

(
f̃ ,

1

2n

)
≤ 13.7‖w(f −M [GS]

n f)‖[0,1).
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