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Abstract

Direct theorems in terms of the weighted K-functional for the uniform weighted approxi-
I.Z
1+2z
obtained for functions from C'(w) + W3 (w¢) with weights of the form (H%)BO (H%)’Boo for
Bo, Boo € [—1,0]. As a consequence, direct theorems for some (for instance, classical and
Goodman-Sharma modifications of Baskakov and Meyer-Konig and Zeller ) operators are

obtained.

mation by a class of operators which reproduce the functions E;(x) = ,t=0,1 are
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1. Introduction

In order to approximate functions in [0, c0), Baskakov (in analogy with the Bernstein
operator) introduced a new operator (see [I]). It is defined for bounded functions f(z) in
[0, 00) by the formula

Buf() =3 Pl (1) (1)

k=0

where

Poy(z) = (" + Z N 1) 21 4 2) "k,

One way to generalize this is to replace f (%) in the above definition by some functionals
bk (f), defined for every f € Lo[0,00) and satisfying given conditions. A different path
is to consider a sequence of linear positive operators and impose appropriate conditions.

In this paper we investigate the approximation of functions f € L.[0,00) by a se-
quence of operators L, which satisfy the next conditions:

L, are linear and positive operators, (1.2)
L,(E;,z) = E;(z) for i=0 and i=1, (1.3)
L,(FEs,z) = Ey(x) + A, (z), (1.4)
L.(Ej,x) = E3(z) + B,(x). (1.5)
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Here by L, [0, 00) we denote the space of all Lebesgue measurable and essentially bounded

in [0,00) functions equipped with the uniform norm | - ||, E; (for i = 0, 1, 2) are the

functions F;(x) = 11 and the functions A,(z) and B,(z) are such that for every
x
z € [0,00) we have |A,(7)| < a,z, |Bn(2)| < b,Ej(z) and lim a, = lim b, = 0.
n—oo n—oo

And we note here that if the above conditions are satisfied, then automatically we
have also

Lo(l,z) =1 (1.6)
L(E2, ) = EX(x) + By (a). (L.7)

We define an appropriate K-functional and by using it we prove a direct theorem for
them. But before formulating the main result we will start with some definitions and
notations.

The first derivative operator is denoted by D = <. Thus, Dg(z) = ¢'(z) and D*g(z) =
g"(z). By ¢(r) = x we denote the weight which is naturally connected with the second
derivatives of these operators. Our main goal in this paper is the characterization of
Ly-norm of the weighted approximation error ||w(f — L, f)| for weight functions given

by Bo 1 Boo
w@%ﬂ%@:w%ﬁm@:< x) ( ) | (18)

1+2z 1+z

where x € [0,00) and fy, 5 € [—1,0].

By C[0,00) we denote the space of all continuous on [0, c0) functions. The functions
from C[0, 00) are not expected to be bounded or uniformly continuous.

For a weight function w we set

C(w)[0,00) = C(w) ={f € C[0,00) : wf € Ls[0,00)}
and

W2 (we)[0,00) = W2 (we) = { g : ng, D(1g) € ACi6c(0,00), wdD*(pug) € Log[0,00)},

where AC),.(0,00) consists of the functions which are absolutely continuous in [a, b] for
every [a,b] C (0,00) and p(z) =1+ .

The weighted approximation error of L, will be compared with the K-functional be-
tween the weighted spaces C(w) and W?(w¢), which for every

feClw)+Wiwe) ={fi+ f2: fL € C(w), fr € W (we)}
and t > 0 is defined by

K, (f,t) = mf {w(f = g)|| + tlwoD*(ug)|| : g € Wi(wg), f —g € Clw)}.  (1.9)

The above formula is a standard definition of K-functional in interpolation theory.
In approximation theory the condition f — g € C'(w) in is usually omitted because
in the predominant number of cases the second interpolation space is embedded in the
first one. However, in this case we have interpolation between C(w) and W3 (w¢), as
W2 (wp)\C(w) is of infinite dimension for some of the weights w that satisfy the above
assumptions.

Our main result is a direct inequality. It is a modification of the result in [10], which
treats the case of a class of Bernstein-type operators.
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Theorem 1.1. Let the operators L, satisfy the conditions (1.2)) - (1.5) and w is given by

(1.8) with By, B € [—1,0] and ¢, = ﬂmax{an, Vapby}. Then for every f € C(w) +
Wi(wgb) and for every n € N we have

|w(Lnf — Il < 2Ky (f,cn)-

Some remarks follow.

Remark 1.
Let ITy = {f : f = aEy+ bE1,a,b € R}. Then for §y € [—1,0], B € (—1,0) the space
C(w) + W72 (we) coincides with the space C(w) + II;. Indeed, let f € C(w) + W3 (w¢),
i.e. f can be written as f = f; + fo where f; € C(w) and f, € Wi(wgb). Then we have
(ufa)(x) = a*x + b* + g*(x) where

f“*Z‘A{KWWﬁVWMww

and

b* = (1f2)(0), a*_(MEY®@3_0UDTU41[mUUﬁ%WdU

Obviously, g* € C(w¢) and g = u~tg* € C(w) and the above follows from

a*x + b* *(z
+g()

fale) =— fu

= aFy(z) + bEi(z) + g(x).
But for S = 0 or for S, = —1 the space C(w) + Wi(wgb) is essentially bigger than
C(w) + TI;. For instance, for the function f(x) = log(1 + z) , we have f € (C(w) +
W2 (we))\(C(w) 4 1Iy) for fs = 0 and By € [~1,0]. The same is true for the function
f(z) = (14 z)log(l+ z) for B, = —1 and Sy € [—1,0].

Remark 2.
Theorem does not imply for all f € C(w) + W2(we) that |w(L,f — f)|| — 0 or
Ky (f,cn) — 0 when n — oo. Actually, none of these quantities tends to zero with
n — oo for some functions f € C(w). In order to ensure convergence to zero of these
quantities one may need to impose additional restrictions on the behavior of f at 0 and
at co. At 0 these restrictions are (see [4]) lim, o, 2™ f(z) = 0 for —1 < 3y < 0 or the
existence of lim,_,oy 271 f(x) for By = —1. In the same time, at oo the restrictions are
more complicated but, shortly, the function f should not vary very fast in order to allow
approximation in C'(w) with functions from W3 (we).

2. Main result

It is well known fact that if an operator L satisfies the following two conditions:

L is linear and positive operator; (2.1)
L(l,z2) =1, L(t,x) = (2.2)

then for every concave continuous function f the next inequality is true

f>Lf (2.3)



As a consequence of this we have that if an operator L satisfies the following two condi-
tions:

L is linear and positive operator; (2.4)
L(Ey,x) = Ey(x) , L(Ey,z) = Ei(z); (2.5)

then the operator ulL (ﬁ) satisfies the conditions (2.1)) and (2.2) and consequently for
every concave continuous function f the next inequality is true

Foi (). (26)

Now we prove two lemmas which we will need later.

Lemma 2.1. For every function f € C(w)[0,00) we have [[wL(f)|| < ||wf]|, i.e. the norm
of the operator is 1.

Proof. Let us mention that the function u(w)™! is concave for By, B € [~1,0] and then

from ([2.6)) we have
-1

I ((w)fl) - I (u(w)

< (w)™ L
H ) (w)
This one, (2.4) and (2.5)) give

lwL(H) = llwL (wf(w)™) |
< lwfHlwL ((w) ™) |

< Jw I flw(w)™ = [wfll.
O
Lemma 2.2. For Sy, Bo € [—1,0] and z,t € (0, 00)
bt—u y (x —t)? (x —t)? }
. o] < 22w {¢<x>w<x>’ VIt iau) )
Proof. Case 1. t > .
It is obvious that ()] < S0 () for u € [z, ] because the function
o(u)w(u) = u* (1 + 1) P> is monotonically increasing.
Then we have
bt —u (t —x)?
—d —_— . 2.7
| Fmi | = 20 20

Case 2.1. t <z and [, € [—%,0}.



In this case the powers 1 4+ 3y and —fy — B are positive and consequently
bt —u Toou—t
————du| = ———du
/x P(u)w(u) ‘ /t P(u)w(u)
v u—t
- /t Wl B0 (1 + ) —Po—B du
T 1+ﬁ 7& */Boo
_ / (0 — )=o) (L) T (U N
‘ U u—+1

T 1+Bo0 —Bo—PBoo
t t+1
[ () )
. U u—+1
T 1+Bo —Bo—Poo
t t+1
S/(u—t)ﬁ“’(l——) (1— i ) du
¢ T r+1
1450 —Bo—Bo px
t t+1
= (1 - —) <1 T ) / (u — t)%>=du
T r+1 .

= (z — )"0~ /x(u — )P du

$1+ﬁo(1 + x)_IBO_Boo
— m 1y — )18
" ot
(w17

~ )
(@~ 1
<2 (2.8)

Case 2.2. t < x and [, € [—1, —%}

for u € [t,z] and the powers 1 + 5y and —fy —

In thi < 1
n this case AT 02 = Gx0n

B — 1/2 are positive. In the same way as in Case 2.1. we have
b ot—u ‘ /9C u—t
————du| = ————du
/m ¢(u)w(u) ¢ P(uw)w(u)
" u—t d
o . u1+ﬁ0(1 + u)*ﬂO*ﬁoo u

_1/2 v uw—t
S (1 + t) [ U/1+BO<1 _|_ u)_ﬁo_ﬂoo_l/2 du

x 1450 —Bo—Poo—1/2
t t+1
~(1 t1/2/ el 1 - d

x 1+8o0 —B0—Boc—1/2
t t+1
<1+ t)1/2/ (u — t)P=+1/2 (1 — —> (1 _ I ) du
¢ r+1

x
1+80 —Bo—PBoc—1/2 px
t t+1
=(1+t)712 (1 — —) (1 — i 1) / (u — t)P=T12dy
x x ¢
— $)1/2-B z
= (z—1) / (u — )=+ 2y
V14 tattho(l +x)_50_600_1/2 ‘

e o) e
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-() Vi

1+z (z—1t)?
=Tt s@u(e)

1+z
1+¢

Here we consider two subcases for z. For x € (0, 1] we have < v/2 and from

the above we obtain

bt —u ’ (x —t)?

w ™| =2ty 2
For z € [1,00) we have 1;_ ’ < \/g and consequently
t—u (x —t)?

<22 — et (2.10)

From and ([2.10) we have
t-u (x —t)? (x —t)? }
< max 2\/_ 2v/2 . 2.11
2ty e e
Finaly from , and - we get

R
ujs2vam {¢<x>w<x>’ mmu)}‘

t—u

The result from the above lemma we use in the next theorem.

Theorem 2.1. (Jackson-type inequality). Let us define for an operator L the quantities

=l (L(E2) — B || and B = |u* (L(EY) — EY) ||

Then for every operator L which satisfies conditions (2.4 and[2.5 and such that A is finite
and for every function f € Wi(wqb) we have

lw(Lf = ) < 2V2|lwoD*(uf)| max { A VAB}.
Proof. Let g(z) = u(z) f(z). Then by using Taylor’s formula
9(t) = 9(a) + (¢~ 0)Dg(a) + [ (¢ = 0)D?g(0)dv

we have for f(z)



Applying operator L to both sides of the above equality and using (2.4), (2.5) and
Lemma 2.2 we obtain

1.0 - 1) = |2 (1 [ =00 ) do. ) (212

<1 (15| [ o] ) hwon* ]

) (v — 1) (z —1)"
< ||\ woD*(uf)|| L (max {2\/5(1 FOo(z)w(z)’ 2‘/5(1 + )32\ [zw(z) } ’ x)

Applying (2.5 for the first term and Cauchy’s inequality and ([2.5]) for the second term
in right hand side of (2.12)) we have

(x—t)Q r) = o (e ) — T
L<—<1+t>¢<x), >_¢ (2) (L(Ea, ) — Es(x))

and

(i) 5500) (5"
= (71 (@) (L(Bp,) = Bo(a) "% (s2(0) (L(BE, ) = BR(2))) "
Replacing the above two estimations in (2.12]) we have

w(@) | L(f,x) — g(x)] < 2v2|JwdD?(uf)]| . max {A@:), A(x).B(a:)} . (2.13)

Taking a supremum on x in (2.13)) we complete the proof of Theorem .
O

As an elementary consequence of this lemma we have that if a function f € Wﬁ(u@)
then Lf — f € C(w).
From [L.4] and L5l it follows that

|67 (2) (Ln(Bs, x) — Ex(x))| < an,
|12(2) (La(E}, 2) — E}(2))| < ba.

Above result and Theorem [2.4] give

Theorem 2.2. For every function f € W2(w¢) we have
[w(Lof = P < 2¢n |[wdD*(uf)| -
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We use Theorem [2.2]in the proof of Theorem [I.1

Proof. (Theorem |1.1)
Let ¢ is an arbitrary function in Wi(u@), such that g — f € C'(w). Then

[w(Lnf = DI < w(Lnf = Lng)ll + llw(Lng = 9| + [lwlg = FI-
From Lemma [2.1] and Theorem [2.5] we get

lw(Lnf = I < 2lw(f = g)ll + 26, ||wdD? (1 f) ||
=2 (Jw(f = gl +cn [|wdD*(uf)]]) -

Taking infimum on all g € W (w¢) such that (f —g) € C(w) in the above inequality
we complete the proof of Theorem [I.1] O

Now we can easily prove a similar result for linear positive operators which reproduce
linear functions.

Let us denote the basic test functions by e;, i.e. e;(x) = z° for i = 0,1,2 and the
weight by ¥(z) = x(1 + x). Let the sequence of linear positive operators L, satisfy the
next conditions

L,(e;,x) =ej(x), i=0,1, (2.14)
L,(es,x) = ea(x) + Qu(z), (2.15)
L,(Ey,x) = Ey(z) + R, (2), (2.16)

where |Q,(z)| < ¢, (2), |Rn(x)| < rpEo(z) and lim ¢, = lim r, = 0.
n—o0 n

—00
The weights in consideration are

x
1+

Y0
Wy (x) = wy (Y0, Voo; &) = ( ) (14+2)"™, 70,70 € R. (2.17)

We also set
W2(w,2p) = {g,g' € AC1.(0,00) : wyhD*g € L0, oo)} )
and for ¢ > 0 and every function f € C(w,) + W?(w,1) a K-functional K, (f,t) by

K, (f,t)= inf w — o) + tlw, 1 D? 0o) [ -
D= e (= Dllps + Dl )

It is not difficult to see that the operators ﬁ[zn(ﬂ f, ) satisfy the conditions -
D with ¢, = a, and r, = b,. Applying Theorem ((1.1)) for the operators ﬁLn(u f,x),

the function 5 and the weight pw, we obtain

Theorem 2.3. Let w, be given by (2.17) with vo, 7o € [—1,0] and
dp = V2maz{gn, /Gurn}. Then for every f € C(w,) + W2(w1)) and every n € N we

have

Hw'y(Lnf - NI < 2Kw7 (f.dn).



3. Applications

3.1. Immediate applications

—A slight modification of classical Baskakov operator
For bounded and continuous on [0, co) functions f and natural n > 2 we consider
linear positive operator

) = ki:o Po(a)f (nfl) |

It i 1s easy to see that the conditions 1 H and bl are satisfied with a,, = %1,
b, < — and the result of Theorem |1.1}is

Proposition 3.1. For every f € C(w)[0,00) + W2(w¢)[0,00) and every n € N, n > 3,

we have
sl 2 \/§
lw(f — BE1f)| < 2K, (f, \/(n T 2)> < 2K, (f, m) .

— Agrawal and Thamer operators
The Durrmeyer-Baskakov-type operator is given for every natural n by

AT]fx ank’ 7
k=0

buo(f) = F(0): ban(f) = (n—1) / OOPn,k,xy)f(y)dy, keN,

(3.1)

where f is Lebesgue measurable on (0, 00) with a finite limit f(0) at 0. The modification
was introduced by Agrawal and Thamer [2]. Here conditions[1.3] [1.4] and [L.5] are satisfied
with a,, = b, < —= and the result of Theorem |1.1}is

n2’

Proposition 3.2. For every f € C(w)[0,00) + W2(w¢)[0,00) and every n € N, n > 3,

we have
lw(f — BATf)|| < 2K, <f, 2{) ,

3.2. Applications for Baskakov-type Operators that preserve linear functions

—Classical Baskakov operator
It is easy to see that the operator B, defined by (l.1]) satisfy the conditions ([2.14]),

(2.15) and (2.16)) with ¢, = 1/n and r, = 1/(n — 1). So, applying Theorem ([2.3) we have

Proposition 3.3. Let w., be given by (2.17) with vy, Ve € [—1,0]. Then for every f €
C(w,)[0,00) + W2(w,1)[0,00) and every n € N, n > 2, we have

oy (f = Buf)| < 2K, <f, n—“ﬂ) |



Remarks.

1.Actualy
1 [sl]
B, (uf,x) =B, ,x), x € |0,00).

2.More general direct result and a strong converse result of type A are obtained in [6]
using different arguments:

Proposition 3.4. Let w, be given by (2.17) with vy € [—1,0], 7 € R. Then there exists
positive constants C, Cy and L such that for every
f € C(w,)[0,00) + W?(w,1)[0,00) and every n € N, n > L, we have

Cillus(f = Buf)l < K, (£.3) < Calw (7 = Buf))

—A Goodman-Sharma modification of classical Baskakov operator
Finta [5] introduced in 2005 the operator

00
fili’ = E Pnk Unk 7
k=0

vo(f) = FO); vnalf) = (n+1) / T Porara() () dy, kN,

where f is Lebesgue measurable on (0, 00) with a finite limit f(0) at 0.

The operator V,, satisfy the conditions (2.14)), (2.15) and (2.16]) with ¢, = 2/(n — 1)
and r, = 2/(n — 1). So, applying applying Theorem ({2.3) we have

Proposition 3.5. Let w., be given by (2.17) with vo, Ve € [—1,0]. Then for every f €
C(w,)[0,00) + W2(w,1)[0,00) and every n € N, n > 2, we have

[wy(f = VoIl < 2K, (f, 2\/§> .

n—1

Remarks.
1.Actualy

1 7]
—Va(uf, BL fix), x€]|0,00).
M( 1}) ) +1 ( ) [
2.A better direct result and a strong converse result of type A are obtained in [7] using
different arguments:

Proposition 3.6. Let w., be given by (2.17) with vy, Ve € [—1,0]. Then for every f €
C(w,) + W?(wyyp) and every n € N, n > 4, we have

o (F = Vi)l < 26, (£ ) < 13T (F = Vo)l

—A Baskakov-Szasz-Durrmeyer operator
In [I1] Gupta and Srivastava proposed the Durrmeyer-type Baskakov-Szasz operator
as

Vi(f.x)=n)Y_ Pui() / N s$ni(1)f(2)dL,
k=0 0
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where ( )k
e (0
snik(t) =e tT
are the basic Szasz-Mirakjan polynomials. But this operator does not preserve linear
functions. So, we slightly modify V* in a Goodman-Sharma way and consider the operator

Valfo) = FO)(1+ )" +n2m / Snama (D) F ()t

It is casy to see that Vj, satisfy conditions and [2.15| with @, (x) = @ From here
we have ¢, < i

Now we will prove that r, < —2-

Indeed, since the function FEj is convex and the

n—1"
operator V,, is linear and positive and reproduces linear functions it follows that
Eo(z) <V, (Ey, ). (3.2)
At the same time we have for k = 1
o dt * 1
n/ e — < n/ eMdt=1=" il (3.3)
0 1+1 0 n+1
and for k > 2,
°° dt n n
I, = nk1(t = — I 3.4
k ”/05””()1” F—1 k—1"" (34)
and
L=1 _/oos 1t (3.5)
k k—1 0 ’I’L,k*l (1 + t)2 .
Multiplying (3.5 by z*5 and summing with (3.4) we obtain
n 1 > dt n+1
I, = — nk—1(t < ) 3.6
P ntk—1 n+k:—1/0 Sk 1()(1+t)2_n+k (36)
From (3.3) and ({3.6)) it follows that for every k € N
o dt 1 n
k1) —— < (14 — . 3.7
n/OS’kl<)1+t_(+n)n+k (3.7)

Consequently,

(o) s S (i)

1 n 1 n+1 1 2
<[(1+- = =k Ey.
_(+n)n—11+x n—11+x 0+n—1 0

So, applying Theorem (2.3) for the operator V,, we obtain

Proposition 3.7. Let w, be given by (2.17) with v9,7ve € [—1,0]. Then for every f €
C(w,)[0,00) + W?(w,1)[0, 00) and every n € N, n > 2, we have

lwy (f = V)|l < 2K, (f 22 ) .

"n—1
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3.3. Applications for Meyer-Konig and Zeller-type operators that preserve lin-
ear functions
—Classical Meyer-Konig and Zeller operators
The Meyer-Kénig and Zeller operator (introduced in 1960 [9]) in the slight modification
of Cheney and Sharma [3] is defined for f € C[0,1) by

k

Muf) =Y maatlf (55) - we o

where m,, (z) = (n _]L_ k) 2 (1 — )"

We shall utilize the change of variable o : [0, 00) — [0,1) given by

B X
147

x=0(%)

A function f defined on [0, 00) is transformed to a function f defined on [0,1) by
fl@) = f(o(2) = f(@).
The weights in consideration are
We () = wo(ag, ag;x) = (1 — ), (3.8)

and p(z) = z(1 — z)? for z € [0,1) and real o, a;.

We also set W2(wa)[0,1) = {g, 9" € AC10e(0,1) : wapD?g € Ly [0,1)}.

By analogy with we define the K-functional between the weighted spaces C'(w,)
and W2(wap), which for every f € C(w,)[0,1) + W?(wap)[0,1) and ¢ > 0 is defined by

Ky, (f,t)p1) = inf {llwa(f = 9)llo,1) + tllwaD?gllo1) } -

9EW?(wap), f—g€C(wa)
Using the equalities
Bkﬁl(fa :i‘) = Mn(f7 .T),
o) D? (@) f(#)) = e(x) D*f(2),

the relations between the weights with tildes and without tildes and the result in Propo-
sition [3.1] we have

Proposition 3.8. Let w, be given by (3.8)) with ap,; € [—1,0]. Then for every f €
C(wa)[0,1) + W2 (wap)[0,1) and every n € N, we have

||wa(f - Mnf)” S 2Kwa <f7 n—g) .

12



—A Goodman-Sharma modification of MKZ operator
The Goodman-Sharma-type modification of MKZ operator (GS-MKZ) is given for
natural n by

GS]f Z mnk unk )
dy
(1—y)*

where f is a Lebesgue integrable in (0, 1) function with a finite limit f(0) at 0.
Using the equalities

un70(f>:f(0)7 unk —TL/ My, k- 1 ) fOT kZl

B(F.5) = MIEI(f, ),
o) D* (1) (7)) = pla) D f(a),

the relations between the weights with tildes and without tildes and the result in Propo-
sition 3.2l we have

Proposition 3.9. Let w, be given by (3.8) with ag, 7 € [—1,0]. Then for every f €
C(wa)[0,1) + W2 (wap)[0,1) and every n € N, n > 2, we have

lwa(f — M f)| < 2K, <f ﬁ)

A better direct result and a strong converse result of type A are obtained in [§] using
different arguments:

Proposition 3.10. Let w, be given by (3.8) with g,y € [—1,0]. Then for every f €
C(wa)[0,1) + W2 (wap)[0,1) and every n € N, n > 4, we have

~ 1
ol =MD < 28, (.5 ) < 13T = M)y
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